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ABSTRACT

Adverse shocks to stock markets propagate across the world, with a jump in one region of the world
seemingly causing an increase in the likelihood of a different jump in another region of the world.
To capture this effect mathematically, we introduce a model for asset return dynamics with a drift
component, a volatility component and mutually exciting jumps known as Hawkes processes. In the
model, a jump in one region of the world or one segment of the market increases the intensity of jumps
occurring both in the same region (self-excitation) as well as in other regions (cross-excitation). The
model generates the type of jump clustering that is observed empirically. Jump intensities then mean-revert
until the next jump. We develop and implement an estimation procedure for this model. Our estimates
provide evidence for self-excitation both in the US market as well as in other world markets. Furthermore,
we find that US jumps tend to get reflected quickly in most other markets, while statistical evidence
for the reverse transmission is much less pronounced. Implications of the model for measuring market
stress, risk management and optimal portfolio choise are also investigated.
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Figure 1: Mutual Excitation: Example I. This figure plots the cascade of declines in international
equity markets experienced between February 26, 2007 and March 1, 2007 in the US; Latin America
(LA); Developed European countries (EU); China; and Developed countries in the Pacific. Data
are hourly. Source: MSCI MXRT international equity indices on Bloomberg.

1. Introduction

Asset market crashes are very unlikely to occur under standard Brownian-driven statistical models,
at least with volatility variables calibrated to realistic values. Even more unlikely would be crashes
that happen in not just one, but multiple markets around the world at nearly the same time.
And, even more unlikely would be further large price moves that happen in close succession over
the following days, like earthquake aftershocks. Yet, despite the predictions of standard models,
recurring crises happen every decade or so, with sufficient ferocity to overwhelm the statistical
assumptions embedded in traditional models used for trading, portfolio management and derivative
pricing. These crises seldom have discernible economic causes or warnings, and they tend to
propagate across the world with little regard for economic fundamentals in the affected markets.

Of course, jump processes can be employed to capture the large moves in asset markets that
continuous models are unable to generate. But the interplay between the various jump terms across
markets and over time is not trivial, and standard jump specifications are unable to replicate those
patterns. Indeed, adverse shocks to asset markets in one economic sector or region of the world seem
to increase the probability of observing successive adverse shocks, not only in the market originally
affected but also in other markets. Figures 1 and 2 illustrate two such recent examples, which took
place in February 2007 and October 2008, respectively. Figure 1 describes the aftermath of a sharp
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Figure 2: Mutual Excitation: Example II. This figure plots the cascade of declines in international
equity markets experienced between October 3, 2008 and October 10, 2008 in the US; Latin America
(LA); UK; Developed European countries (EU); and Developed countries in the Pacific. Data are
hourly. Source: MSCI MXRT international equity indices on Bloomberg.

decline that originated in the Chinese stock market. Even though this drop was perhaps not the
only information that caused the European and US markets to fall —there was some concomitant
macroeconomic news on durable goods in the US as well— its effect was felt in other markets in the
form of a major downfall that by far exceeded the typical market reaction to macroeconomic news
releases. Figure 2 shows what happened on and in the few days that followed October 3, 2008,
when the prospects of a $700 billion bailout of the US financial sector were assessed in markets
around the world. The figure shows that foreign markets followed the initial US drop in value
by dropping in turn and that successive large price moves were then recorded over a period of
days. More generally, when observed over a longer time period, as in Figure 3, where we plot daily
stock index returns in six world regions, extreme moves tend to appear in clusters, both in time
(horizontally) and in space (vertically).

These figures illustrate two key aspects of asset price jumps that we will model: they are
clustered in time, and they tend to contaminate cross-sectionally to other regions. Jump clustering
in time is a strong effect in the data. For example, from mid-September to mid-November 2008,
the US stock market jumped by more than 5% on eight separate days. In the post-World War II
era, jumps of magnitude greater than 5% of either sign have only happened on sixteen other days.
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Figure 3: Stock Index Returns in the Six World Regions. This figure plots the log-returns of daily
MSCI international equity index data. We consider six series: US; UK; Developed countries Europe
(EU); Japan (JA); Emerging markets Asia (ASEM); and Latin America (LA). Sample period US,
UK, EU and JA: January 1, 1980 to December 31, 2008; sample period ASEM: January 1, 1988 to
December 31, 2008; sample period LA: January 29, 1988 to December 31, 2008. These series are
the basis for our empirical analysis contained in Section 5. Descriptive statistics are in Table 1.

