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“Booms become busts because justifiable confidence becomes foolish optimism.” –Robert

J. Samuelson, ”Causes of the Crisis,” Washington Post, 3/19/2012.

1 Introduction

The U.S. financial crisis was preceded by sharp increases in household credit, residential land prices,

and leverage ratios (see Figure 1).1 Between 1996 and 2006, the year in which the crisis started as

home prices began to decline nationwide, the net credit assets of U.S. households fell from -35 to

-70 percent of GDP. By contrast, this ratio was very stable in the previous two decades. During

1996-2006, the market value of residential land as a share of GDP also surged, from 45 to nearly

75 percent.2 Debt grew much faster than land values, however, because the ratio of the two, a

macroeconomic measure of household leverage, rose from 0.64 in 1996 to 0.93 in 2006. The crisis

then resulted in a sudden increase in leverage, as land prices fell faster than the ability to reduce

debts, and leverage continued hovering around 1.2 after that.

As the timeline in Figure 2 shows, the U.S. credit boom started with a period of significant

financial innovation characterized by two central features: First, the introduction of new financial

instruments that “securitized” the payment streams generated by a wide variety of assets, particu-

larly home mortgages. Second, far-reaching reforms that radically changed the legal and regulatory

framework of financial markets.

The gradual introduction of collateralized debt obligations (CDOs) dates back to the early 1980s,

but the securitization boom that fueled the growth of household debt started in the mid 1990s with

the introduction of collateralized mortgage obligations (CMOs). This process was greatly amplified

by the introduction of credit default swaps (CDSs) on the payments of CMOs by the mid 2000s.

In addition, synthetic securitization allowed third parties to trade bets on the income streams of

the new instruments. By the end of 2007, the market of CDSs alone was worth about $45 trillion

(or 3 times U.S. GDP).

The financial reforms introduced in the 1990s were the most significant since the Great Depres-

sion, and in fact aimed at removing the barriers separating bank and non-bank financial intermedi-
1High leverage in financial institutions also played a critical role. Still, understanding the mechanisms that drove

the household credit boom is very important, because housing-related securities were the main component of the surge
in leverage of financial institutions, and these securities were anchored on mortgage origination at the household level.

2 Following Davis and Heathcote (2007), we focus on residential land prices instead of housing prices. They showed
that land prices are more important than prices of residential dwellings for understanding the evolution of housing
prices. They decomposed U.S. housing prices into the prices of land and structures, and found that between 1975
and 2006 residential land prices quadrupled while prices of physical structures increased only by 1/3rd in real terms.
Furthermore, land prices are about three times more volatile than prices of structures.
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Figure 1: Net Credit Market Assets, Value of Residential Land and Leverage Ratio
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Notes: This figure plots the net credit market assets to GDP ratio for the U.S. households and non-profit organiza-

tions. Sources: Net Credit Market Assets: Flow of Funds Accounts of the U.S. provided by the Board of Governors

of the Federal Reserve System. Value of Residential Land: Davis and Heathcote (2007).

aries set in 1933 with the Glass-Steagall Banking Act. Three Acts were particularly important for

the housing and credit booms: The 1995 New Community Reinvestment Act, which strengthened

the role of Fannie Mae and Freddie Mac in mortgage markets and facilitated mortgage securitiza-

tion; the 1999 Gramm–Leach–Bliley Act, which removed the prohibition on bank holding compa-

nies from owning other financial companies; and the 2000 Commodity Futures Modernization Act,

which stipulated that over-the-counter derivatives such as CDSs would not be regulated as futures

contracts, securities, or lotteries under federal law.
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Figure 2: Timeline of Events During the Run-up to the U.S. Credit Crisis

1987 Issuance of the first CDO •

• 1995 New Community Reinvestment Act1995 Net credit assets-GDP starts falling •
• 1997 Issuance of the first CDS at JPMorgan

1999 Gramm-Leach-Bliley Act • • 2000 Commodity Futures Modernization Act

2006 Peak of stock and housing markets •
• 2008 Net credit assets-GDP bottoms

2010 Dodd-Frank Wall St. Reform Act •

The pattern connecting financial innovation, booms in credit and asset prices, and financial

crises is not a phenomenon unique to the recent U.S. experience. In fact, credit booms and busts

are commonly associated with large changes in the financial environment. It is well-known, for

instance, that many of the countries to which the financial crisis spread after hitting the United

States displayed similar pre-crisis features, in terms of a large expansion of the financial sector

into new instruments under new regulations, and also experienced housing booms (e.g. the United

Kingdom, Spain, Iceland, Ireland). The experiences of Eastern European transition economies in

the aftermath of financial liberalization, and of the Baltic states in the mid 2000’s, just before

entering the European Union, are also good examples, and there is evidence of a similar process at

work before the Great Depression in the form of a securitization boom in commercial mortgages

(Goetzmann and Newman (2010)). Mendoza and Terrones (2012) provide more systematic evidence

of this phenomenon. They found that 35 percent of the credit booms observed in the 1960-2010

period across developed and emerging economies occurred after surges in capital flows, which were

largely driven by reforms that liberalized capital accounts, and 25 percent occurred after large

financial reforms. They also found that credit booms are associated with sharp cycles in economic

activity and housing prices.

This paper provides an explanation for the observed relationship between financial innovation

and the credit cycle. In particular, we show that financial innovation, interacting with credit

constraints, can lead to a “natural” underpricing of the risk associated with a new financial en-

vironment, and that this can produce a surge in credit and asset prices, followed by a collapse.

Undervaluing the risk is natural because of the lack of data on the default and performance records

of the new financial instruments, and on the stability of the financial system under new laws. In
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line with this argument, the strategy of “layering of risk” in the U.S. securitization boom justified

the belief that the new instruments were so well diversified that they were virtually risk free. The

latter was presumably being attained by using portfolio models that combined top-rated tranches of

assets with tranches containing riskier assets–under the assumption that the risk of the assets was

priced correctly. As Drew (2008) described it: “The computer modelers gushed about the tranches.

The layers spread out the risk. Only a catastrophic failure would bring the structure crashing down,

and the models said that wouldn’t happen.”

We propose a model in which the true riskiness of the new financial environment can only be

discovered with time, and this learning process interacts with a collateral constraint that limits

households’ debt not to exceed a fraction of the market value of their holdings of a fixed asset

(i.e., land). Financial innovation is modeled as a structural change that introduces a regime with a

higher leverage limit. Agents know that in this new environment one of two financial regimes can

materialize in any given period: one in which high ability to leverage continues, and one in which

there is a lower leverage limit. They do not know the true riskiness of the new financial environment,

because they lack data with which to estimate accurately the true switching probabilities across

these two regimes. They are Bayesian learners, however, and so they learn over time as they

observe regime realizations, and in the long-run their beliefs converge to the true regime-switching

probabilities. Hence, in the long-run the model converges to the rational expectations (RE) solution,

with the risk of the financial environment priced correctly.3 In the short-run, however, optimal

plans and asset prices deviate from the RE equilibrium, because beliefs differ from those of the RE

solution, and this leads to a mispricing of risk.

The collateral constraint introduces into the model the well-known Fisherian debt-deflation

mechanism of financial amplification, but the analysis of the interaction of this mechanism with

the learning dynamics is a novel feature of this paper.4 In particular, the deviations of the agents’

beliefs from the true RE regime-switching probabilities distort asset pricing conditions. If the

constraint binds, optimistic beliefs lead agents to assign higher probabilities to states with lower

excess returns, which causes a feedback loop producing higher asset prices and higher debt, and the
3We follow the standard treatment in the imperfect information literature to refer to the perfect information

equilibrium as the rational expectations equilibrium, even though the Bayesian learning equilibrium is also a rational
expectations equilibrium.

4The debt-deflation framework as originally envisaged by Fisher (1933) gave a prominent role to changes in
optimism and gloom of economic agents, but modern formulations of financial accelerators abstract from fluctuations
in beliefs. It is also interesting to note that Fisher assigned a limited role to changes in beliefs except when they
interact with the debt-deflation mechanism: “I fancy that over-confidence seldom does any great harm except when,
as, and if, it beguiles its victims into debt.” ( Fisher (1933)).
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Figure 3: Banks’ Willingness To Lend
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Notes: This figure plots the net percentage of domestic banks that reported tightening standards for mortgage loans

and credit card loans; and increased willingness to make consumer installment loans. The banks can choose from

five answers, 1) tightened significantly, 2) tightened somewhat, 3) remained unchanged, 4) eased somewhat, 5) eased

significantly. Net percentages are calculated by subtracting the number of banks that chose 4 or 5 from those that

chose 1 or 2, and then dividing by the total number of respondents. Source: Willingness to Lend Survey of the U.S.,

provided by the Board of Governors of the Federal Reserve System.

opposite occurs when agents are pessimistic. Thus, the over- or under-pricing of assets translates

into over- or under-inflated collateral values that affect the debt-deflation dynamics.

Quantitative analysis shows that the process of discovery of risk in the presence of collateral

constraints has important macroeconomic effects, and leads to a period of booming credit and land

prices, followed by a sharp, sudden collapse. We conduct an experiment calibrated to U.S. data in

which we date the start of financial innovation in the first quarter of 1997 and the beginning of the

financial crisis in the first quarter of 2007. Hence, from 1997 to the end of 2006 we assume that

the economy experienced the high-leverage regime, followed by a switch to the low-leverage regime

in the first quarter of 2007.5 The stock of net credit assets did not rise sharply then (see Figure

1), but the fraction of banks that tightened credit standards jumped from nearly zero to over 50

percent (see Figure 3), and the median downpayment on conventional mortgages jumped from 5

to 13 percent (see Feb. 16, Wall Street Journal).

The initial priors of the Bayesian learning process are calibrated to match observed excess

returns on Fannie Mae residential MBS at the beginning of 1997, and the high- and low-leverage
5We take this switch to the low-leverage as exogenous. One way to endogenously generate such a switch is to

explicitly model the freeze of the interbank market as in Gertler and Kiyotaki (2010).
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limits are set equal to the observed leverage ratios before 1997 and at the end of 2006. Under

these assumptions, our model predicts that agents become optimistic about the probability of

persistence of the high-leverage regime very soon after 1997, and remain so until they observe

the switch to the low-leverage regime. During this “optimistic phase,” debt, leverage and land

prices rise significantly above what the RE equilibrium predicts.6 In fact, the model accounts for

63 percent of the rise in net household debt and 44 percent of the rise in residential land prices

during 1997-2006. Conversely, when agents observe the first realization of the low-leverage regime,

they respond with a sharp correction in their beliefs and become unduly pessimistic, causing sharp

downward adjustments in credit, land prices and consumption.

This transition to the low-leverage regime is exogenous, and thus part of the collapse in credit

that the model produces is exogenous. For example, one can think of the switch of regimes as

being due to a disruption in financial intermediation, as in Gertler and Kiyotaki (2010). Note,

however, that the equilibrium declines in credit and prices in the model also reflect the endogenous

amplification channel operating through the interaction of the collateral constraint and the agents’

beliefs. Quantitatively, our results indicate that this amplification mechanism is very strong and

accounts for most of the drop in credit and prices predicted by the model. The results also show

that the interaction between the debt-deflation financial accelerator and the learning dynamics is

quantitatively significant. The model predicts effects on debt and asset prices that are nearly twice

as large when we allow for these two forces to interact than when we remove either one.

We model learning following the approach proposed by Cogley and Sargent (2008b). They offer

an explanation of the equity premium puzzle by modeling a period of persistent pessimism caused

by the Great Depression. They assume high and low states for exogenous consumption growth, with

the true transition probabilities across these states unknown. Agents learn the true probabilities

over time as they observe the realizations of consumption growth. Similarly, in our setup, the true

probabilities of switching across leverage regimes are unknown, and agents learn about them over

time.

This paper is also related to the large Macro and Finance literatures on learning models. On

the macro side, the literature tends to focus on learning from noisy signals (e.g Blanchard et al.

(2008), Boz (2009), Boz et al. (2011), Edge et al. (2007), Lorenzoni (2009), Van Nieuwerburgh and
6The degree of optimism generated in the optimistic phase is at its highest just before agents observe the first

realization of the low-leverage regime. This occurs because, when the new financial environment is first introduced,
agents cannot rule out the possibility of the high-leverage regime being absorbent until they experience the first
realization of the low-leverage state.
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Veldkamp (2006), and the survey by Evans and Honkapohja (1999)). The informational friction in

models like ours, and Cogley and Sargent (2008b) is different, because there is no signal extraction

problem. Agents observe realizations of the relevant variables without noise. Instead, there is

imperfect information about the true transition probability distribution of these variables. The

U.S. credit crisis provides a natural laboratory to study the effects of this class of learning models,

because the new financial products and the new regulatory regime under which they were traded

lacked the time-series data needed to infer the true probability of “catastrophic failure” of credit

markets (i.e., the probability of switching to a low-leverage regime). Our work is also reminiscent

of the literature on Knightian uncertainty where the agents do not know the true model with which

to assess the future. A recent application of Knightian uncertainty is Caballero and Krishnamurthy

(2008), who emphasize unusual events and new financial instruments in increasing uncertainty and

potentially leading to crises.

The work of Zeira (1999) is closer in spirit to this paper. He argued that financial liberalization or

structural changes in productivity could be followed by booms and crashes because of “informational

overshooting.” The similarity with our work is in the idea that agents need to learn the true

characteristics of a new asset pricing environment. In Zeira’s model, this is captured by an increase

in dividend growth with an unknown duration and by assuming that agents update their beliefs

about a future date in which high dividend growth will end. As long as they observe high dividend

growth, their beliefs about future dividend realizations increase, leading to a boom in stock prices.

Then when agents finally observe the end of the dividend boom, expectations of future profits fall

and hence asset prices collapse. In more recent related work, Adam et al. (2011) study housing

booms and current account imbalances in G7 countries using a learning model with a collateral

constraint in which Bayesian learning about housing prices amplifies the effects of interest rate cuts.

The credit constraint used in our model is similar to those widely examined in the macro litera-

ture on financial frictions and in the international macro literature on Sudden Stops. For example,

Jermann and Quadrini (2006) propose an RE model in which asset prices affect borrowing ability,

and use it to study the effects of financial innovation. Mendoza (2010) and Durdu et al. (2009)

develop models in which credit constraints linked to goods or asset prices produce Sudden Stops of

capital inflows. When credit constraints like these are used in RE stochastic environments, precau-

tionary savings reduce significantly the long-run probability of states in which the constraints bind.

In our learning model, however, agents have much weaker incentives for building precautionary

savings than under rational expectations, until they attain the long-run equilibrium in which they
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know the true riskiness of the financial environment. Since agents borrow “too much” during the

optimistic phase, the economy is vulnerable to suffer a large credit crunch when the first switch to

a low-leverage regime occurs. In addition, our model differs from most financial crisis models in

that it aims to explain both the boom and bust credit cycles, whereas crisis models typically focus

only on the latter.

