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1. Introduction

Part one of the article recalls the Ellsberg-based critique of subjective expected

utility theory and then outlines some of the models that it has stimulated. Our

coverage of preference models is selective - we focus only on models that have

been applied to finance, or that seem promising for future applications: multiple-

priors (Gilboa & Schmeidler 1989), the “smooth ambiguity” model (Klibanoff et

al. 2005) as well as multiplier utility and related robust-control-inspired models

(Hansen & Sargent 2001, Maccheroni et al. 2006a).

We provide a unifying framework for considering the various models. A con-

fusing aspect of the literature is the plethora of seemingly different models, rarely

related to one another, and often expressed in drastically different formal lan-

guages. Here we put several of these models side-by-side, expressed in a common

language, and we examine the properties of each with respect to implications for

both one-shot-choice and sequential choice. In particular, we provide thought

experiments to illustrate differences in behavior implied by the various models.

Part two derives implications of the models for finance. One common theme

shared by all models is that ambiguity averse agents choose more conservative

positions, and, in equilibrium, command additional “ambiguity premia” on un-

certain assets. Ambiguity aversion can thus help to account for position and price

behavior that is quantitatively puzzling in light of subjective expected utility

(SEU) theory. A second common theme is that, in dynamic settings, ambiguity

averse agents may adjust their positions to account for future changes in ambigu-

ity, for example due to learning. This adds a new reason for positions to differ by

investment horizon, and, in equilibrium, generates time variation in premia.

Models of ambiguity aversion differ in how ambiguity aversion compares with

risk aversion, and thus in how implications for portfolio choice and asset pricing

differ from those of SEU. On the one hand, many of the qualitative implications of

multiplier utility and of the smooth ambiguity model are identical to those of SEU.

In all three models, with standard specifications, agents are locally risk neutral,

portfolios react smoothly to changes in return expectations and diversification

is always beneficial. Consequently, in many settings, the multiplier and smooth

models do not expand the range of qualitative behavior that can be explained

by SEU. Instead, they offer reinterpretations of SEU that may be quantitatively

more appealing (for example, ambiguity aversion can substitute for higher risk

aversion).
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On the other hand, most applications of the multiple-priors model have ex-

ploited qualitative differences from SEU. These arise because the multiple-priors

model allows uncertainty to have first order effects on portfolio choice and asset

pricing. Thus the model can give rise to selective participation, optimal un-

derdiversification, and portfolio inertia at portfolios that hedge ambiguity. In

heterogeneous agent models with multiple-priors, portfolio inertia has been used

to endogenously generate incompleteness of markets and to account for markets

“freezing up” in response to an increase in uncertainty. Finally, uncertainty has a

first order effect on average excess returns, which can be large even if the covari-

ance of payoffs with marginal utility is negligible.

2. Preference

The outline is divided into two major parts. First, we consider static or one-

shot-choice settings where all choices are made at a single instant prior to the

resolution of uncertainty. Models of preference under uncertainty are typically

formulated first for such static settings. However, just as in Epstein & Zin (1989)

which studies risk preferences, any such model of static preference can be extended

uniquely into a recursive dynamic model of preference. Therefore, the discussion of

static models is revealing also about their dynamic extensions, which are outlined

in the second part of this section. In addition, a dynamic setting, where choice

is sequential, raises new issues - dynamic consistency and updating or learning -

and these are the major focus of the subsection on dynamic models.

2.1. Models of Preference: Static or One-Shot Choice Settings

2.1.1. Ellsberg and the Formal Set Up

Ellsberg’s (1961) classic experiments motivate the study of ambiguity. In a variant

of one of his experiments, you are told that there are 100 balls in an urn, and that
each ball is either red  or blue . You are not given further information about

the urn’s composition. Presumably you would be indifferent between bets on

drawing either color (take the stakes to be 100 and 0). However, compare these
bets with the risky prospect that offers you, regardless of the color drawn, a bet

on a fair coin, with the same stakes as above. When you bet on the fair coin,

or equivalently on drawing blue from a second risky urn where you are told that

there are 50 balls of each color, then you can be completely confident that you
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have a 50-50 chance of winning. In contrast, in the original “ambiguous” urn,
there is no basis for such confidence. This difference motivates a strict preference

for betting on the risky urn as opposed to the ambiguous one.

Such preference is incompatible with expected utility. Indeed, suppose you

had in mind a subjective probability about the probability of a blue draw from

the ambiguous urn. A strict preference for betting on the fair coin over a bet on

a blue draw would then reveal that your probability of blue is strictly less than

one half. At the same time, a preference for betting on the fair coin over a bet

on a red draw reveals a probability of blue that is strictly greater than one half,

a contradiction. It follows that Ellsberg’s choices cannot be rationalized by SEU.

Ellsberg’s choices have been confirmed in many laboratory experiments. But

this is an experiment that did not need to be run in order to be convincing -

it simply rings true that confidence, and the amount of information underlying

a likelihood assessment, matter. Such a concern is not a mistake or a form of

bounded rationality - to the contrary, it would be irrational for an individual who

has poor information about her environment to ignore this fact and behave as

though she were much better informed.1 The distinction between risk and ambi-

guity is sometimes referred to alternatively as one between risk and “Knightian

uncertainty.” In terminology introduced by Hansen & Sargent (2001), Ellsberg’s

urn experiment illustrates that the distinction between payoff uncertainty and

model uncertainty is behaviorally meaningful.

We need some formalities to proceed. Following Savage (1954), adopt as prim-

itives a state space Ω, representing the set of relevant contingencies or states of
the world  ∈ Ω, and a set of outcomes  ⊂ R

+. (Little is lost by assuming that

both Ω and  are finite and have power sets as associated -algebras; however,

considerable generalization is possible.) Prior to knowing the true state of the

world, an individual chooses once-and-for-all a physical action. As in Anscombe

& Aumann (1963), suppose that the consequence of an action is a lottery over ,

an element of ∆ (). Then, any physical action can be identified with a (bounded
and measurable) mapping  : Ω −→ ∆(), which, is called an Anscombe-Aumann
(or AA) act. Thus to model choice between physical actions, we model preference

º on the set of AA acts.
To model the Ellsberg experiment above, take Ω = {} as the state space,

where a state corresponds to a draw from the ambiguous urn. The relevant bets

are expressed as AA acts as follows:

1The normative significance of Ellsberg’s message distinguishes it from that emanating from

the Allais Paradox contradicting the vNM model of preference over risky prospects.
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Ellsberg’s urn: + = 100
 

 100 0
 0 100


¡
100 1

2

¢ ¡
100 1

2

¢ (2.1)

Bets on a red and a blue draw correspond to acts  and  respectively. A bet

on the fair coin corresponds to a constant AA act  that delivers same lottery¡
100 1

2

¢
in both states; throughout, we denote by ( ) the lottery paying  with

probability  and 0 with probability 1− .

Two special subsets of acts should be noted. Call  a Savage act if  () is
a degenerate lottery for every ; in that case, view  as having outcomes in 

and write  : Ω → . Both  and  above are Savage acts. For the second

subset, we can identify any lottery  ∈ ∆ () with the constant act that yields
 in every state. An example is the fair coin lottery above. Consequently, any

preference on AA acts includes in it a ranking of risky prospects. This makes clear

the analytical advantage of adopting the large AA domain, since the inclusion of

risky prospects makes it straightforward to describe behavior that would reveal

that risk is treated differently from other uncertainty. This is a major reason

that all the models of preference that we discuss have been formulated in the AA

framework.

Another analytical advantage of the AA domain is the simple definition it

permits for the mixture of two acts. The mixture of two lotteries is well-defined

and familiar. Given any two AA acts 0 and , and  in [0 1], define the new act
0 + (1− ) by mixing their lotteries state by state, that is,

(0 + (1− )) () = 0 () + (1− ) () ,  ∈ Ω. (2.2)

A key property of the Ellsberg urn is that 1
2
 +

1
2
 =  a mixture of the bets

on states  and  gives a lottery that no longer depends on the state.

Ellsberg’s choices can now be written as

1
2
 +

1
2
 Â  ∼ . (2.3)

From this perspective, Ellsberg’s example has two important features. First,

randomization between indifferent acts can be valuable. This is a violation of the
independence axiom, and thus a key departure from expected utility. Second,

randomization can be valuable because it can smooth out, or hedge, ambiguity.
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The negative comovement in the payoffs of the ambiguous acts  and  implies

that the act 1
2
+

1
2
 is not ambiguous; it is simply risky. One can be confident

in knowing the probabilities of the lottery payoffs, even if one is not confident in

those of the underlying bets  and .

The literature has identified the first property — a strict preference for ran-

domization between indifferent acts — as the behavioral manifestation of (strict)

ambiguity aversion. Accordingly, say that the individual with preference º is

(weakly) ambiguity averse if, for all AA acts 0 and ,

0 ∼  =⇒ 0 + (1− ) º . (2.4)

For a related comparative notion, say that 1 is more ambiguity averse than 2 if:
For all AA acts  and lotteries  ∈ ∆ (),

 º2  =⇒  º1 . (2.5)

The idea is that if 2 rejects the ambiguous act  in favor of the risky prospect ,
then so should the more ambiguity averse individual 1. The uncertainty aversion
axiom (2.4) is satisfied by all the models reviewed below.

Models of ambiguity aversion differ in why randomization is valuable, in par-

ticular, whether it can be valuable even if it does not hedge ambiguity. To see

the main point, consider the following extension of the Ellsberg experiment. Let 

denote the number of dollars you are willing to pay for the bet . Next, imagine

a lottery that delivers either the bet  or its certainty equivalent payoff , each

with probability 1
2
. How much would you be willing to pay for such a bet? One

reasonable answer is  — randomizing between an asset (here a bet) and its own

subjective value cannot be valuable. Intuitively, if you perceive the value of an

asset to be low because you are not confident in your probability assessment of its

payoff, then your confidence in your assessment should not change just because

the asset is part of the lottery. As a result, the asset, its subjective value, and the

lottery should all be indifferent.

The above view underlies themultiple-priors (MP)model of Gilboa and Schmei-

dler (1989). According to that model, preference for randomization between indif-

ferent acts is valuable only if it hedges ambiguity and thus increases confidence,

as in the Ellsberg experiment. When there is no opportunity for hedging — as

in the last example where one of the acts (the subjective value of the asset) is

constant — then randomization is not valuable. In contrast, “smooth” models

of ambiguity aversion, in particular multiplier preferences (Anderson et al. 2003)
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and the smooth ambiguity model (Klibanoff et al. 2005), assume a pervasive

value for randomization. Those models can rationalize Ellsberg’s choices only if

randomizing between an asset and its subjective value is also valuable.

We now define and compare the models in more detail.

2.1.2. Multiple-Priors Utility

Where information is scarce and a single probability measure cannot be relied

on to guide choice, then it is cognitively intuitive that the decision-maker think

in terms of a set of probability laws. For example, she might assign the interval

[1
3
 2
3
] to the probability of drawing a red ball from the ambiguous urn in the

Ellsberg experiment. Being cautious, she might then evaluate a bet on red by

using the minimum probability in the interval, here 1
3
, which would lead to the

strict preference to bet on the risky urn. Similarly for blue. In this way, the

intuitive choices pointed to by Ellsberg can be rationalized.

