
NBER WORKING PAPER SERIES

BACK ON THE RAILS:
COMPETITION AND PRODUCTIVITY IN STATE-OWNED INDUSTRY

Sanghamitra Das
Kala Krishna

Sergey Lychagin
Rohini Somanathan

Working Paper 15976
http://www.nber.org/papers/w15976

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2010

Sanghamitra Das passed away unexpectedly in December 2008 and is greatly missed. We are grateful
to James A. Schmitz, Ana Cecilia Fieler and George Alessandria for comments. The views expressed
herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Sanghamitra Das, Kala Krishna, Sergey Lychagin, and Rohini Somanathan. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.



Back on the Rails: Competition and Productivity in State-owned Industry
Sanghamitra Das, Kala Krishna, Sergey Lychagin, and Rohini Somanathan
NBER Working Paper No. 15976
May 2010
JEL No. J24,J48,L32,L61

ABSTRACT

We use a proprietary data set on the floor-level operations at the Bhilai Rail and Structural Mill in
India to understand the determinants of changes in plant productivity in 2000-2003. During this period
there was a 35 percent increase in output with minimal changes in factors of production, but sizable
reductions in production delays. We model interruptions to the production process and find that a large
part of these reductions are attributable to training. Our results suggest that specific knowledge-enhancing
investments can have very high returns, and that the threat of competition provides powerful incentives
to undertake such investments.

Sanghamitra Das†
Indian Statistical Institute
7, S. J. S. Sansanwal Marg
New Delhi - 110016
India
dasm@isid.ac.in

Kala Krishna
Department of Economics
523 Kern Graduate Building
The Pennsylvania State University
University Park, PA 16802
and NBER
kmk4@psu.edu

Sergey Lychagin
Department of Economics
The Pennsylvania State University
University Park, PA 16802
and   
sul178@psu.edu

Rohini Somanathan
Delhi School of Economics
University of Delhi
Delhi 110007 INDIA
rohini@econdse.org



1 Introduction

Each year, the Indian prime minister announces labor awards to workers

employed in government departments or public sector undertakings. In 2003,

the most prestigious of these was awarded to a team of 5 from the Rail and

Structural Mill of the Bhilai Steel Plant in recognition of their “outstanding

contribution in the field of productivity”.1 The Bhilai Steel Plant (BSP) is

one of the five integrated steel plants of the Steel Authority of India Limited

(SAIL), the company that has dominated the Indian steel sector since it was

set up in the 1960s. SAIL is largely state-owned with 86 percent of equity and

voting rights held by the Indian government.2 Until the early nineties strict

licensing rules restricted entry into Indian industry and SAIL, and many

other manufacturing companies, survived with limited changes in technology

and negative total factor productivity growth (Katja Schumacher & Jayant

Sathaye 1998).

The industrial liberalization measures introduced in the early 1990s com-

bined with a fall in world steel prices resulted in a series of operating losses

for SAIL. Between 1992 and 2000 the share of the private sector in steel pro-

duction went up from 45 to 68 per cent and the company faced the threat of

its plants being labeled as sick industrial units(Ministry of Steel 1998-2009).

Then began a remarkable revival. Between 1999-2003 SAIL production went

1See http://labour.nic.in/award/shram2003.htm and “Bhilai team bags PM’s Shram
Ratna for 2003”, SAIL News, June-August 2003, p.18

2www.sail.co.in
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up by 12 percent even though the number of employees went down by 21

percent.3 This process has since continued with record profits in 2008, rising

relative share prices and dividends of over 25 percent for several years.

In this paper we study this revival through the analysis of detailed data

from one part of SAIL, namely the Bhilai Rail and Structural Mill (RSM) in

the Bhilai Steel Plant over the period 1999-2003. The mill has historically

been the sole supplier of rails to the Indian Railways and there exists an

informal understanding that this will continue unless the plant at Bhilai

fails to provide adequate rails of appropriate quality. Over the period we

consider, the plant’s orders were threatened for several reasons. First, a

series of train accidents culminating in a major train wreck in 1998 led to

investigations which found sub-standard rails to be a major cause. To lower

accident probabilities, the railways decided to procure longer rails and limit

their hydrogen content. It was initially unclear whether the Bhilai RSM

could provide these and for four months ending April 1999 purchases by the

3SAIL Performance Report, FY 2006 available at www.steel.co.in
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railways were interrupted.4 Second, track replacements and an expansion in

the network led to an accelerated demand for rails and it was suggested that

private players and imports be allowed to supplement the capacity at Bhilai.

Finally, the industrial liberalization measures had already brought private

capital into mid-sized steel plants and these firms were keen to diversify

into larger high-value products with stable demand. SAIL executives and

workers understood that in the absence of significant quantity and quality

improvements, the market share of the company was severely threatened. 5

Of all the SAIL steel plants, labor productivity went up fastest at the

4The Hindu Business Line for June 8 , 2000 (Calcutta) reports:

The drop in orders, particularly in 1998-99 and 1999-2000, was because of
imports resorted to by the Railways on the plea that BSP was unable to
supply rails as per its specifications. While the Railways has been a tradi-
tional buyer of BSP’s rails with hydrogen content above three ppm (parts
per million), it revised the specification in recent years and sought rails with
hydrogen content of less than three ppm.
The situation forced SAIL to invest over Rs. 100 crores to equip BSP to
meet the stringent requirement of the Railways for rails with less than three
ppm hydrogen. Four Rail Quality Improvement Schemes were completed by
BSP in 1999-2000.

5Newspaper reports at the time frequently discussed the breaking of SAIL’s monopoly
on rails. The Indian Express (June 9, 2000) reports:

Purchases from SAIL were stopped for a brief period of four months following
the accident in Khanna, when the quality of rail was questioned by the
Railway Safety Committee. However, purchases were later resumed in April
1999....
Jindal Steel and Power plans to break SAIL’s hold over the huge orders by
manufacturing rail for the domestic market from the next year. The company
will manufacture 78 metre long rail, by acquiring and relocating a rail and
structural mill in South Africa, near Raigarh in MP.
(“Railways to procure Rs 400 cr worth rails from Bhilai Steel” by Jyoti Mukul
)

3



Bhilai steel plant over the period 1999-2003. The production of crude steel

per man year went from 121 metric tonnes in 1999-2000 to 129 in the next

fiscal year and 153 in the year ending March 2003.6The output changes in

the Rail and Structural Mill (RSM) far outstripped changes in the rest of the

plant. In 1999-2000, the Indian railways bought a little over 300 thousand

metric tonnes of rails from the plant. By 2002-2003, procurement was more

than double this amount.7 Although production in the Rail and Structural

Mill, like many other parts of the plant, is continuous, and largely automated,

it relies more heavily on labor than in some of the other departments and

is therefore well suited to a study of changes in productivity that rely on

worker effort. The Bhilai steel plant is part of a township created by SAIL

with subsidized schools and health facilities and is, in this sense, an island

of skilled and highly paid labor in an otherwise poor state of central India.

