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1 Introduction

Competition for positive attention in financial markets frequently resembles a tournament, where

superior relative performance is rewarded with convex payoffs.1 In many settings, rankings drive

renumeration (i.e., order statistics matter). For example, mutual funds that advertise better past

performance or achieve greater visibility experience convex investor flows (e.g., Brown, Harlow,

and Starks, 1996; Berk and Green, 2004; Del Guercio and Tkac, 2008).2 Firms with higher status

attract superior human capital, especially when labor is scarce (e.g., Gatewood, Gowan, and Laut-

enschlager, 1993).3 CEO’s who receive higher public praise are rewarded with positively skewed

payoffs (e.g., Gibbs, 1994; Malmendier and Tate, 2009). Such convexity is also likely to exist when

other scarce resources are allocated: supplies and supplier credit, venture capital (e.g., Hsu, 2004),

and investor attention (e.g., Hendricks and Singhal, 1996). In short, there is a prize in the market

for the parties that reveal more favorable information than others.

How then does competition for this prize affect each participants’s incentives to reveal private

information to the public? The answer to this question turns out to be non-obvious. Though it

might seem intuitive that higher competition for such a prize should increase incentives to reveal

private information, we find that this is often not the case. Thus, we cannot appeal to the Invisible

Hand to make markets more transparent: while competition may drive prices down in product

markets, it may have the opposite effect on transparency. Based on this, our analysis provides an

important implication for the regulation of financial markets: competition should not be viewed as

a panacea to assure information disclosure and self-regulation by participants in the market.4

Summarizing our base model makes it easy to appreciate the intuition for this result. We build

on the model of Dye (1985), where incomplete disclosure results from investors’ uncertainty as to

whether or not management possesses relevant information. In our variant, a finite number of firms

compete in the market. All firms experience a random shock that changes their fundamental value.

Each firm may or may not observe the precise value of their shock. Firms that make an observation

1As first pointed out by Rosen (1981), convex payoffs mean that small differences in performance at the high end
of the spectrum become magnified in larger earnings differences or returns to effort.

2Capon, Fitzsimons, and Prince (1996) and Sirri and Tufano (1998) show that past performance is the crucial
input in investors’ choice of mutual fund. Brown, Harlow, and Starks (1996) are credited as being the first to point
out the tournament-nature of mutual fund markets and the effects this has on managerial incentives. See Berk and
Green (2004) for a theoretical model of convex performance incentives in mutual fund markets. See Gallaher, Kaniel,
and Starks (2005), Gualtieri and Petrella (2005), Del Guercio and Tkac (2008), and Starks and Yates (2008) for the
affects of visibility and reputation on mutual fund flows. See Nanda, Wang, and Zheng (2004) and Gaspar, Massa
and Matos (2006) for the effect that past returns and visibility have on flows to other offerings in fund families.

3See also Chauvin and Guthrie (1994) and Turban and Greening (1996).
4This does not mean that competition can never promote disclosure. Even in our simplified model we find some

exceptions.
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then choose whether to announce it publicly, while firms with no new information have nothing to

reveal. The firm with the best announcement gets a fixed prize from the market, which represents

the rank-based convex renumeration previously described.

In the symmetric equilibrium of the game, each firm with new information applies a threshold

in deciding whether or not to reveal its news. If the observed shock value is above this threshold,

the firm announces it and competes for the prize. If the observed shock is lower, however, the firm

conceals its information. The presence of uninformed firms lends plausible deniability to informed

firms wishing to conceal a bad observation. Rational investors use Bayesian learning to adjust the

market price of firms that do not release any news.

Because the probability of winning the prize drops when more firms compete, the benefit of

making announcements decreases with competition. Therefore, increasing competition leads to

decreased information revelation and lower market transparency. Our base model with a fixed

prize shows this effect most simply and directly, but we show that this effect remains reasonably

robust to other model variations: general reward systems, prizes that change in size as a result of

competition, and product market competition.5

We consider more general reward systems in which multiple prizes are awarded, so that runners-

up also receive compensation. Adding more prizes definitively increases the incentive to reveal

information, ceteris paribus. However, holding any prize structure fixed, the equilibrium incentive

to reveal private information still decreases with competition because the probability of winning or

being one of the runners-up drops when more firms are in the market.

We then consider what happens when the size of the prize changes because of competition. When

the size of the prize shrinks, our primary result is magnified. The incentive to reveal information

drops because of two forces: competition for the prize is higher and the reward is lower. Such an

effect is plausible under a number of economic scenarios. For example, as competition for human

resources increases, labor’s bargaining power grows and lowers the value (via higher wages) that the

top firm gets when winning the competition. Interestingly, though, our results remain surprisingly

robust even when the prize grows with firm entry. For example, if the prize scales linearly with the

number of participating firms, competition still has a negative influence on information revelation

when the number of competing firms exceeds a modest threshold. In fact, competition reduces

disclosure unless the prize grows at least exponentially in the number of firms.

5In Appendix B, we build on this and show that this consideration is robust when considering endogenous prizes,
prizes awarded based on percentile, and a sequential disclosure game structure (instead of the simultaneous game
modeled in the paper). There, we also consider the effect of volatility on the tendency for firms to disclose private
information.
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We then consider the effect of product market competition on the analysis. In our base model,

all firms draw their shocks from a common distribution which does not change with the number of

competing firms. That is, the entry of a new competitor reduces a firm’s chance to win the prize,

but does not reduce its earnings. To include this effect, we alter our model by scaling the value of

firms and shocks to firm value downward with competition. This agnostic framework allows us to

analyze how competition affects information revelation without limiting ourselves to any particular

model of pricing and supply. We find this modification mitigates the tendency for competition

to reduce information revelation when a very small number of firms compete. However, once the

number of firms reaches a critical mass, further competition reduces information transmission as in

the base model. We provide analytic proof and numerical examples to show that this critical mass

of firms is very small, and conjecture that most industries are large enough that further competition

generally reduces firms’ incentives to reveal private information. Though according to the model, in

the limit when the market becomes perfectly competitive, profits converge to zero but transparency

is minimized.

The analysis yields novel and testable empirical predictions. Our model predicts that perfor-

mance announcements, advertising, and discretionary disclosure should decline with competition,

ceteris paribus. This implies, for example, that in the mutual fund industry where firms compete

for Morningstar ratings (Del Guercio and Tkac, 2008), advertising expenditure and discretionary

disclosure should be negatively correlated with Herfindahl Index. Such a prediction might be tested

cross-sectionally or with a time series, while controlling for other fund characteristics. Our model

also predicts that when asymmetric information increases, discretionary disclosure should increase

in industries with low status-based prizes. However, in industries with high status rewards, dis-

cretionary disclosure should decline when information asymmetry increases. This prediction might

also be tested in the mutual fund industry with a time-series that includes periods of high volatility.

This paper contributes to a large literature on information revelation and discretionary disclo-

sure in financial markets. The paper that is closest to ours is Fishman and Hagerty (1989), which

shows that firms compete for attention in financial markets because informed trading leads to price

efficiency, which is valuable for firms making investment decisions. The prize in their paper is price

efficiency. In fact, Fishman and Hagerty show that firms spend more on disclosure than is socially

optimal when competing for the prize. Our paper adds to theirs in the following way: when more

and more firms compete for this type of attention, each firm’s ability to achieve price efficiency

declines because traders have a fixed bandwidth when following firms. Decreasing marginal benefit

to disclosure relative to its cost, makes disclosure less attractive. Therefore, applying our model to
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the formulation in Fishman and Hagerty (1989), we would predict that their effect would diminish

with more competition.

Early work on disclosure theory suggest that market forces are sufficient to induce full disclosure.

Grossman and Hart (1980), Grossman (1981), and Milgrom (1981) suggest that in the absence of

disclosure costs or asymmetric information, firms adhere to the Full Disclosure Principle. That is,

when firms have private information about their prospects, adverse selection prompts high-valued

firms to distinguish themselves from others by disclosing their information. In so doing, they reduce

the expected prospects of the remaining non-disclosing firms. The effect cascades, finally resulting

in full disclosure by all firms. Diamond (1985) shows that such disclosure is welfare-improving

because of explicit information cost savings and improved risk sharing.

Subsequent work challenges these results: full disclosure may not occur because disclosure is

costly (e.g. Verrecchia 1983; Fishman and Hagerty 1990), some market participants are unsophis-

ticated (e.g., Fishman and Hagerty 2003), or the market is unsure whether firms have asymmetric

information (Dye, 1985 and Jung and Kwon, 1988). We build our model on Dye (1985) and Jung

and Kwon (1988), but we could just as well have used Verreccia (1983) for our foundation. In either

case the prospect of a prize increases the incentive to disclose, and growing competition reduces

that incentive. While we use Dye’s model as a matter of choice, our result generalizes to alternative

models of discretionary disclosure.

Our work also adds to the literature on product market competition and discretionary disclo-

sure. Again, this literature is split on whether product market competition increases or decreases

disclosure. Stivers (2004) argues that product market competition increases disclosure, as firms

might even make negative disclosures if doing so will hurt competitors more. In contrast, Wagen-

hofer (1989), Darrough (1993), Clinch and Verrecchia (1997), and Board (2009) argue that firms

may avoid disclosure to conceal private information from competitors. Similarly, Darrough and

Stoughton (1990), Feltham and Xie (1992), and Pae (2002) argue that firms may conceal such

private information to prevent new entry into the market. Finally, Dye and Sridhar (1995) find

that product market competition may increase or decrease disclosure depending on whether the

information the firms receive is private or industry-related. In many of these papers, disclosure

itself affects the nature of competition, which in turn affects the tendency to disclose. While we do

not address these considerations specifically, we do add to this literature by considering product

market competition simultaneously with competition for attention, finding again that increased

competition often reduces management’s tendency to reveal private information.

