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1 Introduction

The central prediction of the canonical consumption-based asset pricing model (e.g., Bree-

den, 1979) is that average return on any security is proportional to its risk, measured by

the conditional covariance of returns with aggregate consumption growth. This prediction

fails dramatically when confronted with the cross-section of unconditional expected returns,

and particularly for the equity portfolios of Fama and French (1993). In principle, the

consumption-based model could still hold conditionally, if both the price of consumption

risk and the covariances of returns with consumption growth vary over time, as argued,

for example, by Campbell and Cochrane (2000). In this paper I show that the empirical

properties of conditional moments of equity returns and aggregate consumption are incon-

sistent with the canonical conditional one-factor consumption-based model, without making

any assumptions on the time-series behavior of aggregate risk aversion. The observed pat-

terns of expected returns are potentially consistent with a generalization of the conditional

consumption-based model that includes the return on the wealth portfolio as an additional

priced factor. However, statistical evidence in support of the extended model, which may be

hindered by the unobservable nature of aggregate wealth, is somewhat inconclusive.

I identify a key feature of the data that drives the rejection of standard CCAPM: “value”

stocks, which have high unconditional expected returns, typically do not exhibit a greater

increase in conditional expected returns than “growth” stocks when their relative exposure

to consumption risk rises. This fact is at odds with explanations of the value premium that

appeal to a time-varying price of consumption risk, such as Lettau and Ludvigson (2001b),

and thus underlies the economic (rather than purely statistical) rejection of the conditional

CCAPM.1 Imposing conditional moment restrictions prescribed by the theory in a flexible

way that avoids tight parametric assumptions on the dynamics of conditional moments and

1A number of authors have argued that conditioning information substantially improves the empirical
performance of consumption-based models by allowing the price of consumption risk to vary over time, in
particular Lettau and Ludvigson (2001b), Lustig and Van Nieuwerburgh (2005), Petkova and Zhang (2005),
and Santos and Veronesi (2006). However, others have suggested that the superior performance of the
conditional models may be an illusion caused by the low statistical power of standard asset pricing tests
(e.g., Lewellen and Nagel, 2006; Ferson and Siegel, 2009, and Nagel and Singleton (2010)).
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risk prices reveals a conditional value premium puzzle of essentially the same magnitude as

observed unconditionally.

These findings pose a challenge to some of the leading dynamic asset pricing models

that rely on time-varying price of consumption risk, driven either by habit-dependent risk

aversion, as in Campbell and Cochrane (1999), or by shifts in the distribution of wealth

across heterogeneous investors, as, for example, in Chan and Kogan (2002). I explore an

extension of the standard consumption-beta framework and consider a conditional two-factor

model with contemporaneous aggregate consumption growth and aggregate wealth growth

(proxied by the stock market return) – CWCAPM. Such a model can be motivated either by

recursive preferences (Epstein and Zin, 1991; Duffie and Epstein, 1992) or by social status

concerns (Bakshi and Chen, 1996; Roussanov, 2010). In the former class of models wealth

growth is an additional state variable because it captures innovations to the continuation

utility that may not be reflected in current consumption, whereas in the latter set of models

aggregate wealth enters individual preferences directly.2 Such a conditional two-factor model

substantially reduces the magnitude of pricing errors on the benchmark book-to-market and

size portfolios, effectively eliminating the value puzzle. Nevertheless, the evidence in favor

of the model is not conclusive as some pricing errors are statistically significant (e.g., large

growth stocks actually outperform).

The key innovation in my empirical analysis is testing conditional implications of as-

set pricing models without specifying a particular parametric structure on the dynamics

of returns and factor risk prices.3 I develop an intuitive econometric procedure based on

2Garleanu and Panageas (2009) build a heterogeneous-agents model with recursive preferences in which
prices of risk associated with consumption growth and with news about future utility are both functions of
the cross-sectional composition of wealth. While their explicit setup features a single source of aggregate
uncertainty and thus collapses to a conditional one-factor model, a more general version of such a model can
be a seen as an example of a two-factor CWCAPM. Such priced sources of risk that are not fully reflected
in contemporaneous consumption are news about long-run growth pioneered by Bansal and Yaron (2004),
investment-specific shocks introduced by Papanikolaou (2011), and innovations to uncertainty explored by
Bansal, Kiku, Shaliastovich, and Yaron (2012) as well as Campbell, Giglio, Polk, and Turley (2012).

3In early contributions to the conditional CAPM/ICAPM literature, Bollerslev, Engle, and Wooldridge
(1988) model the dynamics of conditional covariances explicitly using GARCH methodology, Campbell (1987)
and Harvey (1989) also model conditional covariances explicitly via linear instrumental variables; Shanken
(1990) pursues a similar approach.
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nonparametric kernel regression. I estimate the conditional market prices of risk using the

information contained in the cross section of asset returns via cross sectional regressions of

conditional expected returns on conditional covariances, both estimated nonparametrically

for each point in the state space.4 This approach is robust to misspecification of both the

conditional moments and the prices of risk. This is important, since most conditional asset

pricing models do not describe explicitly the dependence of covariances or risk prices on the

observed conditioning variables, and, as emphasized by Brandt and Chapman (2007), using

ad hoc specification (e.g., linearity) can lead to spurious rejections. I use Monte Carlo simula-

tion analysis to demonstrate that the pricing error tests based on my estimation methodology

have sufficient power to reject a false model, yet also allow for a true conditional model to

be detected even when the unconditional tests are likely to reject it (e.g., when the wealth

portfolio return is imperfectly observed by the econometrician).

Given the difficulty of measuring the wealth portfolio, I provide additional evidence in

support of the CWCAPM that relies on the fact that total wealth returns reflect news

about future consumption growth (Bansal and Yaron, 2004; Hansen, Heaton, and Li, 2008;

Hansen, Heaton, Lee, and Roussanov, 2007). This complementary approach involves using

long-run rather than contemporaneous consumption growth to test the conditional CCAPM,

e.g. as in Parker and Julliard (2005). I show that covariances of portfolio returns with

long-run consumption growth vary less over time than the contemporaneous covariances.

Using these covariances in asset pricing tests results in small and insignificant pricing errors,

but the advantage over the standard model seems to come primarily from the differences in

unconditional rather than conditional covariances across portfolios. This result suggests that

the mixed evidence in favor of the CWCAPM may be in part due to the fact that the stock

market is a poor proxy for the total wealth portfolio, as originally pointed out by Roll (1977).

The latter is especially relevant in the presence of composition effects, whereby the relative

4Following Pagan and Schwert (1990) it is common to use nonparametric regression to estimate con-
ditional volatility of stock returns. For other studies that have used nonparametric techniques to identify
nonlinearities in stochastic discount factors see, for example, Gallant, Hansen, and Tauchen (1990) and
Bansal and Viswanathan (1993); Chen and Fan (1999), Wang (2003), and Chen and Ludvigson (2009)
use nonparametric methods to test conditional moment restrictions implied by asset pricing models. The
procedure developed here is also related to the conditional method of moments of Brandt (1999).
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contributions of financial and human capital to total wealth change over time (Lustig and

Van Nieuwerburgh, 2008; Lustig, Van Nieuwerburgh, and Verdelhan, 2009; Bansal, Kiku,

Shaliastovich, and Yaron, 2012).

This paper is structured as follows. Section 2 describes the class of consumption-based

conditional asset pricing models that feature composition effects. Section 3 introduces the

new econometric methodology for estimation and testing of conditional factor models. I

present the main empirical results in Section 4. In Section 5 I investigate statistical properties

of the nonparametric tests using simulation analysis. Section 6 extends the empirical analysis

by considering long-run consumption risk and incorporating a larger conditioning information

set. Section 7 concludes. Discussion of the underlying economic theory, statistical properties

of the estimators, and data description is relegated to the Appendix, as are some of the

empirical results confirming the robustness of my main findings.

2 Composition of wealth in conditional asset pricing

models

A large class of consumption-based asset pricing models implies a relationship between con-

ditional expected returns on risky assets in excess of the risk-free rate and the conditional

covariance of excess returns with aggregate consumption growth. This relationship can be

written as

E
(
Rei

t+1|It
)
= γtCov(Rei

t+1,
∆Ct+1

Ct

|It) (1)

where Rei
t+1 is the excess return and ∆Ct+1

Ct
is the growth rate of aggregate consumption. In

the classical setting with representative consumer who has power utility γt is constant over

time and equal to the coefficient of relative risk aversion. More generally, γt is a function of

variables contained in the information set It. This is the case in settings with time-varying

risk aversion, such as the habit formation models (Constantinides, 1990 and Campbell and

Cochrane (1999)) where γt depends on the history of past consumption. It is also consistent

with heterogeneous investor models in which the price of aggregate consumption risk depends
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on the evolution of the joint distribution of consumption shares and risk aversion parameters

across households (e.g. Grossman and Shiller (1982); Chan and Kogan, 2002).

The possibility that the price of consumption covariance risk γt is time varying offers

some hope of rationalizing puzzling features of the cross-section of stock returns within

the consumption-based asset pricing paradigm, as emphasized by Campbell and Cochrane

(2000). Assets that have the same unconditional covariance with consumption growth can

earn different average returns if conditional covariances differ. Assets that covary more with

consumption when the price of consumption risk γt is high are riskier, and therefore will

have higher expected returns. In particular, Lettau and Ludvigson (2001b) argue that the

“value premium” - the tendency of stocks with higher ratios of book to market equity to

earn higher returns than do low book to market stocks - can be explained by the fact that

“value” stocks comove more with consumption growth during “bad times” when the price of

risk is high than do growth stocks, even though the unconditional covariances are not very

different.

Generic conditional factor models are not testable using discrete-time data without im-

posing additional restrictions since the econometrician does not necessarily observe the entire

conditioning information set (Hansen and Richard, 1987).5 However one can test specific

versions of these models that make predictions regarding specific observable quantities that

capture time-variation in risk premia:

E
(
Rei

t+1|zt
)
= γC (zt)Cov(Rei

t+1,
∆Ct+1

Ct

|zt). (2)

where zt ∈ It are some pre-specified variables that are thought to capture variation in the

price of consumption risk so that γt = γ (zt).

I specify the conditioning information set zt a priori following the recent literature that

5In continuous time the second moments can be measured arbitrarily precisely (Merton, 1980; Andersen,
Bollerslev, Diebold, and Labys, 2003) and therefore no conditioning information is required. In discrete-time,
similar approach can be used under the assumption that these moments vary sufficiently smoothly over time
(Lewellen and Nagel, 2006; Ang and Kristensen, 2009) as long as high-frequency data is available. This
approach is not applicable to testing models with factors that are not observed at high frequency, such as
consumption.
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emphasizes the fluctuations in the composition of aggregate consumption and wealth. I

restrict it to variables that capture time variation in the shares of financial wealth and

human capital in the total aggregate wealth. Economic theory predicts that these variables

should be important for capturing time evolution in the conditional covariance between

consumption growth and stock returns, as emphasized by Duffee (2005) and Santos and

Veronesi (2006). Indeed, if stock market (or, more generally, all non-human) wealth W and

a stream of labor income y are the only state variables driving consumption, this covariance

can be expressed, for asset i, as

Covt(R
ei,

∆Ct+1

Ct

) = εW (zt)Covt(R
ei
t+1,

∆Wt+1

Wt

) + εy (zt)Covt(R
ei
t+1,

∆yt+1

yt
), (3)

where εW (zt) and εy (zt) are elasticities of consumption with respect to financial wealth and

labor income (which are assumed to be the only determinants of consumption). This equality

holds exactly in continuous time if W and y follow diffusion processes (see Appendix A) but

similar expressions can be derived in discrete time, at least approximately; for example,

Duffee (2005) derives a similar expression using the log-linearized Euler equation framework

of Campbell (1996). It shows that even if conditional covariances of asset returns with the

total stock market wealth and with labor income growth are constant, the covariance of

returns with consumption growth need not be.6 For example, if stock returns and labor

income growth are uncorrelated, this covariance will be greater when consumption is more

sensitive to changes in stock market wealth.7

6The idea that the composition of total wealth might be important for explaining asset returns goes back
at least to Roll (1977), who argued that the stock market is a poor proxy for the total wealth portfolio. Fama
and Schwert (1977) tested a version of CAPM that includes human capital return as an additional factor.
Stambaugh (1982) extended the market portfolio proxy to incorporate non-stock market assets. Ferson,
Kandel, and Stambaugh (1987) tested (and rejected) a conditional CAPM in which market betas vary due
to the changing composition of the market portfolio, even if the return covariance matrix is constant. More
recently, some of the tests of conditional factor models also included proxies for the return to human capital
- e.g. Campbell (1996), Jagannathan and Wang (1996), Jagannathan, Kubota, and Takehara (1998), Heaton
and Lucas (2000), and Lettau and Ludvigson (2001b). A related, but different, recent strand of literature
has focused on the effect of consumption composition on asset returns - see Pakos (2004), Piazzesi, Schneider,
and Tuzel (2007), and Yogo (2006).

7This decomposition relies on deliberately stark assumptions about the joint dynamics of labor income
and asset returns. If consumption reflects news about future growth rates (e.g., of labor income) or discount
rates, the covariances with these innovations will also enter (3).
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In the case of time-separable preferences with constant relative risk aversion coefficient

γ the conditional moment restriction (2) is equivalent to

E
(
Rei

t+1|zt
)
= λW (zt)Cov(Rei

t+1, R
eM
t+1|zt) + λy (zt)Cov(Rei

t+1,
∆yt+1

yt
|zt), (4)

where ReM
t+1 is the excess return on the total financial wealth portfolio (i.e. the market return)

and the prices of risk are given by λW (zt) = γεW (zt) and λy (zt) = γεy (zt). This observation

that the risk premia associated with assets’ covariances with the state variables are equal to

the sensitivities of consumption to the state variables scaled by the utility curvature is the

central insight of Breeden (1979), which leads to the equivalence between the multi-factor

intertemporal CAPM and the single-factor consumption CAPM. In the more general case of

recursive preferences (4) may still hold even if (2) does not (although the form of the price

of risk functions λW and λy is more involved - see A.1 for details). In what follows I refer to

this model as an Intertemporal CAPM (with human capital).

In addition to the canonical consumption CAPM and the human-capital ICAPM above

I consider another closely related model, referred to as CWCAPM, in which covariances of

returns with both consumption growth and aggregate financial wealth growth (e.g., proxied

by the market portfolio as above) contribute to the determination of asset’s expected excess

return:

E
(
Rei

t+1|zt
)
= λC (zt)Cov(Rei

t+1,
∆Ct+1

Ct

|zt) + λW (zt)Cov(Rei
t+1, R

eM
t+1|zt). (5)

This specification is motivated by the asset pricing models with recursive utility in which ag-

gregate wealth proxies for the continuation value of future consumption utility (e.g., Epstein

and Zin, 1989; Duffie and Epstein, 1992) and models with social status concerns in which ag-

gregate wealth is a state variable as long as it effects investors’ relative position (e.g., Bakshi

and Chen, 1996; Roussanov, 2010). In the latter case, the ratio of aggregate consumption to

aggregate financial wealth is a fundamental state variable that drives time-variation in the

two prices of risk λC (zt) and λW (zt) (see A.2 for a derivation).
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Motivated by the role of wealth composition in driving conditional moments of consump-

tion and asset returns I use the following variables in my investigation: the ratio of labor

income to consumption introduced by Santos and Veronesi (2006), the cointegrating resid-

ual of consumption, financial wealth and labor income developed by Lettau and Ludvigson

(2001a), and the ratio of aggregate consumption to financial (stock market) wealth that is

similar to the variable used by Duffee (2005).8 Throughout the remainder of the paper I will

adopt the following notation for the four alternative conditioning variables: the cointegrat-

ing residual of consumption and wealth is cay; by analogy, the labor income to consumption

ratio is referred to as yc; the consumption to wealth ratio is labeled ca.

