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1 Introduction

Research on decision making under uncertainty has a long tradition. A core of tools

designed to explore risky decisions has evolved, from Savage’s (1954) axioms and the

expected utility (EU) framework.1 There are, however, a number of well-documented

departures from EU such as the Allais (1953) common consequence and common ratio

paradoxes. An organizing principle behind the body of violations of expected utility is

that they seem to arise as so-called ‘boundary effects’ where certainty and uncertainty

are combined. Camerer (1992), Harless and Camerer (1994) and Starmer (2000) indi-

cate that violations of expected utility are notably less prevalent when all choices are

uncertain.

Certainty and uncertainty are combined in intertemporal decisions. The present is

known, while the future is inherently risky. The discounted expected utility (DEU)

model is the standard approach to addressing decision-making in such contexts.

There are noted difficulties with the DEU model related to the timing of the res-

olution of uncertainty. Preferences on income streams induced from preferences on

consumption streams that follow the EU axioms may depend on the timing of the

resolution of income uncertainty and will not generally have an expected utility formu-

lation (Markowitz, 1959; Mossin, 1969; Spence and Zeckhauser, 1972; Machina, 1984).

Kreps and Porteus (1978), Chew and Epstein (1989), and Epstein and Zin (1989) use

this observation to motivate utility models with preferences for the temporal resolution

of uncertainty.

There is a distinction between these developments and the evidence presented in

this paper. We document violations of expected utility in a setting where uncertainty is

resolved immediately, before further consumption decisions are made.2 The preference

1Ellingsen (1994) provides a thorough history of the developments building towards expected utility
theory and its cardinal representation.

2The only evidence of intertemporal violations of EU we are aware of are Baucells and Heukamp
(2009) and Gneezy, List and Wu (2006) who show that temporal delay can generate behavior akin to
the classic common ratio effect and that the so-called ‘uncertainty effect’ is present for hypothetical
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models of Kreps and Porteus (1978) and Chew and Epstein (1989) and the primary

model classes of Epstein and Zin (1989) “...conform with expected utility theory when

ranking timeless gambles, i.e., those in which uncertainty is resolved before further

consumption takes place” (Epstein and Zin, 1989, p. 948). As such, in our experiment

these models will be equivalent to DEU.3

An implication of the DEU model is that intertemporal allocations should depend

only on relative intertemporal risk. For example, if sooner consumption will be realized

50% of the time and later consumption will be realized 50% of the time, intertemporal

allocations should be identical to a situation where all consumption is risk-free. This

is simply an intertemporal statement of the common ratio property of expected utility.

In an experiment with 80 undergraduate subjects at the University of California,

San Diego, we test intertemporal common ratio predictions using Convex Time Bud-

gets (CTBs) under varying risk conditions (Andreoni and Sprenger, 2009). In CTBs,

individuals are asked to allocate a budget of experimental tokens to sooner and later

payments. CTB allocation decisions are equivalent to intertemporal optimization sub-

ject to a linear budget constraint.

We implement CTBs in two baseline risk conditions: 1) A risk-free condition where

all payments, both sooner and later, will be paid 100% of the time; and 2) a risky

condition where, independently, sooner and later payments will be paid only 50% of

the time. All uncertainty was resolved immediately after the allocation decisions were

made, for both sooner and later payments. Under the standard DEU model, CTB

allocations in the two conditions should yield identical choices. The pattern of results

we find clearly violates DEU, and correspondingly resolution-timing preferences, and

is further inconsistent with non-EU concepts such as probability weighting (Kahneman

intertemporal decisions, respectively.
3Not all of the classes of recursive utility models discussed in Epstein and Zin (1989) will reduce

to expected utility when all uncertainty is resolved immediately. The weighted utility class (Class
3) corresponding to the models of Dekel (1986) and Chew (1989) can accomodate expected utility
violations even without a preference for sooner or later resolution of uncertainty.
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and Tversky, 1979; Tversky and Kahneman, 1992; Tversky and Fox, 1995) or tempo-

rally dependent probability weighting (Halevy, 2008). We document substantial DEU

violations at both the group and individual level. Indeed, 85% of subjects are found

to violate common ratio predictions and do so in more than 80% of opportunities. In

estimations of utility parameters, aggregate discounting is found to be around 30% per

year, and is virtually identical in both the all-safe and all-risky conditions. However,

other utility parameters, such as utility function curvature, are found to differ signif-

icantly. Taken at face value, the estimates indicate a disproportionate preference for

certainty.

To explore this result in greater detail, we examine four additional experimental

conditions with differential risk, but common ratios of probabilities. In the first such

condition the sooner payment is paid 100% of the time while the later payment is paid

only 80% of the time. This is compared to a common ratio counterpart where the

sooner payment is paid 50% of the time while the later payment is paid only 40% of

the time. We document violations of the DEU common ratio prediction suggestive

of a disproportionate preference for certainty. We mirror this design with conditions

where the later payment has the higher probability of payment and again document

a disproportionate preference for certainty. The data are organized systematically at

both the group and individual level. Subjects who violate common-ratio predictions in

the baseline 100%-100% and 50%-50% conditions are more likely to violate in the four

additional conditions.

Our results are remarkably in line with the initial intuition for the Allais paradox

and have implications for intertemporal decision theory. Allais (1953, p. 530) argued

that when two options are far from certain, individuals act effectively as expected

utility maximizers, while when one option is certain and another is uncertain a dis-

proportionate preference for certainty prevails. Such an argument may help to explain

the frequent experimental finding of present-biased preferences (Frederick, Loewenstein
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and O’Donoghue, 2002). That is, certainty, not intrinsic temptation, may lead present

payments to be disproportionately preferred. This view has been argued previously

in prior explorations of present-bias (Halevy, 2008), and is implied in the recognized

dynamic inconsistency of non-expected utility models (Green, 1987; Machina, 1989).

However, our results provide evidence of a different mechanism. Our results point to-

wards so-called u-v preferences as in the models of Neilson (1992), Schmidt (1998), and

Diecidue, Schmidt and Wakker (2004). Such models deliver a representation with stan-

dard expected utility u(·) away from certainty, and utility v(·) for certainty, potentially

with u(·) 6= v(·) and the disproportionate preference v(x) > u(x) for x > 0.4

The paper proceeds as follows: Section 2 presents a conceptual development of u-v

preferences and discounted expected utility, building to a testable hypothesis of deci-

sion making in uncertain and certain situations. Section 3 describes our experimental

design. Section 4 presents results and Section 5 is a discussion and conclusion.

2 Conceptual Background

We begin by discussing u-v preferences (Neilson, 1992; Schmidt, 1998; Diecidue et al.,

2004). Let v(c) be some utility function for certain consumption and u(c) be a utility

function for uncertain consumption, assumed to be separable and linearly additive

over probabilistic states. Note that the u-v model nests standard expected utility

when u(·) ≡ v(·), yet can accommodate a disproportionate preference for certainty

v(c) > u(c) for c > 0. Hence, standard expected utility is a special case of u-v

preferences with an assumption of interchangeability for u(·) and v(·).

Assumption: Interchangeability. Individuals evaluate consumption, c, obtained

under certainty and uncertainty in an identical manner, that is u(c) ≡ v(c).

4For a discussion of the early history of u-v preferences, see Schoemaker (1982).
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When utility is time separable, interchangeability gives rise to the standard DEU

model,

U =
T∑
k=0

δt+kE[v(ct+k)],

Simplify to assume two periods, t and t+ k, and that consumption at time t will be ct

with probability p1 and zero otherwise, while consumption at time t + k will be ct+k

with probability p2 and zero otherwise. Under the standard construction, utility is

p1δ
tv(ct) + p2δ

t+kv(ct+k) + ((1− p1)δ
t + (1− p2)δ

t+k)v(0).

