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ABSTRACT

Previous investigators argued that increasing 5-year survival for cancer patients should not be taken
as evidence of improved prevention, screening, or therapy, because they found little correlation between
the change in 5-year survival for a specific tumor and the change in tumor-related mortality. However,
they did not control for the change in incidence, which influences mortality and is correlated with
5-year survival. 

We reexamine the question of whether increasing 5-year survival rates constitute evidence of success
against cancer, using data from both the U.S. and Australia. When incidence growth is controlled for,
there is a highly significant correlation, in both countries, between the change in 5-year survival for
a specific tumor and the change in tumor-related mortality. The increase in the relative survival rate
is estimated to have reduced the unconditional mortality rate by about 15% in the U.S. between 1976
and 2002, and by about 15% in Australia between 1984 and 2001.

While the change in the 5-year survival rate is not a perfect measure of progress against cancer, in
part because it is potentially subject to lead-time bias, it does contain useful information; its critics
may have been unduly harsh. Part of the long-run increase in 5-year cancer survival rates is due to
improved prevention, screening, or therapy.
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Introduction 
 
The 5-year relative survival rate of American patients diagnosed with cancer 
increased from 50.1% in 1975-1977 to 67.8% in 1999-2005.  In a previous, 
frequently-cited paper,1 Welch et al (2000) argued that “improving 5-year 
survival over time…should not be taken as evidence of improved prevention, 
screening, or therapy.”  They argued that “while 5-year survival is a perfectly 
valid measure to compare cancer therapies in a randomized trial, comparisons of 
5-year survival rates across time (or place) may be extremely misleading. If 
cancer patients in the past always had palpable tumors at the time of diagnosis 
while current cancer patients include those diagnosed with microscopic 
abnormalities, then 5-year survival would be expected to increase over time even 
if new screening and treatment strategies are ineffective. To avoid the problems 
introduced by changing patterns of diagnosis, observers have argued that progress 
against cancer be assessed using population-based mortality rates.” 

To determine whether improving 5-year survival over time should be 
taken as evidence of improved prevention, screening, or therapy, Welch et al used 
data from the Surveillance, Epidemiology and End Results (SEER) program to 
compare changes in 5-year survival, mortality rates, and cancer incidence rates for 
the 20 most common solid tumor types from 1950 to 1995. For each tumor, they 
calculated the absolute difference in 5-year survival from 1989-1995 and from 
1950-1954. They used simple correlation to analyze the relationship between the 
variables, and found that there was little correlation between the change in 5-year 
survival for a specific tumor and the change in tumor-related mortality (Pearson 
r=.00; Spearman r=�.07). On the other hand, the change in 5-year survival was 
positively correlated with the change in the tumor incidence rate (Pearson r = 
+.49; Spearman r = +.37).  They concluded that “improving 5-year survival over 
time…may not reflect reduced disease burden and should not be taken as 
evidence of improved prevention, screening, or therapy.”2 

In this paper, I reexamine the question of whether increasing 5-year 
survival rates constitute evidence of success against cancer, using data from both 
the U.S. and Australia.  Like Welch et al, I analyze the correlation across cancer 
sites between changes in 5-year survival rates and changes in population-based 
mortality rates.  But in contrast to them, I analyze the partial correlation between 
these two variables, controlling for changes in incidence.  I argue that changes in 
������������������������������������������������������������
1 According to JAMA, Welch et al had been cited 131 times as of 9/30/2009. 
2 Other authors have argued, in articles in both the medical literature and the popular press, that 
little or no progress has been made against cancer, which implies that the 5-year survival rate is 
not a meaningful indicator.  For example, Bailar and Gornik (1997) argued that “the effect of new 
treatments for cancer on mortality has been largely disappointing,” and Leaf (2004) published an 
article entitled “Why we’re losing the war on cancer, and how to win it.” 
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population-based mortality rates should depend on changes in incidence as well as 
changes in 5-year survival rates.  Since, as Welch et al found and I confirm, 
changes in incidence are strongly positively correlated across cancer sites with 
changes in 5-year survival rates, failure to control for changes in incidence results 
in a seriously biased estimate of the relationship (or correlation) between changes 
in 5-year survival rates and changes in population-based mortality rates.   
 