Our credit constraint also features the “systemic” pecuniary externality present in several mod-

els of financial crises. In particular, agents do not internalize the implications of their individual

actions on credit conditions because of changes in equilibrium prices, and this leads to “overborrow-

ing” relative to debt levels that would be acquired without the externality. Studies on overborrowing

like those by Uribe (2006), Korinek (2008), and Bianchi (2011) explore whether credit external-

ities can generate excessive borrowing in decentralized equilibria relative to a constrained social

optimum. Our paper makes two contributions to this line of research. First, we show that the

discovery of risk generates sizable overborrowing (relative to the RE decentralized equilibrium),

because of the unduly optimistic expectations of agents during the optimistic phase of the learning

dynamics. Second, we provide a new analysis of the interaction between the credit externality and

the underpricing of risk driven by a process of “risk discovery.”

Finally, our paper is also related to some of the recent literature on the U.S. crisis that em-

phasizes learning frictions, financial innovation and deregulation, particularly the work of Howitt

(2011), Favilukis et al. (2010) and Ferrero (2012). Howitt studies the interaction of expectations,

leverage and a solvency constraint in a representative agent setup similar to ours, and he shows

that adaptive learning about asset returns leads to periods of “cumulative optimism” followed by

“cumulative pessimism,” and this can lead to a crisis. Our analysis differs in that we study Bayesian

learning, instead of adaptive expectations, and we model learning about the persistence of a finan-

cial regime, defined in terms of the maximum leverage ratio specified by a collateral constraint.7

Favilukis et al. (2010) analyze the macroeconomic effects of housing wealth and housing finance in

a heterogenous- agents, DSGE model with credit constraints. They study transition dynamics from

an environment with high financial transaction costs and tight credit limits to one with the opposite

features. Ferrero (2012) has a similar flavor in that he studies the macroeconomic implications of

relaxation of an LTV requirement. Similar to these two studies, our paper emphasizes the role
7There is also an interesting contrast across the two studies in terms of the motivation for focusing on learning to

study the financial crisis. Howitt argues that the learning friction matters because agents learn in adaptive fashion
about the behavior of asset returns, in a financial regime that is in fact unchanged, while we argue that it matters
because agents learn gradually the true persistence of a new financial regime, while they have perfect information
about the random process that drives dividends.
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of a relaxation of borrowing constraints, but we focus on the effects of imperfect information and

learning, while they study environments with rational expectations.

To close this Introduction, we do recognize that several factors beyond the scope of this paper

were at play in causing the credit booms and crises observed in the United States and elsewhere,

including excessive leverage and exposure to counterpart risk amongst financial intermediaries,

moral hazard in financial markets and rating agencies, reckless lending practices, growing global

financial imbalances, and the lack of government supervision and regulation. In this paper, however,

we focus exclusively on the role of financial innovation affecting households’ ability to leverage assets

into debt in an environment with imperfect information and imperfect credit markets. Our aim is

to show how these frictions alone can result in a pronounced boom-bust cycle in household debt

and housing prices.

The remainder of the paper proceeds as follows: Section 2 describes the model and the learning

process. Section 3 examines the model’s quantitative implications. Section 4 concludes.

2 A Model of Financial Innovation with Learning

We study a representative agent economy in which risk-averse individuals formulate optimal plans

facing exogenous income fluctuations. The risk associated with these fluctuations cannot be fully

diversified because asset markets are incomplete. Individuals have access to two assets: a non-

state-contingent bond and an asset in fixed supply (land). The credit market is imperfect, because

individuals’ ability to borrow is limited not to exceed a fraction κ of the market value of their land

holdings. That is, κ imposes an upper bound on the agents’ leverage ratio.

The main feature that differentiates our model from typical macro models with credit frictions

is the assumption that agents have imperfect information about the regime-switching probabilities

that drive fluctuations in κ.8 Specifically, we model a situation in which financial innovation starts

with an initial shift from a low-leverage regime (κl) to a regime with higher ability to leverage (κh).

Agents do not know the true regime-switching probabilities between κl and κh in this new financial

environment. They are Bayesian learners, and in the long-run they learn these true probabilities

and form rational expectations. In the short-run, however, they form their expectations with the

posteriors they construct as they observe realizations of κ. Hence, they “discover” the true riskiness
8In previous work we studied a similar informational friction but in a setup in which the credit constraint does

not depend on market prices. In that scenario, the distortions produced by the learning process in the aftermath of
financial innovation do not interact with the credit externality present in the model we study here.
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of the new financial environment only after they have observed a sample with enough regime

realizations and regime switches to estimate the true regime-switching probabilities accurately.

We assume that the risk-free interest rate is exogenous in order to keep the interaction between

financial innovation and learning tractable. At the aggregate level, this assumption corresponds

to an economy that is small and open with respect to world capital markets. This is in line with

recent evidence suggesting that in the era of financial globalization even the U.S. risk-free rate has

been significantly influenced by outside factors, such as the surge in reserves in emerging economies

and the persistent collapse of investment rates in South East Asia after 1998 (see Warnock and

Warnock (2006), Bernanke (2005), Durdu et al. (2009), Mendoza et al. (2009)). Moreover, post-war

U.S. data from the Flow of Funds published by the Federal Reserve show that, while pre-1980s the

United States was in virtual financial autarky, because the fraction of net credit of U.S. nonfinancial

sectors financed by the rest of the world was close to zero, about one half of the surge in net credit

since the mid-1980s was financed by the rest of the world (see Mendoza and Quadrini (2010)).

Alternatively, our setup can be viewed as a partial equilibrium model of the U.S. economy that

studies the effects of financial innovation on household debt and residential land prices, taking the

risk-free rate as given, as in Corbae and Quintin (2009) and Howitt (2011). Still, we will evaluate

later on the robustness of our main results to relaxing the assumption of a constant real interest

rate by allowing it to fall as financial innovation starts, in line with what was observed in U.S. data.

2.1 Agents’ Optimization Problem

Agents act atomistically in competitive markets and choose consumption (ct), land holdings (lt+1)

and holdings of one-period discount bonds (bt+1), taking as given the price of land (qt) and the

gross real interest rate (R) so as to maximize a standard intertemporal utility function:

Es
0

[ ∞∑

t=0

βtu(ct)

]
(1)

It is critical to note that Es
t represents expectations conditional on the representative agent’s beliefs

formulated with the information available up to and including date t. As we explain below, these

beliefs will differ in general from the rational expectations formulated with perfect information

about the persistence of the financial regime, which are denoted Ea
t .
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The agents’ budget constraint is:

ct = ztg(lt) + qtlt − qtlt+1 − bt+1

R
+ bt (2)

Agents operate a concave neoclassical production function g(lt) subject to a stochastic TFP shock

zt. A linear production technology could also be used, but we will use the curvature of g(lt) to

calibrate the model so that the condition that arbitrages returns across bonds and land is consistent

with U.S. data on the risk-free interest rate and the value of residential land as a share of GDP

(see Section 3 for details).

TFP shocks follow an exogenous discrete Markov process, about which agents have perfect

information. That is, they know the Markov transition matrix π(zt+1 | zt) and the corresponding

set Z of M possible realizations of z at any point in time (i.e., zt ∈ Z = {z1 < z2 < .... < zM )).

Alternatively, we could assume that TFP shocks are also affected by imperfect information.

Frictions in the credit market that we don’t model explicitly force agents to comply with a

collateral constraint that limits the value of debt (given by bt+1/R since 1/R is the price of discount

bonds) to a time-varying fraction κt of the market value of their land holdings:

bt+1

R
≥ −κtqtlt+1 (3)

In this constraint, κt is a random variable that follows a “true” Markov process characterized by a

standard two-point, regime-switching process with regimes κh and κl, with κh > κl, and transition

probabilities given by F a = pa(κt+1 | κt).9 The continuation transition probabilities are denoted

F a
hh ≡ pa(κt+1 = κh | κt = κh) and F a

ll ≡ pa(κt+1 = κl | κt = κl), and the switching probabilities

are F a
hl = 1 − F a

hh and F a
lh = 1 − F a

ll . The long-run probabilities of the high- and low-leverage

regimes are Πh = F a
lh/(F a

lh + F a
hl) and Πl = F a

hl/(F a
lh + F a

hl) respectively, and the corresponding

mean durations are 1/F a
hl and 1/F a

lh. The long-run unconditional mean, variance, and first-order

9One could also specify a continuous AR(1) process for κ such as κt = mt +κt−1 + εt. The different regimes could
be captured with a shift in the mean: m ∈ {mh, ml} and the agents could learn about the process governing m. We
conjecture that this specification would yield similar results as agents could turn optimistic about the persistence of
the high mean regime for κ.
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autocorrelation of κ follow the standard regime-switching formulae:

Ea[κ] = (F a
lhκh + F a

hlκ
l)/(F a

lh + F a
hl) (4)

σ2(κ) = Πh(κh)2 + Πl(κl)2 − (E[κ])2 (5)

ρ(κ) = F a
ll − F a

hl = F a
hh − F a

lh (6)

As explained earlier, agents know κh and κl but do not know F a. Hence, they make decisions

based on their beliefs characterized by Es
t which evolve over time. Using µ to denote the Lagrange

multiplier on the credit constraint, the agents’ optimality conditions for bonds and land are:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (7)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(lt+1) + qt+1

)]
. (8)

With the key caveat that agents use subjective beliefs to form expectations, these conditions are

standard from models with credit constraints. Following Mendoza (2010), we can show that the

second condition implies a forward solution for land prices in which the future stream of land

dividends is discounted at the stochastic discount factors adjusted for the shadow value of the

credit constraint:

qt = Es
t



∞∑

j=0

(
j∏

i=0

M t+1+i
t+i

)
zt+1+jg

′(lt+1+j)


 , M t+1+i

t+i ≡ βu′(ct+1+i)
u′(ct+i)− µt+iκt+i

(9)

Defining the return on land as Rq
t+1 ≡ (zt+1g

′(lt+1) + qt+1)/qt and the period marginal utility

of consumption as λt+1 ≡ βu′(ct+1), the excess return on land can be expressed as:

Es
t

[
Rq

t+1 −R
]

=
(1− κt)µt − covs

t (λt+1, R
q
t+1)

Es
t [λt+1]

(10)

Thus, as in Mendoza (2010), the borrowing constraint enlarges the standard premium on land

holdings, driven by the covariance between marginal utility and asset returns, by introducing di-

rect and indirect effects. The direct effect is represented by the term (1−κt)µt. The indirect effects

are represented by the fact that the credit constraint hampers the agents’ ability to smooth con-

sumption, which reduces covs
t (λt+1, R

q
t+1), and tilts consumption towards the future, which lowers

Es
t [λt+1] . Moreover, since the expected land returns satisfy qtE

s
t [R

q
t+1] ≡ Es

t [zt+1g
′(lt+1) + qt+1],
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we can rewrite the forward solution for the agents’ land valuation as:

qt = Es
t



∞∑

j=0

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
zt+1+jg

′(lt+1+j)


 . (11)

The expressions in (10) and (11) imply that the collateral constraint lowers land prices because

it increases the rate of return at which future land dividends are discounted. Note also that land

valuations are reduced at t not just when the constraint binds at t , which increases Es
t [R

q
t+1], but

also if agents expect that the constraint can bind at any future date, which increases Es
t [R

q
t+1+i]

for some i > 0.

While the above effects are at work even when expectations are formed rationally, with knowl-

edge of the true Markov process of κ, condition (11) also suggests that the learning process and the

collateral constraint interact in an important way. For instance, suppose the credit constraint was

binding at t. It follows that excess land returns must be lower in states with κh than with κl, since

the constraint must bind more in the latter. Hence, if beliefs are optimistic, agents assign more

probability to states with lower expected returns than under true rational expectations, and this,

via condition (11), translates into higher land prices, which in turn via the collateral constraint

results in higher debt. The opposite is also true: If beliefs are pessimistic, agents assign higher

probability to states with higher land returns, which depress current land prices more than under

rational expectations, and via the collateral constraint this results in even lower debt.

The economy has a fixed unit supply of land, hence market clearing in the land market implies

that the land holdings of the representative agent must satisfy lt = 1 for all t, and the rest of the

equilibrium conditions reduce to the following:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (12)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(1) + qt+1

)]
(13)

ct = ztg(1)− bt+1

R
+ bt (14)

bt+1

R
≥ −κtqt1 (15)

2.2 General Features of the Learning Setup

Following Cogley and Sargent (2008b), our learning setup features two-point passive learning with-

out noise, so that the belief transition probability matrix denoted by ps
t (κt+1 | κt) converges to
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its true value pa(κt+1 | κt) for sufficiently large t. With this setup, agents learn about the true

regime-switching probabilities of κ only after observing a sufficiently long set of realizations of κh

and κl.10

This learning setup fits nicely our goal of studying a situation in which financial innovation

represents an initial condition with the arrival of a new state κh and with imperfect information

about the true riskiness of this new environment. Agents are ignorant about the true transition

distribution of κ, since there is no data history to infer it from. Over time, if they observe a

sequence of realizations of κh for a few periods, they build optimism by assigning a probability to

the possibility of continuing in κh that is higher than the true value. We refer to this situation as

the “optimistic phase.” Such optimism by itself is a source of vulnerability, because it is quickly

reversed into a “pessimistic phase” with the opposite characteristics as the first few realizations of

κl hit the economy. In addition, during the optimistic phase, the incentives to build precautionary

savings against the risk of a shift in the ability to leverage are weaker than in the long-run RE

equilibrium. This increases the agents’ risk of being caught “off-guard” (i.e., with too much debt)

when the first shift to the low-leverage regime occurs.

Modeling imperfect information in this fashion implies a deviation from rational expectations

in the sense that agents form expectations having only “partial” knowledge of the true stochastic

process driving fluctuations in κ.11 This is a key feature of our model, because it highlights the role

of the short history of a new financial regime in hampering the ability of agents to correctly assess

risk. This approach seems better suited for studying the role of financial innovation in causing the

financial crisis, as opposed to a standard signal extraction problem.

Since κ is exogenous, we are modeling a passive learning structure from and about exogenous

variables, which facilitates significantly the analysis and numerical solution of the model. In partic-

ular, it allows us to separate the evolution of beliefs from the dynamic optimization problem that

agents solve, because agents cannot benefit from experimenting with the latter in order to improve

the former. In light of this, we follow a two-stage solution strategy to analyze the model.

In the first stage, we use Bayesian learning to generate the agents’ sequence of posterior density

functions {f(F s | κt)}T
t=1. Each of these density functions (one for each date t) is a probability

distribution over possible Markov transition matrices F s. Since agents do not know the true
10Time alone does not determine how fast agents learn. The order in which κ realizations, and switches between

realizations, occur also matters.
11In a more general sense, however, agents in our model are rational inasmuch as Bayesian expectations are rational

given the incomplete information on which they are based.

14



transition matrix F a, the density function changes with the sequence of realizations observed up

to date t (i.e.,
{
κt, κt−1, ..., κ1

}
where κt = (κt, κt−1, ..., κ1)) and with the initial date-0 priors, as

we explain below. If date T is high enough to accommodate sufficient sampling of regime switches

across κh and κl, the sequence {f(F s | κt)}T
t=1 converges to a distribution with all its mass in F a.