2.1 Testing conditional restrictions

Linear factor models of empirical asset pricing can be specified as restrictions on first and

second moments of (excess) asset returns Re and some fundamental factors f such as

Et

(
Re

t+1

)
= Covt

(
Re

t+1, ft+1

)′
λt, (6)

where λ is the vector of risk prices associated with the factors, which generally vary over

time. This representation is equivalent to the stochastic discount factor representation and

the somewhat more traditional beta representation (see Cochrane (2005) for discussion).

As is well known, the conditional model above does not in general imply the unconditional

model

E
(
Rei

t+1

)
= Cov

(
Rei

t+1, ft+1

)′
λ̄. (7)

Thus the conditional model cannot be tested directly using standard econometric methods.

The usual approach to testing such models (e.g. Cochrane (1996)) amounts to assuming

that the conditional covariances and expected returns are (linear) functions of prespecified

8This is different from measuring the ratio of consumption to total wealth, for example as estimated by
Lustig, Van Nieuwerburgh, and Verdelhan (2009), which can vary even in the absence of the composition
effect.
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conditioning variable(s) and testing the unconditional ‘scaled factor’ models of the form

E
(
Rei

t+1

)
= Cov

(
Rei

t+1, f̃t+1

)′
λ̃, (8)

where f̃t+1 = ft+1 ⊗ [1, zt] and z is the vector of instruments that are assumed to capture all

of the relevant conditioning information. The focus of this paper is on testing the conditional

moment restrictions

E
(
Rei

t+1|zt
)
= Cov

(
Rei

t+1, ft+1|zt
)′
λ (zt) , (9)

as well as their unconditional implications

E
(
Rei

t+1

)
= E

[
Cov

(
Rei

t+1, ft+1|zt
)′
λ (zt)

]
. (10)

Imposing conditional moment restrictions is equivalent to augmenting the space of test

assets with a large number of “managed” portfolios that use the conditioning variable to

determine the portfolio weights, as described by Cochrane (1996). Therefore, doing so yields

a much more powerful test of the conditional model than does (8). The challenge in imposing

such conditional restrictions is in allowing for a sufficiently general functional form of the

conditional moments and prices of risk, given little explicit guidance from economic theory.

3 Nonparametric cross-sectional regression

In this section I develop an econometric approach to estimating linear factor models with

conditioning information that is robust to misspecification of the functional relationship

between factor risk prices and the observed conditioning variables. This class of models can

be summarized by the set of N conditional moment restrictions, each corresponding to one

of the test assets i ∈ {1, . . . , N} :

E
(
Rei

t+1 − Cov(Rei
t+1, ft+1|zt)

′λ (zt) |zt
)
= 0, (11)
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where Rei
t+1denotes excess returns on asset i and ft+1 is the K-vector of factors. The condi-

tioning variable zt is in general a d-dimensional vector.

For each fixed value z, the estimator of the vector of (conditional) risk prices is then

λ̂ (z) = argmin
λ

{
g (z)′ W (z) g (z)

}
, (12)

where

g (z) = Ê
(
Re

t+1|z
)
− Ĉov

(
Re

t+1, ft+1|z
)′
λ (13)

and W is a weighting matrix9 that can be state-dependent. Letting the vector of conditional

mean returns to be denoted m (z) and the N ×K matrix of conditional covariances between

excess returns and factors be cv (z), the estimator is given by the weighted least-squares

regression of conditional mean returns on conditional covariances:

λ̂ (z) =
(
ĉv (z)′ W ĉv (z)

)−1
ĉv (z)′ Wm̂ (z) , (14)

where the hatted variables refer to the estimated quantities, as usual. I use the locally linear

estimators of conditional moments in most of my analysis, as they are known to possess

somewhat better statistical properties than the simple nonparametric kernel regression ap-

proach, in particular lower bias at the boundaries of the state space, although both yields

essentially the same results in my setting. See appendix for a detailed description of these

estimators.

3.1 Properties of the estimator

Consistency of the price of risk estimates λ̂ (z) under the null hypothesis that the asset

pricing model holds (i.e. the population moment conditions are satisfied) follows from the

9The nonparametric approach used by Wang (2003) can be viewed as a special case of the method
considered here. He estimates stochastic discount factor (SDF) loadings under the assumption that the
factor mimicking portfolios are priced exactly, and then uses this estimated SDF to test its ability to price
a set of portfolio returns. In other words, he uses one set of (conditional) moment conditions for estimation
(by setting K conditional moments to zero in sample) and another set of N moment conditions for testing.
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consistency of nonparametric conditional moment estimators above. More formal discussion

of consistency of the nonparametric price of risk estimators can be found in B. Similar to

the standard two-pass method, the usual errors-in-variables problem arising from the fact

that the covariances of returns with factors are estimated is also present in the context of

conditional estimation considered here. It does not affect the consistency of our estimators

as long as the “first-stage” quantities (conditional means and covariances) are estimated

consistently, but it does make the market price of risk estimators biased. In addition, the

nonparametric regression estimators of conditional moments are also biased. This is the

usual cost associated with the flexibility allowed by nonparametric estimation. Of course,

a parametric conditional model has the same problem unless economic theory specifies the

functional form of the conditional moments and risk prices. Unfortunately, there is no

straightforward way to “correct” for these two types of bias since the asymptotic theory for

the estimators proposed above is rather involved and its development is beyond the scope of

this paper10. In practice I use bootstrap methods to conduct statistical inference. Bootstrap

allows constructing confidence intervals based on the approximated empirical distribution

functions of the estimators under study. I provide the details of the bootstrap approach in

Appendix E. The main way of controlling both the bias and the variance of the estimators is

by choosing the bandwidth h, which essentially specifies how smooth the resulting functional

estimates are (usually, too much smoothing increases the bias, whereas too little smoothing

increases the variance of the estimators). It is known that the choice of a kernel function

does not have a significant effect on the statistical properties of kernel estimators (see Pagan

and Ullah, 1999), as long as they satisfy certain simple conditions (see Appendix B). I use

Epanechnikov kernel, which is known to be optimal (in terms of the trade-off between bias

and variance) whenever a single conditioning variable is used (as in my application).

Bandwidth selection is an unresolved issue that plagues much of the nonparametric es-

timation literature. It is a standard result that the optimal (in the sense that it minimizes

the mean integrated square error of the nonparametric regression) smoothing parameter h

10Aı̈t-Sahalia (1992) presents a general method for constructing asymptotic distributions of estimators
based on nonparametric kernel functionals, which could be applied in the present setup.
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is given by

h = cσ (z) T− 1
d+4 , (15)

where σ is the (vector of) unconditional standard deviation(s) of z, T is the sample size, d is

the dimension of z, and c is a constant. Therefore, in practice, one only is given an optimal

convergence rate for the bandwidth, since the latter constant is unrestricted. Moreover,

when variables in z are highly persistent, which is the case for most of the financial ratios

and is true for some of the variables used in this study, larger bandwidths are optimal and

convergence rates are slower than in the standard stationary setup (see Bandi, 2004).

There exist a number of techniques for “automatic” choice of the optimal constant c,

and therefore of the optimal smoothing parameter. Most of them are based on either leave-

one-out cross-validation or bootstrap and concentrate on minimizing the prediction error of

the conditional moment estimators. Since in the present context the conditional moment

estimators are “first-pass” quantities used in constructing the “second-pass” estimates of the

market prices of risk, it is unclear that any of those procedures are equally suitable in the

present context. At the same time, given the criterion that the estimators proposed here are

based on, it is natural to make the choice of the bandwidth parameter subject to the same

criterion. Consider


 λ̂ (z)

ĥ(z)


 = argmin

λ,h

{
g (z;λ, h)′ W (z; h) g (z;λ, h)

}
, (16)

where

g (z;λ, h) = m̂ (z; h)− ĉv (z; h)′ λ. (17)

Then the first-order conditions still give the estimators λ̂ (z) above, but now the bandwidth

is chosen automatically. Pending further development of the asymptotic theory for the

estimators proposed here there is no claim that this method of choosing the bandwidth

is “optimal.” I find, however, that the results obtained using this approach do not differ

dramatically from those obtained with more standard procedures (for example, minimizing
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the mean integrated standard error under the bootstrap distribution).

Methodologically, my approach is closely related and complementary to that adopted by

Nagel and Singleton (2010). They also impose conditional moment restrictions implied by the

asset pricing model. They derive the optimal weights on the test assets and instruments that

allow them to maximize the power of asset pricing tests asymptotically. At the same time,

their adoption of the GMM framework requires an explicit specification of the prices of risk

as functions of the conditioning variables. In contrast, I allow prices of risk to be as flexible

as possible by using the fully nonparametric approach. While this approach in general will

not be efficient, it minimizes the misspecification bias and gives a (true) model the greatest

chance of success by ensuring that it is not rejected due to an incorrectly specified functional

form of the risk prices (a non-trivial concern, as shown by Brandt and Chapman (2007)). In

addition, in Section 6.2 below I show that my approach allows parsimonious nonparametric

modeling of the dependence of the prices of risk on a large number of conditioning variables

via a single-index approach similar to that of Äıt-Sahalia and Brandt (2001).

4 Empirical results

I use excess returns on the six benchmark equity portfolios of Fama and French (1992), which

are the intersection of the two portfolios formed on size and three portfolios formed on the

ratio of book equity to market equity, to test conditional asset pricing models at quarterly

frequency. The time period is fourth quarter of 1952 through the fourth quarter of 2008 (see

D for detailed description of the data).

4.1 Conditional expected returns and conditional covariances

Before evaluating the cross-sectional fit of the asset pricing models I analyze the dynamics

of conditional moments of the test returns. All of these quantities are estimated nonpara-

metrically; in order to reduce the bias in the estimates I present the means of the sampling

distributions along with the 95% confidence intervals obtained via stationary bootstrap (see
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C for details on the bootstrap procedure). Shaded area in the background represents the

kernel estimate of the probability density function of the conditioning variable, scaled ap-

propriately.

Figure 1 displays conditional expected excess returns on the six benchmark portfolios as

functions of cay (solid lines), along with the unconditional average returns (straight dashed

lines). Expected returns on all of the portfolios increase throughout most of the range of

cay , but decline at the high values of the state variable. The strength of the relationship

varies across portfolios. For large portfolios, and especially for large growth portfolios, the

differences between conditional mean returns in low-cay states and the high-cay states are a

lot more pronounced and more statistically significant than they are for the small portfolios

(especially small growth). For the large growth portfolios expected returns vary between

being close to zero or slightly negative to over four percent per quarter, around the uncon-

ditional mean of about two percent. For the small value portfolio the expected returns vary

between one and five percent, reverting back to the unconditional mean of 3.5% per quarter

in the right tail of the distribution of cay . For the small portfolios the variation in expected

returns is less detectable statistically than for large portfolios, as the 95% confidence inter-

vals include the unconditional average return throughout most of the range except the lowest

values of cay.

Figure 2 reports the estimates of conditional covariances of portfolio returns with con-

sumption growth functions of cay . The functional relationship between the conditional

covariance and the conditioning variable is roughly linear for all portfolios throughout most

of range of the state variable, except at the tails of its distribution, where covariances appear

concave but poorly estimated due to the relatively small number of extreme observations.

All of the covariances are decreasing in cay (except in the extreme left tail of the distribu-

tion). The decreasing pattern is consistent with the wealth composition effect emphasized

by Duffee (2005) if cay reflects changes in asset wealth more than changes in the value of

human wealth (which is unobservable). The decline appears somewhat steeper for the small

and growth portfolios. Since high values of cay predict high expected returns, they can be

thought of as “bad” states of the world, in which the price of market risk is high. Conversely,
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low cay is associated with low risk premia. Lettau and Ludvigson (2001b) argue that this is

the mechanism through which conditional-beta models can explain the high excess returns

on value portfolios relative to the growth portfolios.

Are these differences in the direction of conditional covariances as functions of cay sig-

nificant, economically or statistically?11 I test whether the differences between consumption

growth covariances of the value and growth portfolios within the same size grouping are sig-

nificant, at a given value of the state variable. Figure 3 (lower panels) presents the plots of

pairwise differences in conditional covariances between the two large and two small portfolio

portfolios along the Value-Growth dimension, along with the 95% confidence bands. Broadly,

the differences between the value and growth portfolios described above are marginally sig-

nificant at the five percent level in the right tail of the distribution of cay : when the variable

is above 0.02 (”bad states”) covariance with aggregate consumption growth is higher for the

large value portfolio than for the large growth, and for small value rather than for small

growth. Conversely, when cay is below −0.02 (”good states”), the covariances are higher

for the growth portfolios, although these differences are not significant. Given that in al-

most 60% of all observations cay is in the interval [−0.01, 0.01], most of the time there is

no statistically detectable difference in conditional covariances between value and growth

portfolios.

In order to formally test whether the conditional moments evaluated at high and low val-

ues of cay are different, I construct bootstrap distributions for the differences between point

estimates corresponding to such high and low values. Using these distributions recentered

around zero I can test whether the estimated differences between conditional moments of a

portfolio excess return evaluated at two different points in the state space are positive (for

expected returns) or negative (for conditional covariances). Table I reports the differences

between the point estimates of the conditional moments and the bootstrap p-values for these

11The difference between value and growth portfolios is less pronounced in the covariances with the market
return and with the labor income growth (not reported here), which is consistent with the composition
effect. The yc variable does not appear to capture a substantial cross-sectional variation in the dynamics of
conditional covariances, while ac works similarly to cay . These estimates are omitted here but are available
upon request.

16



tests. The conditional means and covariances are estimated at values of cay equal to −0.019

and 0.02 which correspond approximately to the 10th and 90th percentiles of the empirical

distribution of this variable. The differences in expected returns between the high and the

low values of cay are positive and statistically significant for the basis portfolios, with the

one-sided p-values at or below one percent. Again, this is consistent with the notion that low

values of cay represent “good states” and correspond to low risk premia, while high values

- “bad states” and high risk premia.

The estimated differences of conditional covariances of basis portfolio returns with ag-

gregate consumption growth are negative, but the p-values are larger. Still, for the Small

Growth and the Large Growth portfolios the hypothesis that the difference is non-negative

can be rejected as the p-values are below five percent. Importantly, however, the conditional

covariances of the long-short (Value minus Growth) portfolio excess returns with consump-

tion growth do exhibit the same pattern of time-variation as noted above: value is riskier

than growth in “bad times” and vice versa. Indeed, for both large and small stocks the dif-

ference between point estimates of the conditional covariances is significantly positive with

p-values under two percent.

Despite the marginal statistical significance and small economic magnitude of these dif-

ferences, they have the right sign to be consistent with the value premium. In principle,

given a “right” amount of variation in the price of consumption risk it might be possible to

reconcile the unconditional expected returns predicted by the model with those observed in

the data. However, the estimated conditional first moments paint a very different picture.

The logic of the conditional (C)CAPM implies that value portfolios are riskier because they

have higher conditional covariance with the factor (consumption growth) in bad times. It

also implies that, as a consequence, conditional expected returns on value portfolios must

be especially high in those states of the world, relative to the growth portfolios. This is not

the case empirically: as described above, conditional expected returns on value (especially

the small value) portfolios are only weakly increasing as a function of cay . At the same

time, growth portfolios exhibit the strongest predictability, to the extent that the expected

returns on large value and small growth are virtually the same in the “bad” states in which
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cay is high, even though they are quite different unconditionally. In particular, the differ-

ences of conditional expected returns between value and growth portfolios within each size

grouping, plotted in the top two panel of figure 3 are in stark contrast to the corresponding

differences in consumption covariances. While differences between covariances increase in

“bad states,” the differences in conditional expected returns are positive and flat through-

out most of the range of cay and decrease in the right tail of the distribution, becoming

significantly negative. The bootstrap tests reported in Table I indicate that the differences

in conditional expected returns on Value minus Growth portfolios between high and low cay

states are negative, albeit not significantly different from zero at conventional levels, unlike

the differences in conditional covariances, which are significantly positive. It appears that

utilizing conditioning information poses a challenge for consumption-risk models attempting

to explain the value premium, since the dynamics of risk and expected returns appear to

have the opposite signs.