Both workers and management are unlikely to find comparable employment

were the plant to close. It is therefore understandable that they had the right

incentives to raise productivity when faced with competition. Our purpose in

this paper is to explore the particular methods through which they achieved

this productivity change.

The dataset that guides us in this effort contains detailed information

on daily operations at the Bhilai RSM. The mill operates continuously with

6Each year, there is a special audit of major public sector undertakings of the Union gov-
ernment. These productivity figures are taken from this audit report for 2004 (Comptroller
and Auditor General of India 2003-2004).

7Based on administrative data provided to us by the Ministry of Railways
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3 production shifts per day. We obtained shift-wise data on the number of

steel blooms rolled into rails in each shift, a list of all workers present during

the shift, with their designations, and all delay episodes with their duration

and a description of the cause of the delay. We combine these data on the

production process with administrative data on worker demographics and all

episodes of of training. Even though the overall number of workers did not

change much during the three-year period we consider, the combination of

workers on the floor changes from one shift to another; we are able to control

for this variation using worker fixed effects.

There is now considerable evidence of total factor productivity (TFP)

differences across countries and firms. (Robert Hall & Charles Jones 1999)

find that of the 35-fold difference in output per worker between the United

States and Niger, TFP differences explain about twice as much as differences

in physical and human capital. (Peter Klenow & Chang-Tai Hsieh 2009) use

plant level data from India and China and show that the variance across firms

within these countries is much larger than in the U.S. and the rationalization

of production could raise output by as much as 50 percent. A range of

institutional and policy variables could lie behind these TFP patterns, such

as access to credit, physical and social infrastructure, technological spillovers

and managerial practices.

A recent “bottom-up” approach in economics and management research

tries to uncover particular sources of productivity differences by modeling

the production process within particular industries. Our study is closely
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related to this work and to a related literature that estimates productivity

responses to greater market competition. (Casey Ichniowski, Kathryn Shaw

& Giovanna Prennushi 1997) examine the productivity effects of human re-

source management practices using monthly data for 36 steel finishing lines

across the United States. They find that workers in plants with traditional

employment contracts and hierarchical supervisory structures are less pro-

ductive than those in firms with innovative practices and that some of these

productivity gains are realized through increased uptime. (Sanghamitra Das

& Ramprasad Sengupta 2007) attribute the productivity increases of blast

furnaces in Indian steel plants to improved coal quality and find that ad-

ditional managers did not contribute to production unless they were also

trained. (Nicholas Bloom & John Van Reenen 2007) combine surveys on

management practices with TFP estimates from balance sheet data to ex-

amine the influence of such practices on firm productivity. This approach is

in contrast to the traditional one that uses aggregate factors of production

like labor and capital without specifying explicitly what happens inside the

firm.

On the effects of competition, (Jose E. Galdon-Sanchez & James A.

Schmitz, Jr. 2005) show that when the market for steel collapsed in the

early 1980s, countries with iron-ore mines that were close to becoming non-

competitive increased efficiency, while others did not. (James A. Schmitz,

Jr. 2005) argues this efficiency increase resulted from less restrictive la-

bor contracts which allowed more flexible allocation of labor time. Other

6



work on competition and productivity includes (Douglas W. Caves & Lau-

rits R. Christensen 1980), (Jamie de Melo Tybout, James & Vittorio Corbo

1991), (James R. Tybout & M. Daniel Westbrook 1991), (Stephen J. Nickell

1996), (Francisco Rodriguez & Dani Rodrik 1999),(Daniel Trefler 2004) and

(Shawn Klimek Dunne, Timothy & James A. Schmitz, Jr. 2009). (Chad

Syverson 2010) provides a recent survey of this field. While we do not have

data on plants not threatened by closure to compare to those that were, we

do have much finer data on a single plant during events that led to increased

competitive pressure. This allows us to focus on the shop floor for a finer

investigation of apparent productivity improvements than is usually possible.

Our results attribute most of the observed productivity change to effi-

ciency improvements resulting from fewer preventable delays and less pro-

duction downtime. These changes in turn are explained by short and rela-

tively inexpensive bouts of productivity training. Although several programs

of managerial, motivation and technical training were conducted for the mill

workers over this period, the only type of training that appears to have signif-

icant causal effects is training targeted at specifically improving rail quality.

An interesting contrast with other studies is that we find increased uptime

in the absence of any systematic changes in the numbers employed.

The rest of the paper is organized as follows. Section 2 provides back-

ground on the steel plant and rail mill at Bhilai. Section 3 describes our data

set. Section 4 uses simple growth accounting identities to decompose output

changes into its component parts, namely changes in rates of production, in
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delays and in the fraction cobbled (the rails that were visually defective dur-

ing the process of rolling before the final cooling process) and explores the

patterns in each of these.8 Section 5 explicitly models the random processes

resulting in production delays and Section 6 fits these to the data. Section 7

develops some counterfactual experiments to help identify the contribution

of each of a number of factors to productivity and Section 8 summarizes the

lessons learnt and concludes.

2 The Rail and Structural Mill in the Bhilai

Steel Plant

The steel plant at Bhilai covers about 17 square km and and currently em-

ploys about 34,000 workers.9 Until the plant was built in the mid 1950s,

Bhilai was a small and remote village and the plant was located there as

part of a planning strategy to bring jobs to remote areas. With the com-

ing of the plant, Bhilai and 96 of its surrounding villages were transformed

into a company town and the former owners of land were compensated in

part by being given preference in employment. The jobs of regular workers

are secure, with excellent fringe benefits including schooling, health care and

housing, travel benefits and paid leave. These jobs have always been highly

valued. (Jonathan P. Parry 1999) in his detailed and entertaining account

8Tests to identify defective rails are performed after cooling and so are not in our data.
9(Steel Authority of India 2008).
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of labor conditions and performance at Bhilai refers to workers there as the

aristocracy of labor. He notes that although tasks on the plant can be “ex-

tremely demanding, the amount of the working day spent on them is not.”

There was, in the late nineties, a 15-20 percent surplus in manning levels, a

strong correlation between seniority and pay and a very weak one between

pay and performance.10

In spite of this, the Bhilai plant is widely regarded as the most successful

plant in the public sector and perhaps surprisingly, the structure of incen-

tives led to unequal distribution of work and absenteeism rather than low

average effort. In our own field visits we found groups of extremely commit-

ted workers operating under physical conditions, particularly in the summer

when floor temperatures can exceed 50 degrees centigrade in parts of the

plant. In addition, managers seem to put in long hours and pitch in where

needed. Parry noted that although large public industrial units recruited

and organized labor differently, underutilization was pervasive in many of

these firms. Our findings on competition and productivity growth in the

state-owned sector may therefore be applicable more broadly.