The second part of the solution characterizes the agent’s optimal plans and the recursive equilib-

rium by adopting Kreps’s Anticipated Utility (AU) approach to model dynamic optimization with

Bayesian learning. The AU approach focuses on combining the sequences of posterior densities

obtained in the first part, {f(F s | κt)}T
t=1, with chained solutions from a set of “conditional” AU

optimization problems. These problems are conditional on the posterior density function of F s that

agents form with the history of realizations up to each date t. In contrast, full Bayesian dynamic

optimization takes into account projections of the effect of future κ realizations on the evolution

of beliefs, but this is generally of limited tractability because it requires a large state space that

includes counters carrying the observed number of switches across regimes. Cogley and Sargent

(2008a) show, however, that the optimal consumption plans and asset prices obtained using AU

are very accurate approximations of those obtained with full Bayesian optimization, even in an

environment with incomplete markets, CRRA preferences (which induce precautionary savings),

and large regime-switching income shocks.12 The remainder of this Section examines in more detail

the Bayesian learning setup and the construction of the model’s recursive AU equilibrium.

2.3 Learning and the Sequence of Beliefs

The learning framework takes as given an observed history of κ realizations for T periods, denoted

κT , and a prior of F s for date t = 0, p(F s), and it yields a sequence of posteriors {f(F s | κt)}T
t=1.

13

At every date t, from 0 to T , the information set of the agent includes κt as well as the possible

values that κ can take (κh and κl).

Agents form posteriors using a beta-binomial probability model. Since information is imperfect

only with regard to the Markov transition matrix across κ′s, and because κ can only take two

values, this boils down to imperfect information about F a
hh and F a

ll . The other two elements of the

transition matrix of κ are recovered as the complements to these two.
12The quality of the approximation begins to deteriorate when the CRRA coefficient is set higher than 5. In our

calibration it will be set at 2. On the other hand, the model examined by Cogley and Sargent (2008a) does not
feature a borrowing constraint, so we cannot guarantee that the approximation is as accurate as theirs even with the
CRRA coefficient set at 2.

13In describing the learning problem, we employ the notation used by Cogley and Sargent (2008b).
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The agents’ posteriors about F s
hh and F s

ll have Beta distributions as well, and the parameters

that define them are determined by the number of regime switches observed in a particular history

κt. As in Cogley and Sargent (2008b), we assume that the priors for F s
hh and F s

ll included in p(F s)

are independent and determined by the number of transitions assumed to have been observed prior

to date t = 1. More formally,

p(F s
ii) ∝ (F s

ii)
nii

0 −1(1− F s
ii)

nij
0 −1 (16)

where nij
0 denotes the number of transitions from state i to state j assumed to have been observed

prior to date 1.

The likelihood function of κt conditional on F s
hh and F s

ll is obtained by multiplying the densities

of F s
hh and F s

ll:

f(κt | F s
hh, F s

ll) ∝ (F s
hh)(n

hh
t −nhh

0 )(1− F s
hh)(n

hl
t −nhl

0 )(1− F s
ll)

(nlh
t −nlh

0 )(F s
ll)

(nll
t −nll

0 ). (17)

Multiplying the likelihood function by the priors delivers the posterior kernel:

k(F s | κt) ∝ (F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)F s
ll

(nll
t −1), (18)

and dividing the kernel using the normalizing constant M(κt) yields the posterior density:

f(F s | κt) = k(F s | κt)/M(κt) (19)

where

M(κt) =
∫∫

(F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)(F s
ll)

(nll
t −1) dF s

hhdF s
ll.

The number of transitions across regimes is updated as follows:

nij
t+1 =





nij
t + 1 if κt+1 = κj and κt = κi,

nij
t otherwise.
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A feature of this setup that is key for our solution method is that the agents’ posteriors F s
hh ∝

Beta(nhh
t , nhl

t ) and F s
ll ∝ Beta(nlh

t , nll
t ) have means that satisfy:

Et[F s
hh] = nhh

t /(nhh
t + nhl

t ), Et[F s
ll] = nll

t /(nll
t + nlh

t ) (20)

These properties are important because they show that the posterior means of the continuation

probability of a particular regime change only when that same regime is observed at date t. Since

in a two-point, regime-switching setup continuation probabilities also determine mean durations, it

follows that both the persistence and the mean durations of leverage regimes can be learned only

as the economy actually experiences κl or κh.14

Figure 4: Evolution of Beliefs
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Notes: This figure plots the evolution of beliefs about F s
hh (top panel), F s

ll (middle panel), and the associated realiza-

tions of κ (lower panel). The horizontal red lines in the upper two panels mark the true values of the corresponding

variables.

14If priors, as well as F a
hh and F a

ll , are correlated, learning would likely be faster, because agents would update their
beliefs about both F s

hh and F s
ll every period, instead of updating only one or the other depending on the regime they

observe. But this is akin to removing some of the informational friction by assumption. In an extreme case, imagine
that F a

hh = F a
ll and that the agents know about this property of the model. In this case, agents know an important

characteristic of the transition probability matrix (i.e. that is symmetric), which weakens the initial premise stating
that they do not know any of its properties. Agents would learn about the persistence of both regimes no matter
which one they observe.
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The potential for financial innovation to lead to significant underestimation of risk can be

inferred from the evolution of the posterior means. If financial innovation is defined as the arrival

of a brand new environment in which credit conditions can shift between κh and κl, we should

assume that the learning process starts from values of nij
0 that are close to zero.15 Given this

assumption and the conditions governing the evolution of posterior means in eq. (20)), it follows

that the first sequence of realizations of κh generates substantial optimism (i.e. a sharp increase

in Et[F s
hh] relative to F a

hh). Moreover, it also follows that the magnitude of the optimism that any

subsequent sequence of realizations of κh generates will be smaller than in the initial optimistic

phase. Intuitively, this is because it is only after observing the first switch to κl that agents rule

out the possibility of κh being an absorbent state. Similarly, the first realizations of κl generate

a pessimistic phase, in which Et[F s
ll] is significantly higher than F a

ll , so the period of optimistic

expectations is followed by a period of pessimistic expectations.

We illustrate further the learning dynamics of this setup by means of a simple numerical ex-

ample. We choose a set of values for F a
hh, F a

ll , and initial priors, and then simulate the learning

process for 300 quarters using a hypothetical sequence of κ realizations produced by a stochastic

simulation of the true Markov-switching process. The results are plotted in Figure 4, which shows

the time paths of Et[F s
hh] and Et[F s

ll] based on the beliefs formed at each date t in the horizontal

axis, after observing the corresponding κt shown in the bottom panel, and with the date-0 priors

set to F s
hh ∼ Beta(0.1, 0.1) and F s

ll ∼ Beta(0.1, 0.1). The true regime-switching probabilities are

set to F a
hh = 0.95 and F a

ll = 0.5, which are shown as the horizontal lines in the same plots as

Et[F s
hh] and Et[F s

ll]. All of these parameter values are used only for illustration purposes (they are

not calibrated to actual data as in the solution of the full model in Section 3).

The most striking result evident in Figure 4 is that financial innovation can lead to significant

underestimation of risk. Specifically, the initial sequence of realizations of κh observed until just

before the first realization of κl (the first “optimistic phase”) generates substantial optimism. In

this example, the optimistic phase covers the first 30 periods. The Figure shows that a high level

of optimism builds very fast during the optimistic phase. In fact, agents update their beliefs about

the persistence of the high-leverage regime from 0.5 to 0.916 just after observing κ1 = κh, and

then in the subsequent 29 periods Et[F s
hh] continues rising to peak at around 0.999. Optimism

never grows as large during other optimistic phases that occur later on. For example, even though
15A truly new environment would have nij

0 = 0, but since the binomial distribution is not defined for nij
0 = 0, nij

0

close to zero provides the best approximation to a truly new regime.
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the economy remains in κh from around date 40 to date 80, the optimism that this generates is

much smaller than in the initial optimistic phase. This is because, as noted above, it is only after

observing the first switch to κl that agents rule out the possibility of κh being an absorbent state.

Hence, Et[F s
hh] cannot surge as high as it did during the initial optimistic phase. Notice also that

the first realizations of κl generate a strong “pessimistic phase,” in which Et[F s
ll] is significantly

higher than F a
ll , so the period of unduly optimistic expectations is followed by a period of unduly

pessimistic expectations.

Figure 4 also reflects the result showing that the beliefs about Et[F s
hh] and Et[F s

ll] are updated

only when the economy is in the high- or low-leverage state. This is evident, for example, in the

initial optimistic phase, when Et[F s
ll] does not change at all. This feature of the learning dynamics

also explains why in this example Et[F s
hh] converges to its RE counterpart faster than Et[F s

ll]. Given

that the low-leverage regime is visited much less frequently, it takes longer for the agents to learn

about its persistence.

2.4 Recursive Anticipated Utility Competitive Equilibrium

We define the model’s AU competitive equilibrium in recursive form. Since in the quantitative

analysis we solve the model by policy function iteration on the equilibrium conditions (12)-(15), we

formulate the recursive equilibrium using these conditions instead of a Bellman equation (Appendix

A describes the solution method in detail). The state variables in the recursive equilibrium are

defined by the triple (b, z, κ).

The solution strategy works by breaking down the problem into a set of AU optimization

problems (AUOP) that are conditional on the beliefs agents have each period. We add time indices

to the policy and pricing functions in the recursive equilibrium so as to identify the date of the

beliefs that match the corresponding AUOP. This solution strategy works because the law of iterated

expectations still holds (see Appendix B in Cogley and Sargent (2008b)).

In each AUOP, agents form expectations about the future conditional on the information and

beliefs they have in the current planning period as summarized in the corresponding mean poste-

riors. As noted before, however, this is not the same as full Bayesian optimization, because this

requires carrying as additional state variables for date t the four-dimensional vector nt that includes

every possible permutation of the counters that can be observed up to date t. By contrast, the

AUOPs are analogous to solving a sequence of policy functions and Bellman equations one for each
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set of beliefs obtained at each date t = 1, ..., T . This is still a demanding computational problem,

but less vulnerable to the curse of dimensionality than the full Bayesian problem.16

Consider the date-t AUOP. At this point agents have observed κt , and use it to update their

beliefs. Thus, we pull f(F s | κt) from the sequence of posterior density functions solved for in

the first part of our solution strategy. This is the posterior about the distribution of F s that

agents form, given that they have observed κt and given their initial priors. Using (20), we

compute Et[F s
hh] and Et[F s

ll] and construct the date-t transition probability matrix Es
t [κ

′|κ] ≡
 Et[F s

hh] 1−Et[F s
hh]

1−Et[F s
ll] Et[F s

ll]


 . The solution to the date-t AUOP is then given by policy functions

(b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)) and a pricing function qt(b, z, κ) that satisfy the equilibrium con-

ditions (12)-(15) rewritten in recursive form:

u′(ct(b, z, κ)) = βR


∑

z′∈Z

∑

κ′∈{κh,κl}
Es

t [κ
′|κ]π(z′|z)u′(ct(b′, z′, κ′))


 + µt(b, z, κ) (21)

qt(b, z, κ)(u′ (ct(b, z, κ))− µt(b, z, κ)κ) = (22)

β


∑

z′∈Z

∑

κ′∈{κh,κl}
Es

t [κ
′|κ]π(z′|z)u′(ct(b′, z′, κ′))

(
z′g′(1) + qt(b′, z′, κ′)

)



ct(b, z, κ) = zg(1)− b′t(b, z, κ)
R

+ b (23)

b′t(b, z, κ)
R

≥ −κqt(b, z, κ)1 (24)

The time subscripts that index the policy and pricing functions indicate the date of the beliefs

used to form the expectations (which is also the date of the most recent observation of κ, which is

date t). Equations (21)-(24) incorporate the market-clearing condition in the land market, which

requires l = 1. Moreover, given (21)-(22), the pricing function qt(b, z, κ) satisfies the asset pricing

equation (11).

It is critical to note that solving for date-t policy and pricing functions means solving for a full

set of optimal plans over the entire state space (b, z, κ) and conditional on date-t beliefs. Thus,

we are solving for the optimal plans agents “conjecture” they would make over the infinite future

acting under those beliefs. For characterizing the “actual” equilibrium dynamics to match against

the data, however, the solution of the date-t AUOP determines optimal plans for date t only. This
16Intuitively, the AU approach captures the risk of fluctuations in future κ′s but not the uncertainty about future

changes in their transition probabilities, while the Bayesian optimization captures both.
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is crucial because beliefs change as time passes, and each subsequent κt is observed, which implies

that the policy and pricing functions that solve each AUOP also change. Thus, history matters

for the full solution of the model because assuming different histories κt yields different sequences

of beliefs, and hence different sets of policy functions. If at any two dates t and t + j we give the

agents the same values for (b, z, κ), they in general will not choose the same bond holdings for the

following period because Es
t [κ

′|κ] and Es
t+j [κ

′|κ] will differ.

We can now define the model’s recursive AU equilibrium as follows:

Definition Given a T -period history of realizations κT = (κT , κT−1, ..., κ1), a recursive AU compet-

itive equilibrium for the economy is given by a sequence of functions [b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)]Tt=1

and pricing functions [qt(b, z, κ)]Tt=1 such that: (a) b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ) and qt(b, z, κ)

solve the date-t AUOP conditional on Es
t [κ

′|κ]; (b) Es
t [κ

′|κ] is the conjectured transition probabil-

ity matrix of κ produced by the date-t posterior density of F s determined by the Bayesian passive

learning process summarized in Equation (19).

Intuitively, the complete solution of the recursive equilibrium is formed by chaining together the

solutions for each date-t AUOP. That is, the equilibrium dynamics at each date t = 1, ...T for a par-

ticular history κT are given by [b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), Es
t [κ

′|κ]]Tt=1. At each date

in this sequence, b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), are the recursive functions that solve the

corresponding date’s AUOP using Es
t [κ

′|κ] to form expectations. Hence, the sequence of equilibrium

decision rules for bond holdings that the model predicts for dates t = 1, ..., T would be obtained by

chaining the relevant decision rules as follows: b2 = b′1(b, z, κ), b3 = b′2(b, z, κ), ..., bT+1 = b′T (b, z, κ).

3 Quantitative Analysis

In this section we calibrate the model to U.S. data and study its quantitative predictions for the

following financial innovation experiment: At t = 1, financial innovation begins with the first

realization of κh, followed by an optimistic phase in which κh continues for J periods. At date

J +1 the first realization of κl occurs, and the financial regime remains in state κl from dates J +1

to T .

3.1 Baseline Calibration

The functional forms for preferences and technology are standard: u(ct) = c1−σ
t
1−σ and g(lt) = lαt . The

calibration requires setting values for the parameters (α, β, σ,R), the Markov process for z, and the
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parameters of the learning setup, which include κh, κl, nhh
0 , nhl

0 , nll
0 , nlh

0 , J and T . We propose a

set of baseline calibration parameters based on U.S. data, and later we conduct sensitivity analysis

to evaluate the robustness of the results to changes in the baseline calibration.