And intra-day fluctuations were even more pronounced: during the same two months, the range
of intraday returns exceeded 10% during fourteen days. Cross-sectionally, the example in Figure 1
is one of the few cases in which the US stock market is affected by a non-US stock market jump.
Usually, stock markets around the world appear to take their cues from the US market. A more
typical situation is therefore that illustrated in Figure 2 where US news and market events lead
successive market moves elsewhere around the world. As becomes apparent from inspection of the
figures, the shocks do not occur simultaneously, especially when viewed at intradaily frequencies.
It takes some time for the transmission, if at all, to take place.1

In fact, what characterizes a crisis from the point of view of the time series properties of observed
returns is typically not the initial jump, which is often limited in scope and in many cases could
easily be absorbed, but the amplification that takes place subsequently over hours or days, and the
fact that other markets become affected as well.2 To the best of our knowledge, existing time series

1Differences in time zones and trading hours require careful consideration; our treatment of the data is discussed
later in the paper.

2There is lively debate in the literature regarding the meaning to give to the term “financial contagion,” whether
it should be distinguished from spillovers, etc.: see e.g., Forbes and Rigobon (2002) for a discussion. Without taking
sides in that debate, we use the term “financial contagion” throughout the paper to mean both the cross-region
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models used to represent financial crises are not able to generate all these features, dynamic and
cross-sectional, together.

To model this type of financial propagation, we need to leave the widely applied class of Lévy
jumps, which is the usual class of driving processes employed in the literature. Lévy processes, such
as the compound Poisson process, have independent increments: as a result, they do not allow for
any type of serial dependence, whence propagation of jumps over time as well as propagation of
jumps across markets are key components we wish to capture. So, in this paper, we employ a model
for asset return dynamics that captures the cross-sectional and serial dependence observed across
stock markets around the world. Mutually exciting jump processes, known as Hawkes processes,
are natural candidates for modeling this “contagion” phenomenon mathematically.3 Basically, in a
Hawkes process, a jump somewhere raises the probability of future jumps both in the same region
and elsewhere. Jumps in asset returns therefore “self-excite” both in space and in time. In order
for the asset returns process to be stationary, we then make the degrees of excitation of the various
jumps, or jump intensities, mean revert until the next jump.

These jumps, by virtue of their self- and cross-excitation, introduce a feedback element. This
aspect of the model can be thought of as playing the same role for jumps as ARCH does for volatility
(see Engle (1982)). Namely, the ARCH model introduces feedback from returns to volatility and
back: large returns lead to large volatilities which then make it more likely to observe large returns.
In the absence of further excitation, volatility then reverts to its steady state level. Here, similarly,
jumps lead to larger jump intensities, which then make it more likely to observe further jumps. In
the absence of further excitation, jump intensities then revert to their steady state level.

Existing applications of Hawkes processes have typically employed them as pure point processes.
As a result, the paths of the variables of interest will typically be piecewise constant, which is
appropriate in many settings. Here, however, we wish to model asset prices. While our focus is on
the return dynamics in times of crisis, we also wish to provide a model in which asset prices move
normally and financial crises are rare. We will therefore not consider Hawkes processes on their
own, but rather include them on top of the usual asset price components consisting of a drift or
expected return, and a continuous or volatility component.

The paper makes two separate contributions. First, we propose a model consisting of a mutually
exciting jump component added to a continuous Brownian component with stochastic volatility,
as well as a drift term, which we refer to as a Hawkes jump-diffusion model by analogy with

transmission of shocks and the increase in the likelihood of successive shocks over time in the affected countries
following an initial shock. While contagion in this broad sense can take place both during “good” times as well as
during crisis times, the contagion phenomenon is more prevalent during crisis times.