Suppose an individual maximizes utility subject to the future value budget constraint

(1 + r)ct + ct+k = m,

yielding the marginal condition

v′(ct)

δkv′(ct+k)
= (1 + r)

p2

p1

.

The tangency condition, in combination with the budget constraint, yields a solu-

tion

ct = c∗t (p1/p2; k, 1 + r,m).

A key observation in this construction is that intertemporal allocations will depend

only on the relative risk, p1/p2, and not on p1 or p2 separately. If p1/p2 = 1, for

p1 = p2 < 1, then behavior should be identical to a risk-free situation, p1 = p2 = 1.

This is a critical and testable implication of the DEU model.

Hypothesis: For any (p1, p2) and (p′1, p
′
2) where p1/p2 = p′1/p

′
2, c
∗
t (p1/p2; k, 1+r,m) =

c∗t (p
′
1/p
′
2; k, 1 + r,m).
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This hypothesis is simply an intertemporal statement of the common ratio property

of expected utility.5 However, it is important to understand the degree to which this

common ratio hypothesis hinges upon interchangeability. If u(c) 6= v(c), then there is

no reason to expect c∗t (p1/p2; k, 1 + r,m) = c∗t (1/1, k, 1 + r,m) when p1 = p2 < 1. This

is because the marginal conditions in the two situations will generally be satisfied at

different allocation levels.6

There exist important utility formulations such as those developed by Kreps and

Porteus (1978), Chew and Epstein (1989), and Epstein and Zin (1989) where the com-

mon ratio prediction does not hold. Behavior need not be identical if the uncertainty

of p1 and p2 are resolved at different points in time, and individuals have preferences

over the timing of the resolution of uncertainty. Our experimental design will focus on

cases where all uncertainty is resolved immediately, before any payments are received.

The utility formulations of Kreps and Porteus (1978) and Chew and Epstein (1989),

and the primary classes discussed by Epstein and Zin (1989) will reduce to standard

expected utility. That is, when “... attention is restricted to choice problems/temporal

lotteries where all uncertainty resolves at t = 0, there is a single ‘mixing’ of prizes and

one gets the payoff vector [EU] approach” (Kreps and Porteus, 1978, p. 199).

In our later exposition it will be notationally convenient to use θ to indicate the

risk adjusted gross interest rate:

θ = (1 + r)
p2

p1

5If individuals face background risk compounded with the objective probabilities, the common
ratio prediction is maintained. This is true even if background risk differs across time periods.

6In the risky situation the marginal condition will be u′(ct)/δku′(ct+k) = (1 + r)p2/p1 = (1 + r),
while in the risk-free situation the condition will be: v′(c′t)/δ

kv′(c′t+k) = (1 + r). And c′t = ct; c′t+k =
ct+k only if the marginal utility functions u′(·) and v′(·) are equal. Though this may occur with
u(·) 6= v(·), it generally will not. Additionally, there is no reason to expect c∗t (p1/p2; k, 1 + r,m) =
c∗t (p′1/1, k, 1 + r,m) when p1/p2 = p′1 and p′2 = 1 or c∗t (p1/p2; k, 1 + r,m) = c∗t (1/p′2, k, 1 + r,m) when
p1/p2 = 1/p′2 and p′1 = 1.
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such that the tangency can be written as:

v′(ct)

δkv′(ct+k)
= θ

Provided that v′(·) > 0, v′′(·) < 0, c∗t will be increasing in p1/p2 and decreasing in 1+r.

As such, c∗t will be decreasing in θ. In addition, for a given θ, c∗t will be decreasing

in 1 + r. An increase in the interest rate will both raise the relative price of sooner

consumption and reduce the available consumption set.

3 Experimental Design

In order to explore the evaluation of uncertain and certain intertemporal consumption,

an experiment using Convex Time Budgets (CTB) (Andreoni and Sprenger, 2009)

under varying risk conditions was conducted at the Univeristy of California, San Diego

in April of 2009. In each CTB decision, subjects were given a budget of experimental

tokens to be allocated across a sooner payment, paid at time t, and a later payment,

paid at time t + k, k > 0. Two basic CTB environments consisting of 7 allocation

decisions each were implemented under six different risk conditions. This generated a

total of 84 experimental decisions for each subject.

3.1 CTB Design Features

Sooner payments in each decision were always seven days from the experiment date

(t = 7 days). We chose this ‘front-end-delay’ to avoid any direct impact of immedi-

acy on decisions, including resolution timing effects, and to help eliminate differential

transactions costs across sooner and later payments.7 In one of the basic CTB environ-

ments, later payments were delayed 28 days (k = 28) and in the other, later payments

7See below for the recruitment and payment efforts that allowed sooner payments to be imple-
mented in the same manner as later payments. For discussions of front-end-delays in time preference
experiments see Coller and Williams (1999); Harrison, Lau, Rutstrom and Williams (2005).
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were delayed 56 days (k = 56). The choice of t and k were set to avoid holidays, school

vacation days and final examination week. Payments were scheduled to arrive on the

same day of the week (t and k are both multiples of 7) to avoid differential weekday

effects.

In each CTB decision, subjects were given a budget of 100 tokens. Tokens allocated

to the sooner date had a value of at while tokens allocated to the later date had a value

of at+k. In all cases, at+k was $0.20 per token and at varied from $0.20 to $0.14

per token. Note that at+k/at = (1 + r), the gross interest rate over k days, and

(1 + r)1/k − 1 gives the standardized daily net interest rate. Daily net interest rates

in the experiment varied considerably across the basic budgets, from 0 to 1.3 percent,

implying annual interest rates of between 0 and 2100 percent (compounded quarterly).

Table 1 shows the token values, gross interest rates, standardized daily interest rates

and corresponding annual interest rates for the basic CTB budgets.

Table 1: Basic Convex Time Budget Decisions

t (start date) k (delay) Token Budget at at+k (1 + r) Daily Rate (%) Annual Rate (%)

7 28 100 0.20 0.20 1.00 0 0
7 28 100 0.19 0.2 1.05 0.18 85.7
7 28 100 0.18 0.2 1.11 0.38 226.3
7 28 100 0.17 0.2 1.18 0.58 449.7
7 28 100 0.16 0.2 1.25 0.80 796.0
7 28 100 0.15 0.2 1.33 1.03 1323.4
7 28 100 0.14 0.2 1.43 1.28 2116.6

7 56 100 0.20 0.20 1.00 0 0
7 56 100 0.19 0.2 1.05 0.09 37.9
7 56 100 0.18 0.2 1.11 0.19 88.6
7 56 100 0.17 0.2 1.18 0.29 156.2
7 56 100 0.16 0.2 1.25 0.40 246.5
7 56 100 0.15 0.2 1.33 0.52 366.9
7 56 100 0.14 0.2 1.43 0.64 528.0

The basic CTB decisions described above were implemented in a total of six

risk conditions. Let p1 and p2 be the probabilities that payment would be made

for the sooner and later payments, respectively. The six conditions were (p1, p2) ∈
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{(1, 1), (0.5, 0.5), (1, 0.8), (0.5, 0.4), (0.8, 1), (0.4, 0.5)}. For all payments involving un-

certainty, a ten-sided die was rolled immediately at the end of the experiment to

determine whether the payment would be sent or not. Hence, p1 and p2 were im-

mediately known, independent, and subjects were told that different random numbers

would determine their sooner and later payments.8

The risk conditions have several features. To begin, the first and second conditions

share a common ratio of p1/p2 = 1, the third and fourth conditions share a common

ratio of p1/p2 = 1.25, and the fifth and sixth conditions share a common ratio of

p1/p2 = 0.8. Discounted expected utility predicts identical behavior across each pair of

conditions. Additionally, three of the risk conditions feature at least one certain pay-

ment, while the other three feature only uncertainty. If there exists a disproportionate

preference for certainty, it should become apparent in cross-condition comparisons. For

instance, for a given value of θ, subjects should disproportionately prefer the sooner

payment when (p1, p2) = (1, 0.8) and the later payment when (p1, p2) = (0.8, 1). Lastly,

across conditions the sooner payment goes from being relatively less risky, p1/p2 = 1.25,

to relatively more risky, p1/p2 = 0.8. Following the discussion of Section 2, DEU maxi-

mizers should respond to changes in relative risk, allocating smaller amounts to sooner

payments when relative risk is low.