The rest of the paper is organized as follows. Section 2 introduces our base model, the action
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set presented to firms, and the corresponding payoffs. Section 3 characterizes the equilibrium

and explores key comparative statics. We show the results are robust to more generalized prize

structures, and to changing sizes of the prize with competition. In Section 4, we add product

market competition to the model. We show that competing for the same resources, customers, etc.

can initially lead to an increase in information revelation, but once the number of firms reaches an

economically reasonable level, additional competition leads to less disclosure. Section 5 offers some

concluding remarks. Proofs of all propositions are deferred to Appendix A, as are some technical

definitions and lemmas. In Appendix B, we show that our results remain robust when considering

a sequential game set-up, volatility, endogenous prizes, and prizes awarded based on percentile.

2 Base Model

We consider a single period model in which a group of N risk-neutral firms, indexed by j ∈

{1, . . . , N}, compete in a game of discretionary “disclosure”.6 Each firm experiences a random

change in fundamental valuation, x̃j ∼ F . We assume x̃j has a probability density function f(x) > 0

for all x ∈ R, and that E[x̃j ] = 0. Realizations are independent and identically distributed for each

firm, and their distribution does not depend on the number of firms competing in the market,

though we will relax this assumption in Section 4.

In each firm, a manager observes the true realization of x̃j with probability p. With probability

(1 − p), the manager observes nothing. The parameter p measures the degree of asymmetric

information in the market. When p is high, it is likely that firms have more information about

their value than outsiders. When p is low, it is unlikely that firms have learned anything new. As

such, p is also a measure of strong form market (in-)efficiency.

Definition 1. The possible information events are

Ij ≡ firm j is informed of x̃j

Uj ≡ firm j remains uninformed of x̃j.

Firms that observe x̃j may either conceal its value, or may credibly reveal it to investors. Firms

that do not observe a value are not permitted to fabricate one. Implicitly, we suppose that investors

6Our use of quotes is purposeful here because what we have in mind is more general than solely accounting
disclosure alone. Disclosure is meant to refer to any instance in which information might be revealed. Likewise,
our use of “firm” here is meant to represent any party that competes in the market for attention, which includes
individuals (e.g., CEO’s).
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can freely verify and penalize false claims of x̃j , but cannot determine whether a non-disclosing

firm is in fact concealing information.7

Definition 2. If firm j is informed, its available actions are {Dj , Cj}, where

Dj ≡ firm j discloses its observation xj

Cj ≡ firm j conceals its observation xj.

The event that firm j either conceals its observation or is legitimately uninformed is given by Pj

(i.e., firm j pools).

For the moment, we allow firms to choose non-deterministic strategies, although we will soon

show deterministic strategies are dominant, almost surely. Formally, we describe each firm’s strat-

egy by a “disclosure policy.”

Definition 3. An informed firm j determines its action using a disclosure policy, a mapping

σj : R → [0, 1]. Given any observation x ∈ R, firm j, discloses with probability σj(x) and conceals

with probability 1 − σj(x).

All informed firms act simultaneously and without knowing which of their competitors are also

informed. What we have in mind is that a market-wide event arises in which investors expect

informed firms to make disclosures over a short time horizon.8 We define σ ≡ {σ1, . . . , σN} as the

collection of strategies used by all firms in the market. After acting, each falls into one of three

categories: uninformed firms, informed firms that reveal information, and informed firms that pool

with the uninformed.

Investors are competitive, risk-neutral, and have rational expectations about firm behavior. If

firm j pools (event Pj), investors weigh the odds that it is uninformed against the odds that it

is concealing a poor xj and adjust its price by Bayesian inference. Firm utility is determined by

these price changes, so this expectation is also the utility an informed firm obtains by concealing

its information,

uC
j ≡ E[x̃j |Pj , σ, p].

7As such, we follow the previous literature on discretionary disclosure and do not consider the firms’ tendency to
make false statements here. To address this, an alternative set-up might include a cheap talk game (e.g., Crawford
and Sobel, 1982), but we do not analyze this directly.

8However, in Appendix B we explore a sequential game of disclosure and show that the frequency of disclosure of
private information is minimized as N → ∞.
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After all disclosures have been made, investors award a prize φ to the firm with the highest

disclosed value. This prize value represents the convex gain in value that accrue to the high-

performing firm. We take this prize to be given exogenously, but consider what happens when this

prize is endogenously determined in Appendix B. There we show that our primary result still holds.

Including this exogenous prize, firm j’s expected utility of revealing x is

uD
j (x) ≡ x + φWj(x),

where we define Wj(x) as the probability that firm j has the highest disclosure. This value depends

on the probability p of competing firms being informed, and on the strategies σ−j they employ.

Therefore, this model extends the Jung and Kwon (1988) refinement of the Dye (1985) model, in

which uncertainty about a single firm’s information induces an incomplete disclosure equilibrium.

Dye’s model corresponds to ours in the specific case where we have only one firm and no prize

(N = 1 and φ = 0).

3 Equilibrium Disclosure

With Lemmas 1, 2, and 3, we determine the game’s unique subgame-perfect Nash equilibrium.

Lemma 1. In any subgame-perfect Nash equilibrium, each firm acts according to a disclosure

threshold tj < 0,

σj(xj) =

{

1 for xj > tj

0 for xj < tj .

The threshold is implicitly defined by the condition that a firm observing xj = tj be indifferent

between disclosing and concealing,

uD
j (tj) = uC

j .

According to Lemma 1, each informed firm simply compares the expected utility it can obtain

by revealing information to what it obtains by pooling. If it conceals its signal, then the actual

realization certainly cannot affect the valuation investors assign, so uC
j is constant with respect to

the observed value xj. In contrast, the value obtained by revealing information is increasing in

xj. If the two utilities are equal when the firm observes its threshold value x̃j = tj, then the firm

should reveal any observation greater than tj and conceal any lesser observation.

Note that the threshold tj is lower than the distribution mean, which we’ve assumed to be zero.

The average x̃j for an uninformed firm is simply the distribution mean, and because firms disclose

their best observations, rational investors expect the average concealed observation to be negative.
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The weighted average assigned to herding firms must therefore be below the distribution mean.

Since disclosure yields strictly greater utility than the value disclosed, no firm will ever conceal

an above-average observation. So if firm j is indifferent between revealing and concealing a value

xj = tj, then tj < 0.

Lemma 2. Every firm uses the same disclosure threshold, defined as t∗.

In other words, there cannot be an equilibrium in which some firms are more “honest” than oth-

ers. This is not too surprising, since all firms draw the observations from identical and independent

distributions. One can imagine an alternate model in which there was some endogenous benefit

of being perceived as trustworthy, and such a model might induce a heterogeneous equilibrium.

In our equilibrium, Lemma 2 ensures that any two firms will behave identically with any given

observation.

This result justifies our description of the non-disclosing firms as a “pool.” Since they all

have identical disclosure thresholds and distributions F , investors value all non-disclosing firms

identically. In a hypothetical equilibrium where some firms are more honest, investors would

assign a higher valuation to an honest non-disclosing firm than to a firm that has a reputation for

concealing poor valuations. But when no firm distinguishes itself by its honesty, investors assign

the same value uC to every non-disclosing firm in the pool.

Lemma 3. The common disclosure threshold t∗ is unique.

Not only does each individual firm have a unique optimal response to the other firms’ strategies,

but there is only one viable choice for the entire group. So for given model parameter values, we can

theoretically determine the unique disclosure threshold. This allows us to predict how disclosure

behavior responds to exogenous parameter changes. Most importantly, we will demonstrate how

equilibrium disclosure responds to an increase in the number of competing firms.

Taken together, Lemmas 1, 2, and 3 establish Proposition 1.

Proposition 1. There exists a unique and non-trivial subgame-perfect Nash equilibrium, in which

every firm discloses according to a common threshold t∗ defined implicitly by

t∗ + φ
(

1 − p + pF (t∗)
)N−1

=
p

1 − p + pF (t∗)

∫ t∗

−∞
xf(x) dx. (1)

Further, the threshold t∗ lies below the unconditional mean of x̃j, i.e. t∗ < 0.

The left side of (1) can be understood as the utility a firm that observes x̃j = t∗ expects if

it reveals its information. The firm immediately receives its own value x̃j = t∗, and can also win
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the prize φ if its disclosure is the highest. But since competing firms never reveal values below

t∗, any other disclosing firm will have a higher value almost surely. Firm j can win, therefore,

only if all other firms pool. Each competing firm pools if either it is uninformed or it is informed

with an observation below the threshold. These events occur with probabilities (1− p) and pF (t∗),

respectively. The left side therefore is the uD
j (t∗) term from Lemma 1.

The right side is utility a firm obtains by concealing its observation, which equals the expected

value change of a pooling firm. Such a firm could be uninformed and have a zero expected value for

its observation, or could be hiding an observation lower than the threshold. The weighted average

of these possibilities yields the right side of Equation 1.

3.1 Comparative Statics

Proposition 1 implicitly defines the equilibrium disclosure threshold t∗, so we could now proceed

by using the Implicit Function Theorem to determine comparative statics on t∗. But the economic

interpretation of t∗ is not immediately obvious, and it is not clear what empirical predictions can

be made from it. A more useful characterization is the frequency with which firms opt to reveal

private information. That is, what is the ex ante probability that a firm, if it observes its value

change, will choose to share its observation with investors?

Definition 4. We define the equilibrium ex ante probability of an informed firm disclosing by

ω∗ ≡ Pr(D|I).

We refer to this probability as the equilibrium disclosure frequency. Since the equilibrium is

symmetric, we omit firm-specific subscripts.

When firms follow threshold disclosure strategies, as described in Lemma 1, there is a one-to-one

relationship between the disclosure threshold and the corresponding disclosure frequency,

ω∗ = Pr(x̃ > t∗) = 1 − F (t∗).

Note that disclosure threshold and frequency move in opposite directions. That is, if a firm lowers

its threshold, it discloses more of its realized values, and vice-versa.