3Hawkes processes were originally proposed as mathematical models to represent the transmission of contagious
diseases in epidemiology. They have also found applications in neurophysiology and in the modeling of earthquake
occurrences (see, e.g., Brillinger (1988) and Ogata and Akaike (1982)). In market microstructure, Bowsher (2007)
employs them to jointly model transaction times and price changes at high frequency. Self-exciting models are now
also being employed to model joint defaults in portfolios of credit derivatives; see e.g., Azizpour and Giesecke (2008).
Hawkes processes have also been proposed in the literature on social interactions to model the “viral propagation”
of some phenomena, such as the viewing of YouTube videos (see Crane and Sornette (2008).)
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the Poissonian jump-diffusion model familiar to financial economists since Merton (1976). In the
model, mutually exciting jumps are there to capture crises, while the remaining components are
there to represent the evolution of the asset returns in normal times. Some important financial
implications of the model we propose are investigated. Second, we develop and implement an
estimation procedure for this model. Our estimation procedure is based on the generalized method
of moments (GMM) using integrated moments of the model, which we derive in closed-form. This
closed-form feature has some important advantages: it means, among other aspects, that we can
deal with multivariate models and that the estimation is sufficiently fast to conduct an extensive
Monte Carlo study to test its accuracy.4 ,5

When Hawkes processes are considered to model credit defaults, unlike our setting, the jump
events in credit risk (defaults) are directly observable from the data. Here, due to the fact that
neither the stochastic volatilities nor the jumps and jump intensities are directly observable, the
corresponding inference problem we face is particularly challenging, and we develop an estimation
procedure which explicitly accounts for the latency of part of the state vector. In brief, we do this
by first computing the conditional moments using the full state vector : asset returns, stochastic
volatilities, jumps and jump intensities; then conditioning down by taking expected values over
the latent state variables: volatilities, jumps and jump intensities. This results in expressions
that depend only upon the observable state variables, namely the asset returns, but involve all the
parameters of the model, including those driving the latent state variables.

We estimate our model using international stock index returns for six world regions. The
empirical analysis indicates that both the US market as well as other markets strongly self-excite
over time. Cross-sectionally, we find that US jumps tend to get reflected quickly in most other
markets, while statistical evidence for the reverse transmission is much less pronounced.

As a model for asset prices that explicitly accounts for crises, our model is decidedly reduced-
form. As such, it cannot explain the source(s) of the contagion that is observed in the data in times
of crises, or get at the channels of transmission of that contagion, whether they are trade linkages,
financial linkages, financial constraints, outflows of capital, herding behaviors, the fragility of the
system, lack of coordinated responses, etc. In all likelihood, all are important to different degrees

4The study of multivariate asset return models with jumps has recently seen a lot of activity. For example, Ang
and Chen (2002) and Das and Uppal (2004) who study a Poisson-driven jump-diffusion model (a multivariate version
of the Merton (1976) model). Ang and Chen (2002) find empirically that it fails to capture persistence of covariance
dynamics in the data and captures almost no asymmetric correlation effects. Interesting to note is that none of the
models considered in Ang and Chen (2002), which in addition to the jump-diffusion model include an asymmetric
GARCH model, a regime-switching Gaussian model and a regime-switching GARCH model, completely explains
the extent of observed asymmetries in correlation. Hawkes jump-diffusion models of the type that we study exhibit
both persistence of co-variability and asymmetric co-variability and are therefore expected to outperform the simpler
Poisson-driven jump-diffusion model. And, while the Poisson-driven jump-diffusion model studied by Ang and Chen
(2002) and Das and Uppal (2004) captures only systemic jump risk, the jump risk model we propose captures both
systemic jump risk and idiosyncratic jump risk.

5 In a univariate setting, Maheu and McCurdy (2004) and Yu (2004) provide clear evidence for jump clustering,
supporting self-exciting jump models. Yu (2004) derives unconditional moments and autocovariances for the jump
model proposed by Knight and Satchell (1998), which is of a different type than the univariate version of the mutually
exciting model we study.
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at different times in different crises, and there is an important literature, both theoretical and
empirical, on these various mechanisms.6 Our model is merely a framework to quantify the nature
and extent of the observed contagion, not an attempt at isolating the transmission mechanism(s).

But, once estimated on the data, this reduced-form model can be employed as a description of
the process driving the asset returns, notably their risk. In the Merton tradition, such reduced-form
models are classically employed in finance for derivative pricing, portfolio choice or risk manage-
ment, among others. In this context, the model is amenable to at least four important financial
applications.