The Rail and Structural Mill (RSM) is an integral part of the plant. It

was commissioned in 1960 with enough capacity to satisfy domestic demand

at that time. Since then, it has been the sole supplier of rails for Indian

Railways. In addition to producing rails, the mill produces a variety of

different products (beams, slabs, channels, angles) that are collectively called

10(Parry 1999, pp. 17-19).
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structurals and are either used directly in major infrastructural projects or

as intermediate inputs into industries producing heavy machinery. Each shift

at the plant is typically devoted to either rails or structurals, with a very few

shifts that are mixed. These mixed shifts are dropped from the data. Table 1

shows the total number of shifts during which only rails and only structurals

were produced for each of the four years of our study. Output during a

structural shift is both sensitive to product type and the production process

is typically more time consuming than that of rails. We therefore restrict our

study productivity changes in the mill to those shifts that produced rails.11

Table 1: RSM shifts worked by year and product type

Year Rails Structurals
April 1999-March 2000 743 279
April 2000-March 2001 754 258
April 2001-March 2002 839 182
April 2002-March 2003 958 79

Source: BSP Operational Statistics, 2003-2004, Table 9.18

Before describing our data in detail, it is useful to briefly outline the

production technology. Figure 1 is a schematic representation of this process.

In a nutshell, the the main input is a long rectangular block of steel call a

bloom. These are stored in the bloom yard and pass through different sections

in a sequential process which converts them into rail tracks. They first enter

11From discussions with the management we gathered that the product mix is not
primarily driven by price-cost margins. As the mill is the sole supplier for Indian Railways,
they have a mandate to first meet orders from the Railways. Structurals are more profitable
and their prices have been rising but their production depends on the capacity remaining
after the demand for rails has been met.
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one of four furnaces where they are heated. They then move through a series

of work tables in the mill area where they are shaped and then pass to the

hot saw area where they are cut to ordered lengths, stamped and moved to

a cooling bed. Defective or misshapen blooms are referred to as cobbled and

are set aside, the rest are classified as rolled. The mill runs 24 hours a day

7 days a week with very rare shutdowns for service and repairs. Production

workers are rotated among three 8-hour production shifts.

Each worker, at any point in time, has a designation based on their job

description and their seniority. Designations can be usefully divided into

a few groups. Some workers are restricted to a particular location in the

production process while others are not. In the furnace area, the services

team does the recording of blooms, control men move the blooms in and out

of the furnace, while the furnace maintenance team looks after the furnace.

In the mill area, ground staff are on the floor of the mill ensuring the smooth

flow of production. The SCM team, a group of senior control men and motor

operators, along with the coggers sit in pulpits and direct the actual rolling

of the rails in this part of the plant. In the hot saw area we have the saw

spell team.

Some groups of workers are not restricted to particular areas of the RSM:

for example, crane operators man cranes that transport blooms at various

stages of production, technicians are responsible for fixing mechanical prob-

lems in the different machines, while the executives oversee the operation as

a whole.
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Figure 1: The process for rail production in the RSM

The model of production we estimate in Section 6 uses shift-wise data

on the numbers of workers in each of these categories. There are shift-wise

variations in these numbers generated by the number and types of workers

on leave during any particular shift.

Shifts are operated by groups of workers called brigades that remain rel-

atively stable over time. Each worker, at the time of joining the mill is as-

signed to one of these brigades. Brigade membership can be changed based

on worker preferences and decisions of the supervisory and executive staff

but these movements are infrequent. There are more people in a brigade

than typically work in a shift, allowing for weekly days off and other types

of leave. Brigades are rotated weekly across shifts: if a brigade works the
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morning shift in week 1, it is switched to work the afternoon shift for week

2 and and the night shift for week 3.

3 Our data

We have data on a total of 3558 shifts covering the period January 1, 2000 to

March 31, 2003. There are two types of logs kept by the plant for each shift.

The first of these is a delay report which records of the total input of steel,

total output, the share of defective blooms and the length and cause of each

interruption or delay in the production process. The second log is called the

daily presentee report or the dpr and this records worker attendance. Each

employee is assigned a unique identification number or personal number at

the time they join the company. For each shift, and separately for the furnace

and mill areas, the dpr lists the personal numbers of all workers on the floor

during that shift. These two shift-level logs form the core of our data set and

we describe them in some detail below.

During active shifts, the delay report allows us to classify all production

delays into four classes. Outside delays, denoted by us as Do, usually occur

due to events outside the control of the managers and workers in the mill.

These may be unanticipated, as in the case with gas shortages or electrical

faults, or anticipated but unavoidable as in the case of some regular electricity

rationing or an inadequate supply of rail steel. Finishing delays, Df , result

mostly from the cooling bed for finished rails being full and unable to accept
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more rails. This is a downstream constraint that can shut down or slow down

production in the mill. Third, there are planned delays, Dp, which are used

for scheduled maintenance or adjustments of equipment. The fourth class of

delay is the most important one for our analysis; it consists of unplanned and

avoidable delays, Da that result from workers making mistakes. Avoidable

delays are generated as the sum of mechanical, operational and electrical

delays that are classified as avoidable. Although a description of the cause

for each delay is available in the data, it is not possible to locate the source

of all delays on the process chart in Figure 1 and we have no reference to the

person or group at fault. We argue in the following sections that reductions

in avoidable delays made possible notable productivity improvements at the

RSM during the time period of interest.

The delay report sheet is filled in even if there was no production or no

delay during that shift. For example, if there were inadequate orders, the

delay report would record 480 minutes as the delay time and would list no

order as the cause for downtime. There is therefore a delay report for every

shift. We obtained access to paper copies of both delay and attendance logs,

though for a very few shifts these logs were either missing, incomplete or

illegible. In addition, data cleaning led to further attrition. Overall, the

usable data covers about 94 percent of all the shifts in the period.

The attendance log (dpr) provides us with the composition of the work-

force for each shift. The report records the brigade on the floor, lists the

workers of the brigade that were present and also the reasons for the absence

14



Table 2: Categories of training received, Jan 2000-March 2003

Category Total person days Share in total, %
Motivational 511 27
Productivity 479 26
Environmental 184 10
Quality Control 165 9
Cost Reduction 135 7
Safety 131 7
Computer Skills (IT) 61 3
Job Instruction 57 3
Other 151 8
Total 1874 100

Source: Personnel Records, Rail and Structural Mill

of each worker in the brigade but not on the floor. We also have the desig-

nation of each worker by shift and can therefore track workers as they move

across brigades, get hired, fired or promoted. We combine dpr data from

administrative records on the social background of the personnel, including

their caste affiliation and home state. Finally, as mentioned in Section 2, we

have records of all episodes of training undertaken by employees of the mill.