4.2 Time-varying price of consumption risk

The nonparametric cross-sectional regression allows me to estimate the price of consumption

risk (i.e., risk aversion) as a function of the conditioning variable. Figure 4 depicts the

estimated risk price as a function of cay. Similarly to the behavior of conditional excess

returns, the risk price is increasing as a function of the state variable throughout most of its

range, except for the largest values of cay where the risk price plummets. The estimate is

close to zero (and even slightly negative) for values of cay below −0.02, which correspond to

“good times” in the Lettau and Ludvigson (2001b) interpretation. It rises to values around

250 and above at the mean of the distribution of cay which is equal to zero, becoming

statistically reliably different from zero despite the wider confidence band. For values above

the mean of cay the price of risk rises rapidly, reaching values of 500 and above. Such values

for the quantity that is essentially the coefficient of relative risk aversion might appear

extremely large, even if they are broadly consistent with the models of time-varying risk

aversion such as Campbell and Cochrane (1999). However, after reaching its peak for values
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of cay around 0.02, the risk price starts to decline rapidly as a function of the state variable,

plunging below zero for for cay above 0.03. While the confidence band is wide for these high

levels of the state variable, this nonlinearity in the risk price is statistically significant. The

nonlinearity of the estimated price of consumption risk may explain the finding of Nagel

and Singleton (2010), who estimate this risk price under a linear specification and report

negative estimated risk aversion over much of the state space spanned by cay .12 While the

point estimates of the risk aversion obtained using my flexible specification are negative in

both tails of the distribution of cay , they are not statistically significantly different from zero

in those regions, even in the left tail where the confidence bands are fairly narrow.

The fact that the estimated price of risk is not monotonic as a function of cay , which

appears do be driven by the non-monotonicity of conditional expected returns depicted

in Figure 1, may appear surprising. At least in some of the models of time-varying risk

premia the effective risk aversion is a monotonic function of the underlying state variable ,

such as the surplus consumption ratio of Campbell and Cochrane (1999). However, even if

such a model were true, the fact that cay captures some of the composition effect as well

as the time-varying risk aversion, may lead to a non-monotonicity, since the composition

effect is, in general, not monotonic - see discussion in Santos and Veronesi (2006). Further,

in models with heterogenous agents such as Garleanu and Panageas (2009) the price of

aggregate consumption risk is not a monotonic function of the underlying state variable

(the consumption share of risk-tolerant investors). If the model of interest did feature a

monotonic relationship between a specific conditioning variable and the price of risk, one

could in principle impose such a restriction in estimation (e.g. similarly to Äıt-Sahalia and

Duarte (2003)), potentially improving the efficiency of the estimator as well as increasing the

power of the asset pricing tests. In fact, undersmoothing the estimator of the risk price by

imposing a tight upper bound on the bandwidth parameter yields an essentially monotonic

estimate of the price of risk even using my approach (these results are available upon request).

12Since Nagel and Singleton (2010) use gross returns to pin down the scale of the stochastic discount factor
in their estimation, which may effect the price of risk estimates, their results may not be directly comparable
to mine, as I only use excess returns.
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The relation between the estimated conditional risk-return trade-off and the condition-

ing variable could be potentially influenced by the small number of observations in both the

left and the right tail of the empirical distribution of the cay . While there is substantial

uncertainty about the estimates near both of the boundaries of the support of this distribu-

tion, there is also possibility of a substantial bias. For example Li, Pearson, and Poteshman

(2004) show that conditioning on the state variable not crossing the boundary can bias the

estimated conditional means in a univariate setting. In the present context, this could mean

that the estimates of conditional expected returns estimated as a function of a variable that

includes market wealth in the denominator (such as consumption-wealth ratio) may be up-

wardly biased near the upper bound of the state space, as well as downward biased near the

lower bound. Given the evidence in Figure 1 the former bias should not be a concern, since

the conditional expected returns appear decreasing rather than increasing near the upper

bound of cay . The latter bias may be more of a problem, potentially explaining why the

estimated price of risk is zero or even negative for low values of cay . Employing locally-

linear estimators of conditional moments helps mitigate boundary bias in the nonparametric

context (e.g., Fan and Gijbels, 1996). It is likely that the actual bias is indeed rather small

when cay is used as the conditioning variable since, unlike the ratio of consumption to stock

market wealth ca, the consumption-wealth residual is a composite variable that incorporates

information about aggregate labor income as well as non-stock market wealth, and therefore

is less directly affected by the condition that the level of stock market wealth stays within

the domain spanned by its observed values. Considering state variables that are not directly

influenced by the stock market returns may also help reduce the bias. I employ one such

variable, the labor income to consumption ratio yc, in some of the model specifications. As

a further extension, I use composites of several conditioning variables in Section 6.2.

4.3 Average pricing errors

The ability of the conditional models to explain the cross-section of returns is ultimately

judged based on their pricing errors. Table II reports the average pricing error test statistics
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for the three conditional models, as well as the benchmark unconditional and scaled-factor

models. The first model (CCAPM) uses consumption growth as the only factor. The second

model (ICAPM) uses market return and labor income growth as the two risk factors. The

third model (CWCAPM) uses aggregate consumption and aggregate wealth growth as the

two factors. The conditional ICAPM is tested using as conditioning variables either cay ,

following Lettau and Ludvigson (2001b), or yc, following Santos and Veronesi (2006)); for

CWCAPM I use ca as the conditioning variable, which is most appropriate for this model;

I test the CCAPM using each one of these three variables.

The key test statistics of interest are the unconditional averages of the conditional pricing

errors that are being minimized by the conditional method of moments:

α = E (g (zt;λ, h)) . (18)

Thus, conditioning down the expectation (13) implies that the estimated average pricing

error, for asset i, is given by

α̂i = Ê
[
Rei

t+1 − Ĉov(Rei
t+1, ft+1|zt)

′λ̂ (zt)
]
, (19)

where the conditional moments and prices of risk are estimated using the nonparametric

cross-sectional regression approach of Section 3.

For the unconditional models and the scaled factor conditional models the corresponding

unconditional moments are used. The prices of risk in these latter cases are estimated

by cross-sectional regression of expected returns on covariances, which is equivalent to the

standard SDF/GMM methodology (e.g. see Cochrane (2005)). For the scaled factor models,

f̃t+1 = [ft+1, ft+1 ⊗ zt] (20)

is used in place of ft+1, which implicitly assumes that λ̂ (zt) are linear in zt but does not

place any restrictions on the conditional moments. One could also look at the scaled factor

models estimated by imposing the conditional moment restrictions, which would be a special
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case of the conditional models where the prices of risk are linear functions of the conditioning

variables. This is similar to the approach of Nagel and Singleton (2010). Since the restrictions

imposed by this estimation method are tighter than those imposed by the nonparametric

approach, a model rejected using the latter method would also be rejected using the former.

Instead of testing whether the overall level of pricing errors across the portfolios is zero,

I focus on a few salient pricing errors that capture the essential features of the cross-section

of stock returns. Namely, I consider the pricing errors of four long-short portfolios: small

value minus small growth, small growth minus large growth, small value minus large value,

and large value minus large growth. In order to test whether each one of these pricing errors

is equal to zero I compute their finite sample distribution by semi-parametric bootstrap.

Specifically, I use the estimated values of the covariances and prices of risk (as functions of

conditioning variables) to simulate excess returns on the six basis portfolios under the null

hypothesis that all of the test portfolios are priced correctly. These are used to obtain p-

values for the (two-sided) tests of whether the pricing errors on the four long-short portfolios

are different from zero.

The scaled-factor models appear to do a much better job explaining the average returns

than the unconditional CCAPM and ICAPM. While for the unconditional consumption

CCAPM only the small value minus small growth pricing error is large and statistically

significant at 1.6% per quarter, the three other pricing errors are also sizable - except for

the Large Value - Large Growth spread all of the pricing errors are larger than the average

excess returns on the portfolios. The CCAPM scaled with cay cuts the Small Value minus

Small Growth and Small Growth minus Large Growth pricing errors by a factor of three,

and none of the errors are significantly different from zero. The unconditional ICAPM has

similar magnitudes of pricing errors and most of them are statistically significant, presumably

because the covariances with the market return are estimated much more precisely than

covariances of returns with consumption growth. The scaled CCAPM and ICAPM that

use the labor-consumption ratio yc as the instrument do not perform as well as do their

counterparts scaled with cay , in that pricing errors are larger and statistically significant,

but they still produce smaller pricing errors than the unconditional models.
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While there is considerable uncertainty about the estimated conditional pricing errors,

the nonparametric tests reveal that the conditional models do not do a nearly as good a

job at explaining the cross-section of average returns as the scaled factor models suggest.

For example, for the consumption CAPM with either cay or ca the average pricing errors

have essentially the same magnitudes as the unconditional CCAPM pricing errors. The

Small Value minus Small Growth pricing error is statistically significant at a one or two

percent level. For the ICAPM or the CCAPM conditioned on yc the rejections are even

stronger, as in addition to the Small Value - Small Growth error, they display positive and

statistically significant pricing errors on either Large Value minus Large Growth or Small

Value minus Large Value. The key pricing errors that represent the value premium puzzle -

Small Value minus Small Growth and Large Value minus Large Growth - are of almost the

same magnitudes as the average returns on these strategies for most of the conditional (as

well as unconditional) models.

The only exception is the CWCAPM. This model has lower pricing errors even uncon-

ditionally, with the Small Value minus Small Growth pricing error of 82 basis points per

quarter that is not statistically different from zero. It does imply statistically significant

pricing errors for the Small Growth minus Large Growth and Large Value minus Large

Growth strategies, which are equal to negative 94 basis points, and negative 35 basis points,

respectively. Thus, according to CWCAPM Large Growth stocks actually outperform - the

opposite of value puzzle (as well as the size effect). It is not surprising that the scaled version

of this model can perform substantially better, since it does not impose the conditional mo-

ment restrictions and therefore has more degrees of freedom. Overall, while the CWCAPM

can be rejected on purely statistical grounds at least for some of the test assets, it emerges

as a clear leader in its ability to explain the value premium.

4.4 Conditional pricing errors

Average pricing errors can understate the extent of mispricing if conditional pricing errors

are large but volatile. The conditional pricing errors can be assessed by looking directly at
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their nonparametric estimates. Figure 5 depicts the conditional pricing errors on the selected

portfolios for the consumption CAPM as functions of cay :

Ê
(
Rei

t+1|zt
)
− λ̂C (zt) Ĉov(Rei

t+1,
∆Ct+1

Ct

|zt). (21)

For each of the six portfolios, the solid line gives the estimated conditional mean of the

pricing errors with 95% confidence bands around it. The straight dashed line is the pricing

error from the unconditional model, while the dash-dotted line gives the pricing error from

the scaled factor model (8), both obtained using the standard GMM procedure described

in Cochrane (2005). These figures show that most of the conditional pricing errors are

significantly larger in absolute value than the corresponding scaled-factor pricing errors, and

often bigger (in absolute value) than the unconditional model errors. In the middle of the

range of cay (which contains the majority of observations) most of the conditional pricing

errors coincide with the errors of the unconditional CCAPM.

There is substantial statistical uncertainty about the estimated conditional pricing errors,

as evidenced by the wide confidence band around them. Still, some of the conditional errors

are statistically significantly different from zero over substantial regions over the state space.

In particular, small value and neutral portfolios significantly outperform when cay is negative

(i.e., in “good” times), while the large neutral portfolio outperforms in “bad” times (when

cay is positive. The latter pricing error switches from positive to negative but statistically

insignificant for negative values of cay , suggesting that looking at the average pricing error

may be misleading about the model’s performance as positive and negative conditional errors

cancel out on average.

The conditional pricing errors are also informative in the case of CWCAPM. Figure 6

presents conditional pricing errors for this specification as functions of ca:

Ê
(
Rei

t+1|zt
)
− λ̂C (zt) Ĉov(Rei

t+1,
∆Ct+1

Ct

|zt)− λ̂W (zt) Ĉov(Rei
t+1,

∆Wt+1

Wt

|zt). (22)

It is evident that for the three large-capitalization portfolios (bottom three panels) the
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hypothesis that the pricing errors are zero cannot be rejected. While there is some variation

in the pricing errors as a function of the state variable, the bootstrap distributions of error

estimates are centered near zero for most of the range. However, for the small-capitalization

portfolios (top three panels) this is not the case. The conditional pricing errors are typically

almost as large than the unconditional pricing errors, and their 95-percent confidence bands

do not include zero over ranges of ca that contain a nontrivial fraction of the data. In

particular, for the small growth portfolio, the pricing errors are significantly negative in the

region of high ca, with the exception of the extreme right tail which has very few observations

and wide error bounds. The small value portfolio has significantly positive errors in the same

(but smaller) range, implying that the value premium in small stocks is not explained as

well by the conditional model as the value effect in large stocks. This evidence suggests that

tests of conditional models based on unconditional pricing errors (or averages of conditional

error) may have low power as they ignore some of the information contained in the conditional

moment restrictions.

5 Statistical properties of the nonparametric tests

The empirical results above rely on the ability of the nonparametric tests to distinguish

between the conditional and the unconditional moments of asset returns and state variables,

especially since these results indicate that conditional models do not seem to substantially

outperform unconditional ones. Further, it is important to determine whether the apparent

superior performance of a two-factor model with consumption and aggregate wealth factors

(CWCAPM) relative to the one-factor consumption-based model is due to the tests’ lack of

statistical power.

In order to investigate the statistical properties of the nonparametric tests and confirm the

reliability of my empirical results above I conduct a simulation exercise. As a null hypothesis

for the Monte Carlo study I use a simplified version of the social status model described

in A.2, combined with exogenously parameterized dynamics of conditional covariances of

portfolio returns that are broadly consistent with the estimates in Section 4 above. This
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model has a conditional two-factor structure of returns with rich yet tractable risk price

dynamics and thus provides a convenient laboratory for analyzing statistical properties of

conditional asset pricing tests. I generate artificial data by simulating the model, and then

apply the nonparametric estimation and testing methodology developed in Section 3 to the

simulated data in order to evaluate both the size and the power of the tests.

5.1 Simulation setup

I specify conditional expected excess returns as linear functions of conditional covariances

with aggregate consumption and wealth growth, scaled by the corresponding risk prices:

E
(
Rei

t+1|zt
)
= λC (zt)Cov(Rei

t+1,
∆C̄t+1

C̄t

|zt) + λW (zt)Cov(Rei
t+1,

∆W̄t+1

W̄t

|zt), (23)

where

λC =
γ

1 + η
(

C̄t

W̄t

)γ , λW =
γη
(

C̄t

W̄t

)γ

1 + η
(

C̄t

W̄t

)γ , (24)

which is a special case of (A-17) with identical households (so that sit = 1 for ∀i, t). I as-

sume that the aggregate consumption-wealth ratio is exponentially affine in the conditioning

variable zt, which is meant to mimic the behavior of the cointegrating residual cay in the

data:

C̄t

W̄t

= exp (ζ0 + ζ1zt) , (25)

where zt itself follows an AR(1) process:

zt+1 = ϕzzt + σzω
z
t+1. (26)

I assume that the logarithm of the aggregate consumption process follows a random walk:

log C̄t+1 = log C̄t + µc + σcω
c
t+1, (27)
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while the stationarity of the consumption-wealth ratio implies that aggregate consumption

and aggregate wealth are cointegrated (in logs):

log W̄t = log C̄t − (ζ0 + ζ1zt) . (28)

The parameters are chosen to match the moments of aggregate consumption as well as the

ratio of financial wealth to aggregate consumption. These parameters are summarized in

Table III (panel A).

I impose the following exogenous structure on the conditional covariances of returns with

state variables:

Cov(Rei
t+1,

∆C̄t+1

C̄t

|zt) = ρic (zt) σcσi, (29)

Cov(Rei
t+1,

∆W̄t+1

W̄t

|zt) ≈ Cov(Rei
t+1,

∆C̄t+1

C̄t

|zt)− Cov(Rei
t+1,

C̄t+1

W̄t+1

|zt) (30)

≈ ρic (zt) σcσi − ζ1ρ
i
z (zt)σzσi, (31)

where σi is the standard deviation of portfolio i excess return.