More formally and generally, the multiple-priors model postulates the following

utility function on the set of AA acts:

 () = min
∈

Z
Ω

 () . (2.6)

Here,  : ∆ ()→ R is a vNM functional on lotteries that is affine, that is,

 (+ (1− ) 0) =  () + (1− ) (0) ,

for all lotteries  0 in ∆ ().2 The vNM assumption for  excludes risk prefer-

ences exhibiting the Allais Paradox - ambiguity is the only rationale admitted

for deviating from SEU in the multiple-priors model, as well as in all the other

models that we discuss. The central component in the functional form is the set

 ⊂ ∆ (Ω) of probability measures on Ω - the set of priors. The special case where
 is a singleton gives the Anscombe & Aumann (1963) version of SEU.

Ambiguity aversion, as defined in (2.4), is the central assumption in Gilboa

& Schmeidler’s (1989) axiomatization of the multiple-priors functional form. An-

other important axiom is certainty independence (CI): For all AA acts 0 and 

all constant acts  and  ∈ (0 1) 

0 Â  ⇐⇒ 0 + (1− )  Â + (1− ) . (2.7)

2Below identify  with the degenerate lottery giving  and write  (). Also, assume that 
is strictly increasing for deterministic consumption.
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In other words, the invariance required by the independence axiom holds as long

as mixing involves a constant act. This axiom ensures that Ellsberg-type choices

are motivated by hedging. Essentially, moving from expected utility to multiple-

priors amounts to replacing the independence axiom by uncertainty aversion and

certainty independence.

Further, comparative ambiguity aversion is simply characterized: 1 is more
ambiguity averse than 2 if and only if

1 = 2 and 1 ⊃ 2. (2.8)

Thus the model affords a separation between risk attitudes, modeled exclusively by

the vNM index , and ambiguity attitudes, modeled in the comparative sense by

the set of priors . Put another way, expanding  leaves risk attitudes unaffected

and increases ambiguity aversion.

The multiple-priors model is very general since the set of priors can take many

different forms. Consider briefly two examples that have received considerable

attention and that offer scalar parametrizations of ambiguity aversion. Refer to

-contamination if

 = {(1− ) ∗ +  :  ∈ } , (2.9)

where  ⊂ ∆ (Ω) is a set of probability measures, ∗ ∈  is a reference measure,

and  is a parameter in the unit interval.3 The larger is , the more weight is

given to alternatives to ∗ being relevant, and the more ambiguity averse is the
individual in the formal sense of (2.5). An act is evaluated by a weighted average

of its expected utility according to ∗ and its worst-case expected utility:

 () = (1− )

Z
Ω

 () ∗ + min
∈

Z
Ω

 () . (2.10)

In the second example,  is an entropy-constrained ball. Fix a reference mea-

sure ∗ ∈ ∆ (Ω). For any other  ∈ ∆ (Ω), its relative entropy is  ( k ∗) ∈
[0∞], where

 ( k ∗) = R
Ω

µ
log



∗

¶
, (2.11)

if  is absolutely continuous with respect to ∗, and ∞ otherwise. Though not a

metric, for example, it is not symmetric,  ( k ∗) is a measure of the distance
3It is used heavily in robust statistics (see Huber (1981), for example). For application to

finance, see Epstein & Wang (1994). Kopylov (2009) provides axiomatic foundations.
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between  and ∗; note that  ( k ∗) = 0 if and only if  = ∗. Finally, define

 = { :  ( k ∗) ≤ }. (2.12)

The MP model is sometimes criticized on the grounds that it implies extreme

aversion, or paranoia. But that interpretation is based on the implicit assumption,

not imposed by the model, that  is the set of all logically possible priors.4 For

example, in the Ellsberg example, it is perfectly consistent with the model that

the individual use the probability interval [1
3
 2
3
], even though any probability in

the unit interval is consistent with the information given for the ambiguous urn.

Ultimately, the only way to argue that the model is extreme is to demonstrate

extreme behavioral implications of the axioms, something that has not been done.

2.1.3. The “Smooth Ambiguity” Model

Klibanoff et al. (2005), henceforth KMM, propose the following utility function

over AA acts:

 () =

Z
∆(Ω)



µZ
Ω

 ( ())  ()

¶
 () . (2.13)

Here  is a probability measure on ∆ (Ω),  : ∆ ()→  is a vNM functional as

before, and  is continuous and strictly increasing on  () ⊂ R. For simplicity,
suppose that  is continuous and strictly increasing on . Identify a KMM agent

with a triple (  ) satisfying the above conditions.5

This functional form suggests an appealing interpretation. If the individual

were certain of  being the true law, she would simply maximize expected utility

using . However, in general, there is uncertainty about the true law, or “model

uncertainty,” represented by the prior . This uncertainty about the true law

matters if  is nonlinear. In particular, if  is concave, then the individual is

ambiguity averse in the sense of (2.4); and greater concavity implies greater am-

biguity aversion in the sense of (2.5). On the other hand, ambiguity (as opposed

to the attitude towards it) seems naturally to be captured by  - hence, it is

4The difference between the subjective set of priors  and the set of logically possible prob-

ability laws is nicely clarified by Gajdos et al. (2008).
5The multiple-priors functional form is a limiting case - if  is the support of , then, up

to ordinal equivalence, (2.6) is obtained in the limit as the degree of concavity of  increases
without bound.
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claimed, a separation is provided between ambiguity and aversion to ambiguity.

This separation is highlighted by KMM as an advantage of their model.

To see how the smooth model can accomodate Ellsberg’s choices, assume that

the prior puts equal weight on two possible “models” of the composition of the

ambiguous urn: the share of blue balls is either 3
4
or 1

4
. Without loss of generality,

here and below normalize  so that  (100) = 1 and  (0) = 0, where 100 and 0 are
the stakes in the bets on the urn. Then, if the agent is ambiguity averse ( strictly

concave), the utility of a bet on blue from the ambiguous urn is 1
2

¡
3
4

¢
+ 1
2

¡
1
4

¢



¡
1
2

¢
, the utility from a bet on a fair coin.

However, counterintuitive behavior is implied when the agent can bet directly

on what the true model is.6 To illustrate, modify the Ellsberg experiment by

adding details about how the urn is filled. In particular, suppose there is a second

urn, urn II, that is used as a tool for filling the original urn, urn I. Urn II also

contains 100 balls that are either red or blue, and no further information is given

about its composition. It is announced that a ball will be drawn from urn II, and

that its color will determine the composition of urn I: if the draw from urn II is

blue (red), then the share of blue (red) balls in urn I is 3
4
. In other words, the draw

from urn II describes model uncertainty — it determines which of the “models” of

urn I considered above is correct.

Compare now betting on a blue draw from urn I and betting on a blue draw

from urn II. Both bets are ambiguous, because of the lack of information about

urn II, which affects also urn I. However, since it is known that urn I contains

at least 1
4
× 100 = 25 blue balls (while no such information is available for urn

II), the bet on urn I is less ambiguous, and thus presumably preferable. But the

KMM model predicts the opposite ranking. That is because, according to their

model, bets on urn II are evaluated via expected utility with vNM index  ( (·))
and a uniform prior over the two colors. (This is suggested by the interpretation

above of the functional form (2.13), and is an explicit and key assumption in the

foundations they provide for the latter.) Thus a bet on drawing blue from urn II

has utility 1
2
 (1)+ 1

2
 (0). On the other hand, bets on urn I are ranked according

to the utility function in (2.13), which implies that the bet on blue has utility
1
2

¡
3
4

¢
+ 1

2

¡
1
4

¢
. Thus the counterintuitive ranking is implied if  is (strictly)

concave.

6Such bets on the “true model” are an integral part of the foundations that KMM provide for

the smooth ambiguity model. The following critique is adapted from Epstein (2010) to which

the reader is referred for elaboration. See Baillon et al. (2009), and Halevy and Ozdenoren

(2008) for other criticisms of the smooth ambiguity model.
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The smooth model is intriguing because of the separation that it appears to

afford between ambiguity, seemingly modeled by , and aversion to ambiguity,

seemingly modeled by . Such separation suggests the possibility of calibrating

ambiguity aversion - if  describes the individual’s attitude alone, and thus moves

with her from one setting to another, then it serves to connect the individual’s

behavior across different settings. For example, one might use experimental ev-

idence about choices between bets on Ellsberg urns to discipline applications to

financial markets. However, the KMM model does not justify such calibration,

or a natural notion of “separation.” A variant of the above thought experiment

makes this point.

You are faced in turn with two scenarios, A and B. Scenario A is the one

described above, involving urns I and II. Scenario B is similar except that you

are told more about urn II, namely that it contains at least 40 balls of each

color. Consider bets on both urns in each scenario. The following rankings seem

intuitive: bets on blue and red in urn II are indifferent to one another for each

scenario; and the certainty equivalent for a bet on blue (or red) in urn I is strictly

larger in scenario B than in A, because the latter is intuitively more ambiguous.

How could we model these choices using the smooth ambiguity model? Sup-

pose that preferences in the two scenarios are represented by the two triples

(  ),  = . The basic model does not impose any connection across sce-

narios. However, since these differ in ambiguity only, and it is the same decision-

maker involved in both, one is led naturally to consider the restrictions

 =  and  = .

These equalities are motivated by the hypothesis that risk and ambiguity attitudes

describe the individual and therefore move with her across settings. But with these

restrictions, the indicated behavior cannot be rationalized.7 On the other hand,

the above behavior can be rationalized if we assume that the priors  are fixed

(and uniform) across scenarios, but allow  and  to differ. The preceding defies

the common interpretation that  captures ambiguity and  represents ambiguity

aversion.

Seo (2009) provides alternative foundations for  . In his model, an indi-

vidual can be ambiguity averse only if she fails to reduce objective (and timeless)

two-stage lotteries to their one-stage equivalents. Thus the rational concern with

model uncertainty and limited confidence in likelihoods is tied to the failure to

7It is straightforward to show that the behavior implies that  = , which obviously rules
out any difference in behavior across scenarios.
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multiply objective probabilities, a mistake that does not suggest rational behav-

ior. Such a connection severely limits the scope of ambiguity aversion as modeled

by Seo’s approach.

Both multiple-priors and the smooth model satisfy ambiguity aversion (2.4)

and thus can rationalize Ellsberg-type behavior. However, they represent distinct,

indeed, “orthogonal” models of ambiguity aversion - the only point of intersection

is SEU. One way to see this, and to highlight their differences, is to focus on

what the models imply about the value of randomization. The multiple-priors

model satisfies (because of Certainty Independence): if  ∼ , then 1
2
 + 1

2
 ∼

 ; thus mixing with a certainty equivalent is never valuable. In contrast, the

smooth model satisfies, (restricting attention to the special case where  is strictly

concave): if  ∼  ∼ 1
2
 + 1

2
, then for all acts , 1

2
 + 1

2
 ∼ 1

2
 + 1

2
; that is, if

mixing with a certainty equivalent is not beneficial, then neither is mixing with any

other act. (To see why, argue as follows, using the functional form (2.13) and strict

concavity and monotonicity of : If  ∼  ∼ 1
2
 + 1

2
, then

R
Ω
 ()  =  ()

with -probability 1, and the expected utility of  is certain in spite of model
uncertainty. Thus


¡
1
2
 + 1

2

¢
=

Z
∆(Ω)



µZ
Ω

1
2
 () + 1

2
 () 

¶
 ()

=

Z
∆(Ω)



µ
1
2
 () + 1

2

Z
Ω

 () 

¶
 ()

= 
¡
1
2
+ 1

2

¢
.)