We calibrate the model to a quarterly frequency at annualized rates. The beginning of the

financial innovation experiment is dated as of 1997Q1. This is in line with the observations that

1997 was the year in which the first CDS was issued at JPMorgan and the first publicly-available

securitization of loans under the New Community Reinvestment Act took place. Moreover, 1997 is

also the year in which the net credit assets-GDP ratio shown in Figure 1 started on its declining

trend. We date the start of the financial crisis as of 2007Q1, to match the early stages of the

subprime mortgage crisis after the Fall of 2006. This is also in line with the observation that the

net fraction of banks reporting tighter standards for mortgage loans jumped significantly to 16

percent in 2007Q1, as shown in Figure 3.17

The above timing assumptions imply that the first realization of κh occurred in 1997Q1 and κh

continued to be observed trough 2006Q4. Hence, the optimistic phase lasts J = 40 quarters. The

first realization of κl occurred in 2007Q1 and κl continued to be observed through at least 2008Q4.

Thus, the learning period has a total length of T = 48 quarters, in which the first 40 realizations

of κ are κh and the remaining 8 are κl.

In the pre-financial-innovation period, before 1997, we assume that there was only one financial

regime with κ = κl, and hence the only source of uncertainty were TFP shocks. The values

of (α, β, σ,R) and κl are then set so that the model’s stochastic stationary state under these

assumptions is consistent with various averages from U.S. data from the pre-financial-innovation

period reported next.

We set the real interest rate to 2.66 percent annually. This is the average ex-post real interest

rate on U.S. three-month T-bills during the period 1980Q1-1996Q4.

Our data proxy for b are the net credit market assets of U.S. households and non-profit organi-

zations in the Flow of Funds data set, and our proxy for ql is the series on the value of residential

land estimated by Davis and Heathcote (2007). These are the data plotted in Figure 1 as shares of

GDP. The 1980Q1-1996Q4 average ratios of the value of residential land and net credit market as-

sets relative to GDP are 0.477 and -0.313 respectively. The two ratios are fairly stable around these
17These dates are broadly in line with those assumed by Campbell and Hercowitz (2009), who study the welfare

implications of a transition from a high- home-equity-requirement regime to a low-equity-requirement regime. They
assume that the former corresponds to the 1982-1994 period, while the latter starts in 1995.
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averages throughout the 1980Q1-1996Q4 period, in contrast with the sharp trends they display

after 1996.

As described in the Introduction, we construct a macro estimate of the household leverage ratio,

or the actual loan-to-value ratio, by dividing net credit market assets by the value of residential

land. Then, we set the value of κl by combining the 1980Q1-1996Q4 average of this ratio with the

calibrated value of R (assuming also that the collateral constraint was binding in the pre-financial-

innovation era). This yields κl = 0.659/1.0266 = 0.642. The fact that net credit assets and land

values were fairly stable prior to 1997 (see Figure 1) supports the idea of using this constant value

of κl to characterize the pre-financial-innovation regime, and the fact that by end 2010 the median

downpayment on conventional mortgages had bounced back to what it was a decade earlier (see

Feb. 16, 2011 Wall Street Journal) supports idea of setting κl in the new regime to be the same as

in the pre-financial-innovation era.

The value of κh is set equal to the 2006Q4 leverage ratio, hence κh = 0.926. This represents the

largest leverage ratio that the economy was able to support in the new financial regime just before

the financial crisis hit.18 Note, however, that κh does not always bind in the new regime. First, as

the economy moves from the pre-financial-innovation regime to the regime with stochastic κ, agents

build up debt over time, and hence the equilibrium leverage ratio does not jump to its new ceiling

immediately as the new regime begins. Second, the new regime features two possible realizations

of κ that are occasionally binding, so κh only binds with some probability in the long-run.

The value of σ is set to σ = 2.0, the standard value in quantitative DSGE models, and β is set

so that the pre-financial-innovation model matches the observed standard deviation of consumption

relative to output over the 1980Q1-1996Q4 period, which is 0.8. This procedure yields β = 0.91.

Notice that, given the calibrated value of R, the rate of time preference exceeds the real interest

rate (i.e., βR = 0.934 < 1). This is important because it ensures the existence of an ergodic

distribution of bond holdings given that asset markets are incomplete. Intuitively, this occurs

because of the interaction between the precautionary savings motive, which pushes for increasing

bond holdings, and the incentive to tilt consumption towards the present, and hence reduce bond

holdings, because βR < 1. Consumption tilting and precautionary savings will also play a key role

later in our analysis of the macro dynamics induced by financial innovation.
18Our calibrated values of κh and κl are in line with the parameter values that Favilukis et al. (2010) chose to

calibrate their collateral constraint (0.75 in their tight credit regime and 1 in their loose credit environment).
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Using the 1980Q1-1996Q4 average of the value of residential land to GDP, the value of R, and

the condition that arbitrages the returns on land and bonds, which follows from the optimality

conditions (12)-(13), we obtain and implied value for α.19 This yields α = 0.0251.

We normalize mean output to 1 (since L = 1 and the unconditional mean of z also equals 1), and

calibrate the model so that the observed average pre-financial-innovation ratios of consumption (c̄)

and bonds (b̄) to GDP are consistent with the resource constraint in the average of the stochastic

stationary state for that financial regime.20 The observed average ratio of net credit assets to

GDP in the 1980Q1-1996Q4 period yields b̄ = −0.313. In the case of the consumption-GDP ratio,

the data show a slight trend, so we use the last observation of the pre-financial-innovation regime

(1996Q4). This implies c̄ = 0.670. To make these values of b̄ and c̄ consistent with the resource

constraint in the average of the stochastic steady state, we need to take into account the fact that

investment and government absorption are included in the data but not in the model. To adjust

for this discrepancy, we introduce a fixed, exogenous amount of autonomous spending A, so that

the long-run average of the resource constraint is 1 = c̄ + A − b̄(R − 1)/R . Given b̄ = −0.313,

c̄ = 0.6707 and R = 1.0266 the value of A follows as a residual A = 1− c̄ + b̄(R− 1)/R = 0.321.

Table 1: Baseline Parameter Values

β Discount factor (annualized) 0.91

σ Risk aversion coefficient 2.0

c Consumption-GDP ratio 0.670

A Lump-sum absorption 0.321

r Interest rate (annualized) 2.660

ρ Persistence of endowment shocks 0.869

σe Standard deviation of TFP shocks 0.008
α Factor share of land in production 0.025
L Supply of land 1.0
κh Value of κ in the high securitization regime 0.926

κl Value of κ in the low securitization regime 0.642

F a
hh True persistence of κh 0.964

F a
ll True persistence of κl 0.964

nhh
0 ,nhl

0 Priors 0.0205

19Since the model with a single financial regime set at κl (i.e., the pre-financial-innovation regime) yields a collateral
constraint that is almost always binding and a negligible excess return on land, we use the approximation E[Rq] ≈ R,
and then conditions (12) and ( 13) imply: α = (ql/zlα)[R− 1 + β−1(1− βR)(1− κl)]

20Consumption and GDP data are from the International Financial Statistics of the IMF.
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The Markov process for z is set to approximate an AR(1) process (ln(zt) = ρ ln(zt−1)+et) fitted

to HP-filtered real U.S. GDP per capita using data for the period 1965Q1-1996Q4. The estimation

yields ρ = 0.869 and σe = 0.00833, which imply a standard deviation of TFP of σz = 1.68 percent.

We use Tauchen and Hussey (1991)’s quadrature method to construct a Markov approximation to

this process assuming a vector of 9 realizations. The transition probability matrix and realization

vector are available on request.

The remaining parameters to calibrate are the initial priors of the learning process (the nij
0

counters). As shown in the previous Section, these priors are a key component of the model

because, together with the realizations of κ, they drive the magnitude and the speed with which

optimism and pessimism fluctuate. The Bayesian learning imposes analytical discipline on how

optimism and pessimism evolve, while the calibration of the priors imposes quantitative discipline

on how much the model is allowed to rely on these fluctuations for explaining credit booms and

busts.

For simplicity, we impose the symmetry condition n0 = nhl
0 = nhh

0 = nll
0 = nlh

0 , so that there

is only one counter to calibrate. We calibrate n0 so that the model matches an estimate of the

observed excess return on land relative to the risk free rate for 1997Q2, which corresponds to the

one-period-ahead expected excess return in the first date of the financial innovation experiment

(date 1 in the experiment corresponds to 1997Q1). The data proxy for this excess return is the

1997Q2 spread on the Fannie Mae residential mortgage-backed securities (RMBS) with 30-year

maturity over the T-bill rate. The Bloomberg data service reports this excess return at 47.6 basis

points, and the model matches it if we set n0 = 0.0205.21

Two caveats about the above approach to calibrate the priors: First, “raw” spreads on 30 year

RMBS include prepayment risk that tends to widen spreads, but Bloomberg reports also “option-

adjusted spreads” that are adjusted for this risk. We chose to use this measure because we do not

explicitly model prepayment risk (the raw spread is 117.6 basis points). Second, since the model

calibration is at a quarterly frequency, ideally we would have liked to use excess returns for securities

with a quarterly maturity. However, RMBSs do not have such short-term maturities, because the

underlying assets tend to be long-term mortgages. Still, using the spread for the 30-year RMBS is

useful because it should actually make it harder for the model to generate optimism. This is because
21An alternative calibration strategy would be to set n0 such that the model matches the increase in household

debt or leverage observed in the data. In a previous version of this paper we found that matching the former yields
an n0 lower than 0.0205, which strengthens the buildup of optimism and the surge in land prices and debt during
the optimistic phase.
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30-year RMBSs generally have higher spreads than securities with a quarterly maturity, and higher

spreads are associated with higher values of n0, which weakens the mechanism generating optimism

and pessimism in the learning process. Thus, by calibrating the priors to match the excess returns

of the 30-year RMBS we are looking at a “lower bound” of the optimism that the model can

generate.

Figure 5 shows the density functions of the initial priors of F s
hh and F s

ll for Beta distributions with

three different (nii
0 , nij

0 ) pairs. The Beta(0.0205, 0.0205) distribution corresponds to the baseline

calibration we just described. In this case, the priors have a U-shaped distribution with most of

the mass concentrated around 0 and 1. Since this case assumes n0 = nii
0 = nij

0 , the distribution

is symmetric with a mean of 0.5 (and a variance of 0.240). By contrast, consider the Beta(1, 1)

distribution, which implicitly assumes that at least one observation of switch and continuation of

each κ regime has been observed. This distribution also has a mean of 0.5, but the distribution is

uniform over the (0,1) range, and it has a much lower variance (0.083 v. 0.240).

Figure 5 also plots the Beta(40, 0.0205) distribution, which matches the beliefs about F s
hh

that the learning process generates at period 40 of the financial innovation experiment. At this

point, agents have observed 40 transitions from κh to κh and thus form beliefs characterized by a

distribution that is highly skewed to the right, with most of the mass concentrated around 1. This

reflects the high degree of optimism that the learning process creates.

Figure 5: Beta Distributions
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We illustrate further how the calibrated initial priors influence the evolution beliefs by studying

how Et[F s
hh] and Et[F s

ll] change over time as the sequence of realizations of κ is observed. The U-

shaped distributions of F s
hh and F s

ll supported by the calibrated priors imply that agents conjecture

that there are four “most likely” scenarios before the first realization of κ is observed: a) Both

the high- and low-leverage regimes are extremely persistent, i.e., F s
hh ≈ 1 and F s

ll ≈ 1; b) The

high-leverage regime is extremely persistent and the economy switches to the low-leverage regime

rarely and for a short time, i.e., F s
hh ≈ 1 and F s

ll ≈ 0; c) The low-leverage regime is extremely

persistent and the high-leverage regime occurs rarely and has a short duration, i.e., F s
hh ≈ 0 and

F s
ll ≈ 1, d) Neither regime is persistent and the economy constantly moves between the two, i.e.,

F s
hh ≈ 0 and F s

ll ≈ 0 . After observing the first few realizations of κh, however, the agents can rule

out scenarios c) and d).

Beyond the initial realization of κh, observing the long initial spell of κh leads agents to become

optimistic about the persistence of this regime very quickly. In the baseline Beta(0.0205, 0.0205)

case, Et[F s
hh] jumps to about 0.98 in just one quarter, while with Beta(1, 1) the buildup of optimism

is more gradual, but still after 8 quarters Et[F s
hh] approaches 90 percent. This rapid adjustment

of beliefs also occurs with the surge of pessimism that follows the first observation of κl in period

41: With Beta(0.0205, 0.0205), agents update Et[F s
ll] from 0.5 to almost 1 in period 41, and with

Beta(1, 1) the change is slower but again by period 48, Et[F s
ll] approaches 90 percent.

It is important to note that neither Beta(0.0205, 0.0205) or Beta(1, 1) bias the initial priors in

favor of optimism or pessimism. This differs from the approach followed by Cogley and Sargent

(2008b), who studied the implications of inducing initial pessimism into the agents’ priors. In our

calibration, agents are not optimistic prior to period 1 because Beta(0.0205, 0.0205) yields initial

beliefs such that Et[F s
hh] = Et[F s

ll] = 0.5.

A second important feature of the evolution of beliefs is that, even tough the changes in Et[F s
hh]

between periods 1 and 40 are small, they still imply nontrivial changes in the agent’s perceived

riskiness of the financial environment. For example, for t = 1 we obtained E1[F s
hh] = 0.98, which

implies that the perceived mean duration of κh is 50 quarters and the coefficient of variation of

κ is about 5.9 percent. In contrast, for t = 40 we have E1[F s
hh] = 0.999, which is not that

different from 0.98, but implies a much higher perceived mean duration of κh (1000 quarters) and

much lower coefficient of variation of κ (1.3 percent). As we show below, this reduces incentives

for precautionary savings significantly. Moreover, these effects are very nonlinear, with the mean

duration exploding to ∞ as Et[F s
hh] approaches 1 from below.
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At this point we have calibrated all of the parameters that are needed for solving the model.

Notice in particular that the true transition probability matrix F a is not needed. Solving the

AUOPs requires the sequence of beliefs ({f(F s | κt)}T
t=0), which is determined with the parameters

we already set, but does not require F a. Still, calibrating F a is necessary if we want to compare

the solutions of the learning model against the standard RE solution.

We calibrate F a
hh so that the mean duration of high-leverage regimes is in line with the estimated

duration of credit boom episodes in industrial economies, which Mendoza and Terrones (2012)

estimated at about 7 years. This implies F a
hh = 0.964. With this calibration of F a

hh and conditional

on observing κh at date 1, the probability of observing κh the following 39 periods is 0.241. Thus,

the “true” probability of observing the long spell of κh that we assume in our financial innovation

experiment, which produces substantial optimism, is about 1/4. We assume a symmetric process

by setting F a
ll = 0.964.

An interesting implication of calibrating the “true” process of κ in this way is that the model

features a long-run credit cycle consistent with average duration features of actual credit cycles,

so that agents eventually learn that the economy will display a credit cycle with the duration and

frequency that is typical of industrial countries. In the short-run, however, their expectations can

deviate sharply from these regularities, along the lines of Reinhart and Rogoff (2009) “this-time-

is-different” argument.