This includes a brief description of the training program, start and end dates

and a list of employees trained.

There was an emphasis on training programs at the plant following the

dismal performance of the company in the late nineties. Workers are trained

both on the floor of the mill and in programs organized by the human resource

department. Table 2 classifies these programs into nine categories based

roughly on the types of skills that the program targeted.

Although there were a large number of programs, some of them lasted only
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Table 3: The four biggest training programs of RSM employees, Jan 2000-
March 2003
Name of program Dates Category % Training time
Acceptance of rails June 2001 – productivity 22
program – July 2001
ISO-9000 workshop May 2001, quality control 9

March 2002
ISO-14001 workshop Jan 2002, environmental 10

July 2002
Success through Oct 2002 – motivational 24
empowerment of people – Jan 2003

Source: Personnel Records, Rail and Structural Mill

a couple days and involved very few employees. On average, the recipients of

training were less experienced than their peers. This is especially noticeable

for computer skills, cost reduction, safety and motivational training. Some

training was conducted because it helped in obtaining International Organi-

zation for Standardization (ISO) certification. Most programs did not seem

to target any particular designation; only few of them focused on a narrow

workplace-specific skill. For the most part, training was administered to big

groups of workers rather than to individuals. There were four large programs

which together account for two thirds of total training time over our period.

These are listed in Table 3. In Section 6 we examine the role of different

types of training on productivity.

By combining dpr, personnel and training data we can generate shift-wise

data on mean worker characteristics and estimate their effect on productivity.

For example, the dates of training and the list of employees trained allows us
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to generate training stocks for different types of training for each employee on

each date and we aggregate this by shift to examine the role of variations in

training on total output. Similarly, we have shift-wise compositions of worker

designations and backgrounds. We know the number of executives, coggers,

control men, ground staff, etc. on the floor for each shift, the share of mi-

grant and local workers and their caste composition. (Parry 1999) observed

some tension between the local population of Bhilai and migrants from other

states. Potentially, communal conflicts like this may be strong enough to

impair cooperation at the workplace and decrease productivity. We use both

caste and home state data to account for this possibility. These data allows

us to control for the composition of labor force at much greater detail than

in possible in most studies of productivity. Although the overall composition

of the workforce in the mill changed very little over this period, there is con-

siderable variation in mean characteristics by shift and our strategy exploits

this variation.

We have data available for 9 months of 1999 but ignore these because

the delays logs during this period suggest that the mill was intentionally

operated below full capacity. There were also several accounts in the press

expressing concern by the railways about high hydrogen content of rails from

Bhilai and reports of downtime in the mill frequently record “no order” as a

cause. This problem was resolved in the following year with the installation

of new equipment and orders from the railways went up again. As seen from

the scatter plot in Figure 7, there was a jump in production at the very end
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of 1999. Since our focus is on changes in productivity, we feared these might

be overestimated with the inclusion of data from this 1999.12

4 Decomposition of Output Growth.

In this section we perform a simple decomposition of output growth over our

period. Output is determined by the rate at which blooms are rolled and

uptime. The latter is defined as the total shift time less the delay time in

each of our categories. We then use the time pattern of output and delays

to attribute output changes to changes in delay times for each of the delay

classes. The main difference between this procedure and commonly observed

decompositions is that we rely on the internal structure of the production

process rather than on totals of raw inputs and the output.

Figure 2 summarizes the dynamics of output change. As seen there, av-

erage output during rail shifts expanded from 158 blooms in the first quarter

of 2000 to 214 blooms in the first quarter of 2003, a 35 percent increase.

12 The Hindu Business Line for June 8 , 2000 (Calcutta) reports:

The drop in orders, particularly in 1998-99 and 1999-2000, was because of
imports resorted to by the Railways on the plea that BSP was unable to
supply rails as per its specifications. While the Railways has been a tradi-
tional buyer of BSP’s rails with hydrogen content above three ppm (parts
per million), it revised the specification in recent years and sought rails with
hydrogen content of less than three ppm.
The situation forced SAIL to invest over Rs. 100 crores to equip BSP to
meet the stringent requirement of the Railways for rails with less than three
ppm hydrogen. Four Rail Quality Improvement Schemes were completed by
BSP in 1999-2000.
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Figure 2: Blooms rolled for rails and structurals

Proceeding with our decomposition for rail shifts, let Xs denote the total

number of steel blooms used by the brigade on duty during a rail shift s.

Some proportion, ps, of these blooms is successfully rolled into rails, while

the remaining blooms are cobbled and removed from the line as defective.

The final output is

Ys = psXs

The number of blooms the brigade is able to process is the product of

uptime Ts and rolling rate Rs
13:

Xs = RsTs

Uptime is the total shift time of 480 minutes less time lost because of delays.

13(Das & Sengupta 2007) refer to R and T , as the rate of output the rate of utilization
respectively.
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We denote by Dxs the delay time resulting from a type x delay in shift s.

Uptime is then given by

Ts = 480−Dos −Dps −Dfs −Das

Given uptime and the input of blooms for each shift we infer the processing

rate as Xs/Ts and combine the above equations to obtain:

Ys = psRs(480−Dos −Dps −Dfs −Das) (1)

Using Equation 1, we can attribute output growth in rails to the growth in

6 components: the fraction defective, ps, the rolling rate Rs, and the duration

of the four types delays Dxs.
14 By definition, the percentage change in blooms

rolled equals the sum of the percentage change in ps, Rs, and uptime. The

change in uptime can be further decomposed into its component parts:

dTs
dt

= −dDos

dt
− dDps

dt
− dDfs

dt
− dDas

dt

Dividing both sides by dTs

dt
, we find attribute changes in uptime to the

different types of delays. Results of this decomposition are shown in the

box contained in Table 4. For example, the contribution of outside delays to

growth in total uptime is (46.8−31.9)
183−129

= 276 ≈ .28

14This is slightly richer than that in the literature. (Ichniowski, Kathryn Shaw & Gio-
vanna Prennushi 1997) for example, focus only on the increase in uptime as the major
source of productivity improvements.
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Table 4: The decomposition of output growth into delay components.

