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1. Introduction.

Many investment projects have the following characteristics: (i) spending

decisions and associated cash outlays occur sequentially over time, (ii) there is

a maximum rate at which outlays and construction can proceed —— it takes "time to

build" —— and (iii) the project yields no cash return until it is completed. The

firm's investment problem is then to choose a contingent plan for making these

sequential — and Irreversible —— expenditures over time. The arrival of new

information might lead the firm to depart from the spending scenario originally

planned; the firm might accelerate or decelerate the rate of investment, or

simply stop the program in midstream.

Examples of Industries for which these characteristics are especially

Important Include aircraft and mining. The production of a new line of aircraft

raquires engineering, prototype production, testing, and final tooling stages

that together can take eight to ten years to complete. The construction of a new

underground mine, or the development of a large petrochemical plant are projects

that usually require at least five or six years, with clear constraints on the

pattern of expenditures. In other Industries the lead times may be somewhat

shorter, but are still important.

Traditional discounted cash flow criteria, which treat the spending pattern

as fixed, are inadequate for evaluating such projects. Likewise, neoclassical

investment theory,1 which treats individual units of capital as homogeneous,

Interchangeable, and individually productive, fails to provide a correct

theoretical description of investment behavior under uncertainty. Introducing

convex adjustment costs is of little help in this regard — most real projects are

composed of heterogenous units of capital that must be installed in sequence, and

are unproductive until the project is complete.2 Indeed, the importance of a

sequential investment and time to build have been demonstrated by Kydland and

—1



Prescott (1982) in the context of a general equilibrium model. They have

suggested that such a model yields a much better description of cyclical

fluctuations than does the standard adjustment cost framework.

Our paper should be viewed in the context of several recent strands of

research, all of which have helped to provide a better microeconomic foundation

for investment behavior. First, Roberts and Weitzman (1981) examine projects

with sequential outlays using a model that stresses the role of information

gathering.3 In their model, each stage of Investment yields information that

reduces the uncertainty over the value of the completed project. Since the

project can be stopped in mid—stream, it might pay to go ahead with the early

stages of the project even though ex ante the net present value of the entire

project Is negative. Hence the use of a net present value rule for such

projects, particularly one based on a single risk—adjusted discount rate, might

reject investments that should be undertaken.

Second, in related papers, Bernanke (1983) and Cukierman (1980) examine

investment decisions for which information about project value arrives

independently of the cash outlays, and consider the incentives to postpone

expenditures until more information arrives. In their models the project

involves a single expenditure, and there is no time to build. However, the

Investment expenditure is Irreversible, a firm can choose only a subset of the

available projects (so that investing in one set of projects excludes all

others), and (unlike in Roberts and Weitzman) the firm obtains information before

beginning the project. They show that uncertainty over project returns creates

an incentive (an "option value") to postpone the investment and wait for more

information to arrive, even if the firm is risk neutral.4 This is just the

opposite result from that in Roberts and Weitzman; here a naive net present value
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rule might accept projects that should be rejected or postponed. Both authors

use their models to explain the cyclical nature of aggregate investment spending;

a recession Is associated with greater uncertainty over future cash flows because

firms reduce their investment spending until some of that uncertainty is resolved.

The models developed In Roberts and Weitzman, Berrianke, and Cukierman are not

explicitly based on valuation in financial markets. Thus, a manager following

their investment criteria may not be maximizing the firm's value to

stockholders. For example, although the assumption of risk—neutrality allows

Bernanke and Cuklerman to underscore the effects of Irreversibility, as distinct

from risk aversion, extending their models to a more general setting Is not

straightforward; the correct risk premium cannot be determined independently of

the optimal decision rule.

The third strand of work, and that most closely associated with this paper,

is best represented by McDonald and Siegel (l983). They also stress the

option value of postponing an irreversible investment, but not as a means of

accumulating Information. Instead, the payoff from completing the project has

some value today which is consistent with capital market equilibrium. This value

fluctuates stochastically over time (independently of any investment

expenditures), so that its future value is always unknown. Access to the

investment opportunity (perhaps purchased or obtained as the result of R&D) is

analogous to holding a call option on a dividend—paying common stock, where

"exercising" the option is equivalent to making the investment expenditure. As

with such financial options, increased risk Increases the incentive to delay the

investment expenditure, and for any positive amount of risk, the expenditure is

made only when the project's value exceeds costs by a positive amount. These

results are similar to those in Bernanke and Cukierinan, but for a different

reason.
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This paper is also concerned with the option value of being able to delay

irreversible investment expenditures, but here we focus on a series of

expenditures that must be made sequentially, that cannot exceed some maximum

rate, and that become productive only after the entire sequence is completed.