Thus, the only source of time-variation in conditional covariances is in the time-varying

correlations for returns with the two factors - the consumption growth innovations and

innovations in the consumption-wealth residual. I exogenously specify simple functional

forms for the dynamics of these conditional covariances:

ρic (zt) =
l0

1 + el
i
1zt

(32)

and

ρiz (zt) = ki
0 + ki

1zt. (33)

For parsimony, I parameterize only two pairs of these conditional correlations, represent-

ing the extreme Value and Growth portfolios, so that the conditional correlations for the six
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test portfolio returns are determined in the following manner:

ρ1f (zt) = ρ4f (zt)
.
= ρGf (zt) , (34)

ρ3f (zt) = ρ6f (zt)
.
= ρVf (zt) , (35)

ρ2f (zt) = ρ4f (zt)
.
=

1

2

(
ρGf (zt) + ρVf (zt)

)
, (36)

for f = {c, z}. Using empirical estimates for the conditional standard deviations implies

reasonable magnitudes for resulting conditional covariances of portfolio returns with con-

sumption growth.The nonlinear structure of conditional correlations allows me to capture

the “composition effect” (i.e. covariances of returns with consumption growth decline as

consumption-wealth ratio increases) as well as the fact the key observation of Lettau and

Ludvigson (2001b) that Value portfolio returns covary more highly with consumption growth

than Growth portfolios in “bad times,” when zt is high, but not on average.

I then parameterize the price of risk functions (24) and the covariances of returns with

the cointegrating residual zt (which in turn feed into covariances with wealth growth) so

as to match the level of expected excess returns in the data, as well as to ensure that the

conditional expected returns are broadly increasing as functions of zt (albeit not necessar-

ily monotonically).All of the parameters are summarized in Table III Panels A and B (all

moments are quarterly).

Finally, I simulate realized portfolio excess returns by adding innovations to the expected

returns (which are constructed as functions of the state variable zt):

Rei
t+1 = E

(
Rei

t+1|zt
)
+ σi

[
ρic (zt)ω

c
t+1 + ρiz (zt)ω

z
t+1 +

√
1− ρic (zt)

2 − ρiz (zt)
2
ωi
t+1

]
, (37)

where ωi
t+1 is the idiosyncratic (i.e., unpriced) component of portfolio i excess return. All

shocks ωi
t+1 as well as ωc

t+1 and ωz
t+1 are independently and identically distributed, drawn

from the standard normal distribution. The statistics of these simulated excess portfolio

returns are summarized in Panel C of Table III, together with those of the key state variables:

aggregate consumption growth, aggregate wealth growth, and the consumption-wealth ratio.
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5.2 Monte Carlo analysis: pricing errors

I use the stylized model of expected portfolio excess returns described above to evaluate the

size and power properties of the nonparametric conditional asset pricing tests by means of

Monte Carlo simulation. Specifically, I simulate NMC = 10000 draws from the model and

compute the resulting distribution of pricing error test statistics. For each Monte Carlo draw

I simulate the model for Tlong = 1000 periods, and use the last Tshort = 221 observations,

corresponding to the length of the empirical sample, for testing. Table IV reports the

results. I estimate and test the following models using the simulated data: the one-factor

consumption CAPM (CCAPM), the two-factor consumption/wealth CAPM (CWCAPM),

which is the true model, and the two-factor model where the total stock market returns

(obtained as equal weighted portfolio of the six simulated tests assets) is used as a proxy for

the unobserved wealth portfolio return.

For each simulated series, I estimate average pricing errors by applying the conditional

method of moments estimation developed in Section 3 to the six simulated portfolio returns

and evaluate the average pricing errors on the four long-short corner portfolios, thus replicat-

ing the empirical analysis in Section 4. I use bootstrap with 100 replications to test whether

each of the portfolio pricing errors is significantly greater (or smaller) than zero. I report the

mean average pricing error across the Monte Carlo simulations for each model, as well as the

fraction of Monte Carlo draws in which the bootstrap tests reject the hypothesis that the

average pricing error is equal to zero (reported in the parentheses). The table also provides

the mean average excess returns on each of the test portfolios combined with the standard

deviation of these average excess returns across the Monte Carlo draws, as a measure of sam-

pling uncertainty about the mean (in brackets). There is considerable uncertainty about the

magnitude of the size premium: the differences between Small and Large portfolio returns

are on average around 80 basis points per quarter but are well within two standard errors

from zero. At the same time, the value premium is very clearly pronounced: the differences

between Value and Growth portfolios are on average around 90 basis points per quarter

but clearly statistically significant as standard errors are less than 40 basis points for these
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portfolios. Therefore, these test assets provide a suitable setting for evaluating the power of

different asset pricing tests to distinguish between the models aimed at explaining the value

premium.

I consider three models. First, I test the the one-factor consumption-based model

(CCAPM) - while this model is false by construction in the simulated data, I am inter-

ested in evaluating the power of the tests to reject it. Second, I test the two factor model

with consumption growth as the first factor and the excess return on the market portfolio

(defined as an equal weighted average of the six basis portfolios) as the second factor (CW-

CAPM(M)). While this model does not hold exactly in the simulation, it is meant to proxy

for the true model (CWCAPM) when the wealth portfolio is unobserved. Finally, I test the

true model with the consumption growth and wealth growth factors (CWCAPM). The latter

allows me to evaluate the size of the tests (i.e., the probability of rejecting the true model).

I first test the unconditional versions of the models (reported in the upper panel of Table

IV)). The pricing error tests reject the unconditional CCAPM very strongly: average pricing

errors on the Value minus Growth portfolios are 1.44% and 1.05% for Small and Large pairs,

respectively, and in each case the pricing error is statistically significant in approximately 90%

of the Monte Carlo draws. For the CWCAPM(M) model these pricing errors are smaller but

still substantial (0.98 and 0.73 percent, respectively) and each statistically significant in 60%

of the Monte Carlo draws. In contrast, the bootstrap tests rarely reject the unconditional

version of the true (conditional) model CWCAPM: the largest pricing error, for the Small

Value minus Small Growth portfolio, is only 25 percent, and each of the Value minus Growth

pricing errors is statistically significant in at most 18 percent of cases (interestingly, Small

minus Large pricing errors, while essentially zero on average, are more often statistically

significant, about 22% of the time for either the Value or the Growth portfolios). In sum, the

unconditional bootstrap pricing error tests have substantial power to reject the wrong model,

and small probability of rejecting the unconditional approximation of the true conditional

model.

The middle panel of the table presents the results using unconditional tests of the con-

ditional models using the scaled factor approach. All three models produce average pricing

30



errors that are essentially zero, with each of the portfolios producing a statistically significant

pricing error in about 15% of Monte Carlo draws for the one-factor model (CCAPM) and

between seven and ten percent of the time for both of the two-factor models. Consequently,

the scaled factor tests do not have much power to distinguish between the models, and in

particular to reject the false model, as it is rejected only slightly more often than the true

model.

Finally, the bottom panel reports tests using the nonparametric conditional method of

moments to test the conditional implications of the three models. The conditional CCAPM

has estimated pricing errors of almost the same magnitudes on average as the unconditional

CCAPM: the Value minus Growth strategies are mispriced by 1.07% and 0.80% in Small

and Large pairs, and statistically different from zero in 74% and 76% of the Monte Carlo

draws, respectively. For the conditional CWCAPM(M) the pricing errors on the same test

assets are only half as large, and statistically significant in only about 10% to 13% of the

draws. Thus, from the perspective of the conditional asset pricing tests, the model that

uses the market portfolio as a proxy for the wealth portfolio return is a reasonably good

approximation to the true model.

For the true model CWCAPM itself the conditional pricing errors are 0.14% for the Small

Value minus Small Growth and 0.11% for the Large Value minus Large Growth strategy.

Each of the average pricing error is statistically significantly different from zero in at most

six percent of the Monte Carlo draws. Therefore, the conditional test has the correct size:

the true model is rarely rejected based on these pricing error tests. For the Small minus

Large portfolios the pricing errors are small for all three models, and rarely significant, so

the power of the nonparametric test clearly comes from its ability to distinguish between

the different dynamics of the conditional means and covariances of Value portfolios vis-a-vis

Growth portfolios, rather than simply differences in the amount of uncertainty in returns

(by construction, conditional moments of the simulated Small and Large portfolio returns

within the same book-market grouping only differ in volatility).

Overall, the evidence from the Monte Carlo simulations indicates that imposing condi-

tional moment restrictions in estimating the conditional asset pricing models substantially
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improves the ability of cross-sectional asset pricing tests to distinguish between the model,

even if the tests are based on the unconditional pricing errors. The nonparametric tests

have sufficient power to reject a false conditional model as well as the ability to identify the

correct model. This is in contrast to the scaled-factor tests that do not impose conditional

moment restrictions by only testing the unconditional implications of the conditional mod-

els, effectively allowing the model too many degrees of freedom. Interestingly, the standard

unconditional model tests have a reasonably good ability to distinguish between the false

model and the true model, but only when the true model is correctly specified. In the case of

the unobserved wealth portfolio the unconditional approximation of the model that uses the

stock market return as a proxy is rejected much more often than is the conditional model,

since the latter uses additional information about the conditional covariance structure of ob-

served returns to identify the risk prices. This finding helps to interpret one of the empirical

findings in Section 4.3 (the conditional CWCAPM is not rejected while the unconditional

version is rejected): the lack of rejection is not due to the low power of the nonparametric

test, but rather due to its superior ability to detect the conditional risk-return trade-off.

5.3 Monte Carlo analysis: conditional moments

Are the pricing error tests used to evaluate the conditional models based on reasonably ac-

curate estimates of the conditional moments of excess returns? This question can also be

answered within the same Monte Carlo simulation setup. I simulate the model 10000 times

and estimate the conditional expected excess returns on the six benchmark portfolios, as well

as the conditional covariances of returns with simulated consumption growth, using short

samples of Tshort = 221 observations in each draw, following the same approach as employed

in Section 4.1. I report mean estimate across the Monte Carlo draws for each moment as a

function of the conditioning variable, alongside the true value of the conditional moment, as

well as the 95% confidence intervals for the estimates. Figure 7 presents estimates of condi-

tional expected excess returns on the six portfolios while Figure 8 presents estimates of con-

ditional covariances of returns with consumption growth. Clearly, the estimated conditional
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moments are quite close to the true moments, although there is considerable uncertainty

about them. For the conditional mean excess returns, the 95% confidence bands include

zero in both the right and the left tail of the distribution of the conditioning variable, as

there are too few observations to estimate the conditional moments reliably. Still, the aver-

age conditional mean estimate virtually coincides with the true conditional mean function

throughout the range of the state variable. The same is essentially true for the estimates

of conditional covariances, although the latter appear slightly noisier near the boundaries

of the state space, with potentially a very slight slight bias toward zero in the upper tail

of the distribution of the conditioning variable. Overall, I conclude that the nonparametric

conditional moment estimators implemented as part of the conditional method of moments

have sufficiently reliable to permit robust interpretation of the estimation results.

6 Extensions

In this section I employ measures of long-run consumption risk to further corroborate the ev-

idence in support of the CWCAPM. I then show that extending the conditioning information

set does not substantially improve the performance of the canonical conditional CCAPM.

6.1 Long-run consumption growth risk

The fact that the stock market may be a poor proxy for the total wealth portfolio could be

harming the empirical performance of the CWCAPM, as verified by the simulation evidence

above. The opposite concern is that the apparently superior performance of the CWCAPM

may be too good to be true. As a conditional two-factor model it may have enough degrees of

freedom to generate a spurious fit for the cross-section of conditional expected excess returns

due to the factor structure that is present in the returns on the benchmark portfolios. Such

concerns are raised by Daniel and Titman (2005) and Lewellen, Nagel, and Shanken (2010)

in the case of testing unconditional multi-factor models, and could potentially apply if the

factor structure carries over to the conditional covariances of portfolios returns.
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I address both of these concerns simultaneously by relying on the key insight of Bansal and

Yaron (2004) that the total wealth return reflects news about future, as well as contempora-

neous, consumption growth. Indeed, Parker (2003) shows that the variation in consumption

risk as measured by the conditional covariances of stock returns with long-run consump-

tion growth over time is much better aligned with time-variation in expected stock returns

than is the case when contemporaneous consumption growth is used.13 Parker and Julliard

(2005) and Hansen, Heaton, and Li (2008) show that exposures to news about future ag-

gregate consumption help explain the differences in unconditional expected returns between

value and growth stocks (see also the discussion in Hansen, Heaton, Lee, and Roussanov

(2007)). Here I extend the analysis by using a single conditional covariance with long-run

consumption growth to capture the effect of both consumption risk and total wealth risk on

the conditional expected returns simultaneously.

I estimate conditional covariances with long-run consumption growth as

Cov

(
Rt+1,

Ct+1+S

Ct

|zt

)
, (38)

for S equal to either 11 or 19 quarters. I then estimate the one-factor conditional CCAPM

as before, using this covariance as the measure of consumption risk.

Table V displays the tests statistics for the differences in conditional moments between

the high and low cay states. Consistent with the findings of Parker (2003) the composition

effect is not present in the covariances of returns with long-run consumption growth, in con-

trast to the contemporaneous covariances: for most of the basis portfolios, the difference in

covariances between “bad” and “good” state are positive, and none are significantly different

from zero. The fact that we cannot reject that the differences are zero may be due to the lack

of statistical power in estimating time-variation in long-run covariances rather than to the

lack of comovement between long-run consumption risk and conditional expected returns.

However, the cross-sectional patterns of time-varying long-run consumption covariances

13A measure of consumption risk based on longer horizons can be rationalized by appealing to models of
slow adjustment of consumption in response to wealth returns (e.g., Gabaix and Laibson, 2002).
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are similar to those identified over the short run, albeit weaker. The differences in conditional

covariances on long-short Value minus Growth portfolios are still positive, and statistically

significant only for the Small portfolios. As before, the differences in average returns on Value

minus Growth strategies between “bad” and “good” states have the opposite (i.e. negative)

sign from the differences in covariances but are not statistically different from zero.

Table VI presents the corresponding pricing error tests for the unconditional, scaled

and conditional versions of the long-run CCAPM with cay as the conditioning variable.

When consumption growth is computed over 3-year interval (i.e., S = 11) the unconditional

CCAPM performs rather well, producing small pricing errors, none of which are statistically

different from zero. This is consistent with findings of Parker and Julliard (2005) who argue

that CCAPM with long-run consumption growth is able to explain the cross-section of stock

returns. Interestingly, for the 5-year horizon (S = 19) the CCAPM does not perform as

well - pricing errors are larger in magnitude, and, in particular, Small minus Large Value

pricing error is large (80 basis points per quarter) and statistically significant at a 4% level.

It is not surprising that in both cases the scaled version of the model performs better,

displaying small and insignificant pricing error. Imposing the conditional moment restrictions

nonparametrically reduces the advantage of the conditional models over the unconditional

ones as is the case in all of the situations analyzed above. Still, for both S = 11 and S = 19

none of the pricing errors are statistically different from zero, and most are smaller than

the unconditional ones. Overall, using measures of long-run consumption risk results in a

substantial improvement in explaining the value premium relative to the canonical CCAPM,

both unconditionally and conditionally.