Q1 2000 Q1 2003 Growth
p 0.987 0.995 3%
R 0.54 0.614 42%
(480−D) 297 351 55%

Do 46.8 31.9 28%

Dp 90.4 72.5 33%

Df 2.41 2.22 0.35%

Da 43.6 22.7 39%

D 183 129 100%

Y 158 214 100%

According to Table 4, finishing downtime and fraction non-defective do

not seem to be important contributors to output growth. The average frac-

tion of defective blooms fell from 1.3 percent to 0.5 percent over the two-year

period. While this change is significant the base year value is too low for

it to have much effect on productivity. Outside delays and planned delays

are important sources of output growth, but but are largely exogenous to a

output in a particular shift.15 The remaining variables, the rolling rate R

and avoidable delays, Da, are determined on the mill floor and contribute

substantially to the increase in output.

15The way in which workers operate machinery does influence the amount of time needed
for its planned maintenance. These delays however, are not necessarily related to the
composition of workers in the particular shift for which output is being measured.
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4.1 Delays

A regular shift rarely runs without delays in production. Delays make a

considerable part of a work day; during fiscal years 2001–2003 they accounted

for 30 percent of an average shift time.

4.1.1 Avoidable delays

Most descriptions of avoidable delays contain one of these keywords: “not

working”, “tripped”, “fallen”, “broken”, “jammed”, “grinding”, “adjust-

ment”, “crane down”. The avoidable downtime decreased by almost a half,

from 43 minutes per shift in the first quarter of 2000 to 22 minutes in the

first quarter of 2003 (Figure 3). The second quarter of 2001 had an unusually

long shutdown in production. According to our information, the time when

the mill stood idle was used for training and equipment replacements. A

training episode to raise productivity in rails termed the “acceptance of rails

program” occurs at this time.16 The decline in delays that followed may thus

have been caused by either training or equipment replacement. However, it

is reasonable to expect, that the better equipment is likely to get broken less

frequently in both rail and structural shifts, which is not observed in the data

(for structurals, the avoidable downtime becomes even higher in Q4 2001).

The training program explicitly focused on raising the output of rails which

is consistent with the observed decrease downtimes during rail shifts, but not

16As we argue below, this training episode is the only one that looks like it actually
worked.
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Figure 3: Avoidable delays for rails and structurals

structural ones.

4.1.2 Outside Delays

The patterns of outside delays were very different for rail and structural shifts

(Figure 4). This is especially noticeable for year 2000, when RSM faced

problems with the supply of low-hydrogen steel. Since hydrogen content is

not as critical for the steel used in heavy structurals, as for rails, there was

less outside downtime during structural shifts.

More than 60 percent of outside delays were associated with insufficient

supply of inputs (keywords “shortage”, “voltage”, “restriction”) or their bad

quality (keywords “lengthy”, “short”, “bad metal”, “asymmetry”).
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Figure 4: Outside delays

4.1.3 Planned Delays

After an initial drop in 2000, planned downtime has been slowly increasing

until mid-2002 (Figure 5). We interpret this increase as a natural conse-

quence of higher capital utilization. As output per shift grows over time, the

equipment requires more frequent service. We did not observe any qualita-

tive difference between rail and structural shifts which is consistent with this

interpretation.

The descriptions of delay causes suggest that planned delays were primar-

ily used for regular maintenance. More than 90 percent of planned delays

were associated with “checking”, “adjustment” and “changing” of “section”,

“stand” or “hot saw disc”.
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Figure 5: Planned delays

4.1.4 Finishing Delays

Finishing delays were only around 5–6 minutes per shift in 2000–2003 (Figure

6). Consequently, finishing downtime changes do not contribute much to out-

put growth per se. They serve as a source of information about downstream

bottlenecks that may restrict the productivity of the mill.

Finishing delays occur at the final phase of production – when the rails

are coming from the Hot Saw section to the cooling bed. There is only one

cause listed for all finishing delays: “cooling bed full”. If there is not sufficient

space on the cooling bed, the operations at the Rail Mill are halted until the

space becomes available.
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4.2 Rolling Rates

Figure 7 plots the rolling rate over time. It includes both heavy structurals

and rails.

It is evident from this figure that the rates seem to switch between discrete

regimes. The switching clearly occurs at least three times: on September 15th

1999, November 7th 2000 and September 4th 2002. Within each regime the

rates are dispersed around some average level that is stable over time which

makes sense as dispersion will naturally arise in day to day operations.

Before September 1999, the mill had few orders as it was deemed inca-

pable of producing the required quality. As a result, it was operating far

below capacity. It is recorded that one furnace out of four was running be-

tween Sept. 1999 and November 1999, consistent with the low average rolling

rate in this period.
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Figure 7: Rolling rates for rails and structurals, 1999-2003

After this first switch, between September 1999 and November 2000, there

is a period where rolling rates fluctuated from one level to another. In this

period the mill had limited access to low hydrogen steel from outside. There

are two ways of reducing the hydrogen content in the rails. One is to use

a degasser to make better steel. The other is to accept steel with a high

hydrogen content but to cool the rail slowly allowing hydrogen to escape (see

(Abhai Kumar Rai & Atul Agarwal 2007)). The Bhilai Plant installed a

degasser in early 2000.17 It took six months or so to get consistent operation

of this unit and until October of 2000, it was not fully effective. Note the

high level of outside delays around the first switch (due to the lack of good

steel) and high finishing delays afterwards (due to slow cooling) as depicted

17It is recorded that the degasser was put in for hot trials in March 2000 (Hindu Business
Line Newspaper, June 9th 2000.) The degasser was effective October 1st 2000, as recorded
in the controller general report 2003.
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Figure 8: Outside and finishing delays, 1999-2001.

After November 2000, the degasser was running consistently and this is

reflected in the higher more stable rate pattern.19 Finally, the regime switch

that took place on September 4th 2002 is explained by the installation of

some new equipment. We identify this using delay cause descriptions. On

exactly September 4th a new delay cause started appearing in the data; it is

listed as “jamming at new descaling unit”. This delay occurred nine times in

the first three days following the regime switching. Gradually, its frequency

declined to five occurrences per quarter. Since the increase in the rolling

18For this reason, the RSM moved its output towards structurals in this period (where
the hydrogen content was less of an issue) as far as possible. When it was forced to make
rails, it did so, but could only use the slow cooling method as good steel was hard to come
by. For this reason, before 2000, even when the share of rails was high, the output of rails
was quite low.

19The degasser was installed in early 2000, started being tested in March, but did not
function effectively until later in the year ((Hindu Business Line Newspaper, June 9th
2000, (Comptroller and Auditor General of India 2003-2004))
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rate occurred simultaneously with the installation of the new equipment, we

conclude that the former was likely to be caused by the latter.

Overall, it seems fair to say that the long run dynamics of the rolling

rate seem to be determined by technological considerations and the outside

constraints operating.