For example, a project requiring a total outlay of 5 million might take five

years to build, with a maximum rate of investment of l million per year. Such a

project can be viewed as a compound option; each unit of investment buys an

option on the next unit. Evaluating the project requires a decision rule that

deternines whether an additional dollar should be spent given arbitrary

cumulative amount that has already been spent. That decision rule will depend on

the underlying value that the project would have today if completed, the

remaining expenditure required for completion, as well as parameters describing

risk and the opportunity cost of delaying completion.

This paper is in the spirit of recent work on capital budgeting with

option—equivalent cash flows.6 Our approach assumes that the value of a

completed project is spanned by a set of traded assets and that the distribution

of future values is given. Option pricing techniques are used to derive the

relationship between the value of the investment program (what a firm would pay

for the right to undertake the program) and the value of the project once

completed.

We have several objectives. First, we show how a decision rule, applicable

to each stage In the development of a project, can be derived and applied to

project evaluation. Second, we show how the value of an investment program and

the decision to invest depend on the maximum rate at which expenditures can

productively be made (i.e. on the "time to build"). Finally, we will see how

time to build interacts with uncertainty to affect investment spending, and in

particular, how the depressive effect of increased uncertainty on investment

spending is magnified.
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The next section describes the nature of the investment program, and our

assumptions regarding the distribution of future values of a completed project.

It also outlines our approach to deriving the optimal investment rule. Section 3

presents numerical results for a simple example that shows how risk, opportunity

cost, and time to build interact to affect the investment decision. Section 4

uses the model to examine the economic value of construction time flexibility.

The concluding section discusses some implications of our results for aggregate

investment behavior.

2. The Model.

Consider a program to build a widget factory. The program involves a

sequence of investment outlays, corresponding to the specific steps involved in

construction. The payoff to completing the program is the market value of a

completed widget factory. This market value might be calculated as the present

value of the stream of uncertain future cash flows from operating the factory.

Note that we are not assuming that identical factories are traded in a market

and, therefore, have an observable price. We are only assuming that we could

calculate the value that would prevail if it was traded by applying appropriate

capital budgeting methods to the cash flow stream from the completed factory.

This market value will, of course, fluctuate stochastically over time, reflecting

new information about future cash flows.

We take the market value of the completed factory, which we denote by V, as

exogenous, and assume it evolves according to:

dV = (p—5)Vdt + aVdz (1)

where dz is the increment of a Weiner process. The last term in (1)

characterizes the unexpected component of changes in V. The central feature is

that future values of V are always uncertain, and the degree of uncertainty



depends only on how far into the future one looks. Unlike the stylized R&D

projects of Roberts and Weitzman where learning takes place at each stage of

investment, uncertainty about future values of V is independent of the

proportion of the project already completed! Nor is such uncertainty

resolved by waiting, as in the models of Bernanke and Cukierman.

The parameter p is the expected rate of return from owning a completed

factory. It is the equilibrium rate established by the capital market, and

includes an appropriate risk premium. Eqn. (1) says that the expected rate of

capital gain on the factory is less than ji, so that S represents the

opportunity cost of delaying completion of the project. Here, d is the

expected flow of net earnings accruing from operation of the factory. For

simplicity, we assume that 5 is constant.8

If S is zero, the asset value V is expected to grow at the fair market

return p. There is then no cost of delaying completion of the project, but

there is a savings from delaying the investment expenditure. Hence for '5 = 0,

investment never occurs. It Is because most real projects do have an associated

opportunity cost of delay in the form of a foregone earnings flow that

Investment does occur.

An Important assumption in our model is that the factory cannot be built

overnight. There is a maximum rate at which construction and Investment can

proceed —— It takes time to build. Because completion of the project requires

some minimum amount of time, the payoff from completion Is unknown during the

construction period. However, we assume that the total required investment Is

known.
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We also assume that the minimum rate of construction and investment is zero,

and that construction can be halted and later resumed without cost. In reality,

we would expect fixed costs associated with maintaining the partially completed

factory (e.g., to prevent "rusting"), and with maintaining the capital and labor

resources needed to resume construction. For simplicity we ignore such fixed

costs here, although it is straightforward to extend our model to include them.

Finally, we assume that investment is completely irreversible; capital in place

has no alternative use, and therefore zero salvage value.

To see how the constraint of time to build affects Investment decisions, we

must determine the market value of the entire Investment program. This market

value is what a value—maximizing firm would pay for the right to undertake the

program. It will correspond to an optimal program of investment outlays, which

will, of course, be contingent on the evolution of V.

We can characterize the Investment problem as one of optimal control. There

are two state variables, the total amount of investment remaining for

completion, K, and the current market value of a completed factory, V. The

control variable is the rate of investment, I. The problem is to choose the

control rule (corresponding to an investment program contingent on the state

*
variables), I (V,K), to maximize the value of the investment program. This Is

*
subject to the constraint 0 < I (V,K) < k, where k Is the maximum rate of

investment.