Finally, it is straightforward to see that the two properties together imply the

independence axiom and hence SEU.

To illustrate the effect of smoothness in applications it is helpful to briefly

abstract from risk. Assume that the agent is risk neutral, or, equivalently, restrict

attention to acts that come with perfect insurance for risk. Formally, take  to

be linear and rewrite the utilities as

 () =  [ ( [])] 

 () = min
∈P

 [] 

For risk neutral agents, ambiguity only matters if it affects means. Under the

smooth model, ambiguity about means is reflected in a nondegenerate distribution

of  [] under the prior . For a risk neutral, ambiguity averse KMM agent, an
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increase in ambiguity (in means) works like an increase in risk. Under the MP

model, ambiguity about means is reflected in a nondegenerate interval for  [].
For a risk neutral MP agent, an increase in ambiguity (in means) can thus work

like a change in the mean. The latter is a first order effect.

2.1.4. Robust Control, Multiplier Utility and Generalizations

Fix a reference measure ∗ ∈ ∆ (Ω), and define relative entropy ( k ∗) ∈ [0∞],
for any other measure , by (2.11). Multiplier utility (MU) is defined by:

 () = min
∈∆(Ω)

∙R
Ω

 () +  ( k ∗)
¸
, (2.14)

where 0   ≤ ∞ is a parameter.

This functional form was introduced into economics by Anderson et al. (2003),

who were inspired by robust control theory, and it was axiomatized by Strzalecki

(2007). It suggests the following interpretation. Though ∗ is the individual’s
“best guess” of the true probability law, she is concerned that the true law may

differ from ∗. In order to accommodate this concern with model misspecification,
when evaluating any given act  she takes all probability measures into account,

weighing more heavily those that are close to her best guess as measured by relative

entropy. Reliance on the (weighted) worst-case scenario reflects an aversion to

model misspecification, or ambiguity. In particular, multiplier utility is ambiguity

averse in the sense of (2.4), and ambiguity aversion increases with −1 in the sense
of the comparative notion (2.5). At the extreme where  = ∞, the minimum is

achieved at  = ∗, and  (·) = R
Ω

 (·) ∗, reflecting complete confidence in
the reference measure.

A key difference between multiplier utility and other models of ambiguity is

that for choice among Savage acts — that is, acts that do not involve objective

lotteries — it is observationally indistinguishable from subjected expected utility

(SEU). Indeed, utility can be rewritten as8

 () = − log
µR
Ω

exp
¡−1


 ()

¢
∗
¶
. (2.15)

8See Dupuis and Ellis (1997, Propn 1.4.2), or Skiadas (2009b).
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Thus, on the domain of Savage acts , for which outcomes are elements of ,

 conforms to subjective expected utility (SEU), with prior ∗ and vNM index

 () = exp
¡−1


 ()

¢
,  ∈ .

For Savage acts, introducing robustness (  ∞) is thus indistinguishable
from increasing risk aversion by moving from  to the more concave .

9 This

observational equivalence matters for applications since most empirically relevant

objects of choice in financial markets are Savage acts — objective lotteries are rare.

In many settings, multiplier utility may thus help reinterpret behavior that is also

consistent with SEU, but it does not expand the range of behavior that can be

rationalized. Reinterpretation can be valuable, for example, if there is an a priori

bound on the degree of risk aversion. Of course, any exercise along these lines

requires taking a stand on  or  — from choice behavior alone, one can hope to

identify at most the composite function exp
¡−1


 (·)¢. Thus, for example, Barillas

et al. (2009) and Kleschelski & Vincent (2009), fix  () = log , and then arrive
at estimates of the robustness parameter .

Multiplier utility has restrictive implications for choice in urn experiments.

With one ambiguous urn, it can rationalize the intuitive choices in Ellsberg’s

experiment surrounding (2.1) - take ∗ =
¡
1
2
 1
2

¢
and   ∞. However, consider

an experiment with two ambiguous urns — in urn I you are told that + = 100
and  ≥ 40, while in urn II you are told only that  and  sum to 100.
Since there is more information about the composition of urn I, we would expect

a preference to bet on red in urn I to red in urn II, and similarly for black.

But this is impossible given multiplier utility. To see this, take the state space

 = {  } × {  }. The ranking of bets would be determined by how
multiplier utility ranks Savage acts over  - but it conforms to subjective expected

utility on the Savage domain. Thus bets would have to be based on a probability

measure  on , which assigns higher probability to  than to  , and similarly

for  and  , an impossibility.

There is a parallel with CES utility functions in consumer theory that is use-

ful for perspective. The CES utility function is a flexible specification of cross-

substitution effects between goods when there are only two goods, since then the

elasticity is a free parameter. However, when there are more than two goods it

also imposes the a priori restriction that the noted elasticity is the same for all

9Observational equivalence holds in the strong sense that even if one could observe the entire

preference order over Savage acts, and not only a limited set of choices associated with more

realistic sets of financial data, one could not distinguish the two models.
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pairs of goods. While CES utility remains a useful example, applications may call

for more flexible functional forms (translog utility, for example). Analogously,

multiplier utility can rationalize intuitive choice with one risky and one ambigu-

ous urn. Once there are two or more ambiguous urn, it imposes additional a priori

restrictions that need not be intuitive in applications.

Finally, consider briefly generalizations. Maccheroni et al. (2006a) introduce

and axiomatize the following generalization, called variational utility:

 () = min
∈∆(Ω)

∙R
Ω

 () +  ()

¸
, (2.16)

where  : ∆ (Ω) → [0∞] is a cost or penalty function. Multiplier utility is the
special case where  () =  ( k ∗). The above model is very general - it even
encompasses multiple-priors utility, which corresponds to a cost function of the

form: for some set of priors  ⊂ ∆ (Ω),

 () =

½
0 if  ∈ 

∞ otherwise.

Such a general model has no difficulty accommodating any number of am-

biguous urns; and Maccheroni et al. (2006a) describe a number of interesting

functional forms for  and hence utility. It remains to be seen whether they are

useful in applications.

2.2. Models of Preference: Dynamic or Sequential Choice Settings

Here we outline how the preceding models of preference can be extended to recur-

sive, hence dynamically consistent, intertemporal models. Then further extensions

to accommodate learning are discussed.

2.2.1. Recursive Utility

The formal environment is now enriched as follows. In addition to the (finite)

state space Ω, let T = {0 1  } be a time set, and {Σ}=0 a filtration, where
Σ0 = {∅Ω} and Σ = 2

Ω. Each Σ can be identified with a partition of Ω; Σ ()
denotes the partition component containing . If  is the true state, then at 

the decision-maker knows that Σ () is true. One can think of this information
structure also in terms of an event tree, with nodes corresponding to time-event

pairs ( ).
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For simplicity, assume consumption in any single period lies in the interval

 ⊂ R+. We are interested primarily in -valued consumption processes and

how they are ranked. However, we again enlarge the domain in the Anscombe-

Aumann way and consider the set of all ∆()-valued processes. Each such process
 is the dynamic counterpart of an AA act; it has the form  = (), where
 : Ω −→ ∆() is Σ-measurable.

The new aspect of the dynamic setting is that choices can be made at all times.

To model sequential choice, we assume a preference order at each node in the tree.

Formally, let º be the preference prevailing at ( ), thought of as the ordering
conditional on information prevailing then. The primitive is the collection of

preferences {º} ≡ {º: ( ) ∈ T × Ω}. The corresponding collection of
utility functions is {} ≡ { : ( ) ∈ T ×Ω}. They are assumed to satisfy
a recursive structure that we now describe.10 Define  ≡ [1 +  +  + −];
in the infinite horizon case, these discount terms simplify and each  is equal to

(1− )−1.
To evaluate the act from the perspective of node ( ), observe that it yields

the current consumption (lottery)  (), and a random future payoff +1· ();
here · in the subscript indicates that future utility is a function of 0 ∈ Σ (), the
realized node in the the continuation of the tree from ( ). For each such node
0, (and only such nodes matter), let

+10 () = +1
¡
+10

¢
. (2.17)

Thus +10 is a certainty equivalent in the sense of being the (unique) level of

consumption which if received in every remaining period would be indifferent,

from the perspective of (+ 1 0), to . Since this certainty equivalent varies

with the continuation 0, it defines a “static” act, of the sort discussed above, and
whose utility can be computed using one of the static ambiguity models discussed

previously. Finally, the latter utility is aggregated with current felicity in the

familiar discounted additive fashion to yield  ().
To be more precise, let ∗ denote any of the models of ambiguity preference

discussed above. Let {∗} be a collection of utility functions conforming to the
model ∗, one for each node in the tree, having fixed risk preferences - ∗ (·)
=  (·) on ∆ (), for every ( ). (Some obvious measurability restrictions are
also assumed.) Refer to {∗} as a set of one-step-ahead utility functions. Say
10For more detailed formal presentations, see Epstein & Schneider (2003) for the multiple-

priors-based model and Skiadas (2009a, Ch. 6) for the general case. In fact, Skiadas relaxes the

intertemporal additivity that we assume in (2.18) below.
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that preferences {º}, or the corresponding utilities {}, are recursive if there
exist  : ∆ () → R affine, a discount factor 0    1, and a set {∗} of one-
step-ahead utilities such that, for all acts : (i) +1· () = 0; and (ii) utilities
 () are evaluated by backward induction according to, for each ( ),

 () =  ( ()) + +1
∗


¡
+1·

¢
. (2.18)

The primitive components of the recursive model are  (·), modeling attitudes
towards current consumption risks (and intertemporal substitutability11), a dis-

count factor , and the set {∗}. It is straightforward to see that ∗ represents
preference, conditional on ( ), over the set of “one-step-ahead acts” - acts 
for which  (·) = +1 (·) for all   , that is,  produces a constant stream (of

lotteries) for times  + 1  + 2 , and, in particular, all ambiguity (though not
risk) is resolved at +1. Thus ∗ models preferences over bets on the next step.
There are simple restrictions on preferences, specific to the dynamic setting,

that are the main axioms characterizing recursive utility. First, preference at any

node depends only on available information. Second, when evaluating  at any

node, the individual cares only about what  prescribes in the continuation from

that node - unrealized parts of the tree do not matter, an assumption that is com-

monly called consequentialism. Third, the ranking of risky prospects (lotteries)

is the same at every node - a form of state independence. Finally, the collection

of preferences is dynamically consistent - (contingent) plans chosen at any node

remain optimal from the perspective of later nodes.

Next we discuss the recursive utility specifications corresponding to each of

the static models discussed above. All previous comments remain relevant, (they

relate to the ranking of one-step-ahead acts). We add comments that relate specif-

ically to the dynamic setting. As will become clear from the connections drawn

to the applied literature, the recursive model unifies a range of dynamic utility

specifications that have been pursued in applications. It excludes specifications

adopted in (Hansen & Sargent 2007, 2009, Barillas et al. 2009) and in several

other papers in the robust-control-inspired literature, which violate either conse-

quentialism or dynamic consistency.