Definition 5. Let ω̂ be the equilibrium disclosure frequency when φ = 0, defined implicitly by

x(ω̂) =
p
∫ 1
ω̂

x(Ω) dΩ

1 − pω̂
. (2)
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Let t̂ be the corresponding disclosure threshold, used in equilibrium when φ = 0, so that

ω̂ = 1 − F
(

t̂
)

Dye (1985) and Jung & Kwon (1988) consider disclosure with no strategic interaction (i.e., N =

1) and no prize φ. Their equilibrium condition is equivalent to Equation 2. The chance to win

φ > 0 offers firms a greater incentive to disclose, so in equilibrium, we have

ω∗ ≥ ω̂ ∀φ ≥ 0,∀N < ∞.

That is, ω̂ is a lower bound for ω∗ over all φ and N . In fact, it is the largest possible lower bound.

Note that t̂ is similarly an upper bound for t∗, which by Proposition 1 must lie below E[x̃] = 0. We

therefore also have

t∗ ≤ t̂ < 0 ∀φ ≥ 0,∀N < ∞.

Because ω∗ and t∗ are informationally equivalent, we may conduct our investigation using either

variable. We therefore rewrite Proposition 1 in terms of disclosure frequency, instead of a disclosure

threshold.

Proposition 2. There exists a unique and non-trivial subgame-perfect Nash equilibrium, in which

every firm discloses its highest observations with a common disclosure frequency ω∗ defined implic-

itly by

F−1(1 − ω∗) + φ(1 − pω∗)N−1 =
p

1 − pω∗

∫ 1

ω∗

F−1(1 − Ω) dΩ. (3)

Furthermore, ω∗ > ω̂.

Like Proposition 1, this proposition defines the equilibrium frequency ω∗ by an indifference

between disclosure and non-disclosure for a firm that observes the threshold value, x̃ = t(ω∗).

Proposition 3. Equilibrium disclosure frequency is:

(i) decreasing in the number of competing firms, N .

(ii) increasing in the prize value, φ.

Further, as N → ∞, ω∗ converges to ω̂.

Proposition 3(i) is the simplest possible statement of our main result. When firms disclose

competitively to win positive attention, increased competition reduces disclosure. This defies the

general economic intuition that tightening competition drives firms to give up their small advantages
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in the interest of providing a competitive product. Rather, increasing competition drives firms to

hoard their informational advantage over investors. The result has immediate application in the

financial sector, where disclosure is critical and where top-performing firms enjoy large rewards.

Mathematically, the cause of the competition effect is straightforward. As more firms enter

the market, each firm’s chance of making the highest disclosure diminishes. With it, their chances

of receiving positive attention from their disclosure decreases. Since the disclosure decision is a

trade-off between the desire to win the prize and the desire to conceal bad signals, additional firm

entry tips the balance in favor of concealing. In the sections that follow, we will show this effect to

be robust to more sophisticated model specifications.

Proposition 3(ii) states simply that firms will be more inclined to disclose when the prize they

can win is large. Again, a larger prize tips the balance between the competing desires to pool and

to compete openly for positive investor attention. This concept is also robust to our alternative

model specifications.

Finally, according to Proposition 3, once the market for attention becomes perfectly competi-

tive, equilibrium disclosure is minimized. Moreover, the frequency with which firms disclose their

information approaches that when there is no prize in the market whatsoever. Therefore, perfect

competition induces firms to retain the maximum degree of asymmetric information and market

transparency is minimized.

The comparative statics in p turn out to be trickier. Jung and Kwon (1988) consider the special

case where N = 1 and φ = 0, and find disclosure to be strictly increasing in p. We are able to

confirm this result by computing our comparative statics with φ = 0. But when there is a prize,

the situation becomes more complicated.

Hypothetically, if p increases and firms fail to adjust their disclosure strategies, there would be

two sources of change in firm utility. First, the increase in asymmetric information would increase

the Bayesian probability of a firm having inside information. Rational investors would respond by

reducing their assessment uC of pooling firms. Second, the increase in p means competing firms

are more likely to be informed. Since being informed is a prerequisite to disclosing, the increase in

p makes any given disclosing firm less likely to win the prize by default. Mathematically, a higher

p decreases Wj(x), which implies a lower expected utility of disclosure.

These two effects of increased p work against each other. To determine whether ω∗ will increase

or decrease, we need to know which of these effect impact firm utility more. If the reduction in

uC(ω∗) is larger than the reduction in uD(ω∗), then disclosure becomes more appealing. Firms

will then respond to an increase in p by disclosing more frequently. Conversely, if the reduction in
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uD(ω∗) dominates, then firms respond with less frequent disclosure.

If the prize value φ is small or zero, then the reduction in Wj(x) is unimportant, so the reduction

in uC(ω∗) dominates, and equilibrium disclosure increases. This echoes the Jung and Kwon (1988)

result. The same result follows when N is very large, in which case the probability of winning the

prize is low from the outset. In contrast, when φ is large and N is modest, the reduction in Wj(x)

is critical. The second effect dominates, so overall the incentive to disclose is reduced more than

the incentive to pool. Consequently, firms pool more often, reducing the equilibrium disclosure

frequency.

3.2 Generalized Prize Structure

We now show that competition’s effect of reducing disclosure is robust to alternative model spec-

ifications. Because the probability of winning φ declines exponentially with firm entry, the effect

tends to trump other simultaneous considerations, especially when N is large. Neither multiple

prizes nor prizes that decrease with competition alter this result. Prizes that grow with N can

change things, but only for small N or for prizes that (rather implausibly) grow exponentially ad

infinitum.

3.2.1 Multiple Prizes

Allowing only a single firm to win the prize φ has simplified our analysis, but it seems reasonable

for the second-highest discloser to receive some positive investor attention as well. Perhaps the top

ten firms all deserve some sort of status prize.

There are situations where having a single prize makes sense. In industries with natural

monopoly, or where the government awards a single contract, firms like Microsoft and Raytheon

might be entitled to such such a winner-take-all prize. In such fields the runners-up receive little if

any reward from their second-place, and a single-prize model is best.

But a more egalitarian prize structure is sensible if firms are limited by capacity or distribution

constraints. A single grocery store cannot service the entire state, regardless of how acclaimed its

fresh produce may be. In such cases, some prize should be reserved for the firms with slightly less

impressive disclosures. In what follows, we consider that a finite number of prizes K are awarded

to the top firms. In Appendix B we show that the analysis remains robust to considering prizes

awarded by percentile.

Definition 6. A disclosure game with a progressive prize structure is one in which the firms

that make the K highest disclosures each win a prize. The firm that makes the kth highest disclosure
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wins φk. We require the prizes to be positive and strictly monotonic,

φ1 > φ2 > . . . > φK > 0.

Compared to a model with a single prize of φ = φ1, the addition of prizes for runners-up

naturally induces greater disclosure. But although the change to a progressive prize structure may

increases disclosure for any particular N , our central result remains unchanged:

Proposition 4. Under any particular progressive prize structure, equilibrium disclosure frequency

strictly decreases as competition increases. That is, ω∗
N+1 < ω∗

N for any N .

This result justifies our simplification in working with a single prize φ. Although additional

prizes may change the quantitative predictions of equilibrium disclosure, the qualitative comparative

statics remain unchanged. The chance of winning a lesser prize decreases with competition just as

the chance of winning a single prize does. Competition therefore reduces disclosure in this setup

as well.

3.2.2 Increasing/Decreasing Prize Values

A further objection to our model might be that we constrain the prize value to remain constant.

One reasonable alternative is to allow the prize value to vary with N . Indeed, a reasonable case

might be made for either increasing or decreasing prize values.

Prize value might decrease when additional firms enter because investor attention is diluted over

a larger population of firms. More commonly, though, the prize might shrink because of increasing

competition for a scarce resource. For example, as competition for bank financing, supplier credit,

or labor resources increases, the relative bargaining power of these residual claimants grows, thereby

lowering the value that the top firm gets when winning the competition.

In response to this argument, we note simply that a prize that decreases in N only augments

our result. If the addition of further competitors causes an exogenous reduction of prize value

(i.e., lower φ), then equilibrium disclosure falls even faster then if the prize remained constant.

The argument that prizes should increase with competition is a more challenging one. Such

a case can be made when disclosures are easy to compare, and when choosing the very best firm

has high value to potential clients and investors. One might argue that investment funds fit this

description. A single fund can accommodate large increases in the amount of money it manages,

and there is very little reason to be content with the second best fund (net of fees, at least). If

potential investors believe that the disclosed information is a strong predictor of future performance
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(e.g., Berk and Green, 2004), then being the best in a large field of competitors may bring a larger

prize than being the best in a small field.

We concede that a continuously increasing prize value can overcome the effect of competition, at

least when N is small. But the following proposition shows that unless the prize grows exponentially

by a factor of at least 1/(1 − pω̂), disclosure will eventually decrease once N reaches some critical

value.

Proposition 5. If, under the non-competitive model with a variable prize φN ,

limN→∞
φN+1

φN
<

1

1 − pω̂
, (4)

then there exists some N ∈ R such that N > N implies that ω∗
N+1 < ω∗

N .

Specifically, consider the case in which prize value per firm remains constant:

φN ≡ Nφ1

In this case,

lim
N→∞

φN+1

φN
= 1 <

1

1 − pω̂
,

so the condition in (4) is satisfied, and disclosure decreases with competition for large N .

Intuitively, the chance of winning the prize declines exponentially in N , so unless the prize

grows forever at the same exponential rate, the expected winnings will eventually decline in N .

One must ask, however, where a prize that increases exponentially with firm entry would come

from. The value of high status may well increase exponentially as the number of competing firms

increases from, say N = 1 to N ′ = 10. But it is difficult to believe the same exponential increase

could continue from N = 10 to N ′ = 50. We conjecture that exponentially increasing status prizes

are uncommon at best, and may never occur in industries with a large number of firms.

3.3 Implications for Regulation

In most markets, transparency and truthful disclosure increase welfare for several reasons. Disclo-

sure improves explicit information cost savings and allows for better risk sharing (Diamond, 1985).