Because there are no adjustment costs or costs associated with changing the

level of investment, the problem has a "bang—bang" solution: the instantaneous

level of investment will be either 0 or k. In turn, the optimal decision rule

* *
reduces to a cutoff value for a completed project, V (K), such that I =k for

* *
V > V , and I = 0 otherwise. As we will see, the optimal decision rule

*
V (K) is determined simultaneously with •the current market value
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of the investment program.

The equilibrium market value of the investment program and the optimal

*
current value of the control variable, I , will depend on the values of the

*
two state variables, V and K. In thIs case I is either k or 0, depending on

*
whether the current value of V Is above or below the cutoff level, V (K). We

*will find it convenient to denote the value of the investment program when V > V

(upper region) by F(V,K), and when V < V (lower region) by f(V,K).

Formally, the investment program is a contingent claim. However, it is not a

simple contingent claim: at every instant the manager can choose whether or not

to Invest and continue construction. Hence the project is a compound option,

where each expenditure buys an option to make the next expenditure. Although

this complicates the solution procedure, the same techniques used to value

options in securities markets can be applied to value the investment program.

Using a continuous time framework, Merton (1977) derives the valuation

equations for general contingent claims. His approach relies on continous

trading of specified assets to replicate the payoff to the contingent claim.

Nevertheless, this approach is also valid when the assets that must be included

in the replicating portfolio are not traded In financial markets. What is

necessary is a capital market sufficiently complete that the new project does not

change the opportunity set avilable to investors. If this is the case, managers

need only calculate the value of the underlying asset, V, that is consistent with

the equilibrium valuation model Implied by the market. For example, if the CA.PM

holds and the manager can estimate the underlying asset's beta from prices of

traded securities, then he can correctly calculate V, as well as the value of any

9, 10contingent claim on V (e.g, this investment program).

The option pricing approach yields a valuation equation relating the value of

the contingent claim (the investment program) to the value of the underlying
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asset (the completed factory).11 Since the value of the contingent claim

*
depends on whether V is above or below V , for notational convenience we write

a separate valuation equation for each region, i.e., for F(V,K) and f(V,K). It

is straightforward to show that F and f must satisfy the following partial

differential equations:

(l/2)a2v2F + (r—5)VF — rF — kFK — k = 0 (2a)

(l/2)a2V2f + (r—lS)VfV — rf 0 (2b)

subject to the boundary conditions:

F(V,0) = V (3a)

urn F(V,K) = e'1( (3b)

f(O,K) = 0 (3c)

f(V*,K) = F(V*,K) (3d)

FV(V*,K). (3e)

The first boundary condition just says that when the project is completed,

the value of the investment program is the market value of a completed project.

As the value of the completed project becomes very large relative to the

total investment K, the option "premium" becomes negligible, and the value of

the program approaches the value of the completed project. However, the value

of the investment program will increase less rapidly than the value of a

completed project. As V becomes large, construction outlays will be made at the

maximum rate, k, but there is still a foregone opportunity cost. Hence for very

large V, the increase in the value of the investment program for a 1 dollar

increase in V is given by

1 —
K/k

e )te_Ptdt =
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This condition is shown as (3b) above.

Condition (3c) says that the minimum value of the investment program is

zero, and is reached when V is zero. Finally, conditions (3d) and (3e) require

that the value of the investment program be continuous and differentiable at the

* 12
critical value V

Eqn. (2b) has the analytic solution:

f(V) = aV, (4)

-(r-2/2) + [(r2/2)2 + 2r2}2wherect=
2

The coefficient a must be determined jointly with the solution for F in the

upper region, via the shared boundary conditions (3d) and (3e). This would be

straightforward if eqn. (2a) also had an analytical solution; as it does not, a

numerical approach is required. First, we eliminate a using eqn. (4) and the

boundary conditions (3d) and (3e):

F(V,K) = (V*/ct) Fv(V,K) (5)

Then eqns. (2a), (2b), and the conditions (3a) — (3c) and (5) are solved

numerically using a finite difference method. The procedure transforms the

continuous variables V and K into discrete variables, and the partial

differential equations into finite difference equations. These equations can be

solved algebraically, and the solution proceeds as a backward dynamic program

which incorporates the optimal investment decisions at each point. Hence the

*critical cutoff level, V (K) (the optimal boundary between the two regions),

is solved for simultaneously with the value of the investment program. Details

of this procedure are in the Appendix.'3

In the next section we apply the solution procedure to a simple and stylized

example. This serves to illustrate how the procedure works, and how time to

build and uncertainty interact to affect investment decisions.
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3. A Simple Example.