We refer also to continuous-time counterparts of the recursive models. In that

case, the recursive construction of utility functions via (2.17)-(2.18) is replaced by

11The confounding of risk aversion and substitution in  can be improved upon via a common
generalization of (2.18) and Epstein & Zin (1989). The resulting model can (partially) disen-

tangle intertemporal substitution, risk aversion and ambiguity aversion. Skiadas’ (2009, Ch.6)

treatment is general enough to admit such a three-way separation. Hayashi (2005) describes

such a model where the ranking of one-step-ahead acts conforms to the multiple-priors model.
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backward stochastic differential equations (BSDEs). These were introduced into

utility theory by Duffie & Epstein (1992) in the risk context, and extended to

ambiguity aversion (modeled by multiple-priors) by Chen & Epstein (2002). See

Skiadas (2008) for a nice exposition, original formulations, and references to the

technical literature on BSDEs.

Recursive SEU : If one-step-ahead acts are evaluated by expected utility, then,

from (2.17)-(2.18),

 () =  ( ()) + 

Z
Ω

+10 ()  (
0)  (2.19)

where  ∈ ∆ (ΩΣ+1) gives ( )-conditional beliefs about the next step. This
is the standard model.

Recursive Multiple-Priors: Let  ⊂ ∆ (ΩΣ+1) be the set of ( )-conditional
probability measures describing beliefs about the next step (events in Σ+1), and

let ∗ () = min∈
R
 () , for any  : (ΩΣ+1) → ∆ (). Then (2.17)-

(2.18) imply:

 () =  ( ()) +  min
∈

Z
Ω

+10 () (
0). (2.20)

This model was first put forth by Epstein & Wang (1994); Epstein & Schnei-

der (2003, 2007, 2008) axiomatize and apply it. The special case, where each

set  has the entropy-constrained form in (2.12), was suggested in Epstein &

Schneider (2003) and has subsequently been applied by a number of papers in

finance, described in Part 2 below. For a continuous-time formulation of recursive

multiple-priors see Chen & Epstein (2002).

Recursive Smooth Ambiguity Model : Define  ◦∗ by (2.13), where , but not 
or , varies with ( ). One obtains:

 () =  ( ())++1
−1
µZ

∆(Ω)



µ
−1+1

Z
Ω

+10 ()  (
0)
¶
 ()

¶
.

(2.21)

This is closely related to the recursive version of the smooth ambiguity model

described in Klibanoff et al. (2009) and the specifications in the applied papers

by Chen et al. (2009) and Ju & Miao (2009).
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Skiadas (2009b) shows that in Brownian and Poisson environments, the continuous-

time limit of the recursive smooth ambiguity model is indistinguishable from one

where the function  is linear, that is, ambiguity aversion vanishes in the limit. He

assumes that  is invariant to the length of the time interval. There may be other

ways to take the continuous-time limit, for example, by allowing the concavity

of  to increase suitably as the interval shrinks. However, keeping  fixed seems

unavoidable if one sees ambiguity aversion as (separate from ambiguity and as)

subject to calibration across settings.

(Recursive) Multiplier Utility and Generalizations: Following (2.15), define

exp
³
− 1


∗ ()

´
=

µR
Ω

exp
³
− 1


 ()

´
∗

¶
 (2.22)

where ∗ ∈ ∆ (ΩΣ+1) is the reference one-step-ahead measure. For simplicity,
and since it is assumed universally, let  = , a constant. Then (2.17)-(2.18)

imply:

 () =  ( ()) + +1 log

∙
−
µR
Ω

exp
¡−1


−1+1+10 ()

¢
∗ (

0)
¶¸
.

This is a special case of recursive utility as defined by Epstein & Zin (1989), where

−1 parametrizes risk aversion separately from , which models also intertemporal

substitution. In continuous time, one obtains a special case of stochastic differen-
tial utility (Duffie & Epstein (1992)).

To see the connection to robustness as proposed by Hansen & Sargent (2001),

let ∗ ∈ ∆ (ΩΣ ) be the reference measure corresponding to {∗} and  any

other measure on Σ , and denote by  and ∗ the restrictions of  and ∗ to

Σ. Define the time averaged entropy by R ( k ∗) = Σ≥0

h

³

∗

´i
, if

 is absolutely continuous with respect to ∗ for each , and R ( k ∗) = ∞
otherwise. Then, (see Skiadas (2003) for a general proof for continuous-time), the

recursive utility functions above can be written alternatively in the following form

paralleling (2.14):

 
0 () = min

∈∆(Ω)

∙R
Ω

¡
Σ
=0

 ( (
0))
¢
 (0) + R ( k ∗)

¸
, (2.23)

and similar expressions obtain for conditional utility  
 (). This reformulation

parallels the equivalence of (2.15) and (2.14) in the static context - it permits a
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reinterpretation of existing risk-based models, (such as the Barillas et al. (2009)

reinterpretation of Tallarini (2000) in terms of robustness), but does not add new

qualitative predictions.

To accommodate behavior towards several urns, it could be interesting to

extend the model to allow “source dependence”, that is, several driving processes

and a concern for robustness that is greater for some processes than for others.

However, this is hard to square with dynamic consistency and consequentialism.

Indeed, let Ω = Π
=1Ω, and think of  driving processes. To capture source

dependence, extend (2.23) so that for each Ω, relative entropy measures distance

between Ω-marginals with a separate multiplier  for each . However, unless

the ’s are all identical, such a model is not recursive and thus precludes dynamic

consistency.

This is in stark contrast to the recursive framework (2.17)-(2.18) that accom-

modates a wide range of ambiguity preferences, while having dynamic consistency

built in. For example, Skiadas (2008) formulates recursive models that feature

source dependence and that are special cases of our general framework (2.17)—

(2.18). Maccheroni et al. (2006b) axiomatize a recursive version of variational

utility that is the special case of our recursive model for which one-step-ahead

acts are evaluated using variational utility (2.16).

Skiadas (2009b) derives continuous-time limits for a subclass of recursive vari-

ational utility containing the multiplier model (2.23). He shows that, in a Poisson

environment, (though not with Brownian uncertainty), these models, with the

single exception of multiplier utility, are distinguishable from stochastic differen-

tial utility. (This is another sense in which multiplier utility is an isolated case.)

Skiadas also suggests that some of them have tractability advantages and are

promising for pricing, particularly because of the differential pricing of Brownian

and Poisson uncertainty.

2.2.2. Updating and Learning

The one-step-ahead utilities {∗} are primitives in the recursive model (2.17)-
(2.18), and are unrestricted except for technical regularity conditions. Since they

represent the individual’s response to data, in the sense of describing his view

of the next step as a function of history, one-step-ahead utilities are the natural

vehicle for modeling learning. Here, for each of the specific recursive models just

described, we consider restrictions on {∗}. Since we remain within the recursive
utility framework, dynamic consistency is necessarily satisfied. The central issue
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is whether the specification adopted adequately captures intuitive properties of

learning under ambiguity.

Learning is sometimes invoked to criticize models of ambiguity aversion. The

argument is that since ambiguity is due to a lack of information and is resolved

as agents learn, it is at best a short run phenomenon. Work on learning under

ambiguity has shown that this criticism is misguided. First, ambiguity need not

be due only to an initial lack of information. Instead, it may be generated by

hard-to-interpret, ambiguous signals. Second, there are intuitive scenarios where

ambiguity does not vanish in the long run. We now consider a thought experiment

(based on that in Epstein & Schneider (2008)) to illustrate these points.12

A thought experiment

You are faced with two sequences of urns. One sequence consists of risky

urns and the other of ambiguous urns. Each urn contains black () and white

( ) balls. Every period one ball each is drawn from that period’s urns and bets

are offered on next period’s urns. The sequence of risky urns is constructed (or

perceived) as follows. First, a ball is placed in each urn according to the outcome

of a fair coin toss. If the coin toss produces heads, the “coin ball” placed in

every urn is black; it is white otherwise. In addition to a coin ball, each risky

urn contains four “non-coin balls”, two of each color. The sequence of risky urns

is thus an example of learning from i.i.d. signals. After sufficiently many draws,

you will become confident about the color of the coin ball from observing the

frequency of black draws.

Each urn in the ambiguous sequence also contains a single coin ball with color

determined as above (the coin tosses for the two sequences are independent.) In

addition, you are told that each urn contains either  = 2 or  = 6 non-coin balls
of which exactly 

2
are black and 

2
are white. Finally,  varies “independently”

across ambiguous urns. The ambiguous urns thus also share a common element

(the coin ball), about which you can hope to learn, but they also have idiosyn-

cratic elements (the non-coin balls) that are poorly understood and thus possibly

unlearnable.

Ex ante, not knowing the outcome of the coin tosses, would you rather have a

bet that pays 100 if black is drawn from the first risky urn (and zero otherwise), or

a bet that pays 100 if black is drawn from the first ambiguous urn? The intuition

12The literature has not provided compelling axioms, beyond those underlying recursivity

(2.17)-(2.18), to guide the modeling of learning under ambiguity. Thus we rely on the thought

experiment to assess various models.
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pointed to by Ellsberg suggests a strict preference for betting on the risky urn.13

The unambiguous nature of the bet on the risky urn can thus be offset by reducing

the winning stake there. Let   100 be such that you are indifferent between a
bet that pays  if black is drawn from the risky urn and a bet that pays 100 if
black is drawn from the ambiguous urn.

Now sample by drawing one ball from the first urn in each sequence. Suppose

that the outcome is black in both cases. With this information, consider versions

of the above bets based on the second period urns. Would you rather have a bet

that pays  if black is drawn from the second risky urn or a bet that pays 100
if black is drawn second ambiguous urn? Our intuition is that, even with this

difference in stakes, betting on the risky urn would be strictly preferable. The

reason is that inference about the coin-ball is clear for the risky urn - the posterior

probability of a black coin ball is 3
5
- and thus the predictive probability of drawing

 is 3
5

¡
3
5

¢
+ 2

5

¡
2
5

¢
= 13

25
. In contrast, for the ambiguous urn the signal (a black

draw) is harder to interpret, leaving us less confident in our assessment of the

composition of that urn. We now elaborate on this point.

Just as for the risky sequence, the only useful inference for the ambiguous

sequence is about the coin ball (since non-coin balls are thought to be unrelated

across urns in the sequence). But what does a black draw tell us about the coin

ball? On the one hand, it could be a strong signal of the color of the coin ball (if

 = 2 in the sampled urn) and hence also of a black draw from the second urn.

On the other hand, it could be a weak indicator (if  = 6 in the sampled urn).
The posterior probability of the coin ball being black could be anywhere between
62+1
6+1

= 4
7
and

22+1
2+1

= 2
3
, with a range of predictive probabilities for  ensuing.

The difference in winning stakes,  versus 100, compensates for prior ambiguity,
but not for the difficulty in interpreting the realized signal. Thus a preference for

betting on the risky urn is to be expected, even given the difference in winning

prizes. By analogous reasoning, similar rankings for bets on white are intuitive,

both ex ante and ex post conditional on having drawn black balls. Indeed, the

lower quality of the signal from the ambiguous urn makes it harder to judge

any bet, not just a bet on black. This completes the description of the thought

experiment.