Disclosure also improves the allocation and use of scarce resources because informed trading leads

to price efficiency (Fishman and Hagerty, 1989). Finally, transparency and disclosure make tradable

assets more liquid because of decreased adverse selection in the market (Diamond and Verrecchia,

1991).
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From the results presented so far, it is easy to appreciate that competition for attention may

make markets less transparent, which can lower welfare through these mechanisms. This is espe-

cially true in settings where such competition resembles a tournament. For example, our analysis

predicts that in the mutual fund market, as more firms compete for recognition (e.g., Morningstar

ratings), fewer funds will make discretionary disclosure and may even attempt to reduce the clarity

of their fund attributes (e.g., Carlin, 2009). This may make it harder for retail investors to make

optimal initial allocations or rebalance their investments, and may even lead to decreased market

participation (Carlin and Manso, 2010).

It is important to note that our results here are not special because we build on the models

of Dye (1985) and Jung and Kwon (1988). Indeed, other formulations could be used to generate

similar findings. For example, consider the fixed cost of disclosing as in Verrecchia (1983). As the

benefit to competing for the prize drops with competition, so would the incentive to disclose. That

is, in a competitive market firms would be less willing to pay a cost to reveal private information.

As such, we view our results with sufficient generality as they do not depend on the particular

formulation we use.

Our results, then, should give policy makers pause when relying on competitive forces to induce

market transparency. Especially, in settings that resemble a tournament, competition may make

transparency worse, which may cause a decline in welfare. Clearly, while we do not wish to portray

this finding as a tautology—indeed, there exist some settings in which competition does induce

firms to reveal private information—it does suggest that market forces alone are often insufficient

to maximize welfare in the market. This emphasizes the idea that regulation likely has a role in

financial markets.

4 Disclosure Under Product Market Competition

Our base model is most appropriate for firms that compete for the prize only indirectly. That

is, it models the competition for φ between firms in different industries, such as Facebook and

Google. Although such firms don’t compete directly for customers or revenue, they both vie for

the same status-based prize: being seen as the premiere internet destination. The base model is

less appropriate when comparing, say, Microsoft and Apple, which compete directly in the product

market, as well as for attention through their disclosures.

In this section, we present an alternative model that better characterizes the latter case. That

is, we suppose that firms compete for customers as well as for positive attention from investors.
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The fundamental aspect of competition relevant here is that firm revenue decreases with the entry

of additional firms. Accordingly, signals that affect firm value have a smaller absolute impact, even

if they alter firm value by the same fraction. For example, an internal audit that reveals an increase

in efficiency has a greater absolute effect if it happens in a firm with high revenue and market value.

4.1 Simple Product Market Competition

To capture this effect simply, we model product market competition by using a distribution of value

signals that becomes compressed with the entry of additional firms. When N firms compete in the

product market as well as for investor attention, we exchange the original distribution of signals

x ∼ F for a compressed distribution xN ∼ FN . Specifically, whenever a firm would have drawn a

signal x in the original model, they instead draw a scaled-down event x/N in the new model.

Formally, we write the new distribution as

FN (x) ≡ F (Nx).

An increase in N has the effect of “squishing” the distribution of news events while leaving the

support unchanged. If x = $10k had been a 90th-percentile result with N = 5, x = $1k would be

the new 90th-percentile with N = 50. Increasing N scales down expectations while preserving the

concavity and any other peculiarities of the value distribution. We refer to this as “equal shares

competition” for earnings.

We wish to stress that this is not intended as a realistic model of competition. A plethora

of microeconomic papers have dealt with such issues before us, so we initially gloss over other

aspects of pricing, capital, and entry costs. Our goal is simply to show how the value-scaling effect

of competition affects disclosure, using the simplest model that captures the relevant effect. In

Section 4.2, though, we consider more general models of competition, and show that our general

result holds for most plausible models of competition and revenue.

We have already addressed the comparative statics of the base model in Section 2. There we

found that as N increases, the incentive to disclose falls as the probability of winning the prize

decreases. This reduces the incentive to disclose. With product market competition potential

revenue declines as well. This reduces the incentive to pool. These two effects oppose one another.

Which effect dominates depends upon the number of competing firms.

For what values of N , then, does competition reduce disclosure? If we were to find the necessary

number of firms to be in the millions, for example, then our point here would only be academic
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and not of practical import. To gain a sense of how many firms is “enough,” consider the following

proposition.

Proposition 1. If N > 1/(pω̂), then ω∗
N+1 < ω∗

N . Further, as N → ∞,

(i) Average per-firm earnings πN converge to zero.

(ii) The equilibrium disclosure frequency ω∗
N converges to ω̂.

To appreciate Proposition 1, suppose the distribution x̃ ∼ F is symmetric, so the fact that

t̂ < E[x] implies that

ω̂ = 1 − F (t̂) > 1 − F (E [x]) = 0.5. (5)

Then the necessary condition becomes N > 2/p. If, for example, firm information arrives with

probability 20%, then N = 2/(20%) = 10 firms is enough competition that further entry will only

reduce disclosure. The higher p is, the fewer firms that are required to assure that further com-

petition decreases disclosure. We conjecture that in many industries (e.g., financial sectors), there

are already enough competitors present so that disclosure responds negatively to additional com-

petition.

Proposition 1 also shows that ω∗
N actually converges to ω̂ under perfect competition, while

industry profits converge to zero. In most Microeconomic models, as in ours, producer surplus falls

to zero under perfect competition. Product prices generally converge to their lowest possible values,

which maximizes social welfare. However, perfect competition in disclosure induces firm to retain

their maximum degree of asymmetric information. Thus, while perfect competition drives product

prices to their most socially efficient, it drives firm prices to their least informationally efficient. To

better appreciate this, we provide the following example.

Example 1. Consider the disclosure game where x̃ is Gaussian with µ = 0, σ = 5 and φ = 1,

p = .3 and product market competition characterized by FN (x) = F (Nx). Figure 1 shows how the

equilibrium disclosure changes with the number of competing firms. Disclosure initially increases,

then decreases asymptotically to the lower limit ω̂ ≈ .556.

Although the above condition of N > 1/(pω̂) is mild enough, the condition is indeed only

sufficient for competition to decrease disclosure, not necessary. Typically, an even smaller number

of firms will suffice. We therefore derive the constraint on N that is both necessary and sufficient

for further entry to reduce disclosure.
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Figure 1: Disclosure game with product market competition. The random variable is x̃ ∼ N(0, 5)
and φ = 1 and p = .3. The product market competition characterized by FN (x) = F (Nx). The
curve shows how the equilibrium disclosure changes with the number of competing firms. Disclosure
initially increases, then decreases asymptotically to the lower limit ω̂ ≈ .556.

Consider the position of a firm j that draws the threshold value, xj = F−1(1 − ω∗). With N

firms competing for the prize, firm j is indifferent between disclosing and herding. If a (N + 1)th

competitor enters, and firm j observes the same xj , how do the firm’s prospects change? Should it

disclose, the entry reduces its expected prize winnings by a factor of (1 − pω) because

φW (ω;N) = φ(1 − pω)N−1 (6)

is exponentially decreasing in N . But the other terms, F−1
N (1 − ω) and uC

N (ω), decline by a factor

of N/(N + 1), as demonstrated in Lemma A2 in the appendix. As N rises, then, this linear effect

diminishes in significance compared to the exponential effect on the expected prize value. Intuitively

it seems that there is a critical number of firms at which additional competition makes herding

more attractive than competing for the prize.

Proposition 6. Disclosure frequency decreases with firm entry if and only if the number of com-

peting firms exceeds some threshold.:

N >
pω∗

N

1 − pω∗
N

≡ N ⇐⇒ ω∗
N+1 < ω∗

N . (7)

Because the ex-ante probability of a firm disclosing is P (Dj |N) = pω∗
N , we may equivalently write

N >
P (Dj |N)

P (Pj |N)
⇐⇒ ω∗

N+1 < ω∗
N . (8)

That is, if N exceeds the threshold specified by the relative probabilities of disclosing and

pooling, then the exponential effect overwhelms the linear effect. So, the net effect of firm entry
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is a reduction in the incentive to disclose, which results in ω∗
N+1 < ω∗

N . Note, however, that the

threshold for N established by Proposition 6 is changing with N . That is, as N increases, ω∗
N varies,

and so the probability ratio in Equation 8 may also increase. Therefore, although this proposition

details the necessary and sufficient condition for N , it does not provide a tighter unconditional

bound than Proposition 1.

4.2 Generalized Product Market Competition

Now let us consider more general models of competition. That is, consider a model in which firm

entry reduces the value of competing firms in a more sophisticated way than the simple 1
N

rule

used in the previous section. Instead of FN (x) ≡ F (Nx), we define the distribution as a function

of N by

FN (x) ≡ F

(

x

αN

)

,

for some decreasing sequence {αN}. Note that if αN decreases rapidly, then firm entry has a

dramatic effect on the revenue of competing firms. If αN decreases more slowly, then the effect is

less pronounced.

Proposition 7. If, under generalized competition with FN (x) = F ( x
αN

),

lim
N→∞

αN+1

αN
> 1 − pω̂,

then there exists some N ∈ R such that N > N ⇒ ω∗
N+1 < ω∗

N

The proof follows nearly the same structure as the proof of Proposition 6. Note, however, that

in this case, we need an additional restriction on the sequence {αN} in order to complete the proof.

Roughly stated, the requirement above is that competition not reduce firm value too “quickly” as

additional firms enter.

Thus, the question becomes one of whether the per-firm revenue can decrease ad-infinitum at

such a rate with the entry of additional firms. Although one can posit such a model, exponentially

decreasing revenue is not a common feature of microeconomic models of competition.

Example 2. Consider a Cournot competition with linear pricing. In such a model, per-firm earn-

ings (and hence firm value) declines as N grows:

πN =
π1

N2
. Therefore αN =

1

N2
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This sequence satisfies the criterion in Proposition 7 because

lim
N→∞

αN+1

αN
= lim

N→∞

N2

(N + 1)2
= 1 > 1 − pω̂,

So under linear Cournot competition, disclosure does indeed decline with competition for large N .