Methods
 
Welch et al analyzed the correlation across cancer sites between changes in 5-year 
survival rates and changes in population-based mortality rates.  The 5-year 
survival rate may be interpreted as a conditional probability: the probability of not 
dying between time t and time t+5 (where time is measured in years), conditional 
on being diagnosed with cancer at time t.  The population-based mortality rate 
may be interpreted as an unconditional probability: the probability of dying from 
cancer between time t and time t+1.   

According to the law of total probability3, conditional and unconditional 
probabilities are related as follows:  
 
P(A) = P(A | B)*P(B) + P(A | B')*P(B') 
 
where 
 
     P(A) = probability that event A occurs 
P(A | B) = the conditional probability that event A occurs given that event B has 
occurred 
     P(B') = probability that event B does not occur 
 
Applying the law of total probability to cancer mortality rates, 
 
P(death) = P(death | diagnosis) * P(diagnosis)  

+ P(death | no diagnosis) * (1 – P(diagnosis)) 

  = (1 - P(survival | diagnosis)) * P(diagnosis) +  

P(death | no diagnosis) * (1 – P(diagnosis))      (1) 

We have data corresponding to three of the four probabilities in eq. (1): the 
unconditional mortality rate (P(death)), the conditional survival rate (P(survival | 
diagnosis)), and the cancer incidence rate (P(diagnosis)).  We lack data on P(death 
������������������������������������������������������������
3 http://www.stats.gla.ac.uk/steps/glossary/probability.html#  
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| no diagnosis): the probability of dying from cancer, conditional on having not
been diagnosed with cancer.  However, we think it is reasonable to assume that 
this probability is small: among people who have never been diagnosed with 
cancer, the probability of dying from cancer is quite small.4  If this is the case,  
 
P(death) � (1 - P(survival | diagnosis)) * P(diagnosis) 

 
ln(P(death)) � ln(1 - P(survival | diagnosis)) + ln(P(diagnosis)) 

 
�ln(P(death)) � �ln(1 - P(survival | diagnosis)) + �ln(P(diagnosis)) 
 
P(death) can be measured by the unconditional mortality rate (mort_uncond), and 
P(diagnosis) can be measured by the incidence rate (incidence).  The 5-year 
survival rate (surv_5_year) is a good indicator of P(survival | diagnosis)).  Hence 
 
�ln(mort_uncond) � �ln(1 - surv_5_year) + �ln(incidence)              (2) 
 
Eq. (2) implies that the percentage change in the unconditional mortality rate 
(cancer deaths per 100,000 population) should depend on the percent change in 
one minus the 5-year survival rate and on the percent change in incidence (cancer 
cases diagnosed per 100,000 population).  Figure 1, which shows aggregate time 
series data on unconditional mortality rates and incidence rates, provides support 
for the hypothesis that there is a strong link between unconditional mortality and 
incidence. 
 Consider the regression equation 
 
�ln(mort_uncond) = � + �1 �ln(1 - surv_5_year) + �2 �ln(incidence) + �         (3) 
 
Although eq. (2) implies that �1 � �2 = 1 and that � = 0, for a variety of reasons 
these restrictions are unlikely to be satisfied in practice.  One important reason is 
sampling error: although unconditional mortality is measured using data on the 
complete census of death certificates, 5-year survival rates and incidence are 
subject to sampling error because they are based on data from cancer registries 
covering much less than one-fourth of the U.S. population.  Sampling error is 
likely to bias estimates of �1 and �2 towards zero. 
 If eq. (3) is the “true model” of unconditional mortality, i.e. the change in 
unconditional mortality depends on both the change in the 5-year survival rate and 
the change in the incidence rate, but we estimate the simple regression of 

������������������������������������������������������������
4 The cancer incidence rate is 2.5 times as high as the cancer mortality rate: 2006 U.S. age-
adjusted incidence and mortality rates were 456.2 and 181.1, respectively.   
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Figure�1
Age�adjusted�cancer�incidence�and�unconditional�mortality�rates,�all�cancer�sites�combined
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�ln(mort_uncond) on �ln(1 - surv_5_year), the coefficient on �ln(1 - 
surv_5_year) will be biased if �ln(1 - surv_5_year) and �ln(incidence) are 
correlated.5  Let  
 

b = the slope of the simple regression of �ln(mort_uncond) on �ln(1 - 
surv_5_year) 
q = the slope of the simple regression of �ln(incidence) on �ln(1 - 
surv_5_year) 