A multiple-priors model of learning under ambiguity

13In the risky urn,  has an objective probability of 12 . For the ambiguous urn, the correspond-
ing probability is either in [47 

2
3 ], or in [

1
3 

3
7 ], each with probability

1
2 . Averaging endpoints yields

the interval [1942 
23
42 ], which has

1
2 as midpoint. Thus ambiguity aversion suggests the preference

for the precise 1
2 .

23



Epstein & Schneider (2008) propose a model of learning, within the recursive

multiple-priors framework (2.20), that accommodates the intuitive choices in the

thought experiment. It is motivated by the following interpretation of the exper-

iment. The preference to bet on the risky urn ex post is intuitive because the

ambiguous signal — the draw from the ambiguous urn — appears to be of lower

quality than the noisy signal — the draw from the risky urn. A perception of

low information quality arises because the distribution of the ambiguous signal is

not objectively given. As a result, the standard Bayesian measure of information

quality, precision, seems insufficient to adequately compare the two signals. The

precision of the ambiguous signal is parametrized by the number of non-coin balls

: when there are few non-coin balls that add noise, precision is high.

A single number for precision cannot rationalize the intuitive choices because

behavior is as if one is using different precisions depending on the bet that is

evaluated. When betting on a black draw, the choice between urns is made as

if the ambiguous signal is less precise than the noisy one, so that the available

evidence of a black draw is a weaker indicator of a black coin ball. In other words,

when the new evidence — the drawn black ball — is “good news” for the bet to be

evaluated, the signal is viewed as relatively imprecise. In contrast, in the case of

bets on white, the choice is made as if the ambiguous signal is more precise than

the noisy one, so that the black draw is a stronger indicator of a black coin ball.

Now the new evidence is “bad news” for the bet to be evaluated and is viewed

as relatively precise. The intuitive choices can thus be traced to an asymmetric

response to ambiguous news.

The implied notion of information quality can be captured by combining worst-

case evaluation with the description of an ambiguous signal viamultiple likelihoods.

To see how, think of the decision-maker as trying to learn the colors of the two coin

balls - that is all he needs to learn for the risky sequence, and for the ambiguous

sequence, his perception of non-coin balls as varying independently across urns

means that there is nothing to be learned from past observations about that

component of future urns. For both sequences, his prior over these “parameters”

places probability 1
2
on the coin ball being black. (More generally, the model

admits multiple-priors over parameters.) The intuition given above for the choices

indicated in the experiment suggests clearly a translation in terms of multiple

likelihoods. Signals for the risky sequence have objective distributions conditional

on the color of the coin ball, and thus can be modeled in the usual way by single

likelihoods. However, for the ambiguous sequence, the distribution of the signal

is unknown, even conditioning on the color of the coin ball, because it varies with
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, suggesting multiple-likelihoods.

Other models of learning

How do other models perform with respect to the thought experiment? SEU is

ruled out by the ex ante ambiguity averse ranking (the situation is ultimately anal-

ogous to Ellsberg’s original experiment). The same applies to multiplier utility

since it coincides with SEU on Savage acts. Recursive variational utility (Mac-

cheroni et al. 2006b) inherits the generality of variational utility. In particular, it

generalizes recursive multiple-priors and so can accommodate the thought exper-

iment. The question is whether the added generality that it affords is useful in a

learning context. A difficulty is that it is far from clear how to model updating of

the cost or penalty function  (·).
The situation is more complicated for the smooth ambiguity model. It can

accommodate the ex ante ambiguity averse choices. In order to consider also the ex

post rankings indicated it is necessary to specify updating for the recursive smooth

model (2.21). We assume that beliefs  about the true law are updated by

Bayes’ Rule. Then the recursive smooth model cannot accommodate the intuitive

behavior in the thought experiment, at least given natural specifications of the

model, that we now outline.

Consider the functional form for utility (2.13). For the risky urns, all relevant

probabilities are given, and thus bets on the risky urns amount to lotteries, which

are ranked according to . To model choice between bets on the ambiguous urns,

we must first specify the state space Ω. Take Ω = {} so that a state specifies
the color of the ball on any single draw.14 Then a bet on  corresponds to the act

, with  () = 100 and  ( ) = 0. The smooth model specifies prior beliefs
 about the true probability of drawing . Here the latter is determined by the

color of the coin ball  =  or  , and by the number  = 2 or 4 of the non-coin
balls, according to

 ( |  ) =

⎧⎪⎪⎨⎪⎪⎩
2
3

 =   = 2
1
3

 = = 2
4
7

 =   = 6
3
7

 = = 6.

(2.24)

14An alternative is to take the state space to be {2 4}, corresponding to the possible number
of the non-coin balls. However, it is not difficult to see that with this state space, even the

(ambiguity averse) ex ante choices cannot be rationalized.
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Thus view  as a probability measure on pairs ( ). Let  be uniform over the

above four possibilities and suppose that  is strictly concave (as in all applications

of the model that we have seen). Then it is a matter of elementary algebra

(provided in the appendix) to show that the choices described in the thought

experiment cannot be accommodated.

A final comment concerns a theme we have emphasized throughout the dis-

cussion of preference models: appearances can be misleading - the only way to

understand a model is through its predictions for behavior, whether through for-

mal axioms, or thought experiments. On the surface, what could be more natural

than to use Bayes’ Rule to update the prior as in the recursive smooth model?

There is no need to deal with the issue of how to update sets of priors as in

Epstein & Schneider (2007, 2008), for example, and one can import results from

Bayesian learning theory. The models in Hansen (2007), Chen et al. (2009) and

Ju & Miao (2009) share this simplicity - in all cases, updating proceeds exactly as

in a Bayesian model and ambiguity aversion enters only in the way that posterior

beliefs are used define preference. However, the thought experiment illustrates

what is being assumed by adopting such an updating rule - indifference to “signal

or information quality.”

3. Ambiguity in financial markets

This section illustrates the role of ambiguity in portfolio choice and asset pricing.

We consider simple 2- and 3-period setups. These are sufficient to illustrate many

of the effects that drive more elaborate (and now increasingly quantitative) models

studied in the literature. We also focus on the multiple-priors model. This is

because the range of new effects - relative to models of risk - is arguably larger for

that model. Specific differences between the multiple-priors and smooth models

are pointed out along the way.

3.1. Portfolio choice

Begin with a 2-period problem of savings and portfolio choice. An agent is en-

dowed with wealth 1 at date 1 and cares about consumption at dates 1 and 2.

There is an asset that pays the interest rate  for sure, as well as  uncertain

assets with log returns collected in a vector . The returns  could be ambiguous;

let P1 denote a set of beliefs held at date 1 about returns at date 2. The agent
chooses consumption at both dates and a vector of portfolio shares  for the 
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uncertain assets to solve

max
1

min
∈P1

{(1) +  [(2)]}
s.t. 2 = (1 − 1)


2


2 = (exp() +

X
=1

 exp())

where 
2 is the return on wealth realized at date 2.

Now restrict attention to log utility and lognormally distributed returns. With

 () = log , the savings and portfolio choice problems separate. In particular,
the agent always saves a constant fraction (1+) of wealth, and he chooses his
portfolio to maximize the expected log return on wealth. With lognormal returns,

a belief in P1 can be represented by a vector  of expected (log) returns as well as
a covariance matrix Σ. Throughout, we use an approximation for the log return
on wealth introduced by Campbell & Viceira (1999),

log
2 ≈  + 0

µ
 +

1

2
 Σ−  

¶
− 1
2
0Σ, (3.1)

where  Σ is a vector containing the main diagonal of Σ and  is an -vector of
ones. In continuous time, the formula is exact by Ito’s Lemma; in discrete time,

it yields simple solutions that illustrate the key effects.

It is convenient to work with excess returns. Define a vector of premia (ex-

pected log excess returns, adjusted for Jensen’s inequality) by

 =  +
1

2
Σ−  

Let Π1 denote the set of parameters (
Σ) that correspond to beliefs in P1.

This set can be specified to capture ambiguity about different aspects of the

environment. In general, the size of Π1 reflects the agents’ lack of confidence
when thinking about returns. For example, worse information about an asset

might lead an agent to have a wider interval of possible mean log returns for that

asset. In a dynamic setting, the size of the sets Π1 and P1 will change over time
with new information. Below we discuss the effects of such updating by doing

comparative statics with respect to features of Π1.
Using the approximation (3.1), the portfolio choice problem becomes

max

min
∈P1

 [log
2 ] ≈ max


min

(Σ)∈Π1

½
 + 0 − 1

2
0Σ

¾
 (3.2)
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If there is no ambiguity — that is, (Σ) is known and is therefore the only element
of Π1 — then we have a standard mean-variance problem, with optimal solution
 = Σ−1. More generally, the agent evaluates each candidate portfolio under
the worst case return distribution for that portfolio.

3.1.1. One ambiguous asset: nonparticipation and portfolio inertia at

certainty

Assume that there is only one uncertain asset. Its log excess return has known

variance 2 and an ambiguous mean that lies in the interval [̄− ̄ ̄+ ̄]. Think
of ̄ as a benchmark estimate of the premium; ̄ then measures the agent’s lack

of confidence in that estimate. The agent solves

max


min
∈[̄−̄̄+̄]

½
 +  − 1

2
22

¾
 (3.3)

Minimization selects the worst case scenario depending on the agent’s position:

 = ̄− ̄ if   0 and  = ̄+ ̄ if   0. Intuitively, if the agent contemplates
going long in the asset, he fears a low excess return, whereas if he contemplates

going short, then he fears a high excess return. If  = 0 the portfolio is not
ambiguous and any  in the interval solves the minimization problem.

The optimal portfolio decision anticipates the relevant worst case scenario. For

a given range of premia, the agent evaluates the best nonnegative position as well

as the best nonpositive position, and then chooses the better of the two. This

leads to three cases. First, if the premium is positive for sure (̄ − ̄  0), then
it is optimal to go long. Since any long position is evaluated using the lowest

premium, the optimal weight in this case is  = (̄ − ̄) 2  0. Similarly, if
the premium is known to be negative (̄ + ̄  0), then the optimal portfolio
sells the asset short:  = (̄ + ̄) 2  0. Finally, if ̄ + ̄  0  ̄ − ̄,

then it is optimal to not participate in the market ( = 0). This is because any
long position is evaluated using the lowest premium, which is now negative, and

any short position is evaluated using the highest premium, which is positive. In

both cases, the return on wealth is strictly lower than the riskless rate and so it

is better to stay out of the market.

Under ambiguity, nonparticipation in markets is thus optimal for many para-

meter values. In particular, for any benchmark premium ̄, a sufficiently large

increase in uncertainty will lead agents to withdraw from an asset market alto-

gether. This is not true if all uncertainty is risk. Indeed, the participation decision
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does not depend on the quadratic risk term in (3.3). That term becomes 2nd order

as  goes to zero, that is, agents are "locally risk neutral" at  = 0. In the absence
of ambiguity (̄ = 0), agents participate except in the knife edge case ̄ = 0.
Moreover, an increase in the variance 2 does not make agents withdraw from the

market, it only makes them choose smaller positions.