5 Concluding Remarks

The primary result in this paper is that increased competition for attention in financial markets

reduces disclosure in well-populated industries. We show this both in a parsimonious model, as

well as in more sophisticated extensions. The fundamental idea, that firm entry makes attaining

top status more difficult, is straightforward. But the exponential relationship between the number

of competing firms and the probability of winning the prize is mathematically powerful. The result

is a robustness that makes our central result widely generalizable.

As our model shows, we cannot appeal to the Invisible Hand to make markets transparent.

While competition in product markets often has a favorable effect on prices, driving firms to lower

and more socially efficient prices, it can have the opposite effect on disclosure. Specifically, when

a large part of the firm incentive to disclose is due to the prize value of high status, the entry of

additional firms can reduce this incentive. In the asymptotic limit of perfect competition, prices

converge to their most efficient values, but disclosure falls to its least efficient.

Our analysis in this paper can be applied to debates regarding disclosure that have evolved

following the recent financial crisis. Indeed, terms like “sub-prime mortgage” and “collateralized

debt obligation” became household language and massive devaluations made these “toxic assets”

infamous in the eyes of the public. Investors and regulators were eager to know firms’ exposure to

these assets, but many firms did not know their own positions. This maps well onto our model, since

investors could not be certain which firms accurately knew the contents of their balance sheets.

Informed firms could choose either to conceal their asset positions, or to disclose the gruesome

details. Financial markets might have been able to right themselves more quickly had the position

of insured and insuring firms been known to investors. A great deal of media and political attention

has focused on the need to mitigate or avoid such problems in the future.

While past models have focused on the “Lemons Problem” of corporate disclosure, little atten-

tion has been paid to the exogenous benefits of positive investor attention. Essentially, existing

disclosure theory casts disclosures from Wells Fargo in the same light as disclosures from a local

grocer. But in financial sectors, where investor attention and high status make a large contribution
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to firm value, the comparison is simply inappropriate. If firms do in fact take the benefits of status

into account when considering discretionary disclosure, then we can make meaningful predictions

about their actions. Understanding the incentives for disclosure allow meaningful predictions to be

made about its comparative statics. When economic conditions can change rapidly, such an un-

derstanding is critical for investors, managers, and regulators alike. In a crisis, our model predicts

that firms that compete for large prizes will be less inclined to disclose, owing to the increased

asymmetric information. Further, while the increase in uncertainty will certainly affect disclosure,

it is the specifics of the distribution of new information that determine whether a second-order

stochastic shift will lead to greater or lesser transparency.
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Appendix A

Proof of Lemma 1

Suppose firm j observes the event x. In a subgame-perfect Nash equilibrium, the firm must dis-

close optimally given the value of x. That is, it discloses when uD
j (x) > uC

j and conceal x when

uC
j < uD

j (x).

If the firm discloses, then it is eligible to with the prize φ. So its new market valuation is x,

plus an additional φ if no competing firm makes a higher disclosure,

uD
j (x) = x + φWj(x),

where Wj(x) is the probability that no competing firm discloses a higher value than x:

Wj(x) =
∏

k 6=j

(1 − P (Ik)P ((xk > x) ∩ Dj)

=
∏

k 6=j

(

1 − p

∫ ∞

x

σk(z)f(z) dz

)

(A1)

Note that uD
j (x) is differentiable, and therefore continuous. Furthermore, for any x,

uD
j (x) ≤ x + φ and x ≤ uD

j (x)

Evaluating at x = uC
j − φ and x = uC

j , these inequalities yield

uD
j (uC

j − φ) ≤ uC
j and uC

j ≤ uD
j (uC

j ).

So if firm j observes xj = uC
j − φ, then disclosure yields a lower expected utility than uC

j ; and if it

observes xj = uC
j , then disclosure yields a higher expected utility than uC

j . Because uD
j (x) is contin-

uous, the Intermediate Value Theorem assures us there is a potential observation tj ∈ [uC
j − φ, uC

j ]

for which

uD
j (tj) = uC

j . (A2)

This tj is the disclosure threshold for firm j, where the firm is indifferent between disclosing and

pooling. Since uD
j (x) is strictly monotonic in x, we further obtain

x > tj ⇒ uD
j (x) > uC

j

x < tj ⇒ uD
j (x) < uC

j .

The subgame-optimal response of firm j is therefore to disclose any values above the threshold tj

and to conceal any values below, as desired.
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Now to show that tj < 0, we derive the value uC
j that investors assign if the firm conceals its

observation. In a rational expectations equilibrium, the beliefs of the investors with respect to the

strategy must be consistent with the strategy actually used,

uC
j = E[x|Pj ] =

P (Uj)E[x|Uj ] + P (Ij ∩ Cj)E[x|Ij ∩ Cj ]

P (Uj) + P (Ij)P (Cj |Ij)

=
(1 − p) · 0 + pP (x < tj)E[x|x < tj]

(1 − p) + pP (x < tj)

=
pF (tj)

1 − p + pF (tj)
E[x|x < tj] (A3)

<
pF (tj)

1 − p + pF (tj)
E[x] = 0.

∴ uC
j < 0 < uD

j (0). (A4)

Because uD
j (x) is monotonically increasing in x, the threshold tj must be below zero. That is, all

average or better values of x will be disclosed in equilibrium. �

Proof of Lemma 2

Write Equation (A3) as an integral, then apply integration by parts,

uC
j =

p

1 − p + pF (tj)

∫ tj

−∞
xf(x) dx (A5)

=
p

1 − p + pF (tj)

(

[

xF (x)
]tj

−∞
−

∫ tj

−∞
F (x) dx

)

=
p

1 − p + pF (tj)

(

tjF (tj) −

∫ tj

−∞
F (x) dx

)

.

Using this expression, some algebraic manipulation transforms uD
j (tj) = uC

j into

φWj(tj)(1 − p + pF (tj)) = (1 − p)(−tj) − p

∫ tj

−∞
F (x) dx. (A6)

Now suppose for contradiction that a non-symmetric equilibrium exists. That is, suppose an

equilibrium exists in which firms j and k use different thresholds. Without loss of generality, assume

that tk < tj. Equation (A6) holds for firm k as well as for j. Subtracting these yields

φ
(

Wj(tj)(1 − p + pF (tj) − Wk(tk)(1 − p + pF (tk))
)

= (1 − p)(−tj + tk) − p

∫ tj

tk

F (x) dx < 0.

∴ Wj(tj)(1 − p + pF (tj)) < Wk(tk)(1 − p + pF (tk)). (A7)
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But we can obtain a contradiction by deriving the opposite inequality. We simplify Equation (A1)

with the assumption that all firms use threshold strategies, then evaluate at tj :

Wj(tj) =
∏

i6=j

(

1 − p

∫ ∞

tj

σi(z)f(z) dz
)

=
∏

i6=j

(

1 − p + pF
(

max(ti, tj)
)

)

(A8)

=
(

1 − p + pF
(

max(tj, tk)
)

)

∏

i6=j,k

(

1 − p + pF
(

max(ti, tj)
)

)

.

The same holds for firm k, so we obtain

Wk(tk) =
(

1 − p + pF
(

max(tj, tk)
)

)

∏

i6=j,k

(

1 − p + pF
(

max(ti, tk)
)

)

.

Since tj > tk, these equations show that Wj(tj) > Wk(tk). Therefore,

Wj(tj)
(

1 − p + pF (tj)
)

> Wk(tk)
(

1 − p + pF (tk)
)

.

This directly contradicts Equation (A7), so the hypothesized asymmetric equilibrium cannot exist.

�

Proof of Lemma 3

Suppose for contradiction there exist two distinct equilibrium thresholds t∗ and t∗∗. Without loss

of generality, assume t∗ < t∗∗. Equation (A6) holds at both thresholds. Subtracting, we obtain

φ
(

W (t∗)
(

1 − p + pF (t∗)
)

− W (t∗∗)
(

1 − p + pF (t∗∗)
)

)

= (1 − p)(t∗∗ − t∗) + p

∫ t∗

t∗∗
F (x) dx < 0.

∴ W (t∗)
(

1 − p + pF (t∗)
)

< W (t∗∗)
(

1 − p + pF (t∗∗)
)

. (A9)

We now obtain a contraction by deriving the opposite inequality. Since strategies are symmetric,

ti = tj in Equation (A8), so the equation simplifies to

W (t∗) =
(

1 − p + pF (t∗)
)N−1

. (A10)

And the same holds for the other equilibrium threshold,

W (t∗∗) =
(

1 − p + pF (t∗∗)
)N−1

.

Because t∗ > t∗∗, these equations show that W (t∗) > W (t∗∗). Therefore,

W (t∗)
(

1 − p + pF (t∗)
)

> W (t∗∗)
(

1 − p + pF (t∗∗)
)

,

directly contradicting Equation (A9). By this contradiction, we conclude that a second distinct

equilibrium threshold t∗∗ cannot exist. �
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Proof of Proposition 1

Taken together, Lemmas 1, 2 and 3 show that all firms use a common and unique disclosure

threshold defined implicitly by

uD
j (t∗) = uC(t∗).

We expand this equivalence using uD
j (t∗) = t∗ + φW (t∗), Equation (A10), and Equation (A5) to

obtain the desired expression

t∗ + φ
(

1 − p + pF (t∗)
)N−1

=
p

1 − p + pF (t∗)

∫ t∗

−∞
xf(x) dx.

Finally, we find t∗ < 0 by the same argument that shows tj < 0 in Lemma 1. �

Proof of Proposition 2

Consider the integral in the right hand side of Equation (1). The substitution Ω = 1−F (x) yields

f(x) dx = − dΩ, x = F−1(1 − Ω) = t(Ω).

Therefore,
∫ t∗

−∞
xf(x) dx =

∫ 1−F (t∗)

1−F (−∞)
F−1(1 − Ω)(− dΩ) = −

∫ ω∗

1
F−1(1 − Ω) dΩ =

∫ 1

ω∗

F−1(1 − Ω) dΩ.