Consider a project that requires a total Investment (K) of 6 million, which

can be spent productively at a rate no faster than l million per year (k). We

assume the riskiess rate of interest (r) is 2% per year. The value of the

underlying asset, V, evolves according to eqn. (1); we will vary 6 and a, but

as a "base case", we take 6 = .06 and a = .20 (annual rates).'4 As discussed

in the Appendix, the solution procedure requires a discretization of the

variables V and K; for this example, we assume investment outlays are made

quarterly, i.e., K is measured in discrete units of 0.25 million.

The base case solution is shown in Table 1. Each entry is the value of the

contingent claim for different levels of V and K. Entries with an asterisk

*
denote the critical cutoff level V (K). For example, a project with 5

*million of investment outlays to go has a critical cutoff level V (K) of 9.49

million: if V is currently 9.49 million or more it pays to invest this

quarter, otherwise it does not (although one would resume investing should V

later rise above 9.49 million). At this critical level the value of the

contingent claim is 2.4 million; this is the equilibrium market value of the

right to the investment program.15

Observe that Table 1 can be used to make optimal investment decisions as

construction of this project proceeds (i.e. as K falls from 6 million to

zero). It can also be used to evaluate any project requiring a total outlay

less than 6 million, but with the same values of r, 6, a, and in particular

the same maximum rate of investment k.

We will be interested in the sensitivity of the investment decision to the

parameters a, 6, and k. That decision Is summarized by the critical cutoff

*
value V (K). Table 2 shows, for the initial investment decision (i.e., when

K 6), how the cutoff value changes in response to changes in a and 6. (The
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middle entry in Table 2 corresponds to the base case shown in Table 1.)

*
Observe that V increases when a is increased. Like most financial options,

the value of the investment program, f, is a convex function of the value of the

underlying asset V, and so increases as the standard deviation of V increases.

But this increase in f with increasing a comes about because the right to the

investment program can be held and not "exercised" (a is the standard deviation

of V per unit of time). Therefore, if 6 and k are held fixed, increasing a

* 16
increases the Incentive to delay Investing, and raises the cutoff value V

*
The dependence of V on 6 is less clear. A higher value of 6 implies a

higher opportunity cost of delaying the project, so one might expect that with

*
a fixed, V would fall as 6 increased. This would indeed be the case if

the project could be built instantly.'7 But the fact that it takes time to

build the project creates a countervailing effect. The payoff from the project,

V, Is only obtained at completion and must be discounted at the risk—adjusted

market rate p. However its expected rate of growth is only (p —6). Time

to build therefore reduces the present value of V at completion, and as 6

increases, it reduces it by a larger amount. This In turn Increases the current

* *critical cutoff value V . As Table 2 shows, for a = .10 and .20, V rises

when 6 goes from .06 to .12.

It is useful to calculate the critical cutoff value net of the present value

of the expected flow of opportunity cost (6V), assuming that investment

**
expenditures are made at the maximum rate. This value, V , Is simply:

= V* —
K/k

6V*e 6)te_Ptdt = V*e_6Kk (6)

where the second term on the right is the present value of the expected flow of

opportunity cost (e.g. foregone rent) during the construction period.

**
Values for V are shown for each case in Table 2. Increasing 6 increases
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the opportunity cost of delaying the project (leading to a lower critical cutoff

value), and also increases the opportunity cost necessarily incurred because of

**
time to build (leading to a higher cutoff value). V corrects for the latter,

and, as shown in the Table, for any value of a, it declines as 5 increases.

Table 2 also shows the importance of the contingent nature of the investment

program. A "naïve" discounted cash flow criterion would ignore flexibility

during the construction period, and assume a fixed scenario for the investment

outlays. The present value of the construction outlays under the assumed

scenario would then be compared to the present value of the payoff at completion

(i.e. the current value of a completed project, V, less the present value of the

flow of opportunity cost incurred during construction). Assuming investment

occurs at the maximum rate, under that naïve criterion one would invest at time t

*if V(t) > K , where:

V(t) V(t) — I 6V(t)e tdw = V(t)e
0

K/k
K .f kedT = (1 — e'')k/r (8)

0

For our example, the present value of investment outlays made at the maximum

rate is K* = 5.65. Even if we ignore the effect of time to build, the critical

cutoff value (which would then be V**) should be significantly higher than

for any reasonable value of a and 6, and much higher if a is large and/or

*o is small. Time to build increases the threshold still further; V is

**
significantly larger than V , particularly for large values of 6. Thus for

*
our base case of a .20 and 5 = .06, V is 11.02, about double the present

value of the investment outlays K*.