Ambiguity averse agents exhibit portfolio inertia at  = 0. Indeed, consider
the response to a small change in the benchmark premium ̄. For ̄  |̄|, an
ambiguity averse agent will not change his position away from zero. This is again

in sharp contrast to the risk case, where the derivative of the optimal position with

respect to ̄ is everywhere strictly positive. The key point is that an increase

in ambiguity can be locally “large” relative to an increase in risk. Indeed, the

portfolio  = 0 is both riskless and unambiguous. Any move away from it makes

the agent bear both risk and ambiguity. However, an increase in ambiguity about

means is perceived like a change in the mean, and not like an increase in the

variance. Ambiguity can thus have a first order effect on portfolio choice that

overwhelms the first order effect of a change in the mean, whereas the effect of

risk is second order.

3.1.2. Hedging and portfolio inertia away from certainty

Nonparticipation and portfolio inertia can arise also when the portfolio  = 0 does
not have a certain return, and when the ambiguous asset can help hedge risk.15

To see this, assume that the interest rate is not riskless but instead random with

known mean  , variance 
2
 and 

¡
  

¢
=   0. One interpretation is that

 is the real return on a nominal bond and  is the return on the stock market,

which is perceived to be an inflation hedge (stocks pay off more when inflation

lowers the real bond return). The agent solves

max

min
∈P1

 [log
2 ] ≈ max


min

∈[̄−̄̄+̄]

½
 + ( − )− 1

2
(22 + 2)

¾
.

Investing in stocks is now useful not only to exploit the equity premium , but

also to hedge the risk in a bond position. Moreover, the portfolio  = 0 (holding

15It is sometimes claimed in the literature that the multiple-priors model gives rise to inertia

only at certainty. The claim is often based on examples with two states of the world, where MP

preferences exhibit indifference curves that are kinked at certainty and smooth elsewhere. How-

ever, the example here illustrates that in richer settings inertia is a more general phenomenon.
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all wealth in bonds) is still unambiguous, but it is no longer riskless. Adapting

the earlier argument, the agent goes long in stocks if ̄ − ̄ −   0, he goes
short if ̄ + ̄−   0, and he stays out of the stock market otherwise. For a
positive benchmark equity premium ̄  0, the degree of ambiguity (measured by
̄) required to generate nonparticipation is now larger (because of the benefit of

hedging), but the basic features of nonparticipation and portfolio inertia remain.

The key point is that investing in stocks exposes investors to a source of ambiguity

— the unknown equity premium — while investing in bonds does not.

Portfolio inertia is a property that is distinct from, and more general than,

nonparticipation. This is because even away from certainty there can be portfolios

where a small change in a position entails a large change in the worst case belief.

To illustrate, consider an agent who believes in a one-dimensional set of models of

excess returns indexed by an ambiguous parameter  ∈ [0 ̄]. In particular, the
premium is  = ̄ +  and the variance is 2 = ̄2 + 2, where  is known.
Intuitively, the agent believes that risk and expected return go together, but he

does not know the precise pair ( 2).16 He solves

max

min
∈P1

 [log
2 ] ≈ max


min
∈[0̄]

½
 + (̄ + )− 1

2
2
¡
̄2 + 2

¢¾
.

There are now two portfolios that are completely unambiguous,  = 0 and  = ,

and the latter yields the higher return on wealth if ̄  ̄22. If, moreover,
ambiguity is large enough so that ̄  ̄2 + ̄, then it is optimal to choose

 = .

At  = , a small increase in  leads to the worst case scenario  = ̄, while a

small decrease leads to  = 0 Intuitively, risk is taken more seriously relative to
expected return at higher positions. Accordingly, the worst case scenario changes

with position size: at high positions, agents fear high risk, whereas at small posi-

tions, they fear low expected returns. At  = , the two effects offset.17 It follows

that, at  = , any news that slightly changes the benchmark premium ̄ has no

effect on portfolio choice. Indeed, changing the portfolio to exploit news about

16Illeditsch (2009) shows that such a family of models can obtain when agents receive bad

news of ambiguous precision: more precise bad news lowers both the conditional mean and the

conditional variance or returns.
17The presence of an unambiguous portfolio is a knife edge case driven by the functional form

(or here by the approximation we are using). More generally, even if no portfolio makes the

objective function independent of , there can exist portfolios at which the minimizing choice
of  flips discontinuously.
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̄ would require the agent to bear ambiguity. The resulting first order loss from

increased uncertainty overwhelms the gain from a small change in ̄.

3.1.3. Multiple ambiguous assets: selective participation and benefits

from diversification

With multiple assets, ambiguity gives rise to selective participation. To illustrate,

consider a set of  uncertain assets such that (i) returns are known to be uncor-

related: the covariance matrix Σ in (3.2) is diagonal, and (ii) the premia  are

perceived to be ambiguous but independent:  lies in the Cartesian product of

intervals [̄ − ̄ ̄

 + ̄],  = 1   From (3.2), it is optimal to participate in

the market for asset  if and only if 0 ∈ [̄ − ̄ ̄

 + ̄] that is, if the premium

on asset  is nonzero and not too ambiguous. Agents thus stay away from those

markets for which they lack confidence in assessing the distribution of returns.18

If ambiguity about premia is independent across assets, then it cannot be

diversified away. To see this, specialize further to i.i.d. risk (Σ = 2), as well as

i.i.d. ambiguity about premia. In particular, let all premia lie in the same interval

which is centered at ̄ = ̂ and has bounds implied by ̄ = ̂. Assume also

that it is worthwhile to go long in all markets, or ̂ − ̂  0. Symmetry implies
that the optimal portfolio invests the same share, say ̂ in each uncertain asset.

Substituting  = ̂ for all  as well as  = (̂ − ̂) in (3.2), the return on
wealth is

max

min
∈P1

 [log
2 ] ≈ max

̂

½
 + ̂(̂ − ̂)− 2

2
̂
2
¾
.

As the number of independent uncertain assets becomes large, the quadratic term

becomes small and the effect of risk on the portfolio decreases. At the same

time, the effect of ambiguity on portfolio choice remains unchanged. Intuitively,

ambiguity reflects confidence in prior information about individual assets that is

perceived like a reduction in the mean. Investing in many assets does not raise

confidence in that prior information.

Without independence, diversification may be beneficial, because assets hedge

ambiguity in other assets. For an example, retain the assumption of i.i.d. risk,

18Introducing correlation among returns will change the conditions for participation, but will

not rule out selective participation. The argument is essentially the same as in the previous

subsection.
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but suppose now the agent believes premia are  = ̂+ , for some (unknown)

 satisfying 0 ≤ 2;   ̂ is fixed. Intuitively, the agent perceives a common

factor in mean returns such that if one mean is very far away from the benchmark

̂, then all others must be relatively close. The agent solves

max

min
∈P1

 [log
2 ] ≈ max


min
0≤2

½
 + (̂+ )− 2

2
2
¾
.

Symmetry again implies  = ̂ for some ̂. For ̂  0, minimization yields

 = 
p
20 = 

√
 and the portfolio return is thus

max
̂

½
 + ̂(̂ − √


)− 2

2
̂
2
¾
.

The effect of ambiguity on portfolio choice thus shrinks as  increases, although

the speed is slower than for risk.

An extreme case of cross-hedging ambiguity arises when a unambiguous family

of portfolios can be constructed. Suppose, for example, that there are only two

assets with i.i.d. risk, and that 1 = ̂+ and 2 = ̂−, with 2 ≤ 2. Such a

situation might arise when there is pool of assets (e.g. mortgages) with relatively

transparent payoff, which has been cut into tranches in a way that makes the

payoffs on the individual tranches rather opaque. In this case, holding the entire

pool, or holding tranches in equal proportions hedges ambiguity. In contrast, an

agent holding an individual tranche in isolation bears ambiguity.

3.1.4. Dynamics: entry & exit rules and intertemporal hedging

To illustrate new effects that emerge in an intertemporal context, consider a three

period setup with one uncertain asset. Beliefs can be described by sets of one-

step-ahead conditionals. The date 1 one-step-ahead conditionals for date 2 log

excess return are normal with variance 22 and ambiguous mean in the interval

[̄2 − ̄2 ̄

2 + ̄2]. As of date 2, the date 3 log excess returns are again viewed as

normal, now with variance 23. Moreover, there is a signal 2 that induces, via some

updating rule, an interval of expected log excess returns [̄3 (2)−̄3 (2)  ̄3 (2)+
̄3 (2)]. In general, the signal can be correlated with the realized excess return 


2.

This will be true, for example, if the agent is learning about the true premium, and

the realized excess return is itself a signal. Importantly, updating will typically
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affect both the benchmark mean return ̄3 and the agents’ confidence, as measured

by ̄3.

Portfolio choice at date 2 works just like in the one period problem (3.3) above.

The value function from that problem depends on wealth 2 and the signal 2.

Up to a constant, it takes the form 2(2 2) = log2 +  (2)  where

 (2) =
1

223

¡
max{̄3 (2)− ̄ (2)  0}2 +min{̄3 (2) + ̄ (2)  0}2

¢
The value function is higher for signals that move the range of equity premia away

from zero and thus permit worst case expected returns higher than the riskless

rate. For example, Epstein & Schneider (2007) show in a model of learning about

the premium with 2 = 2 that the value function is -shaped in the signal.

Since the value function 2 is separable in 2 and 2, the portfolio choice

problem at date 1 can still be solved separately from the savings problem. The

agent solves

max

min
∈P1

{ [log
2 +  (2)]} 

The difference from the one shot problem (3.3) is that minimization takes into

account the effect on the expected return at the optimal portfolio to be chosen

at date 2, captured by . As a result, it is possible that the choice of , and the

choice of the optimal portfolio, are different in the 2-period problem than in the

1-period problem. In other words, an investor with a two period horizon does not

behave myopically, but chooses to hedge future investment opportunities. This

hedging is due entirely to ambiguity - it is well known that with log utility and a

single prior, myopic behavior is optimal.19

In the intertemporal context, the (recursive) multiple-priors model delivers two

new effects for portfolio choice. First, the optimal policy involves dynamic exit and

entry rules. Indeed, updating shifts the interval of equity premia, and such shifts

can make agents move in and out of the market. Second, there is a new source

of hedging demand. It emerges if return realizations provide news that shift the

interval of equity premia. Portfolio choice optimally takes into account the effects

of news on future confidence. The direction of hedging depends on how news

affects confidence. For example, Epstein & Schneider (2007) show that learning

19In the expected utility case, hedging demand is linked to a nonzero cross derivative of the

value function 2. With ambiguity, hedging demand can arise in the log case even though the
cross derivative is zero. The reason is that the minimization step creates a link across terms

between [log
2 ] and [ (2)].
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about premia gives rise to a contrarian hedging demand if the empirical mean

equity premium is low. Intuitively, agents with a low empirical estimate know

that a further low return realization may push them towards nonparticipation,

and hence a low return on wealth (formally this is captured by a U-shaped value

function). To insure against this outcome, they short the asset.