Equation (1) therefore becomes the desired expression,

F−1(1 − ω∗) + φ(1 − pω∗)N−1 =
p

1 − pω∗

∫ 1

ω∗

F−1(1 − Ω) dΩ.

�

Definition A1. For any disclosure frequency ω, define the corresponding disclosure threshold by

t(ω). That is,

t(ω) ≡ F−1(1 − ω)

Definition A2. Define B(ω) as the benefit of disclosing the threshold value relative to concealing,

assuming that all firms disclose with frequency ω,

B(ω) ≡ uD(ω) − uC(ω),

where

uD(ω) ≡ E[uD
j |xj = t(ω)]

uC(ω) ≡ E[xj |Pj , tj = t(ω)].
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Note that this definition does not require that ω be the equilibrium frequency, which we denote

distinctly by ω∗.

Lemma A1. The equilibrium disclosure frequency is defined implicitly by

B(ω∗) = 0.

Further, for any ω > ω̂,

(i) ∂B
∂ω

< 0

(ii) B(ω) > 0 ⇒ ω < ω∗

(iii) B(ω) < 0 ⇒ ω > ω∗

Proof of Lemma A1

Using Definitions A1 and A2, we can write B(ω) as

B(ω) = t(ω) + φ(1 − pω)N−1 −
p

1 − pω

∫ 1

Ω
t(Ω) dΩ.

Comparing this to Corollary 2 reveals that B(ω∗) = 0 is algebraically equivalent to Equation 3. So

B(ω∗) defines the equilibrium disclosure frequency, as desired.

(i) Note that

∂

∂ω
t(ω) =

∂

∂ω
F−1(1 − ω) =

−1

f(F−1(1 − ω))
< 0,

so the first term is decreasing in ω. Clearly the second term is also decreasing in ω. In the

third term,

∂

∂ω

(

−
p
∫ 1
ω

t(Ω) dΩ

1 − pω

)

=
−p2

∫ 1
ω

t(Ω) d(Ω) + pt(ω)(1 − pω)

(1 − pω)2

and the integrand t(Ω) is decreasing in Ω, so

. . . <
−p2(1 − ω)t(ω) + pt(ω)(1 − pω)

(1 − pω)2

=
−p2 + p2ω + p − p2ω

(1 − pω)2
t(ω)

=
p(1 − p)

(1 − pω)2
t(ω).

By our assumption that ω > ω̂, we know that t(ω) < t̂ < E[x̃] = 0, and so the derivative of

the third term is also negative. Thus, B(ω) is strictly decreasing in ω for all ω > ω̂.
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(ii) Since ω∗ > ω̂, ∂B/∂ω < 0. So because B(ω∗) = 0, we have

B(ω) = B(ω) − B(ω∗) =

∫ ω

ω∗

∂B(Ω)

∂Ω
dΩ < 0.

The contrapositive of this statement is the desired expression,

B(ω) > 0 ⇒ ω < ω∗.

(iii) Proven as in part (ii).

�

Proof of Proposition 3

For clarity, let us write B(ω) ≡ uD(ω) − uC(ω) explicitly in terms of the model parameters:

B(ω, φ, p,N) = t(ω) + φ(1 − pω)N−1 −
p

1 − pω

∫ 1

ω

t(Ω) dΩ.

For any set of parameter values (φ, p,N), the equilibrium disclosure frequency is uniquely defined by

B(ω∗, φ, p,N) = 0. Because B is differentiable with respect to each of its parameters, the Implicit

Function Theorem tells us how the equilibrium frequency changes with the parameter values. For

each parameter θ ∈ {φ, p,N}, the IFT gives

∂ω∗

∂θ
≡

∂ω

∂θ

∣

∣

∣

∣

B=0

= −
∂B
∂θ

∣

∣

B=0
∂B
∂ω

∣

∣

B=0

.

Lemma A1 tells us that ∂B
∂ω

< 0 for all ω > ω̂. Differentiating with respect to the other model

parameters yields

∂B

∂φ
= (1 − pω)N−1 > 0

∂B

∂N
= φ(1 − pω)N−1 ln(1 − pω) < 0

∂B

∂p
= −ωφ(N − 1)(1 − pω)N−2 −

1

(1 − pω)2

∫ 1

ω

t(Ω) dΩ.

Note that
∫ 1
ω

t(Ω) dΩ < 0 is the expected value of x for a non-disclosing firm, which is negative.

So the second term of ∂B
∂p

is positive, while the first is negative. Which term dominates depends

on the parameter values.

Applying the Implicit Function Theorem yields the desired comparative statics:

∂B

∂φ
> 0 so

∂ω∗

∂φ
= −

∂B/∂φ

∂B/∂ω
> 0,

∂B

∂N
< 0 so

∂ω∗

∂N
= −

∂B/∂N

∂B/∂ω
> 0.
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As shown already, ω is decreasing in N . Since any monotonic bounded sequence of real numbers

converges9, and since we know ω∗
N > ω̂ for all N , ω∗

N converges as N → ∞. Let us refer to its limit

as

ω∞ = lim
N→∞

ω∗ (A11)

The function B(·) is continuous in ω∗
N and N , and BN (ω∗

N ) = 0 for all N . The sequence

{BN (ω∗
N )} therefore converges to zero as well:

0 = lim
N→∞

BN (ω∗
N ) (A12)

= lim
N→∞

x(ω∗
N ) + lim

N→∞
φ(1 − pω∗

N )N − lim
N→∞

p
∫ 1
ω∗

N
x(Ω) dΩ

1 − pω∗
N

(A13)

= x(ω∞) + 0 −
p
∫ 1
ω∞

x(Ω) dΩ

1 − pω∞
(A14)

That is,

x(ω∞) =
p
∫ 1
ω∞

x(Ω) dΩ

1 − pω∞
, (A15)

and therefore ω∞ = ω̂. �

Proof of Proposition 4

Define a firm’s “rank” according to the firms place among realized disclosures by competing firms.

That is, if there are k − 1 higher disclosures, the firm has rank k and receives φk. A disclosing

firm’s rank is therefore a stochastic function of its disclosed value. We define r̃(ω) accordingly:

r̃(ω) = rank of a firm that discloses x = F−1(1 − ω).

Using this notation, we would write the expected utility of disclosure in the base model as

uD(ω) = t(ω) + φW (ω)

= t(ω) + φP
(

r̃(ω) = 1
)

. (Single Prize φ)

With prizes for the top K firms, the expected payout becomes

uD(ω) = t(ω) +
K
∑

k=1

φkP
(

r̃(ω) = k
)

. (Multiple Prizes {φk})

We wish to show that this value is decreasing in N . Unfortunately, we cannot claim that P (r̃(ω) = k)

is decreasing in N without some further restrictions. Although the chance of having at least the

9Rudin, Theorem 3.14, “Principles of Mathematical Analysis.”
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kth-highest disclosure is strictly decreasing in N , the chance of having exactly the kth-highest dis-

closure may be increasing in N , at least for certain parameter values. We therefore rearrange the

sum in order to write it in terms we know to be unconditionally decreasing in N ,

uD(ω) = t(ω) +

K
∑

k=1

φk

(

P
(

r̃(ω) ≤ k
)

− P
(

r̃(ω) ≤ k − 1
)

)

= t(ω) +
K
∑

k=1

(φk − φk+1)P
(

r̃(ω) ≤ k
)

.

Note that P
(

r̃(ω) ≤ k
)

, the probability of having at least the kth-highest disclosure, is strictly

decreasing in N . Since prizes are strictly decreasing in rank, we also have (φk−φk+1) > 0. Therefore,

uD(ω) is unconditionally decreasing in N . We conclude that disclosure frequency decreases in N

under a progressive prize structure. �

Proof of Proposition 5

We consider the base model with prizes φN that increase with N according to some sequence {φN}.

Then the benefit of disclosing relative to concealing is a function of N ,

BN (ω) = t(ω) + φN (1 − pω)N−1 − uC(ω).

The same holds for (N + 1) firms, so we can subtract the two equations to obtain

BN+1(ω) − BN (ω) = φN+1(1 − pω)N − φN (1 − pω)N−1

= φN (1 − pω)N−1

(

φN+1

φN
(1 − pω) − 1

)

. (A16)

Under our assumption that limN→∞
φN+1

φN
< 1

1−pω̂
, there exists some N such that

N > N ⇒
φN+1

φN
<

1

1 − pω̂
,

so evaluating Equation (A16) at ω = ω∗
N for any N > N yields

BN+1(ω
∗
N ) − 0 < φN (1 − pω∗

N)N−1

(

φN+1

φN
(1 − pω̂) − 1

)

< 0.

By Lemma A1, we obtain the desired ω∗
N+1 < ω∗

N . �

Lemma A2. Under equal shares competition, the signal that corresponds to a given probability ω,

previously written as x(ω) becomes

tN (ω) =
1

N
x(ω). (A17)
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Similarly,

uC
N (ω) =

1

N
uC(ω) (A18)

uD
N (ω) =

1

N
x(ω) + φ(1 − pω)N−1. (A19)

Proof of Lemma A2

Under the definition,

FN (x) = F (Nx),

we find, for any p ∈ [0, 1], that

p = FN

(

F−1
N (p)

)

≡ F
(

NF−1
N (p)

)

,

which can be rearranged to

F−1
N (p) =

1

N
F−1(p),

so for p = 1 − ω, we have

F−1
N (1 − ω) =

1

N
F−1(1 − ω).

∴ tN (ω) =
1

N
t(ω).

Using this first result, the others follow quickly

uD
N (ω) ≡ tN (ω) + φ(1 − pω)N−1

=
1

N
t(ω) + φ(1 − pω)N−1

uC
N (ω) ≡

p

1 − pω

∫ 1

ω

tN (Ω) dΩ

=
p

1 − pω

∫ 1

ω

t(Ω)

N
dΩ

=
1

N
uC(ω).