6.2 Expanding the conditioning set: single-index approach

One concern is that the above results are due to a particular set of conditioning variables

used and other variables that are potentially important for capturing the joint dynamics of

asset returns and consumption, as well as for the price of consumption risk, are omitted. The

reason for focusing on composition of wealth variables is that models linking these variables
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to risk prices have been established in the literature as described above, and using these

variables is sufficient for testing the predictions of these models. However, these models may

be misspecified, so that it is possible that a slightly more general version of the CCAPM

still holds. In principle, it is impossible to fully allay such concerns, as the Hansen-Richard

critique still applies. In practice, however, it is unlikely to be a serious problem, since the

evidence documented above puts fairly stringent requirements on the joint dynamics of asset

returns and consumption growth that would have to be satisfied by the “true” conditional

model. Consider the conditional asset pricing relation (1) implied by the consumption CAPM

where the information set It is partitioned into the subset spanned by a given conditioning

variable zt and the orthogonal component Ĩt:

E
(
Rei

t+1|zt, Ĩt

)
= γtCov(Rei

t+1,
∆Ct+1

Ct

|zt, Ĩt). (39)

Conditioning this down to the information set spanned by zt yields

E
(
Rei

t+1|zt
)

= E (γt|zt)Cov

[
Rei

t+1,
∆Ct+1

Ct

∣∣∣∣ zt
]

(40)

+Cov

[
γt, Covt(R

ei
t+1,

∆Ct+1

Ct

)

∣∣∣∣ zt
]

(41)

−E (γt|zt)Cov

[
EtR

ei
t+1, Et

∆Ct+1

Ct

∣∣∣∣ zt
]
, (42)

so that the tests that use one of composition of wealth variables as zt effectively ignore the last

two terms of this moment condition. Whether this omission can lead to a spurious rejection

of the model depends on the signs (and magnitudes) of these two terms. The empirical results

above indicate that the left hand side of this relation (the conditional expected return) for

Value minus Growth portfolios is greater than the first term on the left hand side in “good

times” (i.e. when conditional expected returns on all portfolios are low), and smaller in

“bad times” (when conditional expected returns are high). The last term is plausibly of

second order as even if consumption growth is predictable, the amount time-variation in the
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conditional covariance between expected consumption growth and expected excess returns is

likely to be small. Focusing on the second term, the observed pattern of conditional pricing

errors implies that the covariance between the consumption risk of Value minus Growth

portfolios with the time-varying price of consumption risk γt must be higher in “good” times

than in “bad” times, as measured by the composition of wealth variables. While it cannot be

ruled out a priori, such a pattern of joint dynamics of returns and consumption risk appears

highly implausible.

While expanding the conditioning set using a range of known predictive variables is sim-

ple in principle, it raises difficult econometric challenges. In particular, conditional method

of moments is subject to the “curse of dimensionality” that comes with nonparametric es-

timation of conditional moments (e.g. as discussed by Brandt (1999)). The same problem

is faced by Nagel and Singleton (2010), who consider one conditioning variable at a time.

I address this issue by employing a semiparametric approach similar to that used by Äıt-

Sahalia and Brandt (2001). This method allows the information contained in a K×1 vector

of instruments Zt to be condensed into a single conditioning variable zt via a linear function

zt = θ′Zt, (43)

where θ is a K × 1 vector of index weights. This single index can be used in place of

the single conditioning variable in the nonparametric estimation and asset pricing tests,

thus potentially capturing more information about the dynamics of consumption risk, asset

returns, and risk prices while maintaining the flexibility of nonparametric estimation. The

construction of a single index summarizing information about conditional moments of returns

is in the spirit of Ludvigson and Ng (2007) who propose a method for condensing information

in a large number of variables into a small number of instruments via factor analysis. In

order to impose additional discipline on the estimation, I impose the restriction that the

index weights are the same for all of the conditional moments across the tests assets. This

allows me to estimate the dependence of the factor risk prices on the single index directly.

Finally, I use a constant bandwidth parameter in estimating the conditional moments, which

37



is estimated jointly with the vector of index weights (e.g., Härdle, Hall, and Ichimura, 1993):


 θ̂

ĥ


 = argmin

θ,h

{
GT (θ, h)′W (θ, h)GT (θ, h)

}
, (44)

where

GT (θ, h) =
1

T

T∑

t=1

g (zt; h) , (45)

zt = θ′Zt (46)

g (z; h) = m̂ (z; h)− ĉv (z; h)′ λ̂ (z; h) , (47)

λ̂ (z) =
(
ĉv (z; h)′ ĉv (z; h)

)−1
ĉv (z; h)′ m̂ (z; h) , (48)

and m̂ and ĉv are the nonparametric estimators of conditional means and covariances of

returns and factors as described above. I use the identity matrix in place of W (θ, h) for

simplicity, although any matrix that converges in probability to some positive-definite matrix

can be used, including the optimal GMM weighting matrix of Hansen (1982) or the weighting

matrix used in the continuously-updated updated GMM estimator of Hansen, Heaton, and

Yaron (1996).

I use this framework to test whether conditioning variables other than the composition

of wealth variables used above help capture time-variation in the price of consumption risk.

As such I add the following variables to the conditioning set: IP , the 12-month growth

rate of the monthly U.S. industrial production index; the term spread term (the difference

between the 10-year and the 3-month U.S. treasury bond yields); the default spread def (the

difference between the BAA and the AAA rated bond yields); and the dividend yield dp (the

ratio of the quarterly dividends on the value-weighted market portfolio to the total market

capitalization of the portfolio at the end of the quarter). I also consider the first 8 principal

components extracted from the panel of 131 macroeconomic time series in Ludvigson and

Ng (2009).

I conduct inference in the following way. First, I compute the probability that each of the
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elements of θ̂ that is estimated to be positive is negative under the bootstrap distribution,

and vise versa for the negative ones (I refer to these as non-parametric p-values). Second, I

compute the semiparametric p-values for these one-sided tests under the null hypothesis that

the index weights are equal to zero for all variables except for one of the composition of wealth

variables (e.g., cay). In order to do this I estimate the model using the single given variable,

resample the residuals as described in the appendix, and re-estimate the model using the

single-index approach described above. The resulting bootstrap distribution provides the

probabilities of generating obtained point estimates when the true coefficients are zero.

The results of single-index estimation and tests are presented in Table VII. I consider

four different specifications of the single-index model. The first one includes cay as well as

IP , term, and def . While the signs of the point estimates are consistent with the notion of

counter-cyclical price of consumption risk (the yield spreads as well as cay come in positively,

where as IP has a negative coefficient), only cay has a statistically significant weight in the

index (the probability that it has a ‘wrong’ sign under the bootstrap distribution is 1%,

while it is above 15% for all the other variables). Imposing the null hypothesis that only

cay enters the index yields very large p-values for the other three variables. Adding the

dividend-price ratio to the index (the second specification) reduces the magnitude of the

cay coefficient as well as that for the term spread, and even flips the sign for def . Still,

only the cay coefficient is the only variable that is strongly statistically significant (for the

dividend yield, the bootstrapped coefficient is negative 10% of the time, so its significance is

marginal). Further, under the null that only cay enters the index, the dp can have coefficient

at least as large as estimated with a probability of 44%.

In the third specification I add the labor-consumption ratio yc to all of the above variables.

Like cay , this variable’s weight in the index is very precisely estimated, with essentially zero a

zero probability that the coefficient is negative (rather than positive). It is not clear, however,

whether cay and yc contain independent information about the price of consumption risk.

In fact, under the null that only cay enters the index the coefficient for yc is not statistically

significant, and vice versa: under the null that only yc matters, cay coefficient could be as

large as observed over 31% of the time (all of the other variables are not significant in either
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case). As it appears that the two composition of wealth variables essentially drive each

other out in these tests, it is likely that the common information that is contained in both

of them is sufficient to capture the time-variation in the price of consumption risk. As none

of the other variables have a statistically detectable contribution to the index, this evidence

validates the focus on the composition of wealth variables in conditional asset pricing tests.

Finally, the fourth specification presented in Panel B of the Table considers the index

comprised of cay and the eight principal components of the macroeconomic panel. Unlike

the variables in Panel A, the weights of all of the principal components in the single index are

estimated very precisely, since they are orthogonal to each other by construction. Under the

null hypothesis that cay is the only variable driving the price of consumption risk only two

of the eight principal principal components have estimated coefficients that are statistically

significantly different from zero: PC2 and PC6.

Does a specification in which these two macroeconomic variables enter the single index

along with cay improve the performance of the conditional asset pricing model? To answer

this question I use the composite index consisting only of three variables (cay , PC2 and

PC6) to estimate the conditional price of consumption risk together with the conditional

moments and test the asset pricing model as before. Panel C of the same Table presents

the coefficients of the single index together with their p-values under the null that cay is the

only variable entering the index, showing that under this specification neither of the principal

components is significant. Adding these two additional degrees of freedom makes it harder to

reject the asset pricing model using the average pricing error tests: the pricing errors on the

four long-short portfolios presented in Panel E are all insignificantly different from zero, even

though their economic magnitudes are large, especially for the key Small Value minus Small

Growth portfolio, which has pricing error greater than its average return (1.83% percent vs.

1.63%). Nevertheless, examining the pricing errors on the six basis portfolios themselves,

displayed in Panel D, reveals statistically detectable mispricing. In particular, the Small

Value and Small Intermediate portfolios both have large and statistically significant pricing

errors. Therefore, even with the flexibility attained by adding macroeconomic factors to the

conditioning set describing the dynamics of the price of consumption risk the model is not
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able to explain the value and size anomalies.

7 Conclusion

This paper investigates the empirical performance of conditional asset pricing models in

which conditioning information captures the changing composition of total wealth, and as

such is a source of time-variation in expected returns and covariances. The main finding

is that the time-series behavior of consumption risk associated with the trading strategies

that capture the “value premium” in the cross-section of stock returns are is at odds with

the dynamics of conditional expected returns on these strategies. The evidence I present is

consistent with the argument of Lettau and Ludvigson (2001b) that value portfolio returns

covary with aggregate consumption growth more during “bad times”, when risk premia are

high, than during “good times,” while the opposite is true for growth portfolios. At the same

time, the conditional expected returns on value portfolios do not increase by more than those

of growth portfolios in “bad states,” as predicted by the conditional CCAPM. This central

conclusion is largely robust to the alternatives ways of measuring time-varying consumption

risk of equity portfolios.

The evidence presented here suggests that greater covariation of returns with the measure

of consumption growth might not be sufficient to explain the value premium by itself. This

finding mirrors the theoretical arguments of Lettau and Wachter (2007) and Santos and

Veronesi (2010) that models with time-varying risk aversion driven by habit formation cannot

explain the value premium if growth stocks are viewed as long duration assets and therefore

more sensitive to variation in discount rates (see also Lynch and Randall (2010)). The fact

that the conditional covariances and conditional expected returns on value portfolios do not

move in the same direction as functions of conditioning information suggests that another

risk factor might be required whose dynamics would play an offsetting role.

The conditional models that are not rejected on the basis of average pricing errors are

the CCAPM with long-horizon consumption growth and the two-factor CWCAPM in which

consumption growth and aggregate wealth growth are two separately priced sources of risk,
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which suggests that the cross-section of average returns reflects long-run consumption risk

that is partly captured in the return on the market portfolio (e.g., Bansal and Yaron, 2004;

Hansen, Heaton, and Li, 2008). However, the relative success of these models appears to be

driven primarily by their unconditional, rather than conditional, properties.

Better measurement of consumption risk could be part of the solution to the remain-

ing puzzle, e.g. by allowing infrequent adjustment of consumption to wealth shocks, as

advocated by Jagannathan and Wang (2007), and by measuring long-run (rather than con-

temporaneous) consumption risk of households that participate in the stock market as in

Malloy, Moskowitz, and Vissing-Jørgensen (2005). Applying the methodology developed

here to testing the conditional implications of the asset pricing models considered in these

recent studies should yield further insights into the role of consumption risk in explaining

the cross-section of stock returns, but is fraught with difficulties as estimation of conditional

covariance may not be feasible given the data available to researchers at present.
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Table I: Differences in conditional moments of portfolio returns

Bootstrap tests of differences in conditional moments of returns for the benchmark portfolios,
using z = cay as the conditioning variable, where zL = −0.019 and zH = 0.02 correspond to
the 10th and 90th percentiles of the distribution of cay , respectively. The test statistics are
differences in point estimates of conditional moments evaluated at these two states for each
test portfolio. The p-values for the one-sided tests reported in the parentheses are computed
using the bootstrap distributions of the corresponding test statistics centered at zero. Data
is for the time period IV.1952 - IV.2008.

E(R|zH)−E(R|zL) 100× (cov(R,∆c|zH)− cov(R,∆c|zL))
Small Growth 4.06 -1.13

( 0.01) ( 0.04)
Small Value 3.63 -0.41

( 0.01) ( 0.23)
Large Growth 5.21 -1.12

( 0.00) ( 0.01)
Large Value 3.62 -0.33

( 0.01) ( 0.24)
Small Value minus Growth -0.43 0.72

( 0.41) ( 0.01)
Large Value minus Growth -1.59 0.79

( 0.09) ( 0.02)

51



Table II: Average pricing errors: quarterly data, cay

Unconditional pricing errors for the conditional model are given by

αi = Ê
[
Rei

t+1 − Ĉov(Rei
t+1, ft+1|zt)

′λ̂ (zt)
]
, (TF-1)

where i is one of the four long-short portfolio returns that are combinations of the original
6 portfolios used to estimate the model: Small Value minus Small Growth (SV-SG), Small
Growth minus Large Growth (SG-LG), Small Value minus Large Value (SV-LV) and Large
Value minus Large Growth (LV-LG).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM 1.75 -0.70 0.54 0.51
( 0.01) ( 0.13) ( 0.19) ( 0.24)

unconditional (I)CAPM 2.05 -0.11 0.93 1.01
( 0.00) ( 0.64) ( 0.00) ( 0.01)

unconditional CWCAPM 0.83 -0.73 0.61 -0.51
( 0.37) ( 0.14) ( 0.09) ( 0.00)

CCAPM scaled with cay 0.52 -0.22 0.74 -0.44
( 0.26) ( 0.35) ( 0.07) ( 0.02)

(I)CAPM scaled with cay 0.25 -0.34 0.29 -0.37
( 0.54) ( 0.16) ( 0.44) ( 0.08)

CCAPM scaled with yc 1.09 -0.83 0.48 -0.21
( 0.02) ( 0.02) ( 0.10) ( 0.28)

(I)CAPM scaled with yc 0.71 -0.64 0.63 -0.56
( 0.01) ( 0.00) ( 0.01) ( 0.00)

CWCAPM scaled with ca 0.15 -0.15 0.10 -0.10
( 0.55) ( 0.41) ( 0.65) ( 0.53)

conditional CCAPM with cay 1.41 -0.58 0.66 0.17
( 0.01) ( 0.10) ( 0.06) ( 0.55)

conditional ICAPM with cay 1.57 -0.32 0.47 0.78
( 0.00) ( 0.18) ( 0.13) ( 0.03)

conditional CCAPM with yc 1.48 -0.54 0.71 0.24
( 0.00) ( 0.11) ( 0.05) ( 0.50)

conditional ICAPM with yc 1.84 -1.09 0.52 0.22
( 0.00) ( 0.00) ( 0.05) ( 0.49)

conditional CCAPM with ca 1.44 -0.94 0.36 0.15
( 0.02) ( 0.02) ( 0.27) ( 0.57)

conditional CWCAPM with ca 0.82 -0.94 0.23 -0.35
( 0.19) ( 0.01) ( 0.19) ( 0.01)

average returns 1.59 0.13 0.88 0.84
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Table III: Simulated model - CWCAPM
Panel A lists the parameters of the conditional two-factor asset pricing model with con-
sumption risk and aggregate wealth risk (CWCAPM) used in the Monte Carlo simulation
exercise.
Panel B lists the parameters governing the conditional correlations of simulated returns with
the pricing factors.
Panel C displays summary statistics of the simulated data.

Panel A. Preference parameter and aggregate dynamics

beginequation0pt]
γ η ζ0 ζ1

20 25× 1015 -1.66 8.80

Panel B. Conditional correlation parameters

beginequation0pt]

l0 l1 k0 k1

Value 0.30 2.00 -0.75 5.00

Growth 0.30 100.00 -0.40 -2.00

Panel C. Summary statistics of simulated data
beginequation0pt]

∆C ∆W C
W

Portfolio excess returns

SG SI SV LG LI LV

Mean (%) 0.50 0.68 18.91 2.79 2.87 3.65 1.85 2.05 2.82

Std.Dev. (%) 0.46 6.11 2.42 11.49 8.83 9.23 7.59 6.33 7.22

Autocorrelation 0.00 -0.06 0.89 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01
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Table IV: Average pricing errors: Monte Carlo simulations

A version of the conditional two-factor model CWCAPM (the true model) is simulated
NMC = 10000 times. The artificial data in each replication constitutes a sample of T = 221
observations from the simulated series.
The following models are estimated using either conditional or unconditional moments:
CCAPM is the one-factor consumption-based model; the two-factor model CWCAPM(M)
uses the simulated stock market portfolio return as a proxy for the wealth portfolio return,
where as the model CWCAPM uses the true wealth return.
Unconditional average pricing errors are estimated for the four long-short portfolio returns
that are combinations of the 6 basis portfolios used to estimate the model: Small Value
minus Small Growth (SV-SG), Small Growth minus Large Growth (SG-LG), Small Value
minus Large Value (SV-LV) and Large Value minus Large Growth (LV-LG). Values in the
parentheses indicate the fraction of Monte Carlo draws for which the p-values for the test
that individual pricing errors are equal to zero are less than 5%. The p-values are computed
using (semi)parametric stationary bootstrap with 100 replications.
The means of portfolio excess returns and standard errors for the means (in brackets) are
average and standard deviations of estimates of means across the Monte Carlo draws, re-
spectively.