3.1.5. Differences between models of ambiguity

This section has illustrated several phenomena that can be traced to first order

effects of uncertainty under the multiple-priors model, in particular selective par-

ticipation, portfolio inertia and the inability to diversify uncertainty (at least for

some sets of beliefs). These effects cannot arise under SEU, which implies local

risk neutrality at certainty, smooth dependence of portfolios on the return dis-

tribution (at least under the standard assumptions studied here) and benefits of

diversification.

The smooth model and multiplier utility resemble SEU in the sense that they

also cannot generate the above phenomena. This is immediate for multiplier util-

ity, which is observationally equivalent to SEU on Savage acts, as explained in

Section 2.1.4. Moreover, for the smooth model, if  and  are suitably differen-

tiable, then so is  . As a result, selective participation is again a knife-edge

property. A theme that is common to smooth models and the MP model is the

emergence of hedging demand due to ambiguity.

Some authors have argued that smoothness is important for tractability of

portfolio problems. It is true that smoothness permits the use of calculus tech-

niques. Moreover, in the expected utility case closed form solutions for dynamic

problems are sometimes available, and the same may be true for smooth models

that are close to expected utility. However, most applied portfolio choice problems

considered in the literature today are solved numerically. Even in the expected

utility case, they often involve frictions that make closed form solutions impos-

sible. From a numerical perspective, the additional one-step-ahead minimization

step does not appear excessively costly.

3.1.6. Discipline in quantitative applications

In the portfolio choice examples above as well as in those on asset pricing below,

the size of the belief set is critical for the magnitude of the new effects. There
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are two approaches in the literature to disciplining the belief set. Anderson et

al. (2000) propose the use of detection error probability (see also Barillas et al.

(2009) for an exposition). While those authors use detection error probabilities in

the context of multiplier preference, the idea has come to be used also to constrain

the belief set in multiple-priors. The basic idea is to permit only beliefs that are

statistically close to some reference belief, in the sense that they are difficult to

distinguish from the reference belief based on historical data.

To illustrate, let  denote a reference belief (for example, a return distribu-

tion), and let  denote some other belief. We want to describe a sense in which

 and  are “statistically close”. Let  denote the probability, under , that

a likelihood ratio test based on the historical data (of returns, say) would falsely

reject  and accept . Define  similarly as the probability under  of falsely

rejecting  in favor of . Finally, define the detection error probability  by

 = 1
2
( + ) The set of beliefs is now constrained to include only beliefs

with  small enough. (One might also choose to make additional functional form

assumptions, for example, serial independence of returns.)

A second approach to imposing discipline involves using a model of learning.

For example, the learning model of Epstein & Schneider (2007) allows the mod-

eler to start with a large set of priors in a learning model — resembling a diffuse

prior in Bayesian learning — and then to shrink the set of beliefs via updating. A

difference between the learning and detection probability approach is that in the

former the modeler does not have to assign special status to a reference model.

This is helpful in applications where learning agents start with little information,

for example, because of recent structural change. In contrast, the detection prob-

ability approach works well for situations where learning has ceased or slowed

down, and yet the true model remains unknown.

3.1.7. Literature notes

The nonparticipation result with one uncertain asset is due to Dow & Werlang

(1992). More general forms of portfolio inertia appear in Epstein & Wang (1994)

and Illeditsch (2009). Mukerji & Tallon (2003) compare portfolio inertia under

ambiguity and first order risk aversion. Garlappi et al. (2007) characterize port-

folio choice with multiple ambiguous assets. Bossaerts et al. (2010) and Ahn

et al. (2009) provide experimental evidence that supports first order effects of

uncertainty in portfolio choice.
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A large empirical literature shows that investors prefer assets that are famil-

iar to them, and that the extensive margin matters.20 Quantitative studies of

familiarity bias using the multiple-priors model thus seem a promising avenue for

future research. Cao et al. (2007) summarize the evidence and discuss ambiguity

aversion as a possible interpretation. Most applications of ambiguity to portfolio

home bias (Uppal & Wang 2003, Benigno & Nistico 2009) and own-company-

stockholdings (Boyle et al. (2003)) employ smooth models and do not focus on

the extensive margin.

Epstein & Schneider (2007) compute a dynamic portfolio choice model with

learning, using the recursive multiple-priors approach. They derive dynamic exit

and entry rules, and an intertemporal hedging demand. They also show that,

quantitatively, learning about the equity premium can generate a significant trend

towards stock market participation and investment, in contrast to results with

Bayesian learning.21 Campanale (2010) builds a MPmodel of learning over the life

cycle. He shows that such a model helps to explain participation and investment

patterns by age in the US Survey of Consumer Finances. Miao (2009) considers

portfolio choice with learning and multiple-priors in continuous time.

3.2. Asset pricing

We now use the above results on portfolio choice to derive consumption-based asset

pricing formulas. Our formal examples focus on representative agent pricing, since

the literature on this issue is more mature and has proceeded to derive quantitative

results; notes on new work on heterogeneous agent models are provided below.

In equilibrium, a representative agent is endowed with a claim to consumption

at date 2 and prices adjust so he is happy to hold on to this claim. Write date 2

consumption as 2 = 1 exp (∆) where ∆ is consumption growth. It is useful

to distinguish between consumption and dividends.22 Assume that a share 1− of
consumption consists of labor income which grows at the constant rate  and that

20One candidate explanation for nonparticipation is that expected utility investors pay a per-

period fixed cost. Vissing-Jorgenson (2003) argues that this approach cannot explain the lack

of stock market participation among the wealthy in the US.
21The reason lies in the first order effect of uncertainty on investment. Roughly, learning

about the premium shrinks the interval of possible premia and thus works like an increases in

the mean premium, rather than just a reduction in posterior variance, which tends to be 2nd

order.
22In our two period economy, we call the payoff to stocks dividends. In a dynamic model, the

second period utility is a value function over wealth, and the payoff on stocks includes the stock

price. The basic intuition is the same.
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a share  consists of dividends that have a lognormal growth rate∆ with variance

2 and an ambiguous mean  ∈ [̄ − ̄ ̄ + ̄]. Using the same approximation
as for the return on wealth above, write consumption growth as

∆ = (1− ) + 

µ
∆+

1

2
2

¶
− 1
2
22.

The consumption claim trades at date 1 at the price  and has log return

 = log2 − log = ∆− log (1). The premium on the consumption claim
is

 =  [] +
1

2
 ()−  = (1− ) + 

µ
 +

1

2
2

¶
− log (1)−  .

The representative agent solves a version of problem (3.3), given wealth  =
 +1 and a range of premia 

 generated by ambiguity in dividend growth 

At the equilibrium price and interest rate, he must find it optimal to choose  = 1
and 1 = (+1)(1+ ). The latter condition pins down  — with log utility,

the price-dividend ratio on a consumption claim depends only on the discount

factor.

The condition  = 1 pins down the interest rate. Since   0, minimization in
(3.3) selects the lowest premium, say , by selecting the lowest mean dividend

growth rate ̄ − ̄. Solving the condition  = 1 for the interest rate, we obtain

 = − log  +
½
(1− ) + (̄ +

1

2
2)−

1

2
22

¾
− 1
2
22 − ̄, (3.4)

The interest rate depends on the discount factor, the mean consumption growth

rate (in braces), as well as on a precautionary savings term. An increase in either

risk or ambiguity makes the agent try to save more, which tends to lower the

equilibrium interest rate. If   1, an increase in risk also raises the mean growth
rate of consumption.

The same price and interest rate would obtain in an economy where the agent

is not ambiguity averse but simply pessimistic: he believes that mean consumption

growth is ̄ − ̄ for sure. This reflects a general point made first by Epstein &

Wang (1994): asset prices under ambiguity can be computed by first finding the

most pessimistic beliefs about the consumption claim, and then pricing assets

under this pessimistic belief. We emphasize that this does not justify simply

modeling a pessimistic Bayesian investor to begin with. For one thing, the worst
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case scenario implied by a multiple-priors setup may look absurd when interpreted

as a dogmatic Bayesian belief. Moreover, a form of the Lucas critique applies: the

pessimistic investor is no more than a convenient “reduced form” — focusing on

him can give misleading answers to comparative statics (e.g. policy) questions.

Turn now to the stock price and equity premium. If a claim to dividends

2 = 1
∆ trades at the price , absence of arbitrage opportunities requires

that its premium satisfy (̄ − ̄+ (12)2 − log(1)− ) =. The price-
dividend ratio on equity is thus

1 = exp(̄ +
1

2
2) exp(− − (̄+ 2))

The price is the expected level of dividends under benchmark growth ̄ (the first

term), discounted at an uncertainty adjusted rate that increases in both risk 2

and ambiguity ̄. Importantly, the degree of ambiguity ̄ affects the discount

rate one-for-one, but it affects the interest rate (3.4) only  for one. For small ,

changes in ambiguity (for example due to updating) have a large effect on stock

prices, but only a small effect on interest rates. This is important for addressing

the equity volatility puzzle.

To discuss premia observed in the market, we need to take a stand on the

true data generating process. Suppose that dividend growth is drawn from a

distribution with mean ∗ and variance 
2
. An econometrician who observes many

realizations of the economy obtains a sample of excess returns ∆− log (1)−
 . The average premium measured by the econometrician is thus

∗ − log (1)−  +
1

2
2 = 2 + ∗ − (̄ − ̄) . (3.5)

It consists of a risk premium and an ambiguity premium. The risk premium is the

covariance of consumption growth and stock returns. For an asset that represents

only a small share of consumption, a large risk premium thus requires large payoff

volatility 2.

The ambiguity premium consists of the difference between true mean dividend

growth and the worst case mean used by the agent to evaluate the asset. If the

belief interval is centered around the truth (̄ = ∗), then the ambiguity premium
is simply equal to ̄. In any case, the share of the payoff in consumption does not

matter for the ambiguity premium. If a lack of confidence in the asset is reflected

in a range of premia, it raises the premium one-for-one. Put together, models

of ambiguity aversion hold promise for resolving the equity premium and excess
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volatility puzzles, especially if the distinction between consumption and dividends

is made explicit.

3.2.1. Amplification

With multiple-priors preferences, prices may depend very strongly — in fact dis-

continuously — on fundamentals that change the representative agent’s portfolio.

This is the flip side of the portfolio inertia discussed in 3.1.2, which says that

portfolios may not respond to small changes in prices. To illustrate, consider a

family of models for the growth of stock payoffs similar to that used for returns

above: let  = ̄+(−1) and 2 = ̄2+2, where  ∈ [0 ̄] is ambiguous
and  ∈ (0 1) is fixed. Intuitively, the agent believes that high growth goes along
with high volatility.23 The mean consumption growth now depends on  via the

term (1 − ) and the worst case is  = 0 if    and  = ̄ if   . If

dividends make up a small part of consumption, agents fear low growth. As the

share of dividends increases, concern with high risk eventually dominates.

The interest rate takes the form

 = − log  + ̄ −
1

2
22 − ̄

where  = 1 if   ,  = 0 if    and  ∈ [0 1] if  = . Viewed as a function

of , the interest rate thus has a discontinuity at the point  = . A small change

in fundamentals — here the share of stock payoffs in wealth — can thus have a large

effect on asset prices. Intuitively, a small drop in the share of stock payoffs in

wealth redirects agents’ concern from high risk to low growth. This results in a

jump in interest rates (and thus a crash in asset prices).