 
Then it can be shown that E(b) = �1 + �2 q.  Welch et al found that the change in 
5-year survival was positively correlated with the change in the tumor incidence 
rate (Pearson r=+.49; Spearman r=+.37), which implies that q < 0 and that E(b) < 
�1: the slope of the simple regression of �ln(mort_uncond) on �ln(1 - 
surv_5_year) will underestimate the true effect of the change in the conditional 
mortality rate on the unconditional mortality rate.  Since cancers with the largest 
increases in survival rates tended to have the largest increases in incidence (which 
has a positive effect on unconditional mortality), if we fail to control for incidence 
we will underestimate the correlation between the conditional mortality rate and 
the unconditional mortality rate.     
 Welch et al implicitly hypothesized that the “true model” of the change in 
the unconditional mortality rate is: 

m = � s* + u 

where  

m = the change in the unconditional mortality rate 

s* = the true change in the conditional mortality rate (= 1 – the true change 
in the conditional survival rate) 

u = a disturbance 

The true change in the conditional mortality rate is not observed.  Instead, we 
observe a noisy indicator of s*: 

s = s* + e 

where  

s = the measured change in the conditional mortality rate 
������������������������������������������������������������
5 http://en.wikipedia.org/wiki/Omitted-variable_bias  
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e = measurement error 

We might think of s* as the mortality rate measured from the true date of onset of 
the disease, and s as the mortality rate measured from the date of diagnosis of the 
disease.  The measurement error is assumed to be uncorrelated with s*. 
It is well known that measurement error will bias the estimate of � towards zero.  
If b (= � ms / � s2) is the coefficient from the simple regression of m on s, then 
E(b) = � [var(s*) / {var(s*) + var(e)}].  According to Welch et al, the fact that b is 
small and insignificant is due to large measurement error (high var(e)), and lead-
time bias is a major source of this error. 
But the reasoning above implies that there is an alternative possible explanation 
for the lack of a simple correlation between m and s: the “true model” of the 
change in the unconditional mortality rate is not m = � s* + u, but m = � s* + 	 i + 
u (where i = the change in the incidence rate), and corr(s*, i) < 0.  The lack of a 
simple correlation between changes in unconditional and conditional mortality 
rates may be due to omitted-variable bias rather than measurement error in 5-year 
relative survival rates. 

Data
 
U.S. data.  Data on age-adjusted unconditional mortality rates, 5-year relative 
survival rates, and age-adjusted incidence rates, were obtained from SEER Cancer 
Query Systems (http://seer.cancer.gov/canques/).  Annual data on unconditional 
mortality and incidence are available for 1973-2006.  Data on 5-year relative 
survival rates are available for patients diagnosed during certain periods.  The 
earliest period of diagnosis is 1975-1977; the latest period is 1999-2005.  We will 
present estimates of several versions of the following model (based on eq. (3)) 
using U.S. data on 24 cancer sites:  
 
ln(mort_uncond2006/mort_uncond1980) = � +  

�1 ln((1 - surv_5_year1999-2005)/(1 - surv_5_year1975-1977)) +  

�2 ln(incidence2002/incidence1976) + �            (4) 

According to this model, the unconditional mortality rate in year t depends on the 
incidence rate in year t-4 and a moving average of conditional survival rates of 
patients diagnosed 1-7 years prior to year t.  We also estimated models in which 
the incidence rate in year t-4 was replaced by a moving average of incidence rates 
4-7 years prior to year t.  This had virtually no effect on the estimates, which is 
not surprising, since incidence rates are highly serially correlated. 

The complete U.S. dataset is shown in Appendix Table 1. 
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Australian data. Data on age-adjusted unconditional mortality rates and age-
adjusted incidence rates, were obtained from Australian Cancer Incidence and 
Mortality (ACIM) books  
(http://www.aihw.gov.au/cancer/data/acim_books/index.cfm).   Data on 5-year 
relative survival rates were obtained from Table 2.3 of the publication Cancer
survival and prevalence in Australia: cancers diagnosed from 1982 to 2004 
(http://www.aihw.gov.au/publications/index.cfm/title/10484). 
Annual data on unconditional mortality and incidence are available for 1982-
2005.  Data on 5-year relative survival rates are available for patients diagnosed 
during certain periods.  The earliest period of diagnosis is 1982-1986; the latest 
period is 1998-2004.  We will present estimates of several versions of the 
following model using Australian data on 20 cancer sites:  
 
ln(mort_uncond2003/mort_uncond1987) = � +  

�1 ln((1 - surv_5_year1998-2004)/(1 - surv_5_year1982-1986)) +  

�2 ln(incidence1998/incidence1982) + �                    (5) 

 
The complete Australian dataset is shown in Appendix Table 2. 