3.2 Implementation and Protocol

One of the most challenging aspects of implementing any time discounting study is

making all choices equivalent except for their timing. That is, transactions costs as-

sociated with receiving payments, including physical costs and confidence, must be

equalized across all time periods. We took several unique steps in our subject recruit-

ment process and our payment procedure in an attempt to equate transaction costs

over time.

8See Appendix A.3 for the payment instructions provided to subjects.
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3.2.1 Recruitment and Experimental Payments

In order to participate in the experiment, subjects were required to live on campus. All

campus residents are provided with individual mailboxes at their dormitories to use

for postal service and campus mail. Each mailbox is locked and individuals have keyed

access 24 hours per day. We recruited 80 undergraduate students fitting this criterion.

All payments, both sooner and later, were placed in subjects’ campus mailboxes

by campus mail services, which allowed us to equate physical transaction costs across

sooner and later payments. Subjects were fully informed of the method of payment.9

Several other measures were also taken to equate transaction costs. Upon beginning

the experiment, subjects were told that they would receive a $10 minimum payment

for participating, to be received in two payments: $5 sooner and $5 later. All exper-

imental earnings were added to these $5 minimum payments. Two blank envelopes

were provided. After receiving directions about the two minimum payments, subjects

addressed the envelopes to themselves at their campus mailbox. At the end of the

experiment, subjects wrote their payment amounts and dates on the inside flap of each

envelope such that they would see the amounts written in their own handwriting when

payments arrived. In sum, these measures serve to ensure that transaction costs, in-

cluding banking convenience, likelihood of clerical error, and costs of remembering are

equalized across time.

One choice for each subject was selected for payment by drawing a numbered card

at random.10 All experimental payments were made by personal check from Professor

James Andreoni drawn on an account at the university credit union.11 Subjects were

9See Appendix A.2 for the information provided to subjects.
10This randomization device introduces a compound lottery to the decision environment. Reduction

of compound lotteries is assumed for expected utility and does not change the common ratio predic-
tions. Subjects are told to treat each decision as if it were to determine their payments. See Appendix
A.3 for text. In a sense, this encourages subjects to ignore the randomization device. As shown in
Section 4, the results demonstrate behavior that is suggestive of individuals treating experimental
certainty differently than other probabiltiies.

11Payment choice was guided by a separate survey of 249 undergraduate economics students elicit-
ing payment preferences. Personal checks from Professor Andreoni, Amazon.com gift cards, PayPal
transfers and the university stored value system TritonCash were each compared to cash payments.
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informed that they could cash their checks (if they so desired) at the university credit

union. They were also given the business card of Professor James Andreoni and told

to call or email him if a payment did not arrive and that a payment would be hand-

delivered immediately.

3.2.2 Instrument and Protocol

The experiment was done with paper and pencil. Upon entering the lab subjects were

read an introduction with detailed information on the payment process and a sample

decision with different payment dates, token values and payment risks than those used

in the experiment.12 Subjects were informed that they would work through 6 decision

tasks. Each task consisted of 14 CTB decisions: seven with t = 7, k = 28 on one

sheet and seven with t = 7, k = 56 on a second sheet. Each decision sheet featured

a calendar, highlighting the experiment date, and the sooner and later payment dates,

allowing subjects to visualize the payment dates and delay lengths.

Figure 1 shows a decision sheet. Identical instructions were read at the beginning

of each task providing payment dates and the chance of being paid for each decision.

Subjects were provided with a calculator and a calculation sheet transforming tokens

to payment amounts at various token values.

Subjects were asked if they would prefer a twenty dollar payment made via each payment method or
$X cash, where X was varied from 19 to 10. Personal checks were found to have the highest cash
equivalent value. That is, the highest average value of $X.

12See Appendix A.3 for introductory text, instructions and examples.
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Four sessions were conducted over two days. Two orders of risk conditions were

implemented to examine order effects.13 Each day consisted of an early session (12

p.m.) and a late session (2 p.m.). The early session on the first day and the late

session on the second day share a common order as do the late session on the first day

and the early session on the second day. No identifiable order or session effects were

found (see Section 4.1).

4 Results

The results are presented in two sub-sections. First, we examine behavior in the two

baseline conditions: (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). We document violations

of the DEU model’s common ratio prediction at both aggregate and individual levels

and show a pattern of results that is generally incompatible with various probability

weighting concepts. In estimates of utility parameters, we show a clear difference be-

tween the utility functions for certain and uncertain outcomes, indicating a dispropor-

tionate preference for certainty. Second, we explore behavior in four further conditions

where common ratios maintain but only one payment is certain. Subjects exhibit a

disproportionate preference for certainty when it is available, but behave consistently

with expected utility maximization away from certainty.

4.1 Behavior Under Certainty and Uncertainty

Section 2 provided a testable hypothesis for behavior across certain and uncertain

intertemporal settings. For a given (p1, p2), if p1 = p2 < 1 then behavior should be

identical to a similarly dated risk-free prospect, (p1 = p2 = 1), at all gross interest rates,

13In one order, (p1, p2) followed the sequence (1, 1), (1, 0.8), (0.8, 1), (0.5, 0.5), (0.5, 0.4), (0.4, 0.5),
while in the second it followed (0.5, 0.5), (0.5, 0.4), (0.4, 0.5), (1, 1), (1, 0.8), (0.8, 1). This, of course,
does not exhaust the possible order effects, but the strength of the results suggests that order is
unlikely to qualitatively affect the findings.
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1 + r, and all delay lengths, k.14 Figure 2 graphs aggregate behavior for the conditions

(p1, p2) = (1, 1) (blue diamonds) and (p1, p2) = (0.5, 0.5) (red squares) across the

experimentally varied gross interest rates and delay lengths. The mean earlier choice

of ct is graphed along with error bars corresponding to 95 percent confidence intervals

(+/− 1.96 standard errors).

Under the DEU model, behavior should be identical across the two conditions. We

find strong evidence to the contrary. In a hypothesis test of equality across the two

conditions, the overall difference is found to be highly significant: F14,79 = 6.07, p <

.001.15

The data follow an interesting pattern. Behavior in both (p1, p2) = (1, 1) and

(0.5, 0.5) conditions respect increasing interest rates. Allocations to sooner payments

decrease as interest rates rise. At the lowest interest rate, ct allocations are substantially

higher in the (1, 1) condition. However, as the gross interest rate increases, (1, 1)

allocations drop steeply, crossing over the graph of the (0.5, 0.5) condition.16 This

cross-over in behavior is in clear violation of discounted expected utility and all models

that reduce to discounted expected utility when uncertainty is immediately resolved.

Though this is suggestive evidence against interchangeability, we must first consider

possible alternative explanations. Principal among these is Prospect Theory and, in

particular, non-linear probability weighting (Kahneman and Tversky, 1979; Tversky

and Kahneman, 1992; Tversky and Fox, 1995).