3.2.2. The cross section of returns and idiosyncratic ambiguity

To examine the cross section of stock returns, assume there is no labor income,

but that the consumption claim consists of  trees of the same size with i.i.d.

lognormal dividend growth rates with mean  and variance 
2
. Consumption

growth is thus

∆ ≈ 1



X
=1

µ
∆ +

1

2
2

¶
− 1

2
2

23While the log growth rate is decreasing in , the adjusted growth rate +
1
2

2
 is increasing.
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Assume that dividend growth rates are perceived as ambiguous but indepen-

dent: the vector of means  is drawn from a Cartesian product of intervals

[̄ − ̄ ̄ + ̄]  While the center of the interval is the same for all trees, the
agent view some trees as more ambiguous than others.

In equilibrium, tree prices  and the interest rate are determined so that the

agent is willing to hold all trees. With a true dividend growth rate ∗ = ̄ for all

trees, similar algebra as above delivers an interest rate and measured stock premia

 = − log  + ̄ +
1

2
2 −

1



X
̄ − 1

2
2

∗ − log ()−  +
1

2
2 =

1


2 + ̄.

As the number of trees increases, the effects of risk on asset prices vanish. Indeed,

both the precautionary savings term in the interest rate and the risk premium on

a tree — the covariance of the tree return with consumption growth — go to zero.

In contrast, the ambiguity premium does not depend on the number of stocks —

it depends only on the ambiguity perceived about an individual stock.

3.2.3. Literature notes: representative agent pricing

Epstein & Wang (1994, 1995) first studied representative agent asset pricing with

multiple-priors in discrete time and pointed out the possibility of amplification and

price indeterminacy. Chen & Epstein (2002) characterize pricing in continuous

time. Sbuelz & Trojani (2008) derive pricing formulas with entropy-constrained

priors. Gagliardini et al. (2008) show how to apply detection probabilities in a MP

setting. Epstein & Schneider (2008) consider the effect of learning, with a focus on

the role of signals with ambiguous precision. They show that such signals induce

an asymmetric response to news — bad news is takenmore seriously than good news

— and contribute to premia for idiosyncratic volatility as well as negative skewness

in returns.24 Illeditsch (2009) shows how learning from ambiguous signals can give

rise to amplification particularly in times when bad news arrives.

Another key property of ambiguous signals is that the anticipation of poor

signal quality lowers utility. As a result, a shock that lowers the quality of future

signals can lower asset prices. In contrast, in a Bayesian setting the anticipation

of less precise future signals does not change utility or prices as long as the distri-

bution of payoffs has not changed. Epstein & Schneider (2008) use a quantitative

24Williams (2009) provides evidence that in times of greater uncertainty in the stock market

the reaction to earnings announcements is more asymmetric.
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model to attribute some of the price drop after 9/11 to the discomfort market

participants felt because they had to process unfamiliar signals.25

There are now a number of quantitative studies that apply the recursive

multiple-priors model to different asset markets. Trojani & Vanini (2002) revisit

the equity premium puzzle. Sbuelz and Trojani (2008) consider predictability of

excess stock returns. Jeong et al. (2009) estimate a model of stock returns, also

with an emphasis on time variation in equity premia. Drechsler (2008) studies the

joint behavior of equity returns and option prices.26 Ilut (2009) addresses the un-

covered interest parity puzzle in foreign exchange markets using a model of regime

switching under ambiguity. Gagliardini et al. (2008) and Ulrich (2009) consider

the term structure of interest rates, focusing on ambiguity about real shocks and

monetary policy, respectively. Boyarchenko (2009) studies credit risk in corporate

bonds.

There is also a growing literature on quantitative asset pricing with smooth

models. Barillas et al. (2009) use multiplier preferences to reinterpret the equity

premium results found by Tallarini (2000) in a model with Epstein-Zin utility.

Hansen & Sargent (2009) and Chen et al. (2009) consider the behavior of stock

returns in models with learning about hidden states, using multiplier and KMM

utility, respectively. Kleschinski & Vincent (2009) study the real term structure

in a model with robustness. Liu et al. (2005) consider the smirk in option premia.

3.2.4. Literature notes: heterogeneous agent models

Recent work has explored heterogeneous agent models where some agents have

multiple-priors. Epstein & Miao (2003) consider an equilibrium model in which

greater ambiguity about foreign as opposed to domestic securities leads to a home-

bias. Several models center on portfolio inertia as discussed above. Mukerji &

Tallon (2001) show that ambiguity can endogenously generate an incomplete mar-

ket structure. Intuitively, if ambiguity is specific to the payoff on a security, as in

3.1.3 above, then no agent may be willing to take positions in a security with suf-

25There is a related literature on “information uncertainty” in accounting. For example,

Autore et al. (2009) consider the failure of Arthur Anderson as an increase in (firm-specific)

ambiguity about AA’s clients and document how the price effect of this shock depended on the

availability of firm-specific information.
26Both Jeong et al. and Drechsler use a general specification of RMP with separate parameters

for risk aversion and substitution as in Epstein & Zin (1989) and thus allow for the interaction

of ambiguity and “long run risk”.
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ficiently ambiguous payoffs. Mukerji & Tallon (2004) build on this idea to explain

the scarcity of indexed debt contracts with ambiguity in relative prices. Easley &

O’Hara (2009) consider the welfare effects of financial market regulation in models

where multiple-priors agents choose in which markets to participate.

A shock to the economy that suddenly increases ambiguity perceived by market

participants can drive widespread withdrawal from markets, that is, a “freeze”.

This is why the multiple-priors model has been used to capture the increase in

uncertainty during financial crises (Caballero & Krishnamurthy 2008, Caballero

& Simsek 2009, Guidolin & Rinaldi 2009, Routledge & Zin 2009). Uhlig (2009)

considers the role of ambiguity aversion in generating bank runs.

In heterogeneous agent models, prices generally depend on the entire distrib-

ution of preferences. An important point here is that if only some agents become

more ambiguity averse, this may not increase premia observed in the market. The

reason is that the more ambiguity averse group might leave the market altogether,

leaving the less ambiguity averse agents driving prices (Trojani and Vanini 2004,

Cao et al. 2005, Chapman & Polkovnichenko 2009, Ui 2009). Condie (2010) con-

siders conditions under which ambiguity averse agents affect prices in the long run

if they interact with SEU agents.

A number of papers have recently studied setups with ambiguity averse traders

and asymmetric information. Condie & Ganguli (2009) show that if an ambiguity

averse investor has private information, then portfolio inertia (as in 3.1.2) can

prevent the revelation of information by prices even if there is the same number of

uncertain fundamentals and prices. Ozsoylev & Werner (2009) and Caskey (2009)

study the response of prices to shocks when ambiguity averse agents interact with

SEU traders and noise traders. Mele & Sangiorgi (2009) focus on the incentives

for information acquisition in markets under ambiguity.

A. Appendix

We provide the details supporting our discussion in Section 2.2.2 regarding the

KMM model and our thought experiment concerning updating.

The state space is Ω = {}, corresponding to the possible colors of the ball
on any single draw. The parameter space is {( ) :  =  , and  = 2 6}.
The prior  can be viewed as a probability measure on pairs ( ). Let  be
uniform over the four possibilities. Define the likelihoods  ( |  ) by (2.24).
A bet on  pays off either 100 or 0. Without loss of generality, normalize  so
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that  (100) = 1 and  (0) = 0. Then ex ante utility for the bet on drawing black
from the ambiguous urn is given by (where  denotes also the act corresponding

to the bet on black)

 () = Σ ( )(( |  )
=  ( 2)(2

3
) +  ( 2)(1

3
) +  ( 6)(4

7
) +  ( 6)(3

7
).

For the risky urn, with winning prize  = ,

 () = 
¡
 1
2
3
5
+  1

2
2
5

¢
= 

¡
 1
2

¢
=  ( ) .

Thus ex ante indifference for between the two bets is satisfied if and only if


¡
 1
2

¢
(A.1)

=  ( 2)(2
3
) +  ( 2)(1

3
) +  ( 6)(4

7
) +  ( 6)(3

7
).

By symmetry of the situation, the same  works also for bets on  .

Next consider bets ex post, after observing a black ball on a single draw each

from both the ambiguous and risky urns. For the risky urn, the posterior of a

black coin-ball is 3
5
, and posterior predictive probability of drawing black on the

next draw is

1 =
3
5

¡
3
5

¢
+ 2

5

¡
2
5

¢
= 13

25
.

Therefore, given the winning prize , bets on black and white balls being drawn

next have, respectively, the conditional utilities


1 () = 

¡
1

¢
= 

¡

¡
13
25

¢¢
, and


1 ( ) = 

¡

¡
1− 1

¢¢
= 

¡

¡
12
25

¢¢
.

Turn to the ambiguous urn. Let 1 denote the Bayesian update of , and 1
the corresponding utility function. Then

1 () = 1 ( 2)(
2
3
) + 1 ( 2)(1

3
) + 1 ( 6)(

4
7
) + 1 ( 6)(3

7
),

and

1 ( ) = 1 ( 2)(
1
3
) + 1 ( 2)(2

3
) + 1 ( 6)(

3
7
) + 1 ( 6)(4

7
).

If, as in the intuitive behavior pointed to in the thought experiment, each bet is

less preferred to the corresponding bet on the risky urn, then

1 ( 2)(
2
3
) + 1 ( 2)(1

3
) + 1 ( 6)(

4
7
) + 1 ( 6)(3

7
)  

¡

¡
13
25

¢¢
,
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and

1 ( 2)(
1
3
) + 1 ( 2)(2

3
) + 1 ( 6)(

3
7
) + 1 ( 6)(4

7
)  

¡

¡
12
25

¢¢
.

Add to obtain,

1 ( = 2)
¡
(2

3
) + (1

3
)
¢
+ 1 ( = 6)

¡
(4

7
) + (3

7
)
¢

 
¡

¡
13
25

¢¢
+ 

¡

¡
12
25

¢¢
≤ 2

¡
 1
2

¢
.

Therefore, by (A.1),

1
2
1 ( = 2)

¡
(2

3
) + (1

3
)
¢
+ 1

2
1 ( = 6)

¡
(4

7
) + (3

7
)
¢


 ( 2)(2
3
) +  ( 2)(1

3
) +  ( 6)(4

7
) +  ( 6)(3

7
),

or
1
2
1 ( = 2)

¡
(2

3
) + (1

3
)
¢
+ 1

2
1 ( = 6)

¡
(4

7
) + (3

7
)
¢
 (A.2)

 ( 2)(2
3
)+[ ( = 2)− ( 2)](1

3
)+ ( 6)(4

7
)+[ ( = 6)− ( 6)](3

7
).

Since  is uniform, the posterior 1 on ( ) pairs is given by

1 (  | ) =

⎧⎪⎪⎨⎪⎪⎩
1
3

 =  = 2
1
6

 = = 2
2
7

 =  = 6
3
14

 = = 6,

and 1 ( = 2) =
1
2
= 1 ( = 6). Therefore, (A.2) implies the contradiction¡

(2
3
) + (1

3
)
¢
+
¡
(4

7
) + (3

7
)
¢


(2
3
) + (1

3
) + (4

7
) + (3

7
).
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