5 A Semi Structural Model of Production

We build a stylized model of the mill in which each bloom goes through

a sequence of different stages before being finished. At each stage in the

production process, either events outside the control of the brigade may occur

or workers on the floor may make mistakes. These events and mistakes result

in delays. The duration of delays may depend on the worker characteristics

during the shift. We choose what we believe are reasonable distributions for

delay times caused by these events and then estimate the parameters of these

distributions. Finally, we discuss some alternative modeling approaches and

justify the choice of the assumptions made in our model.

Each bloom goes through the following sequence of events and delays. We

denote events and mistakes by Mx and delays by Dx, where x ∈ {o, p, a, f}

refers to the type of delay (outside, planned, avoidable and finishing).

1. A steel bloom is fed into the furnace area for reheating.

2. An outside event may occur at this point. If the event occurs, it triggers

an outside delay of Do minutes. Do is drawn from the distribution
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Fo(Do|Z) where Z refers to the relevant characteristics of workers on

the floor. We therefore assume that while the event is independent

of the workers on the floor, the delay duration does depends on these

characteristics because the events often require intervention by the mill

personnel. In the absence of the event, there is no outside delay. 20

3. Next, workers may make an avoidable mistake causing an avoidable

delay of Da minutes before production is restored. Da is sampled from

Fa(Da|Z). In this case both the probability of the mistake and the

delay time depends on Z.

4. To roll the bloom into a final product, it takes time t where t = 1/R

and R is the rolling rate.

5. When the bloom is rolled, there is some chance of the cooling bed being

full, resulting in a finishing delay of Df minutes drawn from Ff (Df ).

This is unlikely to depend on Z, since it is a downstream delay and

mill personnel are not involved in clearing the cooling bed.

6. With probability p the final product is non-defective.

7. With some probability (which varies by quarter) the equipment requires

maintenance and Dp minutes are spent in a planned delay, where Dp

is drawn from Fp(Dp|Z).

20For example, flooding in the rainy season requires drainage of the affected area before
production can be resumed and fluctuations in electrical voltage or broken equipment may
have to be reported.
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8. The process is repeated starting from step 1.

For outside, planned and finishing delays, we assume that the events caus-

ing the delays are beyond the control of the mill workers. They occur with

some exogenous probability that we allow to vary by the calendar quarter

during which production takes place. Avoidable delays on the other hand are

caused by worker mistakes which are allowed to depend on the composition

of workers on the shift.

In each case, we use a logit model to approximate the process generating

the event. For a shift with worker characteristics Z , the probability of

avoidable mistakes is given by

Pa(Z, θa) = Pr(Ma = 1|Z) =
1

1 + e−θ′
aZ

and for all other delay types the probability of events causing the delay in

calendar quarter q is

Pr{Mx = 1|q} =
1

1 + e−θx(q)

If a delay occurs, we model the duration of delays that follow by gamma

distributions. Each delay Dx is a drawn from a gamma distribution Γ(αx, λ)

where αx = βxZ is the shape parameter and λx is the scale parameter (always

independent of worker characteristics) for x ∈ {o, p, a}. The density function

for delay durations of these three types is therefore
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f(Dx|Mx = 1,Z) = Dβ′
xZ−1
x

e−Dx/λx

λ
β′
xZ
x Γ(β′xZ)

, x = a, o, p.

We assume that Ff (Df ) takes a similar gamma form but with the addi-

tional restriction that the shape parameter is not dependent on Z though it

is allowed to vary by quarter. Thus

f(Df |Mf = 1, q) = D
βf (q)−1

f

e−Df/λf

λ
βf (q)

f Γ(βf (q))
.

Recall that the mean of the gamma distribution is given by λβ′Z, while

the variance is λ2β′Z. Thus, our parametrization allows both the mean and

the variance of avoidable, outside and planned delays to depend on who is

on the floor. For finishing delays, it allows the mean and variance to vary by

quarter only.

We chose the gamma distribution for its flexibility and as it fits the data

quite well. In Figure 5 we compare our fitted gamma distributions with his-

tograms based on the actual data and find the approximation to be very close.

This parameterization also allows for a simple interpretation of the estimates.

Assume the observed delay durations come from the sum of delays caused by

each individual on the floor and that these individually generated delays are

independently generated. Then if the delays of a single worker come from

the gamma distribution Γ(αi, λ) where αi is an individual characteristic of

worker i, by gamma-additivity, total delays are distributed as Γ(Σiαi, λ). Our

formulation is therefore consistent with, though not restricted by, a model in
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which todays delays are the sum of delays caused by individual workers and

individual delays in turn depend on the characteristics of the worker.21
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Figure 9: Gamma distribution approximations to observed delay durations

We estimate the probability of delays of various forms by applying the

logit model to the sample of all rolled blooms. To keep our estimation

21For worker i we define αi as follows: αi = γ′1Zi + γ′2
Y
N + ui where Zi contains

worker-specific characteristics from Z, Y contains common characteristics, and ui is
worker i’s fixed effect. Then it is easily seen that

∑
αi =

∑
(γ′1Zi + γ′2

Y
N + ui) =

γ1 [number of workers by designation, training by type]+γ′2Y+full set of fixed effects =
β′Z. For the model without worker fixed-effects, omit ui from the above derivation. Tables
5 and 6 in the next section present estimates of the model with and without worker fixed
effects.
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tractable, we assume that all random processes in the model (Mx, Dx) are

jointly independent conditional on Z. The only permissible correlation be-

tween outside, avoidable and planned delays must therefore go through the

brigade on the floor. This assumption allows avoidable, outside and planned

delays to be estimated independently of each other. We estimate βx and λx

independently for avoidable, outside, planned and finishing delays by apply-

ing the method of maximum likelihood to the sub-sample of blooms with

positive delay durations, Dx. It is well known that this likelihood function

is concave and so has a unique maximum. (S. C. Choi & R. Wette 1969).

6 Estimation

We begin by describing the construction of variables that comprise the shift-

wise characteristics of workers Z in our model. These include the number

of workers, disaggregated by their designation, diversity indices based on

hometown and caste and training stocks by nine training categories.

The technological process is organized around ten groups of workers. As

shown in Figure 1, there are seven teams of workers. In addition, there are

three groups ( Executives, Crane operators and Technicians) who may appear

at any stage of the process. Since different groups perform different tasks,

we treat them as separate types of labor and construct ten labor variables

for the shift-wise numbers in each of these groups.