Probability weighting states that individuals ‘edit’ probabilities internally via a

weighting function, π(p). Though π(p) may take a variety of forms, it is often argued

14We ignore m because the experimental budget was held constant across all choices.
15Test statistic generated from non-parametric OLS regression of choice on indicators for interest

rate (7 levels), delay length (2 levels), risk condition (2 levels) and all interactions with clustered
standard errors. F-statistic corresponds to null hypothesis that all risk condition terms have zero
slopes. See Appendix Table A1 for regression.

16Indeed, in the (1, 1) condition, 80.7 percent of allocations are at one or the other budget corners
while only 26.1 percent are corner solutions in the (0.5, 0.5) condition. We interpret the corner
solutions in the (1, 1) condition as evidence consistent with separability. See Andreoni and Sprenger
(2009) for a full discussion of censoring issues in CTBs. The difference in allocations across conditions
is obtained for all sessions and for all orders indicating no presence of order or day effects.
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Figure 2: Aggregate Behavior Under Certainty and Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under two conditions: (p1, p2) =
(1, 1), i.e. no risk, in blue; and (p1, p2) = (0.5, 0.5), i.e. 50% chance sooner payment would be sent
and 50% chance later payment would be sent, in red. t = 7 days in all cases, k ∈ {28, 56} days. Error
bars represent 95% confidence intervals, taken as +/− 1.96 standard errors of the mean. Test of H0 :
Equality across conditions: F14,79 = 6.07, p < .001.

to be monotonically increasing in the interval [0, 1], with an inverted S -shaped, such

that low probabilities are up-weighted and high probabilities are down-weighted (Wu

and Gonzalez, 1996; Prelec, 1998; Gonzalez and Wu, 1999). Probability weighting

of this or any form is unable to explain the phenomena observed in Figure 2. If

p1 = p2, then necessarily π(p1) = π(p2), and π(p1)/π(p2) = 1 as before. As in the DEU

model, probability weighting predicts behavior to be identical across our experimental

conditions.
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Another potential explanation is that probabilities are weighted by their temporal

proximity (Halevy, 2008). Under this formulation, subjective probabilities are arrived

at through some temporally dependent function g(p, t) : [0, 1] × <+ → [0, 1] where

t represents the time at which payments will be made. Provided freedom to pick

the functional form of g(·) one could easily arrive at differences between the ratios

g(1, t)/g(1, t+ k) and g(0.5, t)/g(0.5, t+ k).17

These differences lead to a new risk adjusted interest rate similar to the θ defined

in Section 2,

θ̃p1,p2 ≡
g(p2, t+ k)

g(p1, t)
(1 + r).

Note that either θ̃1,1 > θ̃0.5,0.5 for all (1+r) or θ̃1,1 < θ̃0.5,0.5 for all (1+r), depending on

the form of g(·) chosen. Once one obtains a prediction as to the relationship between

θ̃1,1 and θ̃0.5,0.5, it must hold for all gross interest rates. As such, one should never

observe the cross-over in behavior where for one gross interest rate ct allocations are

higher when (p1, p2) = (1, 1) and for another gross interest rate ct allocations are higher

when (p1, p2) = (0.5, 0.5). The cross-over that is observed in our data, therefore, is not

consistent with temporally dependent probability weighting of the form proposed by

Halevy (2008).

The aggregate violations of the DEU model documented above are also supported

in the individual data. Out of 14 opportunities to violate the DEU common ratio

prediction, individuals do so an average of 9.68 (s.d. = 5.50) times. Only fifteen percent

of subjects (12 of 80) commit zero violations of expected utility. For the 85 percent of

17Halevy (2008) gives the example of g(p, t) = g(pt) with g(0) = 0; g(1) = 1. In this case:

g(1, t)
g(1, t+ k)

=
g(1t)
g(1t+k)

= 1 6= g(0.5, t)
g(0.5, t+ k)

=
g(0.5t)
g(0.5t+k)

provided g(·) does not take on identical values at 0.5t and 0.5t+k. If one further assumes g(·) is strictly
monotonic and differentiable such that ∂g

∂p > 0, then

g(1, t)
g(1, t+ k)

=
g(1t)
g(1t+k)

= 1 <
g(0.5, t)

g(0.5, t+ k)
=

g(0.5t)
g(0.5t+k)

.
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subjects who do violate expected utility, they do so in more than 80% of opportunities,

an average of 11.38 (s.d. = 3.99) times. Figure 3, Panel A presents a histogram of

counti, each individual’s number of DEU violations across conditions (p1, p2) = (1, 1)

and (0.5, 0.5). More than 40% of subjects violate common ratio predictions in all

14 opportunities. This may be a strict measure of violation as it requires identical

allocation across risk conditions. As a complementary measure, we also present a

histogram of |di|, the individual average budget share difference between risk conditions.

For each individual and each CTB, we calculate the budget share of the sooner payment,

(1 + r)ct/m. The average of each individual’s 14 budget share differences between

common-ratio conditions is the measure di. Here we consider the absolute value as the

difference may be positive in some cases and negative in others, following the aggregate

results.18 The mean value of |di| is 0.27 (s.d. = 0.18), indicating that individual DEU

violations are substantial, around 27% of the budget share. Indeed 63.8% of the sample

(51/80) exhibit |di| > 0.2, indicating that violations are not just the product of random

response error.

4.1.1 Estimating Risk-Dependent Preferences

The observed data in the cases of (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) are inconsis-

tent with the DEU model at both individual and aggregate levels and are difficult to

reconcile with notions of probability weighting. In this section we proceed with struc-

tural estimation of intertemporal preferences in hopes of more clearly understanding

the phenomenon. Given structural assumptions, the design allows us to estimate utility

parameters, following the methodology outlined in Andreoni and Sprenger (2009). We

18That is, the absolute value of each of the 14 differences is obtained prior to computing the
average. When computing di across comparisons (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4) and
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5), the first budget share is subtracted from the second
budget share to have a directional difference. A disproportionate preference for certainty would be
exhibited by a positive di across (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4) and a negative di across
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5).
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Figure 3: Individual Behavior Under Certainty and Uncertainty0
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assume an exponentially discounted CRRA utility function,

U = p1δ
t(ct − ω)α + p2δ

t+k(ct+k − ω)α,

where δ represents exponential discounting, α represents utility function curvature and

ω is a background parameter that could be interpreted as a Stone-Geary minima.19

We posit an exponential discounting function because for timing and transaction cost

reasons no present payments were provided. This precludes direct analysis of present-

biased or quasi-hyperbolic time preferences (Strotz, 1956; Phelps and Pollak, 1968;

Laibson, 1997; O’Donoghue and Rabin, 1999). Under this formulation, the DEU solu-

tion function, c∗t , can be written as

c∗t (p1/p2, t, k, 1+r,m) =
[1− (p2

p1
(1 + r)δk)

1
α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
ω+

[(p2
p1

(1 + r)δk)
1

α−1 ]

[1 + (1 + r)(p2
p1

(1 + r)δk)
1

α−1 ]
m,

or

c∗t (θ, t, k, 1 + r,m) =
[1− (θδk)

1
α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
ω +

[(θδk)
1

α−1 ]

[1 + (1 + r)(θδk)
1

α−1 ]
m. (1)

We estimate the parameters of this function via non-linear least squares with stan-

dard errors clustered on the individual level to obtain α̂, δ̂, and ω̂. An estimate of

the annual discount rate is generated as 1/δ̂365 − 1, with corresponding standard error

obtained via the delta method.