(i) This follows immediately from our definition FN (x) ≡ F (Nx). As N → ∞, FN (x) → F (0)

for every x ∈ R.
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(ii) For any N > 1
pω̂

, Proposition 1 tells us that ω∗
N is decreasing in N . Since any monotonic

bounded sequence of real numbers converges10, and since we know ω∗
N > ω̂ for all N , ω∗

N

converges. Let us refer to its limit as

ω∞ = lim
N→∞

ω∗
N (A20)

The function B(·) is continuous in ω∗
N and N , and BN (ω∗

N ) = 0 for all N . The sequence

{BN (ω∗
N )} therefore converges to zero as well:

0 = lim
N→∞

BN (ω∗
N ) (A21)

= lim
N→∞

x(ω∗
N ) + lim

N→∞
φ(1 − pω∗

N)N − lim
N→∞

p
∫ 1
ω∗

N
x(Ω) dΩ

1 − pω∗
N

(A22)

= x(ω∞) + 0 −
p
∫ 1
ω∞

x(Ω) dΩ

1 − pω∞
(A23)

That is,

x(ω∞) =
p
∫ 1
ω∞

x(Ω) dΩ

1 − pω∞
, (A24)

and therefore ω∞ = ω̂.

�

Proof of Proposition 1

N ote: This proof calls upon Proposition 6, which comes next in the appendix. Clearly P (Pj |N) < 1,

so

NP (Dj |N) > 1 ⇒ NP (Dj |N) > P (Pj |N),

which implies ω∗
N+1 < ω∗

N by Proposition 6. We can achieve this inequality by a sufficient assump-

tion,

N >
1

pω̂
⇒ NP (Dj |N) > 1.

�

Proof of Proposition 6

Applying Proposition A2 to the definition of B(ω) under equal shares competition yields

BN (ω) = uD
N (ω) − uC

N (ω)

=
1

N
t(ω) + φ(1 − pω)N−1 −

1

N
uC(ω).

∴ NBN (ω) = t(ω) + Nφ(1 − pω)N−1 − uC(ω). (A25)

10Rudin, Theorem 3.14, “Principles of Mathematical Analysis.”
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The same holds for N + 1. That is,

(N + 1)BN+1(ω) = t(ω) + (N + 1)φ(1 − pω)N − uC(ω). (A26)

Subtracting Equation (A25) from Equation (A26) yields

(N + 1)BN+1(ω) − NBN (ω) = (N + 1)φ(1 − pω)N − Nφ(1 − pω)N−1

= φ(1 − pω)N−1
(

(N + 1)(1 − pω) − N
)

= φ(1 − pω)N−1
(

N + 1 − Npω − pω − N
)

= φ(1 − pω)N−1
(

(1 − pω) − Npω
)

. (A27)

If we at ω = ω∗
N , then BN (ω∗

N ) = 0, so Equation (A27) reduces to

BN+1(ω
∗
N ) =

φ(1 − pω∗
N)N−1

N + 1

(

(1 − pω∗
N ) − Npω∗

N

)

.

Focusing on the sign of the term in parenthesis, we find

N >
1 − pω∗

N

pω∗
N

⇒ BN+1(ω
∗
N ) < 0 ⇒ ω∗

N+1 < ω∗
N , (A28)

where the second implication is due to Lemma A1. That is, disclosure at the frequency ω∗
N gives

B < 0, so the marginal disclosure loses value. The equilibrium frequency ω∗
N+1 must be lower.

This shows that the entry of the (N + 1)th firm reduces disclosure when N is large. When N is

smaller than the threshold, the inequalities in Equation (A28) are reversed, as shown by the same

logic. This completes the equivalence.

Finally, note that the ex ante probability of a firm j disclosing is the joint probability that it

observes xj and that xj exceeds its threshold. Given the number of competing firms, this means

P (Dj |N) = pω∗
N and P (Pj |N) = 1 − pω∗

N ,

so the same equivalency holds using the threshold N >
P (Pj |N)
P (Dj |N) , as desired. �

Proof of Proposition 7

Under generalized competition with N firms, we have

BN (ω) = tN (ω) + φ(1 − pω)N−1 − uC
N (ω)

= αN t(ω) + φ(1 − pω)N−1 − αNuC(ω).

∴
1

αN
BN (ω) = t(ω) +

1

αN
φ(1 − pω)N−1 − uC(ω).
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The same holds for N + 1, so we can subtract the two equations to obtain

1

αN+1
BN+1(ω) −

1

αN
BN (ω) =

1

αN+1
φ(1 − pω)N −

1

αN
φ(1 − pω)N−1

=
1

αN+1
φ(1 − pω)N−1

(

(1 − pω) −
αN+1

αN

)

.

Evaluating at ω∗
N and rearranging terms yields

BN+1(ω
∗
N ) = (1 − pω∗

N )N−1φ

(

(1 − pω∗
N) −

αN+1

αN

)

.

Under our assumption that limN→∞
αN+1

αN
> 1 − pω̂, there exists some N such that

N > N ⇒
αN+1

αN
> 1 − pω̂.

So for N > N , we obtain

BN+1(ω
∗
N ) = (1 − pω∗

N)N−1φ

(

(1 − pω∗
N ) −

αN+1

αN

)

< (1 − pω∗
N)N−1φ

(

(1 − pω∗
N) − (1 − pω̂)

)

= (1 − pω∗
N)N−1φ (ω̂ − ω∗

N ) .

∴ BN+1(ω
∗
N ) < 0.

By Lemma A1, we conclude that ω∗
N+1 < ω∗

N , as desired. �
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Appendix B

In this appendix, we present several extensions and alternative model formulations to further

show the robustness of our results under perfect competition. First, we consider endogenous prizes

and prizes that are based on firm percentile. Following that, we explore a sequential disclosure

model in which firms take turns making disclosures, based on what others have done previously.

Finally, we conclude the appendix with a numerical analysis of the effect of volatility on disclosure.

B.1 Endogenous Prizes

Our analysis in the body of the paper assumes that the prize is given exogenously. One might ask

whether the analysis is robust to considering that residual claimants (e.g., lenders, suppliers, or

labor) set an industry prize optimally to maximize profits. While a full treatment of this is outside

the scope of this paper, we present the following two-stage game to show that perfect competition

still leads to decreased disclosure when endogenous prizes are awarded.

Let us consider that the residual claimant’s goal in awarding the prize is to efficiently allocate

a scarce resource (e.g., loans, supplies, labor). Specifically, we consider that the residual claimant

can do business with at most j < N firms and wishes to screen potential trading partners via the

disclosure process. For any firm that exceeds a threshold x, the firm is said to be sufficiently solid

to be a trading partner. Note that in equilibrium, x < t or vice versa.

We denote the benefit to paying a cost φ in screening business partners as B(φ,N), which also

depends on the number of firms in the market. The game takes place in two stages. At T = 1, the

residual claimant solves the following problem

max
φ∈[0,φ]

B(φ,N) − φ, (B1)

which is equivalent to maximizing their economic welfare subject to some bound on the magnitude

of the prize they can award (e.g., cost of funds, cost of supplies, reservation wage). At T = 2, the

rest of the disclosure game takes place as in Section 2 of the paper.

The following proposition characterizes the solution to this problem under perfect competition.

Proposition B1. As N → ∞, ω∗ → ω̂.

Proof. Consider that the residual claimant wishes to screen firms according to a particular x < 0.

By construction, the probability that x̃ > 0 for a particular firm is ω. Define the Mj to be the

probability that at least j firms out of the total N draw a value of at least x̃ = 0. As N → ∞,

Mj → 1. This implies that B(φ,N) → 0 as N → ∞. This, in turn, implies that when the residual
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claimant solves (B1), φ∗ → 0 as N → ∞. Hence, as N → ∞, ω∗
N → ω̂. Finally, the same logic

holds for x > 0. �

The intuition for Proposition B1 is as follows. As the number of firms rises to a large number,

the probability that the residual claimant can identify j firms that exceed any particular threshold

x approaches one. In particular, the probability that the residual claimant can identify j firms

whose disclosure exceeds x = 0 approaches one. Therefore, the need for a prize decreases when

there are more firms present in the market. That is, since B(φ,N) becomes small for large N , the

solution to (B1) φ∗ diminishes in size. According to our previous analysis in Proposition 3, this

implies that disclosure frequency is minimized (i.e., ω∗ → ω̂).

It is fair to point out that this result does depend on the absence of product market competition,

which we analyzed in Section 4. It also depends on the assumption that there is a representative

residual claimant (as opposed to a strategic interaction among claimants). Notwithstanding this,

though, it is clear that our primary result can remain robust even when considering at least one

reasonable setting in which the prize is set optimally and endogenously.

B.2 Prizes based on percentiles

Rather than awarding a fixed number of prizes, we can instead use a firm’s relative ranking. For

example, each firm in the top 20% of the N firms could be awarded a prize. That is, the N/5

highest disclosures each receive an additional φ. We again find that disclosure decreases to its

minimum possible frequency in the limit of perfect competition.

This variation introduces some complications that prevent us from showing the claim from

the main model, “equilibrium disclosure ω∗
N is strictly decreasing in N .” Because the number of

prizes is discrete, it cannot increase in exact proportion with N . When 20% of the firms receive

a prize, for example, a single prize is awarded when N = 5, 6, 7, 8, 9, and we numerically find that

ω∗
5 > ω∗

6 > . . . > ω∗
9. But for N = 10 we suddenly award a second prize, which can mean that

ω∗
9 < ω∗

10. We must therefore content ourselves with the perfect competition limit result below.

Proposition B2. Suppose that for any N , a fixed fraction λ of the competing firms win the prize

φ. Further, suppose that λ ≤ pω̂. Then disclosure converges to its lower bound in the perfectly

competitive limit:

ω∗
N −→ ω̂ as N → ∞.

Proof. Let t∗N be the equilibrium disclosure threshold with N firms. Suppose that a firm j observes

and discloses exactly xj = t∗N . Then the probability q that any other given opponent observes a
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higher value is given by

q ≡ p (1 − F (t∗N )) = pω∗
N .