Model SV-SG SG-LG SV-LV LV-LG
unconditional CCAPM 1.44 -0.20 0.19 1.06

( 0.89) ( 0.16) ( 0.15) ( 0.90)
unconditional CWCAPM(M) 0.98 -0.20 0.05 0.73

( 0.60) ( 0.46) ( 0.49) ( 0.60)
unconditional CWCAPM 0.25 -0.02 0.04 0.19

( 0.17) ( 0.22) ( 0.23) ( 0.18)
CCAPM scaled with z 0.03 0.00 0.01 0.02

( 0.16) ( 0.15) ( 0.15) ( 0.16)
CWCAPM(M) scaled with z 0.03 -0.03 0.01 -0.00

( 0.09) ( 0.09) ( 0.10) ( 0.09)
CWCAPM scaled with z 0.01 -0.00 -0.00 0.01

( 0.07) ( 0.08) ( 0.09) ( 0.07)
conditional CCAPM with z 1.07 -0.09 0.17 0.80

( 0.74) ( 0.14) ( 0.14) ( 0.76)
conditional CWCAPM(M) with z 0.41 -0.26 -0.17 0.32

( 0.10) ( 0.07) ( 0.08) ( 0.13)
conditional CWCAPM with z 0.14 0.02 0.05 0.11

( 0.05) ( 0.06) ( 0.08) ( 0.06)

average returns 0.87 0.86 0.77 0.97
[ 0.38] [ 0.67] [ 0.58] [ 0.25]
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Table V: Differences in conditional moments of portfolio returns - long-run con-

sumption risk

Bootstrap tests of differences in conditional covariances of returns on the benchmark portfo-
lios with long-run aggregate consumption growth and differences in conditional mean excess
returns, estimated jointly using z = cay as the conditioning variable, where zL = −0.019
and zH = 0.02 correspond to the 10th and 90th percentiles of the distribution of cay (in the
entire sample IV.1952 - IV.2008), respectively. Consumption growth is calculated over S+1
quarters.

Panel A: S = 11
E(R|zH)−E(R|zL) 100× (cov(R,∆c|zH)− cov(R,∆c|zL))

Small Growth 4.28 -1.31
( 0.01) ( 0.34)

Small Value 3.26 4.24
( 0.01) ( 0.91)

Large Growth 5.29 4.00
( 0.00) ( 0.96)

Large Value 3.48 6.11
( 0.01) ( 0.99)

Small Value minus Growth -1.03 5.55
( 0.26) ( 0.01)

Large Value minus Growth -1.80 2.10
( 0.07) ( 0.11)

Panel B: S = 19
E(R|zH)−E(R|zL) 100× (cov(R,∆c|zH)− cov(R,∆c|zL))

Small Growth 5.08 -4.10
( 0.01) ( 0.23)

Small Value 3.85 1.83
( 0.01) ( 0.64)

Large Growth 5.89 1.90
( 0.00) ( 0.71)

Large Value 4.32 3.67
( 0.00) ( 0.83)

Small Value minus Growth -1.23 5.93
( 0.23) ( 0.01)

Large Value minus Growth -1.57 1.77
( 0.10) ( 0.23)
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Table VI: Average pricing errors: long-run consumption risk

CCAPM estimated using quarterly aggregate data, with consumption risk measured by
covariances with long-run consumption growth over S + 1 quarters.
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM, S = 11 0.40 0.33 0.47 0.25
( 0.53) ( 0.17) ( 0.22) ( 0.45)

unconditional CCAPM, S = 19 0.72 0.10 0.80 0.02
( 0.43) ( 0.28) ( 0.04) ( 0.70)

CCAPM scaled with cay, S = 11 0.21 0.15 0.49 -0.13
( 0.18) ( 0.19) ( 0.06) ( 0.24)

CCAPM scaled with cay, S = 19 0.18 0.14 0.39 -0.07
( 0.29) ( 0.18) ( 0.12) ( 0.37)

conditional CCAPM with cay , S = 11 -0.10 0.49 0.69 -0.30
( 0.25) ( 0.17) ( 0.08) ( 0.17)

conditional CCAPM with cay , S = 19 0.40 0.10 0.60 -0.10
( 0.62) ( 0.31) ( 0.11) ( 0.23)

average returns 1.63 0.15 0.97 0.81
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Table VII: Multiple conditioning variables - single index

Single-index semiparametric estimation of the time-varying price of consumption growth risk.
The estimated coefficients contained in the vector θ are weights of individual variables in the
single index used in the nonparametric estimation of the conditional prices of risk. The boot-
strap p-values in the parentheses are computed using two methods: fully nonparametrically,
by estimating the frequency of bootstrap samples producing the estimate of an opposite sign
from the point estimate (pnonp), and semi-parametrically under the null hypothesis that only
one variable z enters the index.
The variables are the consumption-wealth residual cay , together with a set of macroeconomic
and financial variables, such as the 12-month growth rate of industrial production IP ; the
term spread term; the default spread def ; the dividend yield dp; and the labor income to
consumption ratio yc (Panel A), and with the first 8 principal components extracted from
131 macroeconomic series in Ludvigson and Ng (2009) (Panel B).

Panel A: standard predictors

Variables: cay IP term def dp yc

θ̂ 1.22 -0.50 0.43 1.85 1.13 1.51
pnonp ( 0.01) ( 0.08) ( 0.07) ( 0.20) ( 0.16) ( 0.03)
pnull, z = cay ( 0.84) ( 0.70) ( 0.23) ( 0.42) ( 0.19)

Panel B: factor-based predictors

Variables: cay PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

θ̂ 1.33 -1.12 1.35 0.90 0.93 0.72 1.42 0.65 0.94
pnonp ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00)
pnull, z = cay ( 0.15) ( 0.01) ( 0.84) ( 0.72) ( 0.93) ( 0.01) ( 0.96) ( 0.81)

Panel C: coefficients on individual predictors

Variables: cay PC2 PC6
1.04 1.62 0.30

pnull, z = cay ( 0.10) ( 0.95)

Panel D: pricing errors on benchmark portfolios

Portfolio SG SI SV LG LI LV
-0.60 0.87 1.23 0.28 0.70 0.73
( 0.82) ( 0.05) ( 0.04) ( 0.10) ( 0.06) ( 0.07)

average returns 1.60 2.79 3.27 1.30 1.59 2.09

Panel E: pricing errors on long-short strategies

Portfolio SV-SG SG-LG SV-LV LV-LG
1.83 -0.88 0.50 0.45

( 0.25) ( 0.34) ( 0.21) ( 0.66)
average returns 1.63 0.15 0.97 0.81
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Figure 1: Conditional expected excess returns using cay

Each panel depicts the conditional expected excess returns on a portfolio over the range of the
conditioning variable, cay . The top row contains Small stock portfolios, the leftmost column
- Growth stock portfolios. The bold solid line is the mean of the sampling distribution of
the nonparametric estimate, the dash-dotted lines are 95% confidence bounds, all obtained
via stationary bootstrap. Rescaled kernel density of the conditioning variable is shaded in
the background.
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Figure 2: Conditional covariances of portfolio returns with consumption growth

using cay

Each panel depicts the conditional covariance of a portfolio excess return with the with
aggregate consumption growth over the range of the conditioning variable, cay . The solid
line is the mean of the sampling distribution of the nonparametric estimate, the dash-dotted
lines are 95% confidence bounds, all obtained via stationary bootstrap. Rescaled kernel
density of the conditioning variable is shaded in the background.
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Figure 3: Difference in conditional expected returns and conditional covariances

of portfolio returns with consumption growth using cay

Each panel depicts differences in either the conditional expected returns or the conditional
covariance of a portfolio excess return with the aggregate consumption growth over the range
of the conditioning variable, cay for the two long short portfolios:
SV - SG (small value minus small growth)
LV - LG (large value minus large growth)
The solid line is the mean of the sampling distribution of the nonparametric estimate, the
dash-dotted lines are 95% confidence bounds, all obtained via stationary bootstrap. Rescaled
kernel density of the conditioning variable is shaded in the background.
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Figure 4: Conditional price of consumption risk using cay

The figure depicts the estimated price of consumption covariance risk (risk aversion) implied
by the cross-section of stock returns, as a function of the consumption-wealth residual cay .
The solid line is the mean of the sampling distribution of the nonparametric estimate, the
dash-dotted lines are 95% confidence bounds, all obtained via stationary bootstrap. In
addition, the pricing errors corresponding to the unconditional version of the model, as well
as the scaled-factor conditional version are shown in the bottom set of panels (dashed and
dotted straight lines, respectively).
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Figure 5: Conditional pricing errors for CCAPM using cay

Each panel depicts the conditional pricing error for the portfolio. The bold solid line is
the mean of the sampling distribution of the nonparametric estimate, the dash-dotted lines
are 95% confidence bounds, all obtained via stationary bootstrap. In addition, the pricing
errors corresponding to the unconditional version of the model, as well as the scaled-factor
conditional version are shown in the bottom set of panels (dashed and dotted straight lines,
respectively). Rescaled kernel density of the conditioning variable is shaded in the back-
ground.
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Figure 6: Conditional pricing errors for CWCAPM using ca

Each panel depicts the conditional pricing error for the portfolio. The bold solid line is
the mean of the sampling distribution of the nonparametric estimate, the dash-dotted lines
are 95% confidence bounds, all obtained via stationary bootstrap. In addition, the pricing
errors corresponding to the unconditional version of the model, as well as the scaled-factor
conditional version are shown in the bottom set of panels (dashed and dotted straight lines,
respectively).
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Figure 7: Conditional means of portfolio excess returns - Monte Carlo estimates

The two-factor conditional model CWCAPM is simulated 10000 times; the conditional ex-
pected excess returns on the six benchmark portfolios are estimated using short samples of
Tshort = 221 observations for each draw. The solid line is the average estimate across the
Monte Carlo draws, and the dash-dotted lines are the 95% confidence intervals. The solid
red line is the true conditional moment function.
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Figure 8: Conditional covariances of portfolio returns with aggregate consumption

growth - Monte Carlo

The two-factor conditional model CWCAPM is simulated 10000 times; the conditional co-
variances of excess returns on the six benchmark portfolios with the simulated consumption
growth are estimated using short samples of Tshort = 221 observations for each draw. The
solid line is the average estimate across the Monte Carlo draws, and the dash-dotted lines
are the 95% confidence intervals. The solid red line is the true conditional moment function.
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Appendix

A Intertemporal CAPM with the Composition Effect

I derive restrictions on equilibrium expected stock returns that explicitly feature wealth

composition variables. I first restrict my attention to economies populated by representative

consumer(s) who derive income from financial assets and human capital (in the form of a

single stream of labor income). The derivation follows standard ICAPM arguments as in

Merton (1973) and Breeden (1979), generalized along the lines of Duffie and Epstein (1992).

I then consider a stylized economy with heterogeneous investors who have relative wealth

concerns as in Roussanov (2010).

Since the primary focus of this paper is empirical, I do not prove that the model presented

here possesses an equilibrium solution, nor do I fully specify the dynamics of the available

investment technologies. Provided that an equilibrium exists, I characterize the testable

restrictions it places on the cross-section of asset returns as well as on aggregate consumption.

14

The technologies available to the investor consist of a vector of K risky stocks S =

[S1, . . . , SK ]′ , a riskless bond B, and a stream of aggregate labor income y, with the dynamics

given by

dSt

St

= µtdt+ σtdZt, (TF-2)

dBt

Bt

= rtdt, (TF-3)

dyt = mtytdt+ σ
y
t ytdZt, (TF-4)

14In endowment economy settings Santos and Veronesi (2006) and Cochrane, Longstaff, and Santa-Clara
(2008) are able to characterize the equilibrium quantities more explicitly by making specific assumptions that
restrict the dynamics of asset returns; Martin (2009) and Chen and Joslin (2010) provide explicit solutions
of similar exchange economies with more general underlying dynamics. Palacios (2010) solves a model of a
production economy with recursive preferences, which is most closely related to the environment considered
here. The issues of equilibrium existence in the more general environments featuring labor income have been
addressed rigorously by Cuoco (1997) and He and Pagés (1993).
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where Zt is an M-dimensional Brownian motion with E(dZt, dZ
′
t) = I, σ is a N×M matrix,

σy is a 1×M vector, N ≤ M (i.e. markets are not necessarily complete).

The dynamic budget constraint gives the law of motion for financial wealth:

dWt = [(rt + α′(µt − rt1))Wt + yt − ct]dt+ α′WtσtdZt, (TF-5)

where α is the vector of wealth shares invested in each risky asset.

In order to simplify exposition and focus on the composition effect as the sole driver

of time-variation in conditional moments, assume that there are only two state variables

affecting the conditional moments of returns and entering the consumer’s dynamic optimiza-

tion problem. In particular, assume that mt, σ
y
t , µt, σt and rt are adapted to the filtration

generated by [W, y] (in what follows I suppress the time subscripts). That is, conditional ex-

pected returns and the conditional covariance matrix of returns can potentially depend only

on the total value of the market portfolio and aggregate labor income y. This specification

incorporates a possibility that the financial wealth and labor income are cointegrated, e.g.

as in Benzoni, Collin-Dufresne, and Goldstein (2007).

A.1 Representative agent with recursive preferences

Consider a representative agent whose preferences are represented by stochastic differential

utility (see Duffie and Epstein (1992) for details). These preferences are given by a tuple

(f ∗, A), referred to as “aggregator”, where f ∗ is a “felicity” function of the current consump-

tion and of the continuation utility (thus responsible for intertemporal substitution) and A is

the “variance multiplier” of the utility process (reflecting risk aversion).Using the (ordinally

equivalent) normalized aggregator (f, 0), the Bellman equations is given by

0 = max
c,α

DV + (rW + y)Vw +myVy +
1

2
σyσ

′
yy

2Vyy, (TF-6)
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where

DV = (α′(µ− r1)− c)WVw +
1

2
α′σσ′αW 2VWW + α′σσ′

yWyVWy + f(c, V (W, y)) (TF-7)

In general, the standard first order conditions characterize the optimal consumption and

investment policies.

• Consumption:

VW (W, y) = fc(c, V ) (TF-8)

• Portfolio weights:

α = −
VW

WVWW

(σσ′)
−1

(µ− r1)− (σσ′)
−1

σσ′
y

yVWy

WVWW

. (TF-9)

From the latter we can again obtain the restriction of conditional expected returns:

µi − r = −
VWW

VW

WCov(Ri, RM)− y
VWy

VW

Cov(Ri,
dy

y
). (TF-10)

But now differentiating the envelope condition yields

VWW = fccCW + fcV VW and (TF-11)

VWy = fccCy + fcV Vy (TF-12)

Then the conditional moment restrictions on asset returns15 can be rewritten as

µi − r = −W

(
fcc

fc
CW + fcV

)
Cov(Ri, RM)− y

(
fcc

fc
Cy +

fcV Vy

fc

)
Cov(Ri,

dy

y
), (TF-13)

where CW = ∂C∗(W,y)
∂W

and Cy =
∂C∗(W,y)

∂y
for the optimal consumption policy C∗(W, y).