3.2 Quantitative Findings

The quantitative analysis is based on four sets of results derived from the numerical solutions:

Long-run distributions of bond positions, forecast functions of macroeconomic aggregates, average

changes in these aggregates at the “turning points” of the learning experiment, and expected excess

returns. We compare the results of the baseline learning model (BL) with the RE model (i.e., a

model which retains the collateral constraint but does not have a learning friction) and with a

fixed land valuation-learning (FVL) model in which land in the collateral constraint is valued at

a constant price set to the long-run average (i.e., a model that retains the learning friction but

removes the credit externality and the Fisherian deflation channel). In this case, the collateral

constraint becomes bt+1

R ≥ −κtq̄lt+1.
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3.2.1 Ergodic distributions

Figure 6 plots “conjectured” ergodic distributions of b for dates 1, 8, 40, 41 and 48 in the BL

model and the true ergodic distribution of the RE model. We label the former as “conjectured”

because the actual ergodic distribution of the BL model is the same as the one of the RE model,

since in the long-run agents learn F a, and thus the long-run equilibrium is the same as under

rational expectations. The “conjectured” ergodic distributions for the other dates in the learning

experiment are the agents’ projections of what the long-run equilibrium would look like if they

forecast the dynamics of the financial regime using their current beliefs. Plotting the conjectured

and RE long-run distributions together is useful for illustrating the impact of the optimism and

pessimism driving the model’s dynamics on the agents “willingness” to borrow or save. Appendix

B provides details on the computation of these long-run distributions.

Figure 6: Ergodic Distributions of Bond Holdings
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Notes: This figure plots the ergodic distribution of bond holdings implied by the learning model in periods 1 (initial

period), 8, 40 (peak of optimism), 41, and 48 as well that of the rational expectations model marked by “RE.”

Consider first the conjectured distribution for period 1. Recall that the mean of bond holdings

pre-financial-innovation was -0.31. Hence, already by period 1 agents conjecture that the support

of the long-run distribution of bonds will shift sharply to the left (i.e. support higher debt levels).

But comparing the period-1 distribution with the new RE distribution for the regime-switching κ

process post-financial-innovation, it is clear that agents are also projecting to be saving much less

than they eventually will in the new stochastic steady state. The RE distribution has the typical
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bimodal shape of a two-point regime-switching process with high persistence. In this case, agents

are assessing the risk of the financial environment correctly, and in particular they are aware that

long spells of both κ regimes are possible.

Compare now the RE ergodic distribution with the conjectured ergodic distribution for period 40

in the BL model. Large debt ratios (bond holdings in the interval [-0.59, -0.54]) are never a long-run

equilibrium outcome in the RE model, but they take most of the mass of the long-run distribution

of bond holdings that is projected on the basis of the agents’ period-40 beliefs. Something similar

happens also much earlier than date 40 because, as shown before, it takes observing only the first

few realizations of κh for agents to turn very optimistic relative to the RE transition probabilities.

By period 8 agents already conjecture that debt positions in the [-0.54,-0.49] range are most likely

long-run equilibria, while in the RE ergodic distribution they have zero probability.

As optimism builds, the highest debt conjectured to have positive long-run probability rises,

and the mass of probability assigned to debt levels larger than the largest debt under rational

expectations also rises. This process peaks at the peak of the optimistic phase in date 40. In short,

during this phase, agents are willing to “overborrow” (take on more debt at the averages of the

conjectured ergodic distributions of b) than what is ever optimal in the RE model, and “undersave”

(build less precautionary savings, or conjecture they can attain a lower average of b) than what is

optimal in the RE model. When the first realization of κl hits and the pessimistic phase starts,

the opposite effects take over and they peak at date 48. By then, agents are “underborrowing” and

“oversaving” substantially. However, they have learned from their experience that shifts to κh are

possible, so the period-48 conjectured distribution is now two-peaked.

3.2.2 Forecast functions

Forecast functions are useful for illustrating the model’s equilibrium dynamics during the 48 periods

of the learning experiment. We construct these forecast functions by using the sequence of beliefs

and decision rules of each AUOP to trace the dynamics of the expected values of the endogenous

variables along the model’s AU recursive equilibrium path. Intuitively, the algorithm that computes

the forecast functions uses a law of motion for the evolution of the probability of the economy being

in each triple (b, z, κ) as we move from date 0 to date 48. This law of motion can be computed for

any triple of initial conditions (b, z, κ), but we are interested in the triple that approximates the

state of the U.S. economy in 1996Q4 (i.e. the initial conditions at the beginning of date 1 in the

financial innovation experiment). Thus, we start at date 1 with all the probability concentrated in
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the coordinate of initial conditions (b1, z1, κ
h) where b1 = −0.345 (the observed net credit assets as

a share of GDP for 1996Q4) and z1 = 1. Then, for each subsequent date, the value of κ is set to

the corresponding realization in the κT sequence (κh for t = 2, ..., 40 and κl for t = 41, ..., 48), the

transitions across values of z are computed with the Markov process of z, and the transitions across

points in the state space of b are governed by the policy function b′t(b, z, κ) of the corresponding

date-t AUOP. The procedure is similar to the standard forecast functions of a RE model, except

that the policy function is time-varying because it varies with each set of beliefs in the sequence
[
f(F s | κt)

]48

t=1
(see Appendix B for details).

Figure 7 plots the forecast functions for the choice of bond holdings as a share of output (b′/y),

consumption, the price of land, and the savings rate (GSF/y) as percent deviations from their

long-run means in the BL, RE and FVL models. Recall that long-run means in the learning and

RE models are identical because the ergodic distributions of the two are the same. The solid (blue)

lines correspond to the BL model, the dashed (green) lines are for the FVL model, and the dotted

(red) lines represent the RE model. Note that even the RE model generates some dynamics in this

exercise, because the initial condition b1 is not the long-run mean of the new financial regime with

stochastic κ, and also because we are using a particular time series of realizations of κ (instead

of averaging across possible κ realizations at each date t). Thus, these forecasts functions are

conditional on the particular history κT that we assumed.

The forecast functions for bonds in Panel (a) show that during the optimistic phase agents

consistently borrow more in the BL model than in both the RE and FVL models. In the first two

periods after financial innovation is introduced, the three models predict similar debt dynamics,

but after that the optimism and the debt-deflation feedback loop at work in the BL model produce

a much larger decline in bond holdings, while the bond dynamics in the RE and FVL models are

similar.22 b′/y declines by as much as 21 percentage points below the long-run average at the

peak of optimism of the BL model in period 40. These dynamics are in line with the downward

trend in household debt observed in the data (see Figure 1). Interestingly, the combination of the

learning friction and the debt-deflation channel delivers a much stronger decline in assets than the

alternatives that retain only one of the two mechanisms. In the RE model there is no buildup of

optimism to push for overborrowing, and in the FVL model there is no endogenous feedback from

higher land prices into higher collateral and thus higher borrowing ability.
22This occurs because (a) in the FVL model the price is fixed at the long-run average of the RE model, and (b)

the RE price displays very small deviations from its long-run average. As a result, and since the values of κ are the
same in both models, the debt allowed by the collateral constraint in both models is about the same.
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Figure 7: Forecast Functions
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Notes: This figure plots the forecast functions of bond holdings-output ratio, price of land, consumption, and

gross saving flow-output ratio (GSF/y) as percentage deviations from their long run means implied by the rational

expectations scenario. GSF/y is calculated as ((b′/R) − b)/y. Realizations of κ are as described in the text, κh in

the first 40 periods and κl in the remaining 8. Date-0 b′/y is the 1996:Q4 observation from data (since debt data

are end of period basis), so that the date-1 b′/y is the first endogenous choice of b′ under κh, given an initial state

determined by the data point from 1996:Q4. “FVL” refers to the scenario with the asset price on the right hand side

of the credit constraint fixed at 0.456 which is the long run average of prices.
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The switch to the pessimistic phase in period 41 brings about a large correction in bond holdings,

which bounce back about 54 percentage points in the BL model. An adjustment of this magnitude

is an equilibrium outcome, despite CRRA preferences and incomplete markets, because the arrival

of the first realization of κl at date 41 is almost like a large, unexpected shock, in the sense that by

date 40 agents believe that the state κh in which they have been living is almost absorbent (i.e.,

E40[F s
hh] is very close to 1). Moreover, the κ shock triggers a large Fisherian deflation effect (see

below), which contributes to enlarge the debt adjustment. Bond holdings also jump up in the RE

and FVL models, because of the switch from κh to κl in a state in which the collateral constraint

was binding. But the adjustments are much smaller. The debt reversal in the RE case is about half

the size of that in the learning model, and it reflects the effect of the debt-deflation mechanism in

the absence of a switch to pessimistic beliefs. The FVL model yields the smallest correction, which

isolates the effect of the switch to pessimistic beliefs without amplification due to the Fisherian

deflation channel.

As agents overborrow during the optimistic phase in the BL model, they also bid more aggres-

sively for the risky asset. This increases the price of land significantly, as shown in Panel (b) of

Figure 7. This contrasts with the RE case, in which the price of land declines slightly relative to

the pre-financial-innovation price that prevailed at date 0. This occurs because the price of land in

the RE model is falling to a lower long-run average in the financial innovation regime. In turn, the

mean price of land in the RE model (with stochastic κ) is lower than in the pre-financial-innovation

regime (with constant κl) because, even though agents know the true distribution of κ, they now

face uncertainty about κ, since it is now a random variable. Hence, financial innovation implies a

higher mean κ but also a higher variance of κ. The former enables the agents to borrow more, and

therefore demand more of the risky asset and bid up its price, but the latter gives them an incentive

to hold less of the risky asset, because the new financial environment is riskier and they are risk

averse. We find that, if the gap between κh and κl is small, the “mean effect” dominates leading to

higher land prices in the RE model, but as the gap widens, the “variance effect” becomes stronger

and the mean land price in the RE model is lower than in the pre-financial-innovation equilibrium

(as is the case in our baseline calibration).

The FVL model generates a larger asset price boom during the optimistic phase and a smaller

price crash compared with the other two models. This is because the FVL model rules out the

Fisherian deflation by construction, and hence at date 41 the downward spiral on land prices,

collateral values, and debt that is at work in the other two models is not active here. Moreover, the
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fixed land valuation for collateral also serves as a limited asset price guarantee, which produces a

larger price boom during the optimistic phase than in the learning and RE models. The guarantee

is limited because it applies only for the valuation of land used as collateral. Accordingly, the FVL

model produces a smaller reversal in debt in period 41, as agents are able to borrow more than in

the other two models because of the constant collateral price. For the same reason, the larger land

price increase in the optimistic phase does not feed back into a large debt expansion.

Panels (c) and (d) of Figure 7 show the forecast functions for the savings rate and consumption.

Because of the large magnitude of the changes that occur at date 41, Panels (e) and (f) “zoom-in”

on the dynamics of these variables in the first 30 periods.

To understand the consumption dynamics, consider first what these dynamics would look like

in a perfect-foresight model where we switch from the constrained pre-financial innovation steady

state with κl to a hypothetical financial innovation deterministic steady state for a regime with

κh. These two steady states are corner solutions because βR < 1, and hence the steady state of

bonds is b = −κq (κ), where q(κ) is the steady state land price, which is increasing in κ.23 Thus,

the increase in κ yields a lower steady state for b (higher steady state debt) because both κ and

q(κ) increase. But higher steady state debt means lower steady state consumption, since the non-

financial wealth of the economy is invariant to changes in κ and the debt has to be serviced. Thus,

financial innovation tilts the time profile of consumption. On impact, when κ is first increased,

and for a few periods after that, consumption rises above the pre-financial-innovation level as the

collateral constraint is relaxed, but then it drops monotonically until it reaches its new steady

state below the pre-financial-innovation level. This consumption tilting effect is also at work in

the stochastic model, but is weaker because of the precautionary savings motive, which implies a

smaller decrease in bond holdings and a smaller drop in consumption.

Now consider the consumption dynamics of the BL, RE and FVL models in Panels (c) and (e)

of Figure 7. The fact that the dynamics for the first 40 periods are similar in all three models

indicates that the consumption tilting effect dominates these dynamics. This is because consump-

tion converges quickly to its new long-run average (which is identical in the BL and RE models,

and very similar in the FVL model). There is over-consumption in the BL model relative to the

RE and FVL models in the early stages after the switch to κh, because of the larger increase in

debt (i.e., decline in bond holdings). In the first two periods, consumption is about the same in all
23The closed-form solution for the steady state land price with the collateral constraint binding is: q(κ) =

(αβ)/ [β(R− 1) + (1− βR)(1− κ)] .
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three models, but the overconsumption in the BL model is clear between the 3rd and 10th periods.

After period 10, however, the dynamics driven by consumption tilting dominate in all three models.

Consumption then remains smooth (as we are averaging across TFP and keeping κ constant at κh),

until we arrive at date 41 and κ switches to κl.

At date 41, as explained earlier, the κ switch is almost like a large, unexpected shock in the BL

and FVL models. In the BL model, which also has the Fisherian deflation, this produces a dramatic

collapse in consumption. This is in line with the findings in Mendoza (2010) and Mendoza and

Smith (2006), showing that in Fisherian deflation models there are equilibria outside the ergodic

distribution of wealth, where the economy could land as a result of unexpected shocks, in which the

impact response of consumption can be around -80 percent. In those models, however, precaution-

ary savings and perfect information about the Markov processes of shocks rule out consumption

drops of that magnitude from the equilibrium dynamics, while in our model the learning friction

allows us to support them as short-run AU equilibria.

The RE and FVL models also produce large consumption declines when the economy switches

to κl, but both are significantly smaller than in the BL model. In the RE model this is again

because precautionary savings and the lack of overborrowing prevented a large accumulation of

debt in the optimistic phase. In the FVL model the smaller consumption drop occurs because

there is no Fisherian deflation of collateral values, which yields the smallest correction in debt, and

hence implies the smaller consumption drop.

Figure 8 illustrates the dynamics of key asset pricing variables. Panel (a) plots the model’s

implicit endogenous interest rate premium that measures the difference between the stochastic

intertemporal marginal rate of substitution in consumption (u′(ct)/βEs
t [u

′(ct+1)]) and the real

interest rate R. This is also a measure of the shadow value of the collateral constraint, because

using condition (12) the interest premium is equal to µt/(u′(ct)− µt). Thus, if the constraint does

not bind, there is no interest rate premium, and when it binds the premium rises as the constraint

becomes more binding.

The dynamics of the interest premium are in line with our previous argument stating that,

when financial innovation starts, the constraint becomes nonbinding, and then it begins to bind

after some time. In particular, in the BL model the constraint begins to bind after period 5. Then

the interest premium rises monotonically, at a decreasing rate, to converge to about 5.5 percent at

the peak of the optimistic phase. In contrast, the FVL model generates a larger premium of up

to 7 percent, while the RE model generates a premium of just above 2 percent in the optimistic
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phase. This is natural because in the FVL model rising land prices do not contribute to relax the

borrowing limit, and in the RE model the constraint is less binding because individuals desire to

save more with rational expectations than with optimistic beliefs.