Table 2 presents discounting and curvature parameters estimated from the two

conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5). In column (1), we estimate a

baseline model where discounting, curvature, and background parameters are restricted

19The ω terms could be also be interpreted as intertemporal reference points or background con-
sumption. Frequently in the time preference literature, the simplification ω = 0 is imposed or ω is
interpreted as minus background consumption (Andersen, Harrison, Lau and Rutstrom, 2008) and
calculated from an external data source. In Andreoni and Sprenger (2009) we provide methodology
for estimating the background parameters and employ this methodology here. Detailed discussions
of sensitivity and censored data issues are provided in Andreoni and Sprenger (2009) who show that
accounting for censoring issues has little influence on estimates.
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to be equal across the two risk conditions. The aggregate discount rate is estimated

to be around 27% per year and aggregate curvature is estimated to be 0.98. The

background parameter, ω̂ is estimated to be 3.61.

Table 2: Discounting and Curvature Parameter Estimates

(1) (2) (3) (4) (5) (6)

α̂ 0.982 0.984
(0.002) (0.002)

α̂(1,1) 0.987 0.987 0.988 0.988
(0.002) (0.002) (0.002) (0.002)

α̂(0.5,0.5) 0.950 0.951 0.885 0.883
(0.008) (0.008) (0.017) (0.017)

Rate 0.274 0.285 0.284
(0.035) (0.036) (0.037)

Rate(1,1) 0.281 0.276 0.282
(0.036) (0.039) (0.036)

Rate(0.5,0.5) 0.321 0.269 0.315
(0.059) (0.033) (0.088)

ω̂ 3.608 2.417 2.414
(0.339) (0.418) (0.418)

ω̂(1,1) 2.281 2.106 2.285
(0.440) (0.439) (0.439)

ω̂(0.5,0.5) 4.397 5.260 4.427
(0.321) (0.376) (0.324)

H0: Equality F3,79 = 16.12 F2,79 = 30.47 F2,79 = 23.24 F2,79 = 37.97 F1,79 = 38.09
(p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01)

R2 0.642 0.675 0.672 0.675 0.673 0.673
N 2240 2240 2240 2240 2240 2240
Clusters 80 80 80 80 80 80

Notes: NLS solution function estimators. Subscripts refer to (p1, p2) condition. Column (1)
imposes the interchangeability, v(·) = u(·). Column (2) allows different curvature, discounting
and background parameters in each (p1, p2) condition. Column (3) restricts curvature to be
equal across conditions. Column (4) restricts discounting to be equal across conditions. Column
(5) restricts the background parameter ω to be equal across conditions. Column (6) restricts
the background parameter ω and discounting to be equal across conditions. Clustered standard
errors in parentheses. F statistics correspond to hypothesis tests of equality of parameters across
conditions. Rate: Annual discount rate calculated as (1/δ̂)365 − 1, standard errors calculated via
the delta method.

In column (2), we estimate separate discounting, curvature and background param-

eters for the two risk conditions. That is, we estimate a certain v(·) and an uncertain
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u(·). Discounting is found to be similar across the conditions, around 30% per year

(F1,79 = 0.69, p = 0.41).20 In the certain condition, (p1, p2) = (1, 1), we find al-

most linear utility while in the uncertain condition, (p1, p2) = (0.5, 0.5), we estimate

utility to be significantly more concave (F1,79 = 24.09, p < 0.01). In the certain

condition, (p1, p2) = (1, 1), we estimate a background parameter ω̂1,1 of 2.28 while

in the uncertain condition the background parameter is significantly higher at 4.40

(F1,79 = 25.53, p < 0.01). A hypothesis test of equal utility parameter estimates across

conditions is rejected (F3,79 = 16.12, p < 0.01).

In Table 2, columns (3) through (6) we estimate utility parameters with various

imposed restrictions. In column (3), we restrict curvature to be equal across conditions

and obtain very similar discounting estimates, but a larger difference in estimated

background parameters. In column (4), we restrict discounting to be equal across

conditions and obtain a result almost identical to column (2). In column (5), we restrict

background parameters to be equal and obtain very similar discounting estimates, but a

larger difference in curvature. This finding is repeated in column (6) where discounting

is restricted to be the same. Across specifications, hypothesis tests of equality of utility

parameters are rejected. To illustrate how well these estimates fit the data, Figure 2

also displays solid lines with predicted behavior from the most restricted regression,

column (6). The general pattern of aggregate responses is well matched.21

Taken together, these results suggest substantial differences between certain and

uncertain utility parameters. The direction of the results is towards a larger back-

20For comparison, using similar methodology without uncertainty Andreoni and Sprenger (2009)
find aggregate discount rate between 25-35% and aggregate curvature of around 0.92. These discount
rates are lower than generally found in the time preference literature (Frederick et al., 2002). Notable
exceptions of similarly low or lower discount rates include Coller and Williams (1999), Harrison, Lau
and Williams (2002), and Harrison et al. (2005) which all assume linear utility, and Andersen et al.
(2008), which accounts for utility function curvature with Holt and Laury (2002) risk measures.

21Figure 2 additionally reports separate R2 values for the two conditions: R2
1,1 = 0.594; R2

0.5,0.5 =
0.761, indicating that the solution function estimation approach does an adequate job of fitting the
aggregate data. For comparison a simple linear regression of ct on the levels of interest rates, delay
lengths and their interaction in each condition would produce R̃2 values of R̃2

1,1 = 0.443; R̃2
0.5,0.5 =

0.346. The least restricted regression, Column (2) creates very similar predicted values with R2 values
of 0.595 and 0.766.
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ground parameter, ω, and a smaller curvature parameter, α, in the uncertain (p1, p2) =

(0.5, 0.5) condition relative to the certain (p1, p2) = (1, 1). Given that ω enters nega-

tively into the utility function, these results point to a disproportionate preference for

certainty. For the payment values of the experiment, around $20, v(c) with certainty

will be greater than u(c) with uncertainty.

4.2 Behavior with Differential Risk

In this sub-section we explore disproportionate preferences for certainty in four condi-

tions with differential risk. First, we discuss DEU violations in common ratio situations

where only one payment is certain as in the original Allais paradox. Second, we exam-

ine our three experimental conditions where all payments are uncertain and document

behavior consistent with discounted expected utility.

4.2.1 A Disproportionate Preference for Certainty

Figure 4 compares behavior in four conditions with differential risk but common ratios

of probabilities. Condition (p1, p2) = (1, 0.8) (gray diamonds) is compared to (p1, p2) =

(0.5, 0.4) (green triangles), and condition (p1, p2) = (0.8, 1) (yellow circles) is compared

to (p1, p2) = (0.4, 0.5) (purple squares). The DEU model predicts equal allocations

across conditions with common ratios. Interestingly, subjects show a disproportionate

preference for certainty when it is available, regardless of whether the certain payment

is sooner or later. Hypotheses of equal allocations across conditions are rejected in

both cases.22

Figure 3, Panels B and C demonstrate that the individual behavior is organized in

a similar manner. Individual violations of common ratio predictions are substantial.

22For equality across (p1, p2) = (1, 0.8) and (p1, p2) = (0.5, 0.4) F14,79 = 7.69, p < .001 and for
equality across (p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5) F14,79 = 5.46, p < .001. Test statistics
generated from non-parametric OLS regression of choice on indicators for interest rate (7 levels),
delay length (2 levels), risk condition (2 levels) and all interactions with clustered standard errors.
F-statistic corresponds to null hypothesis that all risk condition terms have zero slopes. See Appendix
Table A1 for regression.
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Figure 4: A Disproportionate Preference for Certainty
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Note: The figure presents aggregate behavior for N = 80 subjects under four conditions: (p1, p2) =
(1, 0.8), (p1, p2) = (0.5, 0.4), (p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5). Error bars represent 95%
confidence intervals, taken as +/− 1.96 standard errors of the mean. The first and second conditions
share a common ratio as do the third and fourth. Test of H0 : Equality across conditions (p1, p2) =
(1, 0.8) and (p1, p2) = (0.5, 0.4): F14,79 = 7.69, p < .001. Test of H0 : Equality across conditions
(p1, p2) = (0.8, 1) and (p1, p2) = (0.4, 0.5): F14,79 = 5.46, p < .001.