We can obtain further insight into the ways in which uncertainty and time to

*build interact in affecting the investment decision by calculating V for
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different values of k, the maximum rate of investment. Figure 1 shows

* 18
V as a function of k for 6 .03 and .12, and K = 6. Observe that if 6 is

*
small (.03), changes in k have very little effect on V , because the opportunity

cost of time to build is small (i.e. V has an expected rate of growth close to

p, the equilibrium market rate). Hence the ability to speed up construction

has little effect on the value of the investment program, or on the investment

*
decision. However, if '5 is large (.12), V is fairly sensitive to k. Small

values of k correspond to long minimum construction times. Hence the present

value of the opportunity cost during the construction period is large, reducing

the value of the investment program, and increasing the current critical value

* *
V . (If V is adjusted for the flow of opportunity cost during the

**
construction period, the resulting cutoff value (V ) will not be very

sensitive to k.) Thus time to build is more important for investment decisions

where most of the return on the underlying asset is In the form of a payout

stream rather than price appreciation.

Figure 2 shows V as a function of 5, for k = 0.5 C a 12 year minimum

construction period) and 2.0 (a 3 year minimum construction period). In both

*
cases, V falls as '5 is increased from .01 to .04. (Remember that as '5 - 0,
*

V - , and f(V,K) -' V; if there is no opportunity cost to delay, one would

never exercise the right to the investment program, and the value of the right

would be equal to the value of the underlying asset.) However, as '5 increases,

*
the effect on V depends on the maximum rate of investment. If that rate is

*
high, V remains low over a wide range of '5 (but is still 30 — 50 percent

greater than the present value of the investment stream). But if k is small,

V can depend critically on 6. Thus for projects where the minimum time to

build Is long, the estimate of the rate of opportunity cost '5 is a particularly

critical input to the investment decision.
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We have used numerical examples to illustrate how investment decisions are

affected by the sequential nature of construction outlays. The difference

between the results of our calculations and those based on a "naive" application

of DCF rules will depend on the parameters of the problem. As Table 2 shows,

these differences can be large, even for reasonable values of a and 5.

4. The Value of Construction Time Flexibility.

Many projects can be built with alternative construction technologies. An

important way in which these technologies can differ is in terms of flexibility

over the rate of construction. Generally, technologies offering greater

flexibility are more costly, so that increased cost must be balanced against the

value of increased construction time flexibility. Our model provides a

straightforward way to determine the value of that increased flexibility.

In our model, construction time flexibility can be measured by the maximum

rate of construction, k. Higher k corresponds to greater flexibility, i.e. a

shorter minimum construction time K/k. The value of the investment program

f(V,K) increases as k increases, and the change in f corresponding to a change in

k measures the value of the extra flexibility. This value of extra flexibility

will depend on V and K, as well as other parameters of the problem, such as

and a.

We can determine the incremental value of construction time flexibility by

examining the way In which the value of the investment program f changes as k

changes. We calculate the value of the investment program f for different values

of k, holding all other variables, including V, constant. The incremental value

of flexibility Is then given by the slope of f(k).9

Figure 3 shows the results of such a calculation for the base case parameters

from the preceding section. All values of the investment program, f, are
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calculated at a fixed reference value for V. We show f(k) for two different

(arbitrary) reference values, V1 = 10 and V2 = 15. As Figure 3 shows, the

value of the Investment program increases as k increases. Note also that the

incremental value of flexibility falls as k increases. For V 10, the value of

the investment program with maximum flexibility (corresponding to k = o) is
4.0, and for V = 15 It Is 9.0, and these values are shown as horizontal lines In

20
the Figure.

Consider two different construction technologies with the same total

construction cost K 6, but with different maximum rates of investment (k = .5

for the first, and k = 1.0 for the second). At V = 10, the Incremental value of

the more flexible technology (k = 1) is 1fILk = 0.97710.5 = 1.954. This

incremental value will be higher if the value of the completed project Is higher;

at V = 15, the incremental value Is 5.520.

In general, greater flexibility might be accompanied by a different total

investment K. Because f(V,K;k) is not linear homogeneous In K (see footnote 19),

we cannot isolate the value of the greater flexibility In such cases simply by

comparing f(V,K;k)/K for each technology. However, we can still rank the

technologies by comparing f(V,K;k).

5. ConcludIng Remarks.

We have shown how optimal Investment rules can be determined for projects

with sequential investment outlays and maximum construction rates. An Important

feature of such projects is that the pattern of expenditures can be adjusted as

new Information arrives. For such projects, we have shown that traditional

discounted cash flow criteria based on a fixed pattern of expenditures can lead

to grossly incorrect Investment decisions. As our calculations for different

values of a, S, and k have illustrated (Table 2, and Figures 1, 2, and 3),
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the effects of time to build are greatest when uncertainty is greatest, when the

opportunity cost of delay is greatest, and when the maximum rate of construction

is lowest.