The disturbances of eqs. (4) and (5) are likely to be heteroskedastic: 
cancer sites with the lowest average mortality rates are likely to exhibit the largest 
positive or negative percentage changes in mortality rates.  In this case, these 
equations should be estimated using weighted least-squares (rather than ordinary 
least-squares), weighting by the cancer site’s average unconditional mortality rate.  
We will estimate three versions of each equation: equally weighted, weighted by 
the mean of the initial and final incidence rates, and weighted by the mean of the 
initial and final unconditional mortality rates.  Descriptive statistics for both the 
U.S. and Australia are shown in Table 1. 
 
Results
 
Estimates of eqs. (4) and (5) are presented in Table 2.  To reveal the importance 
of controlling for incidence, we present estimates of these equations with and 
without imposing restrictions on the parameters.  First, we impose the restriction 
�2 = 0, which is equivalent to examining the effect of relative survival on 
unconditional mortality, without controlling for incidence.  Second, we impose 
the restriction �1 = 0, which is equivalent to examining the effect of incidence on 
unconditional mortality, without controlling for relative survival.  Third, we 
impose neither restriction. 
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N
Weighted�
Mean

Weighted�
Std�Dev Min Max

ln(mort_uncond2006/mort_uncond1980)� 24 �0.18 0.70 �1.20 0.16

ln((1���surv_5_year1999�2005)/(1���surv_5_year1975�1977))� 24 �1.15 5.62 �5.74 0.10

ln(incidence2002/incidence1976)� 24 0.14 0.84 �0.66 0.85

ln(mort_uncond2003/mort_uncond1987)� 20 �0.18 0.56 �0.76 0.04

ln((1���surv_5_year1998�2004)/(1���surv_5_year1982�1986))� 20 �0.28 1.02 �1.06 0.21

ln(incidence1998/incidence1982)� 20 0.09 0.77 �0.44 0.66

USA

Australia

Table�1
Descriptive�statistics

Note:�Observations�are�weighted�by�the�cancer�site’s�average�unconditional�mortality�rate.
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Column 1 2 3 4 5 6 7 8 9
Restrictio
ns�
imposed �2�=�0 �
�=�0 none �2�=�0 �
�=�0 none �2�=�0 �
�=�0 none

�1
Estimate 0.040 0.140 0.025 0.089 0.040 0.127
StdErr 0.067 0.067 0.019 0.023 0.025 0.025
tValue 0.597 2.096 1.286 3.942 1.599 4.981
Probt 0.557 0.048 0.212 0.001 0.124 0.000

��
Estimate 0.405 0.627 0.147 0.613 0.203 0.810
StdErr 0.196 0.211 0.138 0.160 0.171 0.170
tValue 2.068 2.974 1.059 3.836 1.183 4.759
Probt 0.051 0.007 0.301 0.001 0.250 0.000

�
Estimate �0.218 �0.279 �0.217 �0.205 �0.292 �0.224 �0.134 �0.208 �0.146
StdErr 0.086 0.072 0.074 0.062 0.059 0.049 0.059 0.057 0.042
tValue �2.539 �3.852 �2.940 �3.283 �4.922 �4.549 �2.298 �3.636 �3.509
Probt 0.019 0.001 0.008 0.003 0.000 0.000 0.031 0.001 0.002

�1
Estimate 0.126 0.787 �0.086 0.442 �0.047 0.538
StdErr 0.162 0.134 0.118 0.158 0.127 0.176
tValue 0.778 5.850 �0.730 2.801 �0.369 3.058
Probt 0.447 0.000 0.475 0.012 0.717 0.007

��
Estimate 0.338 1.033 0.343 0.818 0.319 0.921
StdErr 0.176 0.158 0.132 0.203 0.152 0.234
tValue 1.924 6.538 2.597 4.021 2.099 3.944
Probt 0.070 0.000 0.018 0.001 0.050 0.001