When certainty is sooner, across conditions (p1, p2) = (1, 0.8) and (p1, p2) = (0.5, 0.4),

subjects commit an average of 10.90 (s.d. = 4.67) common ratio violations in 14 op-

portunities and only 7.5% of subjects commit zero violations. The average distance

in budget shares, di, is 0.150 (s.d. = 0.214), which is significantly greater than zero

(t79 = 6.24, p < 0.01), and in the direction of disproportionately preferring the cer-

tain sooner payment. When certainty is later across conditions (p1, p2) = (0.8, 1) and

(p1, p2) = (0.4, 0.5), subjects make an average of 9.68 (s.d. = 5.74) common ratio viola-
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tions and 17.5% of subjects make no violations at all, similar to Panel A. The average

distance in budget share, di, is −0.161 (s.d. = 0.198), which is significantly less than

zero (t79 = 7.27, p < 0.01), and in the direction of disproportionately preferring the

certain later payment.

Importantly, violations of discounted expected utility correlate across experimental

comparisons. Figure 5 plots budget share differences, di, across common-ratio com-

parisons. The difference |di| from condition (p1, p2) = (1, 1) vs. (p1, p2) = (0.5, 0.5) is

on the vertical axis while di across the alternate comparisons is on the horizontal axis.

Common ratio violations correlate highly across experimental conditions. The more an

individual violates DEU across conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) pre-

dicts how much he or she will demonstrate a disproportionate preference for certainty

when it is sooner in (p1, p2) = (1, 0.8) vs. (p1, p2) = (0.5, 0.4), (ρ = 0.31, p < 0.01),

and when it is later in (p1, p2) = (0.8, 1) vs. (p1, p2) = (0.4, 0.5), (ρ = −0.47, p < 0.01).

Table 3 presents a correlation table for the number of violations counti, and the budget

proportion differences di, across comparisons and shows significant individual correla-

tion across all conditions and across all measures for DEU violation behavior. This

individual data is strikingly supportive of the a u-v interpretation.

4.2.2 When All Choices Are Uncertain

Figure 6 presents aggregate behavior from three risky situtations: (p1, p2) = (0.5, 0.5)

(red diamonds); (p1, p2) = (0.5, 0.4) (green squares); and (p1, p2) = (0.4, 0.5) (orange

triangles) over the experimentally varied values of θ and delay length. The mean earlier

choice of ct is graphed along with error bars corresponding to 95 percent confidence

intervals. We also plot predicted behavior based on uncertain utility function estimated

in Table 2, column (6). These out-of-sample predictions are plotted as solid lines in

green and orange. The solid red line corresponds to the model fit for (p1, p2) = (0.5, 0.5),

as in Figure 2.

24



Figure 5: Violation Behavior Across Conditions
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Note: The figure presents the correlations of the budget share difference, di, across common ratio
comparisons. |di| across conditions (p1, p2) = (1, 1) and (p1, p2) = (0.5, 0.5) is on the vertical axis.
di across the alternate comparisons is on the horizontal axis. Regression lines are provided. Corre-
sponding correlation coefficients are ρ = 0.31, (p < 0.01) for the triangular points (p1, p2) = (1, 0.8)
vs (p1, p2) = (0.5, 0.4) and ρ = −0.47, (p < 0.01) for the circular points (p1, p2) = (0.8, 1) vs
(p1, p2) = (0.4, 0.5). See Table 3 for more details.

We highlight two dimensions of Figure 6. First, the theoretical predictions are 1)

that ct should be declining in θ; and 2) that if two decisions have identical θ then ct

should be higher in the condition with the lower interest rate.23 These features are

observed in the data. Allocations of ct decline with θ and, where overlap of θ exists ct

23Under the DEU-based solution function established in (4.1.1), ct should be monotonically decreas-
ing in θ. Additionally, if θ = θ′ and 1 + r 6= 1 + r′ then behavior should be identical up to a scaling
factor related to the interest rates 1 + r and 1 + r′. ct should be slightly higher in the lower interest
rate condition due to income effects.
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Table 3: Individual DEU Violation Correlation Table

counti counti counti |di| di di

(1, 1) (1, 0.8) (0.8, 1) (1, 1) (1, 0.8) (0.8, 1)
vs. vs. vs. vs. vs. vs.

(0.5, 0.5) (0.5, 0.4) (0.4, 0.5) (0.5, 0.5) (0.5, 0.4) (0.4, 0.5)

(1, 1)
counti vs. 1

(0.5, 0.5)

(1, 0.8)
counti vs. 0.56 1

(0.5, 0.4) ∗∗∗

(0.8, 1)
counti vs. 0.71 0.72 1

(0.4, 0.5) ∗∗∗ ∗∗∗

(1, 1)

|di| vs. 0.84 0.40 0.52 1
(0.5, 0.5) ∗∗∗ ∗∗∗ ∗∗∗

(1, 0.8)
di vs. 0.31 0.34 0.28 0.31 1

(0.5, 0.4) ∗∗∗ ∗∗∗ ∗∗ ∗∗∗

(0.8, 1)
di vs. -0.55 -0.412 -0.61 -0.47 -0.34 1

(0.4, 0.5) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Notes: Pairwise correlations with 80 observations. The variable counti is a count of each individ-
ual’s common ratio violations and, di is each individual’s budget share difference between common
ratio conditions. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01.

is generally higher for lower gross interest rates.24 Second, out of sample predictions

match actual aggregate behavior. Indeed, the out-of-sample calculated R2 values are

high: 0.878 for (p1, p2) = (0.5, 0.4) and 0.580 for (p1, p2) = (0.4, 0.5).25

The results are surprisingly consistent with the DEU model. Indeed, when the data

from the (p1, p2) = (0.5, 0.4), (p1, p2) = (0.5, 0.5) and (p1, p2) = (0.4, 0.5) conditions

24This pattern of allocations is obtained for all sessions and for all orders indicating no presence of
order or day effects.

25By comparison, making similar out of sample predictions using utility estimates from (p1, p2) =
(1, 1) yields predictions that diverge dramatically from actual behavior (see Appendix Figure A1) and
lowers R2 values to 0.767 and 0.462, respectively. This suggests that accounting for differential utility
function curvature in risky situations allows for an improvement of fit on the order of 15-25%.
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are used to estimate the uncertain utility function, the results are in line with those of

Table 2, column (6). Discounting and ω̂ are virtually unchanged and the uncertain α

parameter is estimated to be 0.834 (s.e. = 0.020).

Figure 6 demonstrates that in situations where all payments are risky, utility param-

eters measured under uncertainty describe behavior extremely well. Though subjects

have a disproportionate preference for certainty when it is available, they trade off

relative risk and interest rates like expected utility maximizers away from certainty.

Figure 6: Aggregate Behavior Under Uncertainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: (p1, p2) =
(0.5, 0.5), i.e. equal risk, in red; (p1, p2) = (0.5, 0.4), i.e. more risk later, in green; and (p1, p2) =
(0.4, 0.5), i.e. more risk sooner, in orange. Error bars represent 95% confidence intervals, taken as
+/ − 1.96 standard errors of the mean. Solid lines correspond to predicted behavior using utility
estimates from (p1, p2) = (0.5, 0.5) as estimated in Table 2, column (6).
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5 Discussion and Conclusion

Intertemporal decision-making involves a combination of certainty and uncertainty.