First, we discuss how the mutually exciting jump intensities of the model can be filtered out of
the observed asset returns, and propose the resulting time series as a measure of market stress in
lieu perhaps of volatility-based measurements such as the volatility index (VIX) which aggregates
together both diffusive and jump risks. A second application of the model consists in quantifying the
magnitude of the tails of asset returns. We evaluate the joint tails over the typical ten-day horizon
that is employed in Value-at-Risk (VaR) calculations, and compute the systemic risk inherent in
multiple assets jumping together in the same time period, comparing in particular the prediction of
Poissonian jump-diffusions vs. Hawkes jump-diffusions. We find that most of the autocorrelation
and cross-correlation patterns due to the mutually exciting component of the model tend to be
important but die out after a few days, making the model ideally suited for this purpose. Third, it
is possible to derive the optimal composition of an investor’s portfolio which is subject to continuous
Brownian moves and mutually exciting jumps. Evidently, controlling exposure to jumps should be
done on the basis of the most realistic model for correlated shocks. This motivates the study of
more subtle forms of propagation in the form not just of simultaneous jumps within or across
sectors, but rather in the form of a jump in one sector causing an increase in the likelihood that
a different jump will occur in another sector.7 Finally, in terms of contingent claim pricing, we
note that our model can be restricted to fit the rich class of affine jump-diffusion models, in their
generalized version allowing for multiple jump types defined in Appendix B of Duffie et al. (2000).
An affine special case of our model would therefore share in the tractable pricing implementation
that results from an affine structure.

The rest of this paper is organized as follows: In Section 2, we present the model of asset returns,
and discuss some of its properties. In Section 3, we develop our estimation procedure. In Section 4,

6See, e.g., Calvo and Mendoza (2000), Chang and Velasco (2001), Caramazza et al. (2004), Dornbusch et al. (2000),
Dungey and Gonzalez-Hermosillo (2005), Dungey and Martin (2007), Eichengreen et al. (1996), Fry et al. (2009),
Gerlach and Smets (1995), Rigobon (2003), Glick and Rose (1999), Kaminsky and Reinhart (1998), Kaminsky and
Reinhart (2000), Kodres and Pritsker (2002), Krugman (1979), Nikitin and Smith (2008), Obstfeld (1996), Pavlova
and Rigobon (2008) and Rijckeghem and Weder (2001).

7Other papers have studied the impact of time-varying correlations and jumps on portfolio choice in a framework
without mutual excitation: Ang and Bekaert (2002) consider a regime-switching model, consisting of one regime with
low correlations and low volatilities and one regime with higher correlations, higher volatilities and lower conditional
means. They find that the existence of a higher volatility bear market regime does not nullify the benefits of
international diversification, as long as the investor dynamically rebalances his portfolio. Das and Uppal (2004) find
empirically that the loss reduction in diversification due to transmission across equity markets is not substantial.
Aït-Sahalia et al. (2009) derive a closed-from solution to the portfolio choice problem with standard systematic, not
mutually exciting, jumps across asset returns.
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we study the finite sample behavior of our estimators on the basis of a Monte Carlo study. Section
5 contains the empirical analysis. In Section 6, we investigate some implications of our model and
its financial applications. Conclusions are in Section 7.

2. Asset Return Dynamics

In our model, asset prices are subject to Brownian volatility as well as jumps. Relative to the
classical jump-diffusion model in finance, which originated in Merton (1976), we allow the jumps
to be mutually exciting in the fashion of Hawkes (1971a) as a means of capturing the contagion
phenomenon: that is, a jump somewhere raises the likelihood of getting a jump elsewhere in the
near future.

2.1. Jump Dynamics: Mutually Exciting Processes

Hawkes (1971a) (see also Hawkes (1971b), Hawkes and Oakes (1974) and Oakes (1975)) introduced
mutually exciting processes, which are special cases of path-dependent point processes. The inten-
sities of a multivariate mutually exciting process depend on the paths of the point process; hence,
the jump intensities are themselves stochastic processes and will be part of the state vector. The
couple consisting of the jump process and its intensity remains a Markov process.

The jump intensities ramp up in response to jumps in one of the marginal point processes.
We consider m point processes Ni,t, i = 1, . . . ,m. In our application, there will be one such jump
process Ni,t for each of the m regions of the world that we study. Of course, alternative breakdowns
of the sample are possible, isolating sectors of the economy, for instance.