�
Estimate �0.205 �0.286 �0.083 �0.226 �0.249 �0.150 �0.197 �0.211 �0.112
StdErr 0.082 0.058 0.049 0.066 0.045 0.052 0.056 0.041 0.047
tValue �2.510 �4.968 �1.709 �3.447 �5.571 �2.894 �3.493 �5.094 �2.381
Probt 0.022 0.000 0.106 0.003 0.000 0.010 0.003 0.000 0.029

Australia�(N�=�20)

Table�2
Estimates�of�Eqs.�(4)�and�(5)

US�(N�=�24)
equally�weighted weighted�by�incidence weighted�by�mortality�rate
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 The restriction �2 = 0 is imposed (i.e., incidence growth is excluded) in the 
equations shown in columns 1, 4, and 7.  The estimate of �1 is not statistically 
significant in any of these six equations.  As Welch et al observed, there is “little 
correlation between the change in 5-year survival for a specific tumor and the 
change in tumor-related mortality” when we don’t control for the change in 
incidence. 
 The restriction �1 = 0 is imposed (i.e., conditional mortality growth is 
excluded) in the equations shown in columns 2, 5, and 8.  The estimate of �2 is 
positive and statistically significant in some equations but not in others. 
 No restrictions are imposed (i.e., both conditional mortality growth and 
incidence growth are included) in the equations shown in columns 3, 6, and 9.  In 
all six equations, both �1 and �2 are positive and significant.  The highest p-value 
for a �1 estimate is .048; the other p-values are .012 or lower.  When incidence 
growth is controlled for, there is a highly significant correlation between the 
change in 5-year survival for a specific tumor and the change in tumor-related 
mortality in both the U.S. and Australia, whether observations are equally 
weighted, weighted by the mean of the initial and final incidence rates, or 
weighted by the mean of the initial and final unconditional mortality rates.  It is 
also interesting to note that the estimates of �2 are larger when conditional 
mortality growth is included than they are when conditional mortality growth is 
excluded.   
 The correlation between unconditional and conditional mortality growth, 
controlling for incidence growth, may be depicted graphically, as follows.  First, 
compute the residuals from the simple regression of unconditional mortality 
growth on incidence growth (uncond_resid).  Next, compute the residuals from 
the simple regression of conditional mortality growth on incidence growth 
(cond_resid), and plot uncond_resid against cond_resid.  Figure 2 shows bubble 
scatterplots, in which the size of a bubble is proportional to the mean of the cancer 
site’s initial and final unconditional mortality rates. 
 As shown in Table 1, in both the U.S. and Australia, both mean cancer 
incidence rates and relative survival rates have increased.  In the following table, I 
use the estimates in column 9 of Table 2 to assess the impact of these changes on 
the mean change in the unconditional mortality rate. 
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Correlation�across�cancer�sites�between�growth�in�unconditional�mortality�and�growth�in�conditional�mortality,�
controlling�for�growth�in�incidence

Figure�2
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on incidence growth; the size of a bubble is proportional to the mean of the cancer site’s initial and final 
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unconditional mortality rates.
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��   U.S. Australia 

mean change in unconditional 
mortality rate6 mean(�ln(mort_uncond)) -0.180 -0.184 

predicted change due to 
increasing relative survival 

�1 mean(�ln(1 - 
surv_5_year)) -0.146 -0.151 

predicted change due to rising 
incidence �2 mean(�ln(incidence)) 0.111 0.079 

unexplained change �� -0.146 -0.112 
 
In both countries, the unconditional mortality rate declined by about 18%, and the 
increase in the relative survival rate is estimated to have reduced the 
unconditional mortality rate by about 15%.  The increase in the incidence rate is 
estimated to have increased the unconditional mortality rate by 11% in the U.S. 
and 8% in Australia.  In both countries, there was a substantial decline in 
unconditional mortality that is not explained by changes in either relative survival 
or incidence.  This may be attributable to factors other than improvements in 
medical knowledge about cancer, such as better treatment of heart disease 
(Honore and Lleras-Muney (2004)). 
 
Comment
 
While the change in the 5-year survival rate is not a perfect measure of progress 
against cancer, in part because it is potentially subject to lead-time bias, the 
evidence we have presented indicates that it does contain useful information, and 
that its critics may have been unduly harsh.   