There are some important caveats. Our optimal investment rule critically

depends on the current value of a completed project, V, as well as the parameters

a and 5. We have assumed that these numbers are known, but in fact it may be

difficult or impossible to estimate them accurately. Moreover, in some cases

both V and the opportunity cost 'S are endogenous to the problem. This would be

the case, for example, if the opportunity cost corresponding to a foregone cash

flow is affected by potential entry by competitors. Then the values of S and

V, as well as the optimal decision rule, must be determined simultaneously (e.g.

as a Nash equilibrium for the resulting noncooperative game).

Our primary focus in this paper has been investment decisions from the point

of view of a single firm. However, our results also have implications for the

behavior of aggregate investment spending, and in particular the role of risk in

the economy. As in the models of Bernanke, Cukierman, and McDonald and Siegel

(1983), we find that investment decisions can be extremely sensitive to the level

of risk (which we measure by the parameter a). Indeed, this sensitivity is

greater than that suggested by traditional investment models. In our model, this

greater sensitivity is due to the flexibility that the firm has in making

sequential investment outlays; in the models of Bernanke and Cukierman, it is due

to the reduction of uncertainty that results from learning. For different

reasons, therefore, our results reinforce the view that aggregate investment

spending is likely to be highly sensitive to changes in perceived risk.2'
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TABLE 1

OPTIMAL INVESThENT RULE FOR STYLIZED EXAMPLE

(r .02, a = .20, cS = .06, K 6, k = 1/year)

Value of Investment Program: f(V,K)

6 5 4 3 2 1 0

42.52 23.70 26.47 29.37 32.42 35.62 38.98 42.52
36.60 19.62 22.12 24.75 27.50 30.39 33.42 36.60
31.50 16.10 18.38 20.76 23.26 25.88 28.62 31.50
27.11 13.07 15.16 17.34 19.62 22.00 24.50 27.11
23.34 10.46 12.38 14.39 16.48 18.67 20.95 23.34
20.09 8.22 10.00 11.85 13.78 15.79 17.89 17.29
17.29 6.23 7.94 9.67 11.46 13.32 15.26 17.29
14.88 4.63 6.18 7.78 9.46 11.19 13.00 14.88
12.81 3.20 4.65 6.17 7.73 9.36 11.05 12.81
11.02 2.02* 3.34 4.77 6.25 7.79 9.37 11.02
9.49 1.22 2.23* 3.57 4.98 6.43 7.93 9.49
8.17 0.74 1.34 2.54 3.88 5.26 6.69 8.17
7.03 0.44 0.81 1.65* 2.93 4.26 5.62 7.03
6.05 0.27 0.49 1.00 2.12 3.39 4.70 6.05
5.21 0.18 0.29 0.60 1.42* 2.65 3.91 5.21
4.48 0.10 0.18 0.36 0.86 2.00 3.23 4.48
3.86 0.06 0.11 0.22 0.52 1.45 2.64 3.86
3.32 0.04 0.06. 0.13 0.31 0.98* 2.13 3.32
2.86 0.02 0.04 0.08 0.19 0.59 1.70 2.86
2.46 0.01 0.02 0.05 0.11 0.36 1.32 2.46
2.12 0.01 0.01 0.03 0.07 0.21 1.00 2.12
1.82 0.00 0.01 0.02 0.04 0.13 0.73* 1.82
1.57 0.00 0.01 0.01 0.02 0.08 0.44 1.57
1.35 0.00 0.00 0.00 0.02 0.05 0.27 1.35
1.16 0.00 0.00 0.00 0.01 0.03 0.16 1.16
1.00 0.00 0.00 0.00 0.01 0.02 0.10 1.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00*
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TABLE 2

DEPENDENCE OF CUTOFF VALUE ON a AND S

(r = .02, K = 6, k 1/year)

Annual rate of opportunity cost 5

Standard I

Deviation a I .02 .06 .12

I = 11.02 V = 9.03 = 12.43 I

.10 I

I

I

I

**
V = 9.77

V 20.09

V = 6.30

V = 11.02

V = 6.05

V = 12.81

I

I

I

.20 I

I

**
V 17.82 V 7.69 V = 7.03

I

I
I V 121.51 V = 24.53 V = 20.09 I

.40 I

I

**
V 107.77 V = 17.11 V = 9.78

I

II I

Note: Present value of investment outflow at maximum rate = 5.65.
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FOOTNOTES

1. See Hall and Jorgenson (1967).

2. For an overview of the adjustment cost literature, see Nickell (1978)

3. Their model is most applicable to R&D projects in which learning is
important, i.e., where early stages of investment are intended mainly
to yield information about costs and feasibility. For an application to
synthetic fuels, see Weitzman, Newey, and Rabin (1981).