When the switch to the pessimistic phase takes place at date 41, there is a large jump in interest

premia as the collateral constraint becomes severely binding, in line with the large reversals in debt

and consumption. This jump in part due to the exogenous shift in κ, but in the BL and RE models

it is also heavily influenced by the endogenous dynamics driven by the Fisherian deflation and,

in the BL model, the learning friction. This explains why the surge in the interest premia is the

largest in the BL model, followed by the RE model, and the FVL model last. After the crisis

at date 41, however, the constraint becomes nonbinding for 4 periods in the BL model and for 1

period in RE. Afterwards the interest premia become positive again, hovering around 7 percent in

the FVL model throughout the rest of the experiment and gradually increasing to reach 8.9 and

8.2 percent in the BL and RE models respectively.

Panel (b) plots the compensation for risk-taking as measured by the Sharpe ratio (St ≡
Es

t [R
q
t+1 − R]/σs

t (R
q
t+1), where σs

t is the conditional standard deviation of land returns evaluated

using subjective beliefs). Es
t [R

q
t+1 − R] and σs

t (R
q
t+1) are also plotted separately in panels (c) and

(f) respectively. The evolution of the Sharpe ratios shows that the compensation for taking risk

increases in all three models during the optimistic phase, but the increase in the BL and FVL

models is larger and more gradual than in the RE model. Moreover, plots (c) and (f) show that the

gradual increase in the Sharpe ratio in the FVL and BL models is driven by the gradual declines in

σs
t (R

q
t+1) during the optimistic phase, since Es

t [R
q
t+1−R] remains largely stable. Thus, these results

indicate that the buildup of optimism in the two models with imperfect information contributes

significantly to reduce the perceived riskiness of land and increase the over-compensation of risk-

taking, putting upward pressure on asset prices. Note, however, that even though up to period 40

the Sharpe ratios of the BL and FVL models are very similar, both the mean excess returns and

the variability of returns are higher in the BL model. In contrast, excess returns show fairly similar

behavior in the RE and BL models. These results are in line with the previous result showing that

the FVL economy yields the largest land price increase, and reflect again the implications of the

limited price guarantee that fixed land valuation for collateral provides.

Panel (d) shows the market price of risk, defined as st = σs
t (M

t+1
t )/Es

t [M
t+1
t ]. The dynamics

of this variable in the optimistic phase differ sharply across the three models, and they are largely

driven by the dynamics of σs
t (M

t+1
t ), because we found that Es

t [M
t+1
t ] is fairly stable for t = 0, ..., 40.
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Figure 8: Asset Price Dynamics
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Notes: Top left panel plots the interest rate premium that represents the difference between the intertemporal MRS

and the risk-free rate which can be simplified to µt
u′(ct)−µt

. The premium in period 41 is 38.03, 1.99, and 0.81 in

baseline, RE, and FVL scenarios, respectively. Period 41 values for the Sharpe ratio (expected excess return) are

134.71 (13.94), 48.59 (0.73), and 5.16 (0.30) in BL, RE, and FVL scenarios, respectively.

This changes abruptly in period 41, when both σs
t (M

t+1
t ) and Es

t [M
t+1
t ] fall sharply, but the fall in

the former is larger, and hence the price of risk falls.

The price of risk increases initially in both RE and BL models, but after a couple of periods it

settles at about 0.22 in the RE model while in the BL model it continues to rise gradually until it

reaches about 0.5 by period 40. In contrast, in the FVL model the price of risk is lower initially and

falls slightly during the optimistic phase. Thus, the effects of optimism on the price of risk are the

opposite when optimism and the Fisherian deflation channel interact than when collateral assets

are valued at a constant price. This is in line again with the intuition that the FVL embodies an
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implicit land price guarantee, which reduces the price of risk, while the price of risk rises in the BL

model.

Panel (e) shows the direct effect of the borrowing constraint on expected excess returns (defined

in Equation (10)) expressed as a ratio of the latter.24 Looking at panels (a) and (e), we find that

the scenario where the collateral constraint binds the most and produces the largest interest rate

premia (the FVL scenario), is also the scenario in which the direct effect of the collateral constraint

contributes the most to the excess land returns (more than 90 percent by period 40). In the BL

model, the direct effect rises gradually to reach about 30 percent by period 40. In the RE model,

the contribution remains stable at about 10 percent from periods 5 to 40. The contribution of the

direct effect grows very large in all three models when the first switch to κl occurs, as the credit

constraint becomes very binding, and after that it remains large in the FVL model and falls back

to zero in the other two models as debt is adjusted sharply, but then it rises again as the constraint

becomes very binding.

The relatively small contribution of the direct effect to mean excess returns in the optimistic

phase of the BL and RE models, coupled with the nontrivial mean excess returns (as high as

500 basis point in the BL model by period 40), indicates that the indirect effects operating via

covs
t (M

t+1
t , Rq

t+1) also play an important role. Moreover, in the very early stages of this phase, when

the collateral constraint does not bind, mean excess returns in the RE and BL models increase only

because covs
t (M

t+1
t , Rq

t+1) is becoming more negative. Thus, perceived riskiness of land holdings

is declining because both σs
t (R

q
t+1) and covs

t (M
t+1
t , Rq

t+1) are falling. In addition, the fact that in

the early stages of the experiment the only driving force of increasing excess returns is the fall in

covs
t (M

t+1
t , Rq

t+1) implies that the undervaluation of risk is the only mechanism at work when the

model is used to produce the calibrated initial priors that matched the observed 47.5 basis points

RMBS spread at t = 1. The direct effect of the borrowing constraint is not at work because the

constraint is not binding at t = 1.

3.2.3 Turning Points

Table 2 lists changes in average bond-output ratios and land prices, calculated with the data of the

forecast functions, at the key turning points: the peak of optimism at t = 40 relative to the pre-

financial-innovation initial conditions, and at the end of the learning experiment (t = 48) relative
24Note that a similar direct effect can also be obtained for the Sharpe ratio because it can be rewritten as:

St = µt(1−κ)

(u′(t)−µtκ)Es
t [M

t+1
t ]σs

t (R
q
t+1)

− ρs
t (R

q
t+1, M

t+1
t )st, where ρs

t (R
q
t+1, M

t+1
t ) is the conditional correlation between

land returns and the stochastic discount factor based on date-t beliefs.
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to the peak of optimism (which we label as financial crisis). The figures shown in this table are

the differences in the levels of b/y and q projected by the forecast functions, but not expressed in

deviations from long-run means (as was the case in the plots of Figure 7).

Table 2: Average Changes at the Turning Points

(1) (2) (3) (4)

Data RE FVL BL

Peak of Optimism:

E[(b/y)40 − (b/y)0] -0.355 -0.083 -0.089 -0.223

E[(ql/y)40 − (ql/y)0] 0.280 -0.025 0.305 0.122

Financial Crisis:

E[(b/y)48 − (b/y)40] 0.023 0.122 0.133 0.254

E[(ql/y)48 − (ql/y)40] -0.149 0.013 -0.305 -0.121

Note: Data column reports the difference between 2006Q4 and 1996Q4 observations in the top panel and the

difference between 2008Q4 and 2006Q4 observations in the bottom panel. In columns 2-4 the realizations of κ are

set to the path described in the text. Period 0 in all three scenarios corresponds to the 1996Q4 data observations,

which are the initial conditions. qL/y is the aggregate market value of residential land divided by output.

This table illustrates two main results. First, the BL model can explain a significant part of

the increases in debt and land prices before the financial crisis. Second, the BL model generates

significantly higher debt in the optimistic phase than the RE or FVL models, and a much larger

land price increase than the RE model.

The BL model can explain 63 percent of the increase in household debt observed in the data

(in the model b/y falls by almost 23 percentage points v. 36 percentage points in the data).

Moreover, the decline in bond holdings in the BL model is about 14 percentage points of GDP larger

than in the RE or FVL models. The comparison with the RE model shows again that financial

innovation, when agents are uncertain about the true nature of the new financial environment,

produces significant overborrowing. The comparison with the FVL model shows, also in line with

our previous findings, that the interaction of the learning friction with the debt-deflation channel

has significant quantitative implications for the size of the credit boom that the model can produce.

Comparing the changes in land prices, we find that the BL model accounts for about 44 percent

of the land price boom observed in the data (the increase in q in the model reaches almost 13

percentage points at date 40, v. 28 percentage points in the data). In line with what we noted in

39



the comparison of forecast functions, the RE model yields a slight fall in q, instead of an increase,

and the FVL model generates a larger price increase than the BL model.

Consider now the changes in bond holdings and land prices during the financial crisis. The BL

model generates a large debt reversal of about 25 percentage points (and this after an even larger

reversal between periods 40 and 41, as shown in Figure 7). By contrast, in the data the correction

was only 2.3 percentage points. The model clearly overestimates the reversal in debt, but part of

the discrepancy is due to the fact that bonds in the model are one-period bonds while the average

maturity of household debt is significantly higher than a quarter. Thus, agents in the model repay

and re-finance their debt every period, but in the data this is not the case, particularly with long-

term debt contracts such as 30-year mortgages. As a result, the switch to κl leads to an abrupt

decline in debt in the model, while in the data this has an effect that is spread over time. Indeed,

as shown in the top panel of Figure 1, the reversal in the household debt ratio has continued, and

the more recent data show that it has reversed by about 10 percentage points of GDP.

The BL does a nice job at matching the observed decline in land prices during the financial

crisis (12.1 and 14.9 percentage points in model and data respectively). This is after an initial

price collapse between periods 40 and 41 that is significantly larger than what the model predicts

between periods 40 and 48. In contrast, the FVL model now produces a larger price decline, about

twice as large as in the data, and the price change in the RE model is again small and in the

opposite direction from the BL and FVL models.

3.2.4 Projected Excess Returns on Land

Next we investigate the projections of future excess land returns that underlie the discounting of

future land dividends for the computation of q at key dates in the model’s dynamics. Looking

at these projections illustrates further the agents’ perception of the riskiness of land during the

optimistic and pessimistic phases. Figure 9 plots the t + j-period-ahead expected excess returns

for up to 50 periods ahead of t =1, 40, and 41 (in panels (a), (b) and (c) respectively). These are

expectations that agents form looking into the future given beliefs and decision rules as of periods

1, 40 or 41. In each scenario, we set the initial state of nature so that b is at the mean bond holdings

predicted by the forecast function in Figure 7 for the corresponding date, κ to its corresponding

value in the history κt, and TFP to its mean value.

Focusing on expected excess returns projected as of date 1 in panel (a), the excess returns in the

RE model exceed slightly those of the BL setup up to the 10th period, and afterwards the ordering
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Figure 9: Excess Returns
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Notes: Expected excess returns for 50 periods ahead of initial dates t =1, 40, and 41, computed using the beliefs and

associated equilibrium pricing function of the each date’s optimization problem. The expected returns are conditional

on the bond holdings predicted for each initial date by the forecast functions of Figure 7, the mean value of TFP

(z = 1), and the value of kappa indicated in the history of realizations for each date t. The one period ahead

expected excess return in period 41 (bottom panel) is 1418, 74, and 30 percent in baseline, RE, and FVL scenarios,

respectively.

reverses and the BL model projects slightly higher returns. This pattern justifies the result showing

that the land price at date 1 is slightly lower in the RE model (because agents in the RE model

expect relatively higher excess land returns in the first 10 periods, which carry more weight in

discounting land dividends–and recall that land dividends are simply driven by the exogenous TFP

process, which is the same in all three models). The FVL model yields expected excess returns that

lie significantly below both the RE and BL models, and this is consistent with the sharply higher

date-1 land price produced by the FVL model. The FVL model has lower excess returns because

the removal of the debt-deflation channel weakens the direct and indirect effects of the collateral

constraint on excess returns shown in Equation (10).

As agents reach the peak of the optimistic phase after observing κh for 40 periods, expected

excess returns ahead of date 40 (panel (b)) are significantly lower than they were predicted to be

as of date 1 in the two models that incorporate the learning friction (BL and FVL). As explained
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in Section 2, this is because once the constraint binds at κh, land returns are lower in the states

with κh than with κl, and optimistic agents assign higher probabilities to the former than the true

probabilities. Given lower projected excess returns, these two models also produce sharply higher

land prices at date 40 than at date 1. Moreover, comparing now the projected returns paths in the

three models as of date 40 itself, projected returns in the BL model become significantly smaller

than in the RE model, and the FVL model predicts even smaller excess returns than the RE and

BL models. This is because in the FVL model beliefs turn as optimistic as in the learning model,

but the removal of the debt-deflation mechanism reduces land risk premia.

At date 41, when the switch to κl takes place, the ordering of projected excess returns across RE

and BL models reverses (panel (c)). Projected excess returns for period 42 are very high in all three

models, because they reflect the strong direct effect of the borrowing constraint tightening sharply

as κ switches. This direct effect includes both an exogenous effect, simply because of the switch to

κl, and an endogenous effect, because of the surge in the shadow value of the borrowing constraint

(for the excess return at t = 42 expected as of t = 41, the direct effect in the right-hand side of

(10) is given by (1 − κl)µ41). Moreover, this direct effect is the strongest in the BL model that

combines both learning and Fisherian deflation, followed by the RE model that retains Fisherian

deflation, and with the FVL model last. This is also in line with the size and ordering of interest

rate premia displayed in period 41 in Figure 8.

After the initial severe tightening of the borrowing constraint, and the abrupt debt adjustment

that follows, the borrowing constraint is not projected to bind in the BL and RE models for a couple

of periods, before enough debt is built up to make the constraint bind again. In the FVL model

the constraint is projected to remain binding, but still the debt adjustment reduces the tightness of

the constraint sharply and hence the projected returns. Beyond the adjustment phase of the first

10 periods, projected returns in the BL model exceed those of the other two models, and those of

the FVL model are sharply lower. This pattern of projected excess returns is consistent with the

results showing that at date 41 the value of q is the highest in the FVL model, followed by the RE

model, and with the BL model price sharply lower than the other two.

It is also interesting to note that during periods 2 to 7 ahead of date 41, the projected excess

returns of the RE model exceed those of the BL model. This reflects the fact that the pessimistic

expectations of the BL model result in a slower build up of debt, so that the collateral constraint is

expect to start binding a period later than under RE, and then to bind with lower shadow values

(i.e. lower µ’s) than under RE until period 10. However, since as of date 41 beliefs still favor

42



overborrowing over the long run, relative to rational expectations (compare the projected long-run

debt distribution of bonds for period 41 with the ergodic RE distribution in Figure (6)), agents

project that the borrowing constraint will eventually become more binding in the BL model than

in the RE model, and hence they project that land returns will converge to a higher level.

3.2.5 Sensitivity Analysis

We now conduct a sensitivity analysis to study how changing the model’s key parameters alters our

main findings. To simplify the exposition, we focus only on the turning point effects. We examine

first in Table 3 various scenarios changing the initial priors, because, as we argued earlier, the initial

priors play a central role in the model. Then we study in Table 4 changes in the values of κh, κl, β

and R . The second column of both tables shows the results for the BL model for comparison. Note

that, in general, the parameterizations that generate larger booms during the optimistic phase also

generate larger busts in the financial crisis.