When incidence growth is controlled for, there is a highly significant 
correlation, in both the U.S. and Australia, between the change in 5-year survival 
for a specific tumor and the change in tumor-related mortality.  The increase in 
the relative survival rate is estimated to have reduced the unconditional mortality 
rate by about 15% in the U.S. between 1976 and 2002, and by about 15% in 
Australia between 1984 and 2001. 
 Controlling for incidence growth has an important effect on the correlation 
between unconditional mortality growth and relative survival growth because 
there is a strong positive correlation between incidence growth and relative 
survival growth.  Welch et al argued that “in the classic epidemiology model, no 
relationship would be expected between incidence and 5-year survival (unless 
there is some concurrent change in tumor biology)…how many people developed 

������������������������������������������������������������
6 Means in this table are weighted by the mean of the cancer site’s initial and final unconditional 
mortality rates. 
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disease would not be expected to influence the prognosis of the individual case 
(e.g., 5-year survival).”  However, we think there are two reasons why the 
prognosis of the individual case should depend on the number of people 
developing the disease.   
 The first reason is that the greater the number of people with a disease, the 
more research will be devoted to it, and the more treatments will be developed.  
Lichtenberg (2007) found that there is a significant positive correlation across 
cancer sites between incidence and both (1) the amount of research investment 
(measured by the number of articles published in scientific journals pertaining to 
the cancer site), and (2) the number of distinct chemotherapy regimens for 
treating cancer at that site.  Indeed, the underlying premise of the 1983 Orphan 
Drug Act is that, unless the government provides special incentives, diseases with 
low incidence will attract little R&D investment and therefore will have poor 
outcomes (Lichtenberg and Waldfogel (2009)). 
 A second possible reason for a positive correlation between the change in 
incidence and the change in relative survival is experience and learning by 
clinicians.  As Barocas et al (2009) observe, a positive association between both 
surgeon and hospital case volume and outcomes has been established in the case 
of cardiovascular surgery and for several high-risk cancer operations; they also 
document a relationship between case volume and outcomes after radical 
prostatectomy.  While most of the evidence for a positive relationship between 
case volume and outcomes is at the physician or hospital level, a positive 
relationship at the aggregate or societal level also seems plausible: the more 
experience the entire healthcare system has with treating a disease (because its 
incidence is high), the better the outcome of the average patient. 
 Our finding that the change in the relative survival rate is inversely 
correlated across cancer sites with the change in the unconditional mortality rate 
when we control for the growth in incidence provides some evidence for the 
hypothesis that gains in 5-year survival over time are partly due to improved 
prevention, screening, or therapy.  Several recent studies have provided another 
type of evidence that supports this hypothesis: they have shown that the change or 
difference in the 5-year survival rate is positively correlated with the change or 
difference in the number of treatments available to treat cancer.  Using 
longitudinal, cancer-site-level data on U.S. cancer patients during the period 
1978-2004, Lichtenberg (2009a) found that the introduction (FDA approval) of 
new cancer drugs had a positive effect on survival rates, controlling for cancer 
stage distribution, mean age at diagnosis, and incidence.  The impact of an 
additional FDA approval on the survival rate tends to increase steadily for a 
number of years, peak about 8–12 years after launch, and then decline. This 
finding is consistent with evidence about the product life cycle of cancer drugs: 
utilization tends to increase steadily after FDA approval, peak about 6–10 years 
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after launch, and then decline.  Lichtenberg (2009b) investigated the effect of 
availability of new drugs on survival from 17 types of cancer in 38 countries, 
controlling for all determinants of cancer survival that are invariant across cancer 
types within a given country, and that are invariant across countries for a given 
cancer type. He found that an increase in the number of available drugs is 
associated with an increase in the five-year survival rate. 
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Site
1980 2006 1975�1977 1999�2005 1976 2002