4. This notion of an "option value" is quite different from the one that we
will develop in this paper. In Bernanke, as In earlier papers such as
Arrow and Fisher (1974) and Henry (1974), the option refers to a choice
of projects (or Irrevocable disposition of a natural resource in Arrow
and Fisher) that is foregone once the expenditure has been made.

5. Related papers include McDonald and Siegel (1982), and Paddock, Siegel,
and Smith (1983).

6. For related work, see Myers and Majd (1983) and Brennan and Schwartz
(1985). For. an overview, see Mason and Merton (1984).

7. We could introduce learning in our model by making a a function of the
stage of completion. Letting K denote the total ain9unt of investment
remaining for completion, we would make a c(K), a (K) > 0,
and a(O) 0. We ignore learning In this paper in order to focus on
the Implications of time to build.

8. Our approach can easily be extended to cases in which 5 varies over
time or is a function of V. Myers and Majd (1983) discuss projects for
which S represents the percentage rate of cash flow payout, and varies
with time.

9. As Merton (1977) shows, it is not necessary that the contingent claim
itself be traded. For example, a dynamic portfolio of stock and bonds
can be created to replicate the payoff from a call option on the stock.
Note that our assumption that the project does not change the
opportunity set available to investors will not always hold. We will
discuss this later.

10. Of course, the value of any options Implicit in a completed factory,
such as the option to shut down the factory, is also included in V.

11. An alternative method of arriving at the valuation equation Is via
stochastic dynamic programming, but that requires knowledge of the
expected rate of return on the underlying asset, 1. An advantage of
the option pricing approach Is that given V, knowledge of 11 is not
required. (There are certainly cases where i Is needed to calculate
V. but there are many cases for which V can be observed directly from

prices of nearly equivalent assets). In addition, the option pricing
approach Is easier to Implement.
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12. See Merton (1973), footnote 6, regarding (3e). Intuitively, if a small
change in the value of the contingent claim in response to a small
change in the value of the underlying asset is greater in one direction
than another, moving the free boundary in that direction would result in
a net increase in the value of the contingent claim.

13. See Hawkins (1982) for a similar model with analytic solutions in both
regions. For an overview of numerical methods for solving option
problems, see Geske and Shastri (1985). For a useful discussion of
finite difference methods, see Brennan and Schwartz (1978).

14. Payout rates on projects (a major component of 5) can vary enormously
from one project to another, so that this value of 6 percent should be
viewed as reasonable, but not necessarily representative. The standard
deviation of the rate of return on the stock market as a whole has been
about 20 percent on average. Although this represents a diversified
portfolio of assets, it also includes the effects of leverage on equity
returns, and, therefore, might be a reasonable number for an average
asset.

15. To conserve space, Table 1 only shows values of the investment program
for values of K in multiples of $1 million, and for values of V up to
42.5 million.

16. The only reason to exercise the option to invest at • value of V is
that the expected rate of growth of V is less than tEe risk—adjusted
market rate, i.e. >0. If were zero one would never Invest, just
as one would never exercise an infinitely—lived call option on a stock
that paid no dividends. Because S > 0 there is some finite V at
which one should invest. But as a gets larger, there Is a greater
potential gain from the stochastic evolution of V, and, therefore, a
greater incentive to hold the option rather than exercise It. This Is
an important point made by McDonald and Siegel (1983).

17. This is the case in the model of McDonald and Siegel (1983), in which
one has the option to delay investing, but once the investment is made,
the project is built instantly (i.e., there is no time to build).

18. Our calculations are subject to numerical error because of the finite
difference approximation. Absent such errors, the points plotted in
Figures 1, 2, and 3 would lie on smooth curves.

19. Another measure of the incremental value of flexibility is the change in
f(V,K;k)/K (the value of the investment program per dollar of total
required investment) corresponding to changes in the minimum construction
times K/k. Note, however, that f(V,K;k) is not linearly homogeneous In
K, so that the resulting measure will still depend on K.

20. The case of k = means there is no time to build. This corresponds to
a perpetual call option on a stock paying a constant proportional
dividend, with exercise price K. The analytical solution is f(V) = ava
for V < V*, and f(V) = V — K for V > V*. Here a is given In eqn. (4),
a (V* — K)/(V*)Q, and V* = aK/(a —1) is the critical value above
which the option Is exercised (i.e. the factory is built). In our example,
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V = 8.6. Since V = 10 and 15 exceed this critical value, f(V,K; )
= V — K. See Merton (1973) for a derivation. Note that this is also
the model used in McDonald and Siegel (1983).