In an experiment using Convex Time Budgets (Andreoni and Sprenger, 2009) under

varying risk conditions, we document violations of discounted expected utility. Our

findings indicate that certain and uncertain consumption are evaluated very differently.

Subjects exhibit a disproportionate preference for certainty when it is available, but

behave approximately as discounted expected utility maximizers away from certainty.

We interpret our findings as being consistent with both prior research on expected

utility violations and the intuition of the Allais Paradox (Allais, 1953). Allais (1953, p.

530) argued that when two options are far from certain, individuals act effectively as

discounted expected utility maximizers, while when one option is certain and another

is uncertain a disproportionate preference for certainty prevails.

Demonstrating a difference between certain and uncertain utility has substantial

implications for intertemporal decision theory. In particular, we consider present bias.

Present bias has been frequently documented (Frederick et al., 2002) and is argued

to be a dynamically inconsistent discounting phenomenon generated by diminishing

impatience through time. Our results suggest that present-bias may have an alternate

source. If individuals exhibit a disproportionate preference for certainty when it is

available, then present, certain consumption will be disproportionately favored over

future, uncertain consumption. When only uncertain future consumption is considered,

individuals act as expected utility maximizers and apparent preference reversals are

generated.

Other research has discussed the possibility that certainty plays a role in the gen-

erating present bias (Halevy, 2008). Additionally such a notion is implicit in the rec-

ognized dynamic inconsistency of non-expected utility models (Green, 1987; Machina,

1989) and could be thought of as preferring immediate resolution of uncertainty (Kreps

and Porteus, 1978; Chew and Epstein, 1989; Epstein and Zin, 1989). Our results point
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in a new direction: that certainty, per se, is disproportionately preferred. This view is

captured in the u-v preference models of Neilson (1992), Schmidt (1998), and Diecidue

et al. (2004) and may help researchers to understand how and why present bias and

other discounting phenomena are manifested.
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Table A1: Non-Parametric Estimates of DEU Violations
Comparison

(p1, p2) = (1, 1) vs. (0.5, 0.5) (p1, p2) = (1, 0.8) vs. (0.5, 0.4) (p1, p2) = (0.8, 1) vs. (0.4, 0.5)

Dependent Variable: ct Allocations

Risk Conditions

Condition (p1, p2) = (1, 1) 3.350***
(0.772)

Condition (p1, p2) = (1, 0.8) 4.418***
(0.558)

Condition (p1, p2) = (0.8, 1) -3.537***
(0.684)

Interest Rate x Delay Length Categories

(1 + r, k) = (1.00, 28) - - -

(1 + r, k) = (1.05, 28) -5.318*** -1.651*** -0.967*
(0.829) (0.316) (0.452)

(1 + r, k) = (1.11, 28) -6.294*** -2.818*** -1.382**
(0.812) (0.434) (0.454)

(1 + r, k) = (1.18, 28) -6.921*** -4.140*** -1.851***
(0.780) (0.490) (0.455)

(1 + r, k) = (1.25, 28) -7.438*** -5.449*** -2.222***
(0.755) (0.544) (0.488)

(1 + r, k) = (1.33, 28) -8.187*** -7.139*** -2.742***
(0.721) (0.668) (0.496)

(1 + r, k) = (1.43, 28) -9.039*** -8.164*** -3.126***
(0.677) (0.658) (0.503)

(1 + r, k) = (1.00, 56) 0.193 0.073 0.873*
(0.192) (0.211) (0.395)

(1 + r, k) = (1.05, 56) -4.600*** -1.290*** -0.352
(0.791) (0.336) (0.442)

(1 + r, k) = (1.11, 56) -5.409*** -2.582*** -0.923
(0.805) (0.331) (0.515)

(1 + r, k) = (1.18, 56) -6.462*** -3.685*** -1.451**
(0.796) (0.480) (0.513)

(1 + r, k) = (1.25, 56) -7.436*** -5.227*** -1.812***
(0.758) (0.544) (0.512)

(1 + r, k) = (1.33, 56) -8.118*** -6.979*** -2.532***
(0.740) (0.652) (0.493)

(1 + r, k) = (1.43, 56) -8.775*** -7.882*** -2.833***
(0.713) (0.656) (0.477)

Risk Condition Interactions: Relevant Risk Condition x

(1 + r, k) = (1.05, 28) -6.148*** -1.544* 0.134
(1.111) (0.602) (0.421)

(1 + r, k) = (1.11, 28) -6.493*** -1.574** 0.498
(1.048) (0.573) (0.446)

(1 + r, k) = (1.18, 28) -6.597*** -2.131** 0.849
(0.981) (0.708) (0.463)

(1 + r, k) = (1.25, 28) -6.666*** -2.584** 0.920
(0.971) (0.762) (0.576)

(1 + r, k) = (1.33, 28) -6.425*** -2.136** 1.319*
(0.917) (0.764) (0.601)

(1 + r, k) = (1.43, 28) -5.683*** -2.170** 1.443*
(0.880) (0.728) (0.623)

(1 + r, k) = (1.00, 56) 0.192 -0.180 0.107
(0.450) (0.243) (0.602)

(1 + r, k) = (1.05, 56) -5.540*** -1.646** 0.156
(1.088) (0.616) (0.557)

(1 + r, k) = (1.11, 56) -6.734*** -1.781** 0.511
(1.093) (0.588) (0.521)

(1 + r, k) = (1.18, 56) -6.450*** -2.471*** 0.747
(1.040) (0.719) (0.644)

(1 + r, k) = (1.25, 56) -6.006*** -2.576*** 0.994
(0.975) (0.714) (0.636)

(1 + r, k) = (1.33, 56) -5.911*** -2.286** 1.604**
(0.974) (0.781) (0.587)

(1 + r, k) = (1.43, 56) -5.574*** -2.618*** 1.639*
(0.936) (0.702) (0.654)

Constant (Omitted Category) 12.537*** 14.455*** 5.950***
(0.464) (0.424) (0.554)

H0: Zero Condition Slopes F14,79 = 6.07 F14,79 = 7.69 F14,79 = 5.46
(p < 0.01) (p < 0.01) (p < 0.01)

# Observations 2240 2240 2240
# Clusters 80 80 80
R2 0.429 0.360 0.173

Notes: Clustered standard errors in parentheses. F14,79 statistics correspond to hypothesis tests
of zero slopes for risk condition regressor and 13 risk condition interactions.

34



Figure A1: Aggregate Behavior Under Uncertainty with Predictions Based on Cer-
tainty
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Note: The figure presents aggregate behavior for N = 80 subjects under three conditions: 1) (p1, p2) =
(0.5, 0.5), i.e. equal risk, in red; 2) (p1, p2) = (0.5, 0.4), i.e. more risk later, in green; and 3) (p1, p2) =
(0.4, 0.5), i.e. more risk sooner, in orange. Error bars represent 95% confidence intervals, taken as
+/−1.96 standard errors of the mean. Blue solid lines correspond to predicted behavior using certain
utility estimates from (p1, p2) = (1, 1) as estimated in Table 2, column (6).
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A.2 Welcome Text

Welcome and thank you for participating.

Eligibility for this study: To be in this study, you need to meet these criteria. You

must have a campus mailing address of the form:

YOUR NAME

9450 GILMAN DR 92(MAILBOX NUMBER)

LA JOLLA CA 92092-(MAILBOX NUMBER)

Your mailbox must be a valid way for you to receive mail from now through the

end of the Spring Quarter.