Lung�and�Bronchus 49.4 51.7 12.7% 16.3% 55.4 63.7
Prostate 33.1 23.6 68.9% 99.9% 97.9 180.5
Colon�and�Rectum 28.1 17.1 50.8% 66.8% 61.4 52.7
Breast 18.0 13.2 75.2% 90.1% 56.4 73.0
Pancreas 10.6 10.8 2.5% 5.6% 12.0 11.7
Ovary 9.3 8.5 37.2% 45.6% 15.9 13.7
Stomach 7.4 3.7 15.9% 26.5% 12.2 7.9
Urinary�Bladder 5.2 4.3 73.5% 81.7% 19.7 21.1
Cervix�Uteri 4.5 2.4 69.9% 71.8% 14.3 7.4
Esophagus 3.8 4.4 5.1% 18.8% 4.3 4.6
Kidney�and�Renal�Pelvis 3.7 4.0 50.9% 69.1% 8.0 12.8
Myeloma 3.3 3.5 25.9% 37.1% 5.0 5.9
Acute�Myeloid�Leukemia 2.5 2.8 6.6% 23.4% 3.5 3.6
Melanoma�of�the�Skin 2.3 2.7 82.4% 93.0% 8.2 19.1
Larynx 1.6 1.2 66.6% 63.2% 5.2 3.5

Chronic�Lymphocytic�Leukemia 1.5 1.4 69.0% 78.8% 4.6 4.6
Gallbladder 1.2 0.6 9.0% 15.1% 1.7 1.2
Soft�Tissue�including�Heart 1.2 1.3 61.3% 68.5% 2.2 3.0
Chronic�Myeloid�Leukemia 1.0 0.3 23.9% 53.3% 1.9 1.6

Acute�Lymphocytic�Leukemia 0.6 0.5 42.4% 66.3% 1.1 1.5
Bones�and�Joints 0.6 0.4 53.9% 70.3% 0.8 0.9
Testis 0.5 0.2 82.7% 96.2% 3.4 5.7
Thyroid 0.5 0.5 93.2% 97.3% 4.8 9.1
Acute�Monocytic�Leukemia 0.1 0.0 0.0% 23.5% 0.3 0.3
Eye�and�Orbit 0.1 0.1 83.2% 83.8% 0.8 0.8

Age�adjusted�
mortality�rate

5�year�relative�survival�
rate

Age�adjusted�
incidence�rate

Appendix�Table�1

by�cancer�site�(ranked�by�initial�mortality�rate)
US�mortality,�relative�survival,�and�incidence�rates,
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Site�(ICD10�code)
1987 2003 1982�1986 1998–2004 1982 1998

Lung�(C33–C34) 41.4 34.3 8.5% 11.8% 46.9 44.4
Colon�(C18) 23.6 14.8 48.9% 61.3% 38.1 40.8
Breast�(C50) 17.2 13.3 71.8% 87.8% 43.8 60.1
Unknown�primary�site�(C26,�
C39,�C76,�C80) 14.9 15.2 6.0% 9.1% 18.8 17.5
Prostate�(C61) 13.9 13.9 57.4% 85.3% 31.2 56.2
Stomach�(C16) 10.3 5.7 16.9% 24.7% 15.7 10.6
Pancreas�(C25) 9.7 9.2 2.8% 4.6% 9.8 10.1
Rectum�(C19–C20) 7.6 6.7 48.4% 62.9% 20.0 21.4
Leukaemia�(C91–C95) 7.6 6.8 37.6% 47.8% 11.8 12.9
Non�Hodgkin�lymphoma�
(C82–C85,�C96) 7.2 7.2 46.9% 62.1% 12.8 17.7
Melanoma�of�skin�(C43) 5.7 5.6 86.5% 91.6% 26.1 43.8
Bladder�(C67) 5.4 4.3 68.0% 60.4% 18.0 12.2
Brain�(C71) 5.3 5.5 20.4% 18.9% 6.3 6.5
Ovary�(C56) 4.5 3.8 32.7% 39.8% 6.6 6.2
Kidney�(C64) 4.1 3.9 46.5% 65.8% 6.2 10.2
Cervix�(C53) 2.5 1.2 68.3% 71.8% 7.3 4.7
Uterus,�body�(C54) 1.5 1.1 75.6% 82.1% 7.0 7.7
Hodgkin�lymphoma�(C81) 0.7 0.3 71.7% 85.2% 2.2 2.1
Thyroid�(C73) 0.6 0.4 83.6% 93.4% 2.8 5.3
Testis�(C62) 0.2 0.1 90.8% 96.8% 2.1 3.0

Age�adjusted�
mortality�rate

5�year�relative�survival�
rate

Age�adjusted�
incidence�rate

Australian�mortality,�relative�survival,�and�incidence�rates,
Appendix�Table�2

by�cancer�site�(ranked�by�initial�mortality�rate)
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