Worker diversity may affect cooperation among workers within a shift.
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We use two indices to capture different dimensions of diversity, home state

and caste affiliation. These are constructed as follows:

local mix = min(slocal, 1− slocal),

caste mix = min(sscst, 1− sscst),

where slocal is the share of shift workers originating from the local area around

Bhilai and sscst is the share of workers from the Scheduled Castes and Sched-

uled Tribes, the two groups that declared as disadvantaged by the Indian

state and are entitled to affirmative action benefits.

To examine the effects of training, we construct training stocks for the

nine categories in Table 2 for each worker on each date. So, for example,

the total stock of safety training for worker w at any date equals the total

number of days of such training administered to him by that date. We

aggregate individual stocks for all workers on the attendance sheet for that

shift to construct our nine stocks for every shift.

The model is estimated on the sample of shifts producing only rails during

the period January 1, 2000-March 31, 2003. Table 5 presents our results. All

estimates are presented as “average marginal effects”. For example, the effect

of productivity training on the probability of an avoidable delay occurring

has a marginal effect of -0.33. Recall that our estimates are scaled up by

10,000. This means that on average, an extra day of this training reduces

the probability of a mistake on a single bloom by .000033 and with roughly
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200 blooms a shift, by 0.66 percent a shift.

Column 1 of the table contains logit estimates based on the sample of all

418,819 blooms rolled over this period. If an avoidable delay occurs during

a shift, we set Ma = 1 for the first bloom in that shift. For each subsequent

avoidable delay on that shift, we assign that delay to subsequent blooms

in that same shift. If, say, four avoidable delay episodes occur during that

shift, Ma = 1 for the first four blooms of that shift. Given that the worker

characteristics are the same for all blooms rolled in the shift and delays are

assumed to be independent, all assignments of delays to blooms have equal

probability and the way in which delays are assigned to particular blooms

does not affect our estimates.

Columns 2-4 contain maximum likelihood estimates based on the gamma

distributions described above and the number of observations is therefore

the number all delay episodes during this period for each type of delay. The

dependent variable is the amount of delay time, in minutes. There are there-

fore as many observations per shift as delay episodes of the category that is

being explained.

The estimates are consistent with the presence of over staffing. Note that

in column 1 of Table 5 whenever the coefficient on the number of workers on

the floor of a given type is significant, it is positive, indicating a higher prob-

ability of a mistake. The estimates on the determinants of delay durations

in columns 2-4 also provide no clear evidence that the mistakes are fixed

faster by larger brigades. Hence, a increase in the quantity of labor hired, all
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else equal, is unlikely to reduce downtime and raise output per shift. These

results are supported by the anecdotal evidence on over staffing at the BSP

given in (Parry 1999).

Some types of training do seem to reduce avoidable mistakes as seen

by the negative coefficients on environmental, motivational and productivity

training. However we show below that of these, only productivity training

seems to be robust to changes in model specification. We also find no evidence

that caste diversity impairs productivity; if anything, workers in shifts that

are heterogeneous in terms of caste seem to make fewer mistakes.

Total labor variables alone might not be able to capture all the relevant

dynamics in workforce composition. When using aggregate numbers for dif-

ferent designations and training stocks, we implicitly assume that replacing

one worker with another will not change the outcome as long as the work-

ers’ training stocks, etc., are the same. If this is not the case, our estimates

may be subject to the omitted variable bias. To check the robustness of the

estimates in 5, we augment Z by individual worker dummies and reestimate

these equations.

The estimates presented in Table 6 confirm our main result: productivity

training significantly reduces downtime. In addition motivational training

seems to reduce the average time spent in planned delays. The coefficient of

job instruction training is now positive. This could be because job instruc-

tion occurs when new workers are hired or promoted. To check for this, we

controlled for time in the job by putting in a novice dummy for those on the
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job less than six months (these estimates are available on request), but this

had no effect on estimates. Caste diversity is no longer significant. Thus, the

only robust result is that productivity training helps.

To quantify and better illustrate the total effect of such training on out-

put, we perform a a set of counterfactual simulations in the following section

where the stocks of such training and other possibly relevant explanatory

variables are varied and the dynamics of simulated output are compared

with observed output.

7 Counterfactual Experiments

In this section we use the estimates from the above section to study the

impact of counterfactual changes in labor, diversity and the stock of training

on the overall output. To avoid omitted variable bias, we restrict ourselves

to the model with individual fixed effects and use the estimates from Table

6.

We simulate production bloom by bloom, following the multi step proce-

dure outlined in Section 5. In each of our counterfactual experiments, the set

of brigade characteristics is split in two parts: Z = [Z1,Z2]. The first part

contains variables that we freeze at the level of quarter 1, 2000 in the simu-

lation. The second consists of characteristics that are allowed to change over

time as observed in the data. This way, we predict the time path of output

that would occur, had the management chosen not to adjust the variables
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in Z1. By varying the composition of Z1 and Z2 from one simulation to the

next, we sequentially examine the importance of different sets of explanatory

variables.

Each bloom that enters the mill takes time 1/R to be processed if no

mistakes or delays occur. If the model generates the event that a draw from

a delay distribution is warranted, then the delay drawn is added to this time.

Many delays may occur and these are additively incorporated. There is a

probability, which varies by calendar quarter, that the bloom may be cobbled,

in which case the simulation will throw this bloom out. This continues until

the 480 minutes of the shift are over. At the end of each shift, the total

blooms rolled are generated. We take the monthly output generated by the

simulation and label this to be the simulated output.

We start with simulating a full model in which Z2 contains all the covari-

ates and Z1 is empty. We then shrink the list of variables in Z2 in stages and

observe the response of simulated output. The results of these experiments

are depicted in Figure 7.

Panel (a) shows that the full model fits the monthly output data very

well. Recall from Section 5 that so as not to over parametrize the model, we

only allow for quarterly changes in the probabilities of outside, planned and

finishing delays. As a result, if outside delays, for example, are frequent in a

particular week or month, the model will not take this into account and will

tend to overestimate output for that month. This is why the model does not

track the data spike by spike, but it does track it well on average.
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In panel (b), we assume that the diversity indices are kept at their average

level in the first quarter of 2000. By comparing simulated output here with

that in panel (a), we see that this restriction does very little to estimated

output: therefore we can say that the effect of changing diversity is very

small.

In the next panel, we impose restrictions on an additional set of variables:

the total labor in each team and all worker dummies. This does not allow

the management to control the composition of the workforce at all. The fluc-

tuations in output are now driven only by training stocks and the quarterly

dummies. This causes a model to slightly under predict output starting early

2002. Since these predictions are not systematically outside the confidence

bands, we can say that changes in these labor related variables were not the

primary determinants of output growth. In the RSM, total labor used did

not change by much in this period and none of these coefficients is significant

so it is not not surprising that the change that did occur has little impact.