Scenario (1) in Table 3 shows the results obtained by setting uniformly-distributed initial priors

(n0 = 1). In this scenario, debt dynamics are qualitatively the same as in the BL model but the

debt buildup is smaller (9 percentage points v. 22 in BL). Moreover, the price of land falls to a

level about 2 percentage points lower in period 40 than in period 1, which is sharply at odds with

the nearly 12 percentage points increase produced in the BL model. The reason for this is that,

throughout the optimistic phase, the beliefs about the persistence of κh with the uniform priors are

always lower than in the BL model. As explained before, the initial means of the two distributions

Table 3: Sensitivity on Priors

(1) (2) (3) (4)

BL n0 =1 n0 =0.01 nhh
0 =0.54 nll

0 =68

nll
0 =0.54 nlh

0 =1

E[(b/y)40 − (b/y)0] -0.223 -0.087 -0.243 -0.222 -0.221

E[(ql/y)40 − (ql/y)0] 0.122 -0.020 0.142 0.121 0.121

E[(b/y)48 − (b/y)40] 0.254 0.137 0.274 0.253 0.254

E[(ql/y)48 − (ql/y)40] -0.121 -0.006 -0.141 -0.120 -0.123

Note: The first column reproduces the baseline scenario results. The exercise conducted is the same as that explained

in the note for Table 2 with different parameter values as indicated in column headings.
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of priors are the same (0.5), but with the BL priors agents turn optimistic faster after starting to

observe κhs and reach a higher level of optimism.

Examining the forecast functions of land prices we found that prices with uniform priors follow a

u-shaped trajectory in the optimistic phase, instead of the monotonically increasing path displayed

in the BL case.The reason for this is the more gradual buildup of optimism with the uniform priors,

which affects the relative magnitude of the effects of higher mean and higher variance of κ on land

prices after financial innovation. In the early years, the effect of higher variance dominates that of

higher mean, causing a decline in the price of land, until agents have turned optimistic enough. As

agents observe more κhs, and sufficient optimism builds up, the higher mean dominates the higher

variance, but under uniform priors this requires a longer sequence of κh than in the baseline case.

Thus, if we look at an optimistic phase of more than 40 periods with the uniform priors, we again

find that at the peak of the optimistic phase the price of land is higher than in period 1.

The financial crisis effects on land prices and debt are also much weaker under the uniform

priors than in the BL scenario, again because of the more gradual adjustment of beliefs (now in the

switch to pessimistic beliefs and the buildup of pessimism). Debt adjusts by 14 percentage points

instead of 25, and the price of land falls only by 0.6 of a percentage point, instead of nearly 12

percentage points.

Reducing the initial priors to n0 = 0.01 in Scenario (2) moves the model further away from

uniform priors than in the BL case (which was calibrated to n0 = 0.0205), with even more of the

mass of the initial distributions of beliefs concentrated around 0 and 1. Consequently, when agents

observe the first κh they turn more optimistic than in the BL case, and hence they borrow more

and demand more of the risky asset. This produces larger debt and land price booms. The size

of the debt buildup is about 24 percentage points and the boom in the price of land reaches 14

percentage points. Similar effects are at work, but in the opposite direction, in the pessimistic

phase, and hence with n0 = 0.01 we find a larger correction in debt and a larger drop in land prices

in the financial crisis.

In Scenario (3) we increase nhh
0 and nll

0 so that Es
0[F ] = Ea

0 [F ], which requires nhh
0 = nll

0 = 0.54,

while keeping nhl
0 and nlh

0 at the BL calibration values of 0.0205 (i.e. in this case the continuation

counters and the switching counters differ). The aim here is to start agents off with distributions

of priors that have means that happen to be equal to the true persistence parameters of the κ

regimes. Since agents have no way of knowing that this is the case, however, they still update their

beliefs as they observe subsequent realizations of κ. This scenario yields results very similar to
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the BL model. This is because with nhh
0 = nll

0 = 0.54 and nhl
0 = nhl

0 = 0.0.0205 agents still face

significant uncertainty about the true regime-switching structure of the credit regimes, and hence

they still turn quite optimistic. In fact, their initial beliefs about Es[Fhh] are more optimistic in

Scenario (3) than in the BL case (in the latter they start with Es
0[Fhh] = 0.5 v. Es

0[Fhh] = 0.964

in Scenario (3)). This does not, however, translate into significantly more borrowing because these

differences in initial optimism become small after a few periods, since the BL model also generates

a substantial amount of optimism relatively quickly.

Next we investigate a scenario that assumes that the κl realizations observed during the pre-

innovation period are “informative” (Scenario (4)). This runs contrary to our assumption that a

true structural financial innovation took place in the beginning of 1997, so that any information

about the financial environment prior to that date became useless. Since the BL calibration sets κl

at the value of the pre-financial-innovation era, However, one could argue that κl had been observed

for a while before financial innovation, and thus agents could have learned about its persistence.

Accordingly, Scenario (4) sets the initial priors such that agents take into account the realizations

of κl during 1980-1996 (nll
0 =68 observations) and 1 transition from κl to κh right at the beginning

of innovation (nhh
0 =1). This scenario is also akin to a formulation in which we could bias the initial

priors so as to make agents perceive a much higher probability of continuation of a low-leverage

regime.

The priors in Scenario (4) imply Es
0[Fll] = 0.985 v. Es

0[Fll] = 0.5 in the BL model. With the

modified priors, agents believe that when or if the economy transits into the κl regime, it will stay

there for some time. As a result, during the earlier periods of the optimistic phase the conjectured

ergodic distributions of bonds are double-peaked with a large mass around the mean conditional

on κl . This implies that unconditional mean debt is smaller than in the BL model during the

optimistic phase. Conversely, we find higher debt levels during the pessimistic phase in Scenario

(4) because, having observed one transition from κl to κh, the agents turn less pessimistic compared

to the BL case. Despite these differences in conjectured long-run distributions, the turning-points

dynamics reported in Table 3 do not differ much across Scenario (4) and the BL case. This is

because, despite the differences in unconditional means, the means conditional on κ do not differ

much, and this occurs because the forecast functions used for the turning points use the history κT

described earlier and we also kept nhl
0 and nhl

0 unchanged. Thus the evolution of Es
t [Fhh] is also

the same and this results in similar dynamics for the first 40 periods in which κh is observed.
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Summing up, the sensitivity analysis covered in Table 3 illustrates the importance of the initial

priors. In particular, what is crucial for the size of the booms and busts in debt and land prices is

that the new financial regime is truly a structural change, in terms of agents having very limited

knowledge about the transition and continuation probabilities of κh. To be precise, for the model

to generate sizable booms and busts, agents having never observed κh beign ignorant about the

likelihood of transitions from κh to κl is crucial. This is evident in the fact that the results for

Scenario (1) with uniform priors are far less favorable than the BL model and the other three

scenarios. In this scenario, agents have “stronger” priors about the persistence of κh, because n0=1

implies that they have observed one transition from κh to κl and also one from κh to κh. Hence,

they can rule out the possibility of κh being close to absorbent. In addition, Scenario (4) shows that

we can allow the priors about κl to reflect a high number of observed realizations of that regime,

but as long as nhh and nhl are low, the magnitude of the boom and crash in debt and land prices

remain about the same as in the BL case. The same applies to scenarios (1) and (2), because both

of these use initial counters that are distant from 1.

The above results also highlight the importance of our criterion to calibrate the initial priors

in the BL exercise to match the observed excess return in the 1997:Q1 RMBS. Clearly the initial

counters can be set arbitrarily low enough to generate large effects or high enough to minimize the

effects of optimistic and pessimistic expectations, so having a data-based criterion to discipline the

values of the initial counters is very useful in helping us assess the potential relevance of the model.

We now turn to Table 4 which reports the turning-point effects in scenarios that change R,

κh, κl, and β. Scenario (1) considers a lower value of R, and is motivated by the observation

that interest rates declined at around the same time as the beginning of financial innovation, and

remained very low since then. Hence, one may argue that, because of U.S. financial innovation, or

because of other forces like the large purchases of U.S. T-bills from China, the real interest rate fell

along with the increase in the U.S. agents’ ability to borrow.25 Accordingly, we changed R to the

average interest rate for the period 1997-2008 in the data, which is 0.98 percent (as opposed to the

1980-1996 average of 2.66 percent used in the BL case).

With the lower R, the new long-run means of debt and land price are considerably larger, E[b/y]

goes down from -0.36 in the RE and BL to -0.41, and the land price increases from 0.45 to 0.53.
25This experiment is also motivated by the fact that in the model R is exogenous. Clearly if we maintained the

same setting of the BL model and endogenized R, the boom in debt would be weakened by an endogenous increase
in R. But in the data the opposite was observed, so we opted for an alternative in which we keep R exogenous but
allow it to change to approximate its observed decline.
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Table 4: Sensitivity on Other Parameters

(1) (2) (3) (4)

BL R=1.0098 κl =0.75 κh =0.8 β=0.95

E[(b/y)40 − (b/y)0] -0.223 -0.248 -0.240 -0.143 -0.237

E[(ql/y)40 − (ql/y)0] 0.122 0.158 0.140 0.120 0.140

E[(b/y)48 − (b/y)40] 0.254 0.208 0.157 0.175 0.175

E[(ql/y)48 − (ql/y)40] -0.121 -0.038 -0.059 -0.120 0.098

Note: The first column reproduces the baseline scenario results. The exercise conducted is the same as that explained

in the note for Table 2 with different parameter values as indicated in column headings.

Intuitively, since R falls, the asset price needs to go up in equilibrium in order for the expected

returns of these two to be equated. In addition to these changes in long-run averages, Scenario (1)

in Table 4 shows that lower R generates larger increases in debt and asset prices than the BL case

during the optimistic phase. Lower interest rates support higher asset prices which in turn relax

the borrowing constraint allowing the agents to borrow more.26 Note, however, that in the crisis

the correction in debt is about 5 percentage points smaller, and the decline in the price of land is

significantly smaller. Thus, considering falling real interest rates that coincide with the arrival of

financial innovation enlarges the size of the debt and land price booms predicted by the model, but

it makes the reversal of both smaller.

Increasing κl in Scenario (2) increases the size of booms in debt and land prices slightly. Note

that the change only applies to the value of κl in the new financial regime, while the pre-innovation

value of κ remains unchanged at its baseline value of 0.642. The larger debt and price booms occur,

even though we still have the same sequence of 40 realizations of κh as in the BL case, because

agents take into account the fact that with the higher κl the low-leverage regime is not as low as

in the BL case. This results in both a higher mean and a lower variance of κ, which support both

larger debt and higher land prices. The size of the reversals in debt and land prices are smaller

because κl is higher than in the baseline, and thus allows agents to borrow more than in the BL
26In calculating turning points we measure the size of the boom relative to the 1996Q4 values in the data. If we

were to measure the size of the boom as deviations from long run means, the boom during the optimistic phase would
be smaller in this scenario compared to the BL case, because the long-run means of debt and land price are higher,
as explained in the previous paragraph.
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case, and the resulting direct and indirect effects of the collateral constraint on asset prices are

weaker.

Reducing κh to 0.8 (Scenario (3)) reduces the size of the debt buildup, because of the tighter

credit constraint in the high-leverage regime in this experiment, and reduces also the size of the

debt reversal in the crisis, because debt falls from a lower level at the peak of the boom. The land

price boom and crash change only marginally.

Finally, Scenario (4) shows results for a higher value of β (0.95 v. 0.91 in the BL case). The

higher discount factor supports higher asset prices, because agents discount the future less. Since

the collateral constraint becomes binding early in the optimistic phase, these higher asset prices

translate into higher debt levels.27 Hence, this scenario delivers slightly larger debt and land price

booms than in the BL case during the optimistic phase. In contrast, the financial crisis effects with

higher β are weaker than in the BL model, particularly in the case of asset prices (which recover

quickly after a decline in period 41 and reach levels higher than pre-crisis by period 48).

4 Conclusion

The U.S. financial crisis was preceded by a decade of fast growth in household debt, residential land

prices, and leverage, accompanied by far-reaching financial innovation with the introduction of new

instruments and deep changes in the regulatory framework. In this paper, we argued that financial

innovation in an environment with imperfect information and credit frictions was a central factor

behind the credit and land price booms that led to the crisis, and in the transmission mechanism

that drove the crisis itself. To make these points, we examined the interaction between financial

innovation, learning, and a Fisherian collateral constraint in a stochastic equilibrium model of

household debt and land prices.

We used the model to study the quantitative implications of an experiment calibrated to U.S.

data in which financial innovation begins with a switch to a high-leverage regime, but agents do

not know the true regime-switching probabilities across high- and low-leverage regimes. Agents

are Bayesian learners, however, so in the long-run, after observing a long history of realizations

of leverage regimes, they learn the true regime-switching transition probabilities. The collateral

constraint introduces Fisher’s classic debt-deflation amplification mechanism, providing a vehicle

for the waves of optimism and pessimism produced by Bayesian learning to have amplification
27By contrast, in the long run, as the model converges to RE and the constraint does not bind, the higher β brings

βR closer to 1, which strengthens precautionary savings incentives and reduces debt.
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effects on debt and land prices. In this regard, this papers offers a novel analysis in which the

Fisherian feedback loop between debt and asset prices interacts with the formation of beliefs, both

of which we are at the core of Fisher’s original arguments on the debt-deflation theory.

In our setup, a buildup of optimism is a natural consequence of financial innovation, because

agents start without enough data to correctly evaluate the riskiness of the new environment. Cal-

ibrating the leverage regimes to data on the ratio of household debt to residential land values,

and the initial priors to the excess returns on the 30-year Fannie Mae RMBS in early 1997, the

model predicts that agents would turn very optimistic very quickly between the mid-1990s and the

mid-2000s, after observing only a few quarters of the high-leverage regime.

The debt-deflation channel plays an important role because, as optimism builds up and land

prices rise, the agents’ ability to borrow also grows. Similarly, when optimism turns to pessimism,

after the first observation of the low-leverage regime, which we dated at the beginning of 2007, after

the start of the sub-prime mortgage crisis in the Fall of 2006, the debt-deflation channel amplifies

the reversals in debt and asset prices. This occurs because fire-sales of land drive down land prices

and reduce the agents’ ability to borrow.

The interaction of the learning friction and the debt-deflation mechanism generates substantial

overborrowing, which accounts for almost two-thirds of the increase in net debt of U.S. households,

and about two-fifths of the boom in residential land prices, observed between 1997 and 2006.

Moreover, the model also predicts a credit crunch, a crash in land values, a collapse in consumption

and a surge in private savings after the first realization of the low-leverage regime. In contrast, the

size of the debt and price booms, and the subsequent collapses, are significantly smaller in variants

of the model that remove the learning friction or the debt-deflation mechanism.

Our work has important implications for the ongoing debate on financial reforms to prevent

future crises. First, since by definition the true riskiness of a truly brand-new financial regime

cannot be correctly evaluated when the new regime starts, and little or no data is available on its

performance, exposure to the credit boom-bust process we studied in this paper comes along with

the potential benefits of financial innovation. Hence, close supervision of financial intermediaries

in the early stages of financial innovation is critical.