In the special case of additive utility with the IES/risk aversion parameter −fccC

fc
= γ

15Notice that in general this relation cannot be reduced to the familiar two-factor representation involving
the market return and the consumption growth due to the presence of labor income.
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we have

µi − r = γεWCov(Ri, RM) + γεyCov(Ri,
dy

y
), (TF-14)

which, as a consequence of the Itô’s lemma is equivalent to the consumption CAPM restric-

tion

µi − r = γCov(Ri,
dC

C
) (TF-15)

A.2 Heterogeneity and social status concerns

Departing from the assumption of representative investor, I now assume that there are N

households, each household j has its own labor/proprietary income process given by

dy
j
t = my

j
tdt+ σyy

j
tdZ

j
t , (TF-16)

which is driven by the Brownian vector dZ
j
t =

[
dZt dZ̃

j
t

]′
, whose components dZt and

dZ̃
j
t are independent so that the latter captures the idiosyncratic part of household’s wealth

and consumption growth (in general, markets are incomplete).

Preferences exhibit social status externalities of a type introduced in Roussanov (2010).

Households solve

Vt

(
W

j
t , y

j
t , W̄t

)
= max

∫ ∞

t

e−ρ(s−t)U(Cj
s , W̄s)ds (TF-17)

with the period utility function:

U(Cj
t , W̄t) =

(
C

j
t

)1−γ

1− γ
+ ηW̄

1−γ
t

(
C

j
t

W̄t

)
, (TF-18)

where individual households view the aggregate wealth process

dW̄t = µw
t W̄tdt+ σW̄

t W̄tdZt (TF-19)

as exogenous. The first term in the period felicity function captures the standard utility

derived from consumption, where as the second term represents the concern for social sta-
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tus. I assume that individual consumption enters the second term, rather than individual

wealth, as in Roussanov (2010), motivated by the fact that consumption expenditures may

be more easily observable than total wealth, especially in the presence of non-traded wealth

components such as human capital. The first-order conditions with respect to the portfolio

weights imply a restriction on the conditional expected returns (for individual investor j):

µi − r = −C
j
t

Ucc

Uc

Cov(Rj,
dC

j
t

C
j
t

)− W̄t

UcW̄

Uc

Cov(Rj,
dW̄

j
t

W̄
j
t

), (TF-20)

where −C
j
t
Ucc

Uc
= γ

(Cj
t )

−γ

(Cj
t )

−γ
+ηW̄

−γ
t

and −W̄t
UcW̄

Uc
= γ

ηW̄
−γ
t

(Cj
t )

−γ
+ηW̄

−γ
t

.

Let sjt =
C

j
t

C̄t
be the ratio of individual to per-capita consumption. Then, by following the

arguments of Grossman and Shiller (1982), averaging this expression across households (and

assuming that all households participate in the equity market) obtains

µj − r = λCCov(Rj,
dC̄t

C̄t

) + λWCov(Rj ,
dW̄

j
t

W̄
j
t

), (TF-21)

where the risk prices are λC = γEt

(
s
−γ
t

s
−γ
t +η

(

C̄t
W̄t

)γ

)
, and λW = γEt

(
η
(

C̄t
W̄t

)γ

s
−γ
t +η

(

C̄t
W̄t

)γ

)
.

Thus, the prices of aggregate consumption risk and aggregate wealth risk both vary over

time as functions of the ratio of aggregate consumption to financial wealth C̄t

W̄t
, as well as,

potentially, the cross-sectional distribution of consumption.

B Consistency of nonparametric price of risk estima-

tors

In order to establish the uniform consistency of the estimators of market prices of risk λ̂ (z)

it is enough to show the uniform weak convergence of the objective function,

QT (z;λ) = gT (z)′WgT (z) , (TF-22)

70



to its population analogue,

Q∞ (z;λ) = g∞ (z)′ Wg∞ (z) , (TF-23)

where

gi∞ (z) = E
(
Rei

t+1 − Cov(Rei
t+1, ft+1|z)

′λ (z) |z
)
= 0. (TF-24)

This is true since the population objective reaches its minimum (since W is assumed to be

positive semidefinite) at the true value of the functional parameter λ̃ (z):

Q∞

(
z; λ̃
)
= 0 for all z ∈ Z (TF-25)

and identification is ensured as long as the number of moment conditions N (i.e. the number

of test assets) is at least as large as the number of functional parameters K (i.e. the number

of factors): λ̃ (z) is unique for each z ∈ Z (here Z denotes the domain of conditioning

variable(s), Z ⊂ R
d). The aim is therefore to show that

sup
z∈Z

sup
λ∈Λ

‖QT (z;λ)−Q∞ (z;λ)‖
p
→ 0 as T → ∞, (TF-26)

which would imply that

sup
z∈Z

∥∥∥λ̂ (z)− λ̃ (z)
∥∥∥ p
→ 0 as T → ∞. (TF-27)

To simplify exposition, I consider only the special case that factors have conditional mean

equal to zero. Then the conditional moment restrictions can be written as

gi∞ (z) = E
(
Rei

t+1 − (Rei
t+1ft+1)

′λ (z) |z
)
= 0. (TF-28)
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The sample analogues of these moment conditions are

giT (z) =
1∑T−1

t=1 K
(
z−zt
h

)
T−1∑

t=1

[
Rei

t+1 −
(
Rei

t+1 × ft+1

)′
λ
]
K

(
z − zt

h

)
. (TF-29)

They can be alternatively represented as

giT (z) =
Li
T

f̂T (z)
, (TF-30)

where

Li
T (z;λ) =

1

Thd

T−1∑

t=1

Ψ
(
Re

t+1, ft+1;λ
)
K

(
z − zt

h

)
(TF-31)

with

Ψ
(
Re

t+1, ft+1;λ
)
= Re

t+1 −
(
Re

t+1 × ft+1

)′
λ, (TF-32)

and f̂T (z) is the kernel estimator of the marginal density f (z) of z:

f̂T (z) =
1

Thd

T−1∑

t=1

K

(
z − zt

h

)
. (TF-33)

Now we can appeal to the standard results for kernel M-estimators and kernel density estima-

tors to establish the uniform convergence of these quantities to their population counterparts

Li
∞ (z;λ) = f (z)E [Ψ (R, f ;λ) |z] and f (z), respectively. Following Brandt (1999) one can

use the result by Gourieroux, Monfort, and Tenreiro (2000) who show that, under a set of

conditions described below,

sup
z∈Z

sup
λ∈Λ

∥∥Li
T (z;λ)− Li

∞ (z;λ)
∥∥ a.s.
→ 0 as T → ∞. (TF-34)

Uniform consistency of kernel density estimators is a standard result (e.g. Pagan and Ullah

(1999), Theorem 2.8). Combining the two and applying the continuous mapping theorem

yields TF-26. The following conditions are required in order establish the above results:
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1. The kernel function K (.) is Lipschitz continuous, has bounded support and

∫

Rd

K (u) du = 1 (TF-35)

2. The sets Z and Λ are compact

3. The bandwidth h → 0 as T → ∞ and there exists such β ∈ (0, 1) that T (1−β)/2hd

log T
→ ∞

as T → ∞

4.
(
Re

t+1, ft+1, zt
)
form a strictly stationary process with the geometric mixing property:

sup
A∈F0,B∈Fk

[P (A ∩B)− P (A)P (B)] < αρk, ∀k ∈ N
∗, (TF-36)

where α ≥ 0, 0 ≤ ρ < 1,F0 = σ
(
Re

τ+1, fτ+1, zτ , τ ≤ 0
)
,Fk = σ

(
Re

τ+1, fτ+1, zτ , τ ≥ k
)
.

5. The distribution of zt exists, is continuous, and has uniformly continuous strictly pos-

itive pdf and absolutely integrable characteristic function.

6. Ψ (R, f ;λ) is (Lipschitz) continuous on Λ for all R, f and measurable in R, f for all

λ; ∃δ > 0: E

[
sup
λ∈Λ

|Ψ
(
Re

t+1, ft+1;λ
)
|
2
β
+δ

]
< ∞, where β from condition (3) on the

bandwidth.

7. Li
∞ (z;λ) are uniformly equicontinuous for all i:

∀ε > 0, ∃δ > 0 : sup
z∈Z

sup
‖u−s‖<δ

sup
λ∈Λ

∣∣Li
∞ (u;λ)− Li

∞ (s;λ)
∣∣ < ε (TF-37)

C Bootstrap

Since stationarity of the conditioning variable (z) is a maintained assumption throughout

the empirical investigation in this paper, I use stationary bootstrap in order to construct

confidence intervals for nonparametric and semiparametric estimates. The bootstrap proce-
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dure allows one to approximate the entire sampling distribution of the estimators using their

empirical distribution (EDF).

For a sample of length T , the stationary bootstrap procedure introduced by Politis and

Romano (1994) amounts to constructing R resampled sets of T observations, which consist

of overlapping blocks of observations from the original set. Each observation includes the

vector of realized portfolio returns and the realized consumption growth at time t+1 as well

as the vector of conditioning information known at time t. The block lengths are sampled

randomly from a geometric distribution. This ensures that the resulting time-series remain

stationary.

In order to minimize the bias in the distribution of nonparametric estimators I under-

smooth the estimates (i.e. use low values of the bandwidth parameter h). See Horowitz

(2001) for an extensive discussion on the use of bootstrap procedures in various settings,

including nonparametric estimation and dependent data.

I use fully non-parametric bootstrap to construct point-wise confidence bands for the

functional estimates of conditional expected returns and conditional covariances, as well as

for the tests of differences in conditional moments across points in the state space (e.g.,

Härdle (1992)).

Inference in pricing error tests is based on a semi-parametric bootstrap procedure un-

der the null hypothesis that the average conditional pricing error is equal to zero for each

portfolio. Specifically, I recenter the residuals

ui
t+1 = Rei

t+1 − Ĉov(Rei
t+1,

Ct+1

Ct

|zt)λ̂ (zt) (TF-38)

around zero, resample them jointly with zt and consumption growth realization using the sta-

tionary block-bootstrap method described above, and calculate excess returns corresponding

to each bootstrapped observation in period τ as

R̃ei
τ+1 = Ĉov(Rei

τ+1,
Cτ+1

Cτ

|zτ )λ̂ (zτ ) + ui
τ+1. (TF-39)
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I then re-estimate the model on each of the bootstrapped samples in order to construct the

distribution of average pricing errors for each portfolio.

D Data

The equilibrium pricing relations (2), (4) and (5) hold exactly in continuous time. Both

consumption and labor income data are time-averaged, which might potentially bias the

estimates. There is no simple solution to this problem (e.g., see Grossman, Melino, and

Shiller (1987)), since high-frequency macroeconomic data is either unavailable or of poor

quality. In all of the tests I use quarterly data for consumption and labor income data

(results are very similar if monthly data are used instead).

The proxy for the portfolio of traded assets that I use in empirical tests is the value-

weighted portfolio of NYSE, NASDAQ and Amex stocks. The universe of traded assets used

in cross-sectional tests consists of the 6 portfolios of NYSE, NASDAQ and Amex stocks sorted

annually on size and book to market equity, which are used by Fama and French (1993) to

construct their benchmark factor returns SMB and HML. Monthly returns are compounded

to obtain quarterly returns. Excess returns are constructed using the one-month and three-

month Treasury bill rates in place of the riskless rate at monthly and quarterly frequency,

respectively.

In order to maintain consistency with previous studies and, in particular, to facilitate the

comparison with Lettau and Ludvigson (2001b) and Santos and Veronesi (2006), I use the

consumption, financial wealth, and labor income series constructed by Lettau and Ludvig-

son (2001a) (obtained from Sydney Ludvigson’s website). I also use their cay variable. The

financial wealth variable a is used for constructing the consumption-wealth ratio ca. Con-

sumption series is NIPA nondurable consumption (excluding shoes and clothing at quarterly

frequency, following Lettau and Ludvigson (2001a)) and services. I use total stock market

capitalization (i.e. NYSE, NASDAQ and Amex, obtained from CRSP) as a proxy for total

financial wealth in constructing the ca variable, following Duffee (2005). Quarterly stock

market wealth, labor income, and consumption are all deflated with the price deflator of
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nondurables and services. All data is ranging from the fourth quarter of 1952 to the fourth

quarter of 2008. Labor income and consumption data are from the U.S. National Income

and Product Accounts.

E Comparison with parametric approaches

Could the conclusions reached above be obtained using more standard econometric ap-

proaches? Assume that the conditional means of consumption growth and excess returns,

as well as their conditional covariance - Et

(
∆Ct+1

Ct

)
, EtR

ei
t+1, and Covt(R

ei
t+1,

∆Ct+1

Ct
) - are all

linear in the vector of conditioning variables zt (which includes the constant). Then we can

estimate (e.g. as in Duffee (2005)) the following system:

∆Ct+1

Ct

= κ′zt + uc
t+1, (TF-40)

Rei
t+1 = µ′

izt + ui
t+1, (TF-41)

C̃ov
i

t+1 = δ′izt + uci
t+1 (TF-42)

where C̃ov
i

t+1 =
(

∆Ct+1

Ct
− Et

∆Ct+1

Ct

) (
Rei

t+1 −EtR
ei
t+1

)
= uc

t+1u
i
t+1 is the ‘ex-post’ covariance of

consumption growth and excess returns on asset i, so that the ex ante conditional covariance

is given by its projection on the vector of conditioning variables:

Covt(R
ei
t+1,

∆Ct+1

Ct

) = EtC̃ov
i

t+1 = δ′izt. (TF-43)

Table VIII shows the coefficients from the regressions of returns and the ex-post con-

sumption covariances on zt for several choices of the conditioning variable. The assets used

are three portfolios formed from the 6 benchmark portfolios sorted on market capitalization

on book/market equity ratios used by Fama and French (1992). The growth portfolio is the

equal-weighted average of the small and large growth portfolios, the value and neutral port-

folios are, similarly, equal-weighted averages across value and neutral portfolios, respectively.

If high values of zt are associated with “bad times” and, consequently, a high price of
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consumption risk, the assets whose covariances with consumption growth are increasing in

zt are riskier. If the CCAPM holds, their expected excess returns should also increase in zt.

Duffee (2005) finds that an increase in the ratio of stock market wealth to consumption is

associated with a rise in the covariance of the aggregate stock market return and consumption

growth. However, it is also associated with low expected stock returns. The top panel

illustrates that the same is true for each of the book/market-sorted portfolios. In fact, their

does not appear to be much difference in the sensitivities of either conditional expected

returns or conditional covariances to this variable, despite the fact that it appears to be a

useful scaling variable as shown in section 4.

The two middle panels of table VIII display the sensitivities of first and second moments of

returns to cay . It does appear that cay plays a similar role at quarterly frequency to the role

played by ac at monthly frequency: rising cay not only predicts higher expected returns, but

also lower covariances of consumption with returns, presumably due to the declining share of

financial assets in total wealth. The expected return sensitivities exhibit the pattern familiar

from section 4.1: value returns are not quite as predictable as growth returns (in terms of

the slope coefficient). There is virtually no difference in covariances if the entire sample is

used for the estimation. However, using a shorter subsample ending in the second quarter

of 2003, which is closer to the sample used by Lettau and Ludvigson (2001b), I find that the

covariance of value returns with consumption growth actually increases when cay goes up,

while growth returns’ covariance declines. This is consistent with the argument of Lettau

and Ludvigson (2001b) that value is riskier in “bad times,” but inconsistent with the fact

that value’s expected returns are not more but less sensitive than growth’s expected returns.