You must be willing to provide your name, campus mail box, email address, and

student PID. This information will only be seen by Professor Andreoni and his assis-

tants. After payment has been sent, this information will be destroyed. Your identity

will not be a part of any subsequent data analysis.

You must be willing to receive your payment for this study by check, written to

you by Professor James Andreoni, Director of the UCSD Economics Laboratory. The

checks will be drawn on the USE Credit Union on campus. You may deposit or cash

your check wherever you like. If you wish, you can cash your checks for free at the USE

Credit Union any weekday from 9:00 am to 5:00 pm with valid identification (drivers

license, passport, etc.).

The checks will be delivered to you at your campus mailbox at a date to be de-

termined by your decisions in this study, and by chance. The latest you could receive

payment is the last week of classes in the Spring Quarter.

If you do not meet all of these criteria, please inform us of this now.
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A.3 Instruction and Examples Script

Earning Money:

To begin, you will be given a $10 minimum payment. You will receive this payment

in two payments of $5 each. The two $5 minimum payments will come to you at two

different times. These times will be determined in the way described below. Whatever

you earn from the study today will be added to these minimum payments.

In this study, you will make 84 choices over how to allocate money between two

points in time, one time is ‘earlier’ and one is ‘later’. Both the earlier and later times

will vary across decisions. This means you could be receiving payments as early as

one week from today, and as late as the last week of classes in the Spring Quarter, or

possibly other dates in between.

It is important to note that the payments in this study involve chance. There is a

chance that your earlier payment, your later payment or both will not be sent at all.

For each decision, you will be fully informed of the chance involved for the sooner and

later payments. Whether or not your payments will be sent will be determined at the

END of the experiment today. If, by chance, one of your payments is not sent, you will

receive only the $5 minimum payment.

Once all 84 decisions have been made, we will randomly select one of the 84

decisions as the decision-that-counts. This will be done in three stages. First, we will

pick a number from 1 to 84 at random to determine which is the decision-that-counts

and the corresponding sooner and later payment dates. Then we will pick a second

number at random from 1 to 10 to determine if the sooner payment will be sent. Then

we will pick a third number at random from 1 to 10 to determine if the later payment

will be sent. We will use the decision-that-counts to determine your actual earnings.

Note, since all decisions are equally likely to be chosen, you should make each decision

as if it will be the decision-that-counts. When calculating your earnings from the

decision-that-counts, we will add to your earnings the two $5 minimum payments.
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Thus, you will always get paid at least $5 at the chosen earlier time, and at least $5

at the chosen later time.

IMPORTANT: All payments you receive will arrive to your campus mailbox. On

the scheduled day of payment, a check will be placed for delivery in campus mail

services by Professor Andreoni and his assistants. Campus mail services guarantees

delivery of 100% of your payments by the following day.

As a reminder to you, the day before you are scheduled to receive one of your

payments, we will send you an e-mail notifying you that the payment is coming. On

your table is a business card for Professor Andreoni with his contact information.

Please keep this in a safe place. If one of your payments is not received you should

immediately contact Professor Andreoni, and we will hand-deliver payment to you.

Your Identity:

In order to receive payment, we will need to collect the following pieces of in-

formation from you: name, campus mail box, email address, and student PID. This

information will only be seen by Professor Andreoni and his assistants. After all pay-

ments have been sent, this information will be destroyed. Your identity will not be a

part of subsequent data analysis.

On your desk are two envelopes: one for the sooner payment and one for the later

payment. Please take the time now to address them to yourself at your campus mail

box.

How it Works:

In each decision you are asked to divide 100 tokens between two payments at two

different dates: Payment A (which is sooner) and Payment B (which is later). Tokens

will be exchanged for money. The tokens you allocate to Payment B (later) will always
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be worth at least as much as the tokens you allocate to Payment A (sooner). The

process is best described by an example. Please examine the sample sheet in you

packet marked SAMPLE.

The sample sheet provided is similar to the type of decision sheet you will fill out in

the study. The sample sheet shows the choice to allocate 100 tokens between Payment

A on April 17th and Payment B on May 1st. Note that today’s date is highlighted in

yellow on the calendar on the left hand side. The earlier date (April 17th) is marked

in green and the later date (May 1st) is marked in blue. The earlier and later dates

will always be marked green and blue in each decision you make. The dates are also

indicated in the table on the right.

In this decision, each token you allocate to April 17th is worth $0.10, while each

token you allocate to May 1st is worth $0.15. So, if you allocate all 100 tokens to

April 17th, you would earn 100x$0.10 = $10 (+ $5 minimum payment) on this date

and nothing on May 1st (+ $5 minimum payment). If you allocate all 100 tokens to

May 1st, you would earn 100x$0.15 = $15 (+ $5 minimum payment) on this date and

nothing on April 17th (+ $5 minimum payment). You may also choose to allocate

some tokens to the earlier date and some to the later date. For instance, if you allocate

62 tokens to April 17th and 38 tokens to May 1st, then on April 17th you would earn

62x$0.10 = $6.20 (+ $5 minimum payment) and on May 1st you would earn 38x$0.15

= $5.70 (+ $5 minimum payment). In your packet is a Payoff Table showing some of

the token-dollar exchange at all relevant token exchange rates.

REMINDER: Please make sure that the total tokens you allocate between Payment

A and Payment B sum to exactly 100 tokens. Feel free to use the calculator provided

in making your allocations and making sure your total tokens add to exactly 100 in

each row.

Chance of Receiving Payments:
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Each decision sheet also lists the chances that each payment is sent. In this example

there is a 70% chance that Payment A will actually be sent and a 30% chance that

Payment B will actually be sent. In each decision we will inform you of the chance that

the payments will be sent. If this decision were chosen as the decision-that-counts we

would determine the actual payments by throwing two ten sided die, one for Payment

A and one for Payment B.

EXAMPLE: Let’s consider the person who chose to allocate 62 tokens to April

17th and 38 tokens to May 1st. If this were the decision-that-counts we would then

throw a ten-sided die for Payment A. If the die landed on 1,2,3,4,5,6,or 7, the person’s

Payment A would be sent and she would receive $6.20 (+ $5 minimum payment) on

April 17th. If the die landed 8,9, or 10, the payment would not be sent and she would

receive only the $5 minimum payment on April 17th. Then we would throw a second

ten-sided die for Payment B. If the die landed 1,2, or 3, the person’s Payment B would

be sent and she would receive $5.70 (+ $5 minimum payment) on May 1st. If the die

landed 4,5,6,7,8,9, or 10, the payment would not be sent and she would receive only

the $5 minimum payment on May 1st.

Things to Remember:

• You will always be allocating exactly 100 tokens.

• Tokens you allocate to Payment A (sooner) and Payment B (later) will be ex-

changed for money at different rates. The tokens you allocate to Payment B will

always be worth at least as much as those you allocate to Payment A.

• Payment A and Payment B will have varying degrees of chance. You will be fully

informed of the chances.

• On each decision sheet you will be asked 7 questions. For each decision you will

allocate 100 tokens. Allocate exactly 100 tokens for each decision row, no more,
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no less.

• At the end of the study a random number will be drawn to determine which

is the decision-that-counts. Because each question is equally likely, you should

treat each decision as if it were the one that determines your payments. Two

more random numbers will be drawn by throwing two ten sided die to determine

whether or not the payments you chose will actually be sent.

• You will get an e-mail reminder the day before your payment is scheduled to

arrive.

• Your payment, by check, will be sent by campus mail to the mailbox number you

provide.

• Campus mail guarantees 100% on-time delivery.

• You have received the business card for Professor James Andreoni. Keep this card

in a safe place and contact Prof. Andreoni immediately if one of your payments

is not received.

41