Second, the interaction of information frictions and collateral constraints can strengthen the

case for macro-prudential policies. Using the model developed in this paper, Bianchi et al. (2012)

conduct normative analysis and find that macro-prudential policies have potential to contain boom-

bust cycles if regulators have access to better information than the private agents. Conversely,
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assuming that policymakers are as uninformed as households about how financial markets will

perform after radical structural changes, taxes on debt can address overborrowing due to the credit

externality, but not due to optimistic beliefs.

Third, the ongoing financial reform process (e.g. Basle III, the Dodd-Frank act) is a new

round of radical innovation in capital markets, now tightening the legal and regulatory framework,

which will affect the types of securities that will be available and the size of the markets in which

they will trade. Hence, agents once again will have to evaluate the riskiness of the new financial

environment with beliefs based on imperfect information. As a result, the risk exists that a few

years of slow credit growth and poor performance in asset markets can lead to the buildup of

pessimistic expectations that will hamper the recovery of financial markets.
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Appendix A Solution Method

We solve each AUOP using an Euler equation method that combines price and policy function

iterations using the land pricing equation and the general equilibrium conditions (12)-(15). By

proceeding in this way, instead of solving the agents’ Bellman equation, we avoid using aggregate

states and iterations to converge on the representative agent condition matching individual and

aggregate laws of motion for bond holdings.

The full algorithm for solving the recursive AU equilibrium proceeds in these steps:

1. Define a history of realizations κT and calculate the sequence of posteriors {f(F s | κt)}T
t=1.

2. Take κ1 and the date-1 posterior f(F s | κ1) from the sequence in Step 1 and compute

Es
1[κ

′|κ] ≡

 E1[F s

hh] 1− E1[F s
hh]

1−E1[F s
ll] E1[F s

ll]


.

3. Using Es
1[κ

′|κ] and a guess for the land pricing function q1(bt, zt, κt), solve for the date-1

equilibrium conditions using a policy function iteration algorithm.

4. Use the resulting policy functions [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] from Step 3 and the asset

pricing equation (11) to compute a new pricing function q̂1(bt, zt, κt).

5. Compare q̂1(bt, zt, κt) and q1(bt, zt, κt), if they satisfy a convergence criterion then the decision

rules [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] and the pricing function q1(bt, zt, κt) are the solutions

of the date-1 AUOP. If not, construct a new guess of the pricing function using a Gauss-Siedel

rule and return to Step 3.

6. Move to the date-2 with history κ2 and posterior f(F s | κ2) from Step 1. Compute the

Markov transition matrix Es
2[κ

′|κ], and return to Step 3 in order to solve for the date-2

AUOP. Repeat for each date-t history κt and posterior f(F s | κt) for t = 1, ...T solving each

time for the corresponding date-t AUOP.

The passive Bayesian learning has important implications that can be useful in implementing

the above algorithm:

1. The solutions to each date-t AUOP are not functionally related (i.e., solving a particular date-

t problem does not require knowing anything about the solution for any other date). Thus,

the model can be solved by solving each date-t AUOP independently.28 Still, we can speed
28This fact can be used to develop a strategy to speed up the full solution of the model, because in a computer

with n number of cores, we can solve n AUOPs for n different dates simultaneously.
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convergence if, whenever ||f(F s | κt+j)− f(F s | κt)|| is small enough under some metric, we

use for the date t + j AUOP initial guesses given by the date-t AUOP.

2. If j ≤ T is large enough for f(F s | κt+j) to converge to F a (for some convergence criterion),

the solutions for all dates t ≥ j collapse to a standard recursive RE equilibrium using the

true Markov process F a.

3. Since the full equilibrium solution of the intertemporal sequence of allocations and prices

from dates 1 to T is obtained by chaining the solutions of each date-t AUOP (for t = 1, ..T ),

one can think of solving the recursive equilibrium for a set of different histories
[
κT

i

]I

i=1
, each

supporting a different sequence of posterior densities f(F s | κt
i)

T
t=1. We consider only one

history κT because we take the stance that the financial innovation experiment we look at

in the data can be represented by a particular history κT , intended to match the observed

financial regimes between 1997 and 2007. The alternative would be to generate a set of I

“potential” histories
[
κT

i

]I

i=1
, which could be done using the true Markov process F a, solve

the model for each, and then take averages across these different solutions at each date t.

Appendix B Computation of Ergodic Distributions, Forecast Func-

tions, Excess Returns

B.1 Ergodic Distribution and Forecast Functions under Rational Expectations

Define the date t probability distribution over bonds, productivity and collateral coefficients in the

RE model as λt(b, z, κ). The law of motion that governs the evolution of this distribution over time

is:

λt+1(b′, z′, κ′) =
∑

z

∑
κ

∑

{b:b′=g(b,z,κ)}
λt(b, z, κ)π(z′ | z)p(κ′ | κ)

where g(b, z, κ) is the policy function that sets the optimal decision rule for bonds, π(z′ | z) is the

Markov transition probability for productivity shocks, and p(κ′ | κ) is the true Markov transition

probability of κ (with the two Markov processes assumed to be independent). The unconditional

limiting distribution of bonds, productivity and collateral coefficients is given by λ(b, z, κ), and

it represents the fixed point of the above law of motion. The algorithm computes the ergodic

distribution exactly in this way, by performing iterations of the law of motion until λt(b, z, κ) and

λt+1(b′, z′, κ′) satisfy a convergence criterion.
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Forecast functions are averages of the model’s endogenous variables computed at each date t

using the corresponding distribution λt(b, z, κ), starting from any initial condition (b0, z0, κ0) with

distribution λ0(b0, z0, κ0) = 1. By construction, just like iterations on the above law of motion

of probabilities converge to the long-run distribution, forecast functions converge to unconditional

long-run averages computed with the ergodic distribution, regardless of the initial conditions (as

long as the ergodic distribution itself is unique and invariant).

Given λt(b, z, κ), the date-t conditional probability distribution over κi for i = h, l is defined as

follows:

λ̃t(b, z | κi) =
λt(b, z, κi)∑

b

∑
z λt(b, z, κi)

Conditional forecast functions are averages for the models endogenous variables computed at

each date t using the corresponding distribution λ̃t(b, z | κi). By construction, as λt(b, z, κi) →
λ(b, z, κ), the date-t conditional distribution λ̃t(b, z | κi) converges to the corresponding long-run

conditional distribution λ̃(b, z | κi). Moreover, conditional forecast functions of any endogenous

variable converge to the corresponding conditional long-run average.

B.2 AU Forecast Functions in the Learning Model

The learning model has dynamics in the beliefs about the transition probability matrix of κ, and

hence the RE definitions of conditional and unconditional forecast functions do not apply. Intu-

itively, one can construct a set of forecast functions and ergodic distributions by using the corre-

sponding date−t beliefs to form all the expectations about future states. In light of this, we define

forecast functions in the AU learning model by averaging only over productivity shocks and tracking

the decision rules produced at each date by the corresponding set of beliefs and the corresponding

date’s AU optimization problem. Specifically, we compute forecast functions in the learning model

as follows: Take as given (b0, z0, κ0), then the relevant values of the forecast function of bonds in a
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learning period of length T with a sequence of realizations [κt]
T
t=0are:

b̂1 = E
[
b1 | (b0, z0, κ0), f(F s | κ0)

]
= h0(b0, z0, κ0; f(F s | κ0))

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑

z1

∑

{b1:b2=h1(b1,z1,κ1)}
π(z1 | z0)h1

(
b1, z1, κ1; f(F s | κ1)

)

b̂3 = E
[
b3 | b0, f(F s | κ2)

]
=

∑

z2

∑

{b2:b3=h2(b2,z2,κ2)}
π(z2 | z0)h2

(
b2, z2, κ2; f(F s | κ2)

)

......

b̂T+1 = E
[
bT+1 | b0, f(F s | κT )

]
=

∑

zT

∑

{bT :bT+1=hT (bT ,zT ,κT )}
π(zT | z0)hT

(
bT , zT , κT ; f(F s | κT )

)

where π(zt | z0) = π(zt | zt−1)π(zt−1 | zt−2)...π(z1 | z0) is the probability of a particular history

of realizations of productivity up to date t (for t ≥ 0),
[
f(F s | κt)

]T

t=0
is the sequence of beliefs,

and ht

(
bt, zt, κt; f(F s | κt)

)
is the optimal decision rule for bonds determined by the date-t AUOP

using the date-t beliefs and evaluated for the states (bt, zt, κt). Note that because of the recursive

structure of the b̂′ts, the expectations that form these forecast functions are conditional not just on

date-0 states (i.e., (b0, z0, κ0),), but on the history of realizations [κt]
T
t=0 and the history of beliefs

[
f(F s | κt)

]T

t=0
.

The equivalent objects to compare with in the rational expectations model are:

b̃1 = E [b1 | (b0, z0, κ0)] = g(b0, z0, κ0)

b̃2 = E [b2 | b0] =
∑

z1

∑

{b1:b2=g(b1,z1,κ1)}
π(z1 | z0)g (b1, z1, κ1)

b̃3 = E [b3 | b0] =
∑

z2

∑

{b2:b3=g(b2,z2,κ2)}
π(z2 | z0)g (b2, z2, κ2)

......

b̃T+1 = E [bT+1 | b0] =
∑

zT

∑

{bT :bT+1=g(bT ,zT ,κT )}
π(zT | z0)g (bT , zT , κT )

We can also express the forecast functions of the learning model with a slight modification of

the treatment used under rational expectations. Define the probability distribution of TFP shocks

and bond holdings at date t in the learning model as χt(b, z). The law of motion for the evolution

of this probability over time, given the history κT of realizations of the leverage regimes, is defined

as follows:

χt+1(b′, z′) =
∑

b

∑
z

χt(b, z)π(z′ | z)It(b′, b, z, κt)
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where It(b′, b, z, κt) is a binary indicator such that It(b′, b, z, κt) = 1 ↔ b′ = ht

(
b, z, κt; f(F s | κt)

)

and zero otherwise.

At date-0, for example, we have χ0(b0, z0) = 1 for the particular initial conditions (b0, z0), and

χ0(b, z) = 0 for all other pairs (b, z). We also have that:

It(b′, b, z, κt) =





1 if b′ = ht

(
b, z, κt; f(F s|κt)

)
,

0 otherwise.

We could add the indicators for all other possible initial conditions, but since they satisfy χ0(b, z) =

0 they wash out from the law of motion from date 0 to 1. Hence we get χ1(h0

(
b0, z0, κ0; f(F s | κ0)

)
, z′)

=π(z′ | z0) for each z′ and zero otherwise (for all pairs (b′, z′) such that b′ 6= h0

(
b0, z0, κ0; f(F s | κ0)

)
).

Now we can compute the expected bonds chosen at date 1 for beginning of period 2 as:

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑
b

∑
z χ1(b, z)h1

(
b, z, κ1; f(F s | κ1)

)
. At this point we can add

over all values of bonds in the state space because the probabilities already have incorporated the

information relevant for the “correct” bond positions that the system can land on in period 2 in

the learning model.

Alternatively, we can define the probability law of motion as:

χt+1(b′, z′) =
∑

z

∑

{b:b′=ht(b,z,κt;f(F s|κt))

χt(b, z)π(z′ | z)

In writing it this way, we take out the indicator function but keep track of only the relevant initial

states that can land in each b′ by constraining the set of b′s over which the summation is taken.

B.3 Expected Returns j Periods Ahead of Date t

Choose an initial triple (bt, zt, κt) with initial bond holdings set to bt = b̂t. t is the period for which

we are going to calculate the sequence of expected returns j periods ahead. b̂t stands for the mean

bond holdings at period t obtained from the forecast functions. zt is set equal to 1. κt is set to

its value used in the forecast function calculations for the corresponding period t. We calculate

expected returns for any date t + 1 + j as of date t . This calculation involves a numerator with

the sum of dividends and price of date t + 1 + j, [qt(bt+j+1, zt+j+1, κt+j+1) + d(zt+j+1)], and a

denominator with the price as of date t + j, qt(bt+j , zt+j , κt+j), all of which are projected as of the

initial date t .
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We proceed in two steps. First, we calculate the probability tree of possible states in which the

economy can land conditional on the initial triple (bt, zt, κt) up to J periods ahead. The events

that we are capturing in this probability tree are the combinations of TFP and κ shocks. Second,

we construct the Es
t [R

q
t+1+j ] sequence for j = 0, 1, ..., J . Finally, as a cross check we recover the

asset price in state (bt, zt, κt) of date t, i.e., qt(bt, zt, κt), using the sequence Es
t

(
1

Es
t+j [R

q
t+1+j ]

)
to

recalculate the date-t price as the present discounted value of dividends discounted by expected

returns.

In the first step to calculate the probability tree we put all the mass on the initial state that

we are conditioning our calculations on for j = 0. In other words,

λt
t(bt, zt, κt) = 1.

Going forward these distributions evolve according to:

λt
t+j+1(bt+j+1, zt+j+1, κt+j+1) =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

λt
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)E

s
t (κt+j+1 | κt+j)

for j = 0, 1, ..., J . Ht+j+1 is the set of bond holdings chosen conditional on a triple (bt+j , zt+j , κt+j),

which is defined as Ht+j+1 = {bt+j+1 : bt+j+1 = ht

(
bt+j , zt+j , κt+j | f(F s | κt)

)}. The superscript

t of λt
t+j+1 highlights the fact that this is the date-t + j element for the law of motion that started

with initial conditions λt
t(bt, zt, κt) as of date t, so that the probabilities are conditional on date t.

In the second step, to compute the expected returns, we first take the date t + j element of the

sequence of λ′s, λt
t+j(bt+j , zt+j , κt+j). Intuitively, this is the equilibrium probability of landing in

a particular state (bt+j , zt+j , κt+j) in period t + j, j periods ahead of the initial period. We then

compute expected returns for any t + 1 + j conditional on date t as:

Es
t [R

q
t+1+j ] =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×Es
t (κt+j+1 | κt+j)

qt(bt+j+1, zt+j+1, κt+j+1) + d(zt+j+1)
qt(bt+j , zt+j , κt+j)

where d(z) = zg′(l). Note that Es
t [R

q
t+1+j ] is in fact Es

t [R
q
t+1+j ](bt+j , zt+j , κt+j). In other words,

the one period ahead expected returns depend on the date-j triple (bt+j , zt+j , κt+j).

To confirm that the calculations in the first two steps are correct, in the third step we recalculate

qt(bt, zt, κt) as the sum of expected present discounted value of future dividends where discounting
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is done using the equity returns (see Equation 11 in the text):

qt(bt, zt, κt) =
J∑

j=0

∑
zt+j+1

∑
κt+j+1

∑

bt+j∈Hj+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×Es
t (κt+j+1 | κt+j)

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
d(zt+j+1).

To discount date-t+j+1 dividend, we divide it by the sum of all one-period-ahead expected returns

up to that date. The calculation of expectations in this step utilizes the probability tree computed

in the first step.
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