Any such realization above the threshold will certainly be disclosed, so the number of firms who

disclose values higher than t∗N is a binomial random variable S̃ ∼ B(N, q). The probability that

firm j wins a prize is bounded by the probability that fewer than λN other firms disclose values

higher than t̂. That is,

Wj(t
∗
N ) ≤ P

(

S̃ ≤ λN − 1
)

.

This probability is the weight of a left tail of the binomial distribution of S̃. We may bound it using

Hoeffding’s inequality (Hoeffding, 1963), which states that the sum s̃, of any N random variables,

has the probabilistic bound

P (|s̃ − E [s̃]| ≥ c) ≤ 2 exp

(

−2c2

∑N
i=1(bi − ai)2

)

(B2)

where the ith random variable is contained by the interval [ai, bi]. In our application, S̃ is the sum

of (N − 1) identically-distributed Bernoulli trials with success probability q, so

ai = 0, bi = 1, E
[

S̃
]

= q(N − 1).

We first transform our probability into the same form as Hoeffding’s inequality,

Wj (t∗N ) = P
(

S̃ ≤ λN − 1
)

= P
(

S̃ − E
[

S̃
]

≤ λN − 1 − q(N − 1)
)

≤ P
(
∣

∣

∣
S̃ − E

[

S̃
]
∣

∣

∣
≥ (q − λ)N − q + 1

)

.

We then can apply the (B2) with c = (q − λ)N − q + 1 to obtain

Wj (t∗N ) ≤ 2 exp

(

−
2 ((q − λ)N − q + 1)2

N

)

. (B3)

Note that firms will always disclose values above t̂, so any equilibrium threshold t∗N must be below

t̂. We therefore have

q = p(1 − F (t∗N )) > p
(

1 − F
(

t̂
))

= pω̂ > λ.

This ensures that as N → ∞, the exponential in (B3) goes to −∞ and the right hand side goes to

zero for any sequence of thresholds {t∗N}. Since firms optimally respond to W = 0 by concealing

all realizations below t̂, the disclosure frequency converges to ω̂, as desired. �
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According to Proposition B2, as the market becomes perfectly competitive, disclosure is mini-

mized. It should be noted that the condition that λ < pω̂ is weak in the sense that it allows for a

large number of firms to receive prizes. If λ = pω̂ when N → ∞, this would mean that all firms that

observed a value above t̂ would receive a prize. Therefore, we limit the fraction of prizes (λ < pω̂)

to keep the analysis realistic and economically interesting.

B.3 Sequential Disclosure

As a further robustness check, consider an alternate model specification in which firms act sequen-

tially instead of simultaneously. Firms are randomly ordered, and each in turn observes its shock

value x̃ with probability p, then chooses whether to disclose.

Since each firm makes a unique, history-dependent decision, we no longer have a single symmet-

ric, deterministic disclosure threshold. Rather, each firm will have a random disclosure threshold

that depends upon the disclosures of the preceding firms and on the number of firms remaining to

act. Let νj be the ex ante probability that the jth firm to act will disclose if they are informed.

The average of these probabilities is the analogue of the disclosure frequency in the main model,

ν̄N =
1

N

N
∑

j=1

νj.

In the perfectly-competitive limit, we can show that every individual jth firm discloses with

frequency ω̂, the minimum possible. We can also show the slightly stronger claim that the average

frequency of disclosure over all N firms converges to the minimum ω̂.

Proposition B3. In sequential equilibrium with N firms,

(i) The ex ante probability that the jth firm discloses converges to the minimum with perfect

competition:

lim
N→∞

νj = ω̂.

(ii) The ex ante probability that a randomly selected informed firm discloses also converges to the

minimum with perfect competition:

lim
N→∞

ν̄N = ω̂.

Proof. By our definition of t̂, any firm with a realization xj > t̂ discloses even if they have no

chance of winning the prize. This establishes a lower bound for both limits:

lim
N→∞

νj ≥ ω̂ and lim
N→∞

ν̄N ≥ ω̂. (B4)
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(i) Suppose firm j discloses a lower value, xj < t̂. If any of the N − j firms yet to act observes

a value above t̂, they will certainly disclose it. The probability that firm j wins the prize is

therefore bounded above by

Wj (xj) ≤ Wj

(

t̂
)

=
(

1 − p
(

1 − F (t̂)
)

)N−j

= (1 − pω̂)N−j .

So as N → ∞, the probability of winning the prize converges to zero. In this limit, so firm

j will optimally conceal any values below t̂, disclosing no more frequently than ω̂. Together

with (B4), this establishes the desired result.

(ii) Again, note that a firm that realizes xj < t̂ will not disclose unless it has a positive probability

of winning the prize. Specifically, it will not disclose if any preceding firm has already disclosed

a value above t̂. That is, the probability of disclosing a value below t̂ cannot possibly be larger

than the probability that no preceding firm i has disclosed xi > t̂. This allows us to place a

very loose upper bound on νj :

νj = P (x̃j < t̂) · P (Dj |xj < t̂) + P
(

Dj |xj > t̂
)

· P (x̃j > t̂)

≤ (1 − ω̂) ·

j−1
∏

i=1

P (Ui or xi < t̂) + ω̂ · 1

= (1 − ω̂)(1 − pω)j−1 + ω̂.

Averaging over all j yields

ν̄N ≤
1

N

N
∑

j=1

(

(1 − ω̂)(1 − pω̂)j−1 + ω̂
)

= (1 − ω̂)
1

N

(

1 − (1 − pω̂)N

1 − (1 − pω̂)

)

+ ω̂

=
1 − ω̂

pω̂

(

1 − (1 − pω̂)N

N

)

+ ω̂.

As N → ∞, the first term vanishes, so limN→∞ ν̄N ≤ ω̂. Together with (B4), this yields the

desired result.

�

B.4 Volatility and Disclosure

We now consider the effect of an exogenous distribution change on disclosure, specifically an increase

in volatility. When volatility suddenly increases, inside information becomes more significant as

larger deviations from past beliefs become possible, and larger swings in firm prices may result.
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We incorporate an increase in volatility into our analysis by examining the effect of a noisier, or

second-order stochastically dominated distribution. Firms and investors realize that they do not

know the relevant facts as precisely as they had believed, so new information acquisitions take on

a greater significance, and larger surprises become more likely. We assume that investors are aware

of the regime change, although the signals firms receive will still be private.

We consider a shift from the prior distribution x̃ ∼ F to a new distribution x̃ ∼ G, where F

stochastically dominates G in second order. Intuitively, the shift from F to G makes rare events

more likely. This increases the informational advantage of firms, since the events they observe are

likely to be more significant, due to the new distribution’s increased variance.

As we have noted before, Jung and Kwon (1988) refine the Dye (1985) model, which is similar to

our model, except that they enforce N = 1 and φ = 0, and they allow a non-zero mean of information

events E[x] 6= 0. In their setting, they show that if F stochastically dominates G in second order,

then t∗G > t∗F . That is, a noisier distribution induces a higher threshold. We show, however, that

this increase in t∗ need not imply an increase in ω∗. That is, because the distribution itself has

changed, the higher disclosure threshold may nevertheless yield a lower disclosure frequency.

Since finding a closed-form solution for the disclosure frequency ranges from difficult to impos-

sible, we offer proof of this assertion in the form of the following numerical examples.

Example 1: More Volatility: Less disclosure

Compare two distributions:

F (x) =
1

1 + e−1000x

G(x) =
− sin(2πx)

2π
+ x + 0.5.

Distribution F (x) has nearly all of its density located around zero. A realization around the

mean is almost a sure bet and firms with that or anything above are quick to disclose. Firms that

do not disclose are those that receive the rare realizations in the left tail.

In a time of increased uncertainty, the distribution could become G(x) instead. This is an

increase in volatility in which the density at the mean shifts to the tails. Note that this distri-

bution has the same mean signal x, but much greater variance. We say that the distribution F

stochastically dominates G in second order.

We determine disclosure behavior numerically for the sample parameter values below. Since

the situations we describe above could occur with or without a prize φ, we present the results in

both cases:

Investors know there are few intermediate realizations under G(x), i.e. that the majority of the

realizations are in the tails. Firms with this knowledge find non-disclosure ideal for low realiza-
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Second−Order Stochastic Dominance CDF : p=0.7 φ=0

  G(X)

  F(X)

  t* for F

  t* for G

Table 1: More Volatility; Less Disclosure

Distribution p φ N t∗ ω∗

F (x) 0.7 0 1 -0.0008 0.6834
G(x) 0.7 0 1 -0.1910 0.5427
F (x) 0.7 0.10 5 -0.0023 0.9072
G(x) 0.7 0.10 5 -0.2050 0.5522

tions, because investors will assign some probability that they are an extremely high valued firm.

Disclosure frequency decreases as a result.

Example 2: More Volatility: More disclosure

Compare two distributions:

F (x) = x + 0.5

G(x) =
sin(4π(x))

4π
+ x + 0.5.

Here we consider a shift from a uniform distribution to one with mass in the middle and the

tails. This represents a situation where the initial uniformly distributed information is trumped

by a larger development that may or may not affect the firm. This might the case if, for example,

investors are uncertain of whether a particular asset is even present on a firm’s balance sheet, and

also uncertain as to the value of the asset itself. The central mode represents the possibility that

the firm does not own the asset, and the tails represent owning the asset and its value being either

high or low.

Graphically, it can be seen that F (x) second-order stochastically dominates G(x). Again,

the disclosure threshold level is certainly lower under distribution G(x). But unlike the previous

example, we show that the change in frequency is higher. The addition of competition for a prize

does not change the result. The results are summarized below.
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  G(X)

  F(X)

  t* for F

  t* for G

Table 2: SOSD Numerical Results
Distribution p φ N t∗ ω∗

F (x) 0.7 0 1 -0.1460 0.6460
G(x) 0.7 0 1 -0.1572 0.7303
F (x) 0.7 0.10 5 -0.1544 0.6544
G(x) 0.7 0.10 5 -0.1630 0.7337
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