Panel (d) shows what output would be produced if no changes in diversity

or labor composition were allowed and only the “productivity” training was

administered to the workers. This way, we shut down the effects of all training

that does not belong to the productivity category. Although the latter is the

only covariate not frozen in time, the model still fits the data quite well

suggesting that this other training was pretty useless. There is an over-

prediction in the first and second quarter of 2001 in panel (d), but the fit is

good in later periods.
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Finally, in panel (e) we fix all covariates at their level of their average

value in the first quarter of 2001. The predicted time path of output is

driven by the outside factors only, such as outside mistakes and variations

in the processing rate. We now see a large discrepancy between prediction

and the actual data. The last two panels suggest that productivity training

was crucial in increasing output. Had management done nothing to train

the employees, the growth in output would have been much more modest.

The gap between simulated and actual output starts in the summer of 2001,

which is precisely when the largest productivity training program took place

(see Table 3).

8 Conclusions

We attempt to explain output growth in state-owned industry based on a

proprietary dataset that documents floor-level operations at Bhilai Rail and

Structural Mill, a unit of Steel Authority of India. During the three year

period we consider, output increased by about a third in response to external

pressures. Changes if the rolling account for 42 percent of this, while a fall

in delay episodes and durations accounts for about 55 percent. Delays that

are classified as avoidable by management in turn account for 39 percent of

the time saved by fewer and shorter delays.

We then present and estimate a simple model of production that goes

beyond the traditional production function approach and exploits the struc-
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ture of the technological process. Our estimated model allows us to turn

on and off various channels through which production could have increased.

By conducting such counterfactual experiments, we show, for example, that

most of the growth in production that came from reductions in avoidable

delays occurred due to a single training episode during which workers were

trained on raising rail quality.22

We see the contribution of this paper as both methodological and empir-

ical. The model that we propose is not specific to the steel industry. It may

be applied to any production unit involved in a processing task of an arbi-

trary nature. Since many manufacturing firms are organized around tasks in

established technological chains, our approach is most likely to be useful in

the manufacturing sector.

By considering a firm in which aggregate labor adjustments were not pos-

sible, we highlight the role of other margins of productivity improvements,

namely training and, to use Leibenstein’s phrase, the existence of X-efficiency

which made these changes possible.23 The phase following industrial liber-

alization in India has seen a great diversity of experience with state-owned

industry. While some industries, such as the state-owned airlines, have found

it difficult to compete with private entrants, others like steel, heavy indus-

try, telephone companies and state-owned banks have survived and, in some

cases, increased their market share in response to competition.

22Training episodes were by and large low cost operations as they were implemented at
times when the mill was to be closed anyway.

23(Harvey Leibenstein 1966)
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The co-existence of state and private ownership within narrowly defined

industries is intriguing given the differences in managerial practices, labor

tenure systems and wage structures observed across the two forms of owner-

ship. The changes we observed in Bhilai did not occur until workers perceived

their jobs under threat. It may well be that the combination of job security

and high wages that were associated with low productivity before industrial

liberalization created the potential for the dramatic response that followed

it.
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Table 5: Estimates of downtime components

Dependent variable Ma Da Do Dp

Worker Teams (# workers)

Control Men 1.91† -1.90 -9.65 4.77

Coggers -0.86 -2.53 12.3 3.99

Crane Operators -0.19 2.55 35.6∗ -2.27

Executives -3.63 -4.87 9.19 -12.8

Furnace Maintenance -0.32 -1.31 -21 -1.63

Ground Staff 1.23† 3.31† 5.82 -0.31

Senior Control Men 1.76∗ -4.31† -11.3 -1.12

Services 2.17† 0.22 -10.1 -0.99

Saw Spell 0.45 -1.06 -9.16 0.21

Technicians 5.67∗∗ -2.13 8.33 8.05

Training stocks (days)

Cost Reduction 0.34 -0.04 -3.12 0.18

Environmental -0.53∗∗ 0.06 -0.73 -0.72

IT 0.18 -1.20 3.03 0.29

Job Instruction -0.27 1.30 0.73 1.75

Motivational -0.12∗ 0.17 0.70 -0.12

Productivity -0.33∗∗ -0.13 -1.07† -0.08

Quality Control -0.08 -0.15 -2.04 -0.17

Safety -0.05 0.86 11.9∗∗ 0.89

Other -0.33 -1.08 -0.14 0.79

Caste mix -146∗∗ -108 -261 -185

Local mix 23 -75 -367 156

Observations 418,819 3,366 1,788 5,219

Significance levels : †: 10 percent ∗ : 5 percent ∗∗ : 1 percent

Column 1 reports average marginal effects on Pr{Ma = 1}, scaled up by 10,000

Columns 2-4 report marginal effects on delay durations,scaled up by 10

Unlisted control variables: brigade dummies
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Table 6: Estimates of downtime components (with worker dummies)

Dependent variable Ma Da Do Dp

Worker Teams (# workers)

Control Men 29.2 -3.15 -83.3 12.9

Coggers 20.4 -3.59 17 12.5

Crane Operators -21.7 52.2 58.1 12.1

Executives -1.25 4.73 -11.5 -22.5

Furnace Maintenance 17.4 -23 -193 38.5

Ground Staff 15.5 18.4 -123 14.5

Senior Control Men 28 -1.80 -127 8.74

Services 26.5 27.1 -96 21.6

Saw Spell 14.1 25.2 -132 3.09

Technicians -8.75 -15.9 201 -46.4

Training stocks (days)

Cost Reduction -0.67 2.11 4.18 -2.85

Environmental -0.04 -0.75 -0.75 -0.95

IT -0.32 0.26 21.5 2.62

Job Instruction 4.76∗∗ 4.63 -29.6 5.63

Motivational 0.07 -0.21 0.48 -0.60∗

Productivity -0.41∗∗ -0.43 -1.88 -0.09

Quality Control -0.22 -0.99 -1.64 -0.47

Safety 0.32 2.88 9.99 0.30

Other -0.33 0.45 -3.83 1.07

Caste mix -427 -926 -2638 34.1

Local mix 11.2 -50 474 118

The number of observations are the same as in Table 5.

Significance levels : †: 10 percent ∗ : 5 percent ∗∗ : 1 percent

Column 1 reports average marginal effects on Pr{Ma = 1}, scaled up by 10,000

Columns 2-4 report marginal effects on delay durations, scaled up by 10

Unlisted control variables: individual worker dummies
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(a) Full model: Z2 = Z (b) Freeze diversity
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(c) Freeze diversity, labor and worker dummies (d) Freeze everything but productivity training
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(e) Freeze all covariates: Z2 = []

Figure 10: Diversity, labor and training, and their overall effects on output
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