Further, the coefficients for the conditional covariances are not statistically significantly

different from zero, as their standard errors are very large. This might be in part due to the

fact that the linear model is misspecified. Finally, using the labor-to-consumption ratio as

the predictive variable (bottom panel) leads to similar conclusions: covariances and expected

returns appear to move in the opposite directions for all portfolios, and while there is some

heterogeneity across covariance sensitivities, there is much less difference in expected return

sensitivities.
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In principle, one could go further and impose conditional moment restrictions on the asset

returns jointly. This entails making parametric assumptions on the functional form of risk

prices. For example, one could follow Duffee (2005) and assume that γt = γ0 + γ1xt. Then

the model could be estimated using the instrumental variables GMM approach of Campbell

(1987) and Harvey (1989). However, such a model would be misspecified by construction,

since expected returns, covariances, and prices of risk cannot be all linear. Thus even if

the true conditional model holds, it could produce non-trivial pricing errors. Brandt and

Chapman (2007) emphasize that the nonlinearity need not be large to produce a spurious

rejection. Alternatively, one could avoid imposing parametric structure on the prices of risk

and only make assumptions about the dynamics of conditional second moments, as done, for

example, by Ferson and Harvey (1999), among others. I discuss this approach in Appendix

E and show that, indeed, one can reject the conditional CCAPM using cay. Still, the

conditional restrictions imposed using this method rely crucially on the linear specification

of conditional betas. Therefore, if the linear model for conditional betas is misspecified, it

is possible that the conditional tests will reject even the true conditional model. Ghysels

(1998) argues that this problem is potentially quite severe, to the extent that the conditional

beta models can perform even worse empirically than the unconditional models. Given

the substantial difference in the estimated sensitivities of consumption covariances to the

conditioning variable between the samples the concern over misspecification should make it

hard to argue in favor of using the parametric approaches for imposing conditional moment

restrictions.

F Testing conditional factor models using beta repre-

sentation

Consider the setup of Lettau and Ludvigson (2001b), who specify a conditional consumption

CAPM with a single conditioning variable, cay - the cointegrating residual of consumption,

financial wealth and labor income, so that f̃t+1 =
[
∆Ct+1

Ct
,
∆Ct+1

Ct
× cay t

]
in (8) above. Their
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tests concentrate on the beta representation

E(Rei
t+1) = η0 + η1β

i
cayt

+ λ0β
i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

, (TF-44)

which is equivalent to (8) except that they allow a non-zero (and time-varying) cross-sectional

intercept (η0 + η1cay t), which implies that the conditional zero-beta rate is not necessarily

equal to the risk-free interest rate. The estimate and test this specification using the standard

cross-sectional regression methodology of Fama and MacBeth (1973), first estimating the

betas (loadings) of returns on the scaled factors
[
cay t,

∆Ct+1

Ct
,
∆Ct+1

Ct
× cay t

]
by time-series

regression and then regressing the cross-section of returns on the cross-section of betas to

obtain the risk premium estimates λ (and η).

An alternative approach would be to test the conditional implications of the consumption

CAPM using cay as the conditioning variable. The conditional beta representation is given16

by

Et(R
ei
t+1) = ηt + λtβ

i
t , (TF-47)

where ηt, λt, and βi
t are all functions of cay . Conditioning down obtains

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
. (TF-48)

Assuming, as Lettau and Ludvigson (2001b) do, that conditional betas (and risk premia)

16Lettau and Ludvigson (2001b) start with the stochastic discount factor model Et[Mt+1R
i
t+1] = 1, where

Mt+1 = at + bt
∆Ct+1

Ct

. Taking the unconditional expectation and assuming the SDF coefficients are linear
functions of the conditioning variable yields

E[(a0 + a1cay t + (b0 + b1cay t)
∆Ct+1

Ct

)Ri

t+1] = 1 (TF-45)

and standard manipulations produce the expected return-beta representation (TF-44). Alternatively, work-
ing with the conditional expectation directly, the conditional expected returns are given by

Et(R
i

t+1) =
1

at
−

bt

at
Et[

∆Ct+1

Ct

Ri

t+1], (TF-46)

which leads to the beta representation for excess returns (TF-47).
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are linear, i.e. βi
t = βi

0 + βi
1cay t, these pricing implications can also be tested using the

Fama-Macbeth methodology (e.g. Ferson and Harvey (1999)). Specifically, the parameters

βi
0 and βi

1 can be estimated as factor loadings in the time series regressions

Rei
t+1 = α0 + α1cay t + βi

0

∆Ct+1

Ct

+ βi
1

∆Ct+1

Ct

cay t (TF-49)

Then the fitted conditional betas β̂i
t = β̂i

0 + β̂i
1cay t can be used in the cross-sectional regres-

sions (at each date t ) to estimate ηt and λt. The latter can be used to obtain either the

unconditional averages of the risk premium and the zero-beta rate, or can be projected on

the conditioning information set. Average of the conditional pricing errors for each asset are

then given straightforwardly as

ui = E(Rei
t+1)− E

(
η̂t + λ̂tβ̂

i
t

)
. (TF-50)

Both of these are valid approaches to testing a conditional factor model. However, the

latter approach has more power, since it imposes additional restrictions on the dynamics of

conditional betas and expected returns. A simple way to illustrate the dramatic differences

between the two approaches is to compare the average pricing errors. Figure 9 plots the

average returns on the 25 portfolios formed on size and book-to-market (see Appendix for

data description) against the average returns predicted by four empirical models: the un-

conditional consumption CAPM, the unconditional scaled-factor specification of conditional

CCAPM in (TF-44), the three-factor model of Fama and French (1993), and the conditional

specification of conditional CCAPM in (TF-47). The unconditional consumption CAPM

(top left panel) is well-known to have virtually no explanatory power for the average returns

of the Fama-French portfolios. In contrast, the scaled CCAPM of Lettau and Ludvigson

(2001b) does a relatively good job at lining up the predicted mean returns against the ac-

tual ones (top right panel), reducing the square root of the average (squared) pricing errors

(alphas) by a third compared to the unconditional CCAPM (from 0.6% to 0.4% for quar-

terly returns). This performance is comparable to the well-known ability of the Fama-French
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portfolio-based model to explain the cross-section of value and size-sorted portfolios (bottom

left panel). However, imposing the conditional restrictions (TF-47) eliminates virtually all of

the advantage of the conditional model over the unconditional one. The conditional model

generates very little dispersion in the predicted average returns (bottom right panel), thus

failing to explain any of the variation in the observed mean portfolio returns.

G Consumption of stockholders

The fact that not all households participate in the equity market suggests an alternative

interpretation of the composition effect, i.e. the tendency of the conditional covariances of

stock returns with aggregate consumption growth to decline as a the contribution of finan-

cial wealth to consumption decreases. Since equity, which represents a large fraction of total

financial wealth, is concentrated in the hands of stockholders, their consumption is likely

to be disproportionately effected by stock market fluctuations, relative to the consumption

of non-stockholders. Thus, a decrease in the value of equity would reduce the stockholders’

relative share of aggregate consumption, and therefore reduce the sensitivity of aggregate

consumption to the fluctuations in stock market wealth. Indeed, consistent with this inter-

pretation, Malloy, Moskowitz, and Vissing-Jørgensen (2005) use household-level data from

the Consumer Expenditure Survey (CEX) to show that the consumption-wealth residual cay

is highly negatively correlated with the time-varying share of stockholders’ consumption in

the aggregate consumption.

The direct implication of this interpretation of the composition effect is that the canonical

asset pricing relation 2 is misspecified as long as the measure of aggregate consumption

includes all households rather than just those that are marginal in the asset market of

interests (i.e., stockholders in the case where stock returns are the test assets). In order to

verify whether my conclusions are robust to this type of misspecification I use the data from

Malloy, Moskowitz, and Vissing-Jørgensen (2005) to test the conditional CCAPM. Their

measure of quarterly stockholder consumption growth is available at a monthly frequency

(i.e., for overlapping quarterly growth rates), but for a shorter time period (03.1983 - 11.2004)
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than the aggregate data used elsewhere in the paper. As a benchmark comparison, I also

use the monthly series of quarterly aggregate consumption growth based on the NIPA data

constructed by Malloy, Moskowitz, and Vissing-Jørgensen (2005) for the same time period.

I construct the monthly analog of the cay variable as a cointegrating residual of monthly

series for aggregate consumption, stock market wealth, and labor income; the resulting series

has very similar properties to the cay variable of Lettau and Ludvigson (2001b).

As before, I estimate conditional expected returns and conditional covariances of returns

with consumption growth jointly, by selecting kernel bandwidth so as to minimize the con-

ditional pricing errors for the cross-section of portfolio returns. The evidence in table IX

shows that if differences between “good” and “bad” states in conditional covariances of re-

turns and consumption growth are measured the same way as above, the composition effect

is statistically detectable for stockholder consumption, at least for the large growth portfo-

lio, while the differences are not statistically significant for the NIPA aggregate consumption

growth measure over the same sample period (however, in both cases statistical significance

is somewhat sensitive to the choice of “high” and “low” states. Moreover, the magnitudes of

differences in covariances between high and low states are greater for stockholder consump-

tion than for aggregate consumption, which is likely due to the fact that levels of covariances

are proportionally higher for latter than for the former. For the Value minus Growth port-

folio returns, in both cases the difference is positive and statistically significant for the small

portfolios, consistent with the conditional CCAPM of the value effect, but not for the large

portfolios. As before, however, the differences in expected returns on these portfolios are

negative, albeit not statistically significantly.

In terms of the average pricing errors, the consumption CCAPM, both unconditional

and conditional, that uses stockholder consumption does appear to perform somewhat bet-

ter than the model with aggregate consumption estimated over the same sample period.

Table X displays the average pricing errors for the two sets of models, using either cay or

the stock market wealth-consumption ratio ac. While all of the versions of the CCAPM

that uses NIPA aggregate consumption growth have large and highly statistically signifi-

cant pricing errors on the Small Value minus Small Growth and Small Growth minus Large
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Growth portfolios, for the stockholder consumption CAPM these pricing errors are smaller

(although still substantial) and not statistically different from zero, with the exception of the

conditional CCAPM using ac where it is significant. However, for the stockholder consump-

tion CAPM the Small Value minus Large Value portfolio has a large (2 % per quarter) and

statistically significant pricing error, either unconditionally or when cay is used as the con-

ditioning variable. Moreover, the lack of statistical significance might be in part attributed

to the short sample, which makes estimated pricing errors highly imprecise, especially in

the nonparametric setting. Overall, there is evidence that using stockholder consumption to

measure risk in asset returns improves the performance of a canonical consumption-based

asset pricing model, but does not fully explain the cross section of equity returns. This con-

clusion is consistent with the evidence documented above that high average return portfolios

(e.g. small value) do not seem to have higher conditional expected returns than low average

return portfolios at times their risk measured by conditional covariance with consumption

growth is higher.

83



Table VIII: Sensitivity of conditional moments to conditioning variables

Regression slope coefficients of portfolio excess returns and their ex-post covariances with
consumption growth on the lagged conditioning variable. Standard errors are given in the
parentheses.

ac - monthly data

E(Ri) R2 Covi R2

Growth -0.77 0.01 0.51 0.00
( 0.45) ( 2.32)

Neutral -0.57 0.01 0.68 0.00
( 0.34) ( 1.47)

Value -0.64 0.01 0.64 0.00
( 0.34) ( 1.44)

cay - quarterly data

E(Ri) R2 Covi R2

Growth 1.35 0.03 -4.47 0.01
( 0.42) ( 3.74)

Neutral 1.11 0.03 -4.29 0.02
( 0.35) ( 2.99)

Value 1.03 0.03 -4.60 0.02
( 0.38) ( 3.31)

cay - quarterly data up to 2003

E(Ri) R2 Covi R2

Growth 2.35 0.07 -1.29 0.00
( 0.57) ( 9.54)

Neutral 1.87 0.07 1.22 0.00
( 0.47) ( 8.12)

Value 1.79 0.05 2.46 0.00
( 0.50) ( 8.32)

yc - quarterly data

E(Ri) R2 Covi R2

Growth -0.25 0.01 0.11 0.00
( 0.19) (19.97)

Neutral -0.15 0.00 0.44 0.00
( 0.17) (17.61)

Value -0.18 0.00 0.70 0.00
( 0.21) (20.72)
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Table IX: Differences in conditional moments of portfolio returns - stockholders

Bootstrap tests of differences in conditional covariances of returns on the benchmark port-
folios with stockholder consumption growth and differences in conditional mean excess re-
turns, estimated jointly using z = cay as the conditioning variable, where zL = −0.0174
and zH = 0.02 correspond to the 10th and 90th percentiles of the distribution of cay (in the
entire sample IV.1952 - IV.2008), respectively. The test statistics are differences in point
estimates of conditional moments evaluated at these two states for each test portfolio. The
p-values for the one-sided tests reported in the parentheses are computed using the boot-
strap distributions of the corresponding test statistics centered at zero. Conditional means
and covariances are estimated jointly using monthly observations of quarterly consumption
growth measures based on, alternatively, the NIPA aggregate data, or the stockholder con-
sumption data from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz,
and Vissing-Jørgensen (2005) for detailed description).

Panel A: NIPA
E(R|zH)−E(R|zL) 100× (cov(R,∆c|zH)− cov(R,∆c|zL))

Small Growth 1.75 -1.82
( 0.25) ( 0.06)

Small Value 0.76 -0.12
( 0.37) ( 0.45)

Large Growth 2.64 -1.13
( 0.06) ( 0.09)

Large Value 1.14 -0.35
( 0.25) ( 0.30)

Small Value minus Growth -0.99 1.69
( 0.33) ( 0.04)

Large Value minus Growth -1.50 0.79
( 0.17) ( 0.08)

Panel B: CEX stockholders
E(R|zH)−E(R|zL) 100× (cov(R,∆c|zH)− cov(R,∆c|zL))

Small Growth 2.14 -9.73
( 0.16) ( 0.06)

Small Value 0.33 -3.92
( 0.41) ( 0.21)

Large Growth 2.83 -7.93
( 0.03) ( 0.05)

Large Value 0.88 -5.35
( 0.25) ( 0.07)

Small Value minus Growth -1.81 5.82
( 0.16) ( 0.05)

Large Value minus Growth -1.95 2.58
( 0.07) ( 0.16)
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Table X: Average pricing errors: stockholder consumption

CCAPM estimated using monthly observations of quarterly consumption growth measures
based on, alternatively, the NIPA aggregate data, or the stockholder consumption data
from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz, and Vissing-
Jørgensen (2005) for detailed description).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM (NIPA) 3.43 -3.16 -0.13 0.40
( 0.00) ( 0.00) ( 0.35) ( 0.31)

unconditional CCAPM (stockholders) 1.84 1.11 2.26 0.69
( 0.10) ( 0.16) ( 0.01) ( 0.22)

CCAPM (NIPA) scaled with cay 3.08 -3.20 -0.30 0.18
( 0.00) ( 0.00) ( 0.17) ( 0.52)

CCAPM (stockholders) scaled with cay 1.23 -1.15 1.41 -1.33
( 0.15) ( 0.05) ( 0.06) ( 0.00)

CCAPM (NIPA) scaled with ac -0.33 -1.53 -0.83 -1.03
( 0.03) ( 0.27) ( 0.10) ( 0.09)

CCAPM (stockholders) scaled with ac 0.62 -0.39 -0.27 0.51
( 0.62) ( 0.45) ( 0.07) ( 0.23)

conditional CCAPM (NIPA) with cay 3.45 -3.15 -0.12 0.42
( 0.00) ( 0.00) ( 0.44) ( 0.36)

conditional CCAPM (stockholders) with cay 1.88 1.01 2.15 0.74
( 0.13) ( 0.24) ( 0.05) ( 0.28)

conditional CCAPM (NIPA) with ac 3.29 -2.96 -0.10 0.43
( 0.00) ( 0.00) ( 0.46) ( 0.21)

conditional CCAPM (stockholders) with ac 2.19 0.41 1.74 0.86
( 0.05) ( 0.60) ( 0.21) ( 0.14)

average returns 2.28 -0.79 1.16 0.34
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Figure 9: Fama-MacBeth regressions

Each panel plots the average excess returns on the 25 portfolios sorted on size (S, 1 = low, 5
= high) and book-to-market (B, 1 = low, 5 = high)), against the average returns predicted
by one of the four models:
unconditional consumption CAPM, E(Rei

t+1) = η + λβi
∆Ct+1

;

Fama-French three-factor model, E(Rei
t+1) = η + λMβi

RMRF + λSβ
i
SMB + λHβ

i
HML ;

unconditional version of the conditional consumption CAPM scaled with cay ,

E(Rei
t+1) = η0 + η1cay t + λ0β

i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

; (TF-51)

conditional consumption CAPM using cay as the conditioning variable:

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
, where βi

t = bi0 + bi1cay t. (TF-52)
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