21. Fischer and Merton (1984) have documented the close empirical
connection between aggregate investment and the level of the stock
market. Our results (like those of the authors mentioned above)
suggest that aggregate investment spending might also be sensitive to
the volatility of the stock market. We have attempted to test for this
by estimating regression equations like those in Fischer and Merton,
but including measures of stock market volatility as additional
independent variables. These additional variables turned out not to be
statistically significant. One reason for this may be a lack of
persistence in volatility changes, as suggested by the recent work of
Poterba and Summers (1985).
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APPENDIX FOR

Time to Build, Option Value, and Investment Decisions*

by

Saman Majd

and

Robert S. Pindyck

May 1985

This Appendix shows how equations (2a) and (2b), subject to conditions

(3a), (3b), (3c) and (5), can be solved numerically. We use the explicit form

of the finite difference method.1 Before implementing this scheme, we make

the transformation:

F(V, K) e'G(X, K), X in V . (a—i)

The partial differential equation (POE) (for V > V*) and boundary conditions

become:

+ (r - — 2/2)G —
kGK

- kerk = 0 ; (a—2)

G(X, 0) = eX ; (a—3)

lim [e_Xel(G(x, K)] = e'k ; (a—4)
x+

G(X*, K) = G(X*, K)/cz . (a—5)

*The authors are, respectively, at The Wharton School, University of
Pennsylvania, and the Sloan School of Management, Massachusetts Institute of
Technology. Financial support from the Center for Energy Policy Research of
the MIT Energy Laboratory, and from NSF Grant No. SES—8318990 to R. S. Pindyck

is gratefully acknowledged.

1For example, see Brennan and Schwartz (1978).
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Note that the coefficients of the PDE are no longer functions of V.

The finite difference method transforms the continuous variables V and K

into discrete variables, and replaces the partial derivatives in the PDE by

finite differences. The explicit form corresponds to a specific choice of

finite differences for this substitution. Let G(V, K) G(i1X, jAK) C.

where —b i m and 0 j n. For the explicit form, substitute:

G 1G. — 2G. + G. .}/X2 ; (a—6)XX 1+1,] 1,3 i•—1 ,j

G (C. — G ]/2X ; (a—7)X 1+1 ,J i—i ,j

G 1G. — G. ]/K . (a—8)K 1,3+1

The PDE becomes the difference equation:

G. . = pG. + p0G. . + pG. . - . ; (a-9)
l,J 1+1 ,j—l 1,3—1 1—1 ,j—1 j—1

where

÷ r - — a2/2]/2kX

0 2 2
p 1 —aiK/kx

p K(a2/X — r + + a2/2J/2kX ;

rjK/kT1.Ke

Note that p . p° + p = i.2 The terminal boundary condition becomes:

G. .
= e1 ; (a—b)

1, JO

2See Brennan and Schwartz (1978) for a discussion of an interpretation of
such difference equations based on a jump process with probabilities p, p°..
and p.
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The upper boundary condition becomes:

-X -rK/k -K/kurn [e e G(X, K)] = e
X+co

or, G(rnXi K) = rnX(r—1S)jK/k

Using the finite difference approximation (a—7) for Gx, we get:

(C — G = eme)jk,
mi-i ,j rn—i ,j

or, G = (2XeXe_3'k) + C
m+i,j m—l,j

Substitute for Gm+i,j in equation a—9 (setting i =

+ 0 —
G =pG +pC .+pG -ri.m,j+1 m+i ,j m,j rn—i ,j j

or, G1.1 = p+(2Xeme_ K/k) ÷ p°G + (p+ + P)Gm_i,j - . (a—li)

Finally, the free boundary condition becomes:

=
/(cX + 1) . (a—12)

The solution proceeds as a backward dynamic program. This is illustrated

in Figure A.l. First, the values of C at the terminal boundary (j = 0) are

filled in using equation a—lU. Stepping back to j 1, equation a—il is used

to calculate Gimjii and equation a—9 is used to calculate the values of G

for i = rn — 1, m — 2, etc. Each time a value for G is calculated, we use

equation a—l2 to check to see if the free boundary has been reached. However,

due to discretisation error, equation a—12 is unlikely to hold exactly at any

point, so we check only to see if it holds to within a specified bound using:

G. — G. ,/(x + 1) , (a—13)
1*,J 1*+l ,J
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CD

3
a

a-0
C
a-a

upper boundary

where C is chosen arbitrarily to be X/2. Once our check identifies the free

boundary, we use equation 4 (in the text) to infer the value of the coefficient

a, and fill in the values of G below the boundary using the analytic solution.

i+m

t

—b
A

Jfl K/iM<

Figure A.l

jaQ

Procedure:

1. Fill in terminal boundary (j0) using equation a—lO.

2. Forjltojn:
a. For I m, use equation a—li to calculate

b. for I < m, moving down the column, use equation a—9 to calculate

3. At the free boundary, calculate the value of the coefficient, a, and use
equation 4 to fill in the values of Gi,j In the lower region.
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