Similar to the familiar Poisson process, the Hawkes process is defined by its intensity process
λi,t which describes the Ft−conditional mean jump rate per unit of time, namely⎧⎪⎨⎪⎩

P [Ni,t+∆ −Ni,t = 0|Ft] = 1− λi,t∆+ o(∆)

P [Ni,t+∆ −Ni,t = 1|Ft] = λi,t∆+ o(∆)

P [Ni,t+∆ −Ni,t > 1|Ft] = o(∆)

(2.1)

but instead of being constant the jump intensities follow the dynamics

λi,t = λi,∞ +
mX
j=1

Z t

−∞
gi,j (t− s) dNj,s, i = 1, . . . ,m. (2.2)

In other words, each previous jump dNj,s, s ∈ (−∞, t), j = 1, . . . ,m, raises the jump intensities λi,t.
Taken jointly, (N,λ) is a Markov process. The distribution of the jump processes Nj,s is determined
by that of the intensities λj,s. Each compensated process Ni,t −

R t
−∞ λi,sds is a local martingale.

Hawkes processes are related to, but essentially different from, doubly stochastic Poisson (or Cox)
processes: In a doubly stochastic Poisson process, the jump intensities are also stationary stochastic
processes but the conditioning σ-algebra in (2.1) is {Ni,s(s ≤ t) : λi,s(−∞ < s < ∞)}, i.e., the
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path of λi,t is not affected by the path of Ni,t; see e.g., Karr (1991) for further details on doubly
stochastic Poisson processes.

We assume that in (2.2) the constant parameters λi,∞ ≥ 0 for all i = 1, . . . ,m, that the
real-valued functions gi,j(u) ≥ 0 for all u ≥ 0 and for all i, j = 1, . . . ,m. Notice that λi,∞, gi,j
being non-negative for all i, j = 1, . . . ,m ensures the non-negativity of the intensity processes with
probability one.

Let Λ∞ denote the m× 1 vector with components λi,∞ and Γ :=
R∞
0 Gudu the m×m matrix

where Gu is the matrix with elements gi,j(u)’s. Let λi := E [λi,t] denote the unconditional expected
jump intensity, and Λ the m× 1 vector with components λi. Since from (2.1), E [dNi,s] = λids, we
see that

λi = λi,∞ +
mX
j=1

λj

Z t

−∞
gi,j (t− s) ds = λi,∞ +

mX
j=1

µZ ∞

0
gi,j (u) du

¶
λj , (2.3)

or in vector form Λ = Λ∞+Γ ·Λ. Therefore Λ = (I − Γ)−1 Λ∞, where I is the identity matrix, and
we assume that all the elements of Λ are positive and finite. This will ensure stationarity of the
model.

2.2. Full Dynamics: Mutually Exciting Jump-Diffusion

The mutually exciting jump process constitutes only part of our model of asset returns. We assume
that asset log-returns follow the semimartingale dynamics

dXi,t = μidt+ σidWi,t + Zi,tdNi,t, i = 1, . . . ,m, (2.4)

which consists of a drift term, a volatility term, and mutually exciting jumps. Here, Wt :=

[W1,t, . . . ,Wm,t]
0 is anm-dimensional vector of standard Brownian motions with constant correlation

coefficients ρi,j , i, j = 1, ...,m, Z := [Z1, . . . , Zm]
0 is the vector of jump sizes, cross-sectionally and

serially independently distributed with laws FZi supported on (−∞,∞), and Nt := [N1,t, . . . , Nm,t]
0

is the vector of Hawkes processes just described. Throughout, all dynamics are with respect to the
objective probability measure and not to an equivalent martingale measure. Zi may be replaced
by log

³
1 + Z̃i

´
so that the discontinuous part in the differential of the stochastic exponential

eXi,t becomes Z̃ie
Xi,tdNi,t. For notational convenience we write Zi rather than log

³
1 + Z̃i

´
. We

will leave the distribution of jump sizes essentially unrestricted, so asymmetries such as negative
jumps (crashes) being more likely than positive jumps (booms), can be built into the jump size
distributions.

In the base model (2.4), the quantities μi and σi are constant parameters. In this case we
assume that Σ, the m × m-dimensional variance-covariance matrix of the risk coming from the
continuous part of the model, with elements Σi,j = ρi,jσiσj , is a non-singular matrix. We always
assume that the vector of Brownian motions W , the vector of jump sizes Z and the vector of jump
processes N are mutually independent.
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In an extension of the model (2.4), we allow for stochastic volatility:

dXi,t = μidt+
p
Vi,tdW

X
i,t + Zi,tdNi,t, (2.5)

where the instantaneous variance follows the Heston (1993) model

dVi,t = κi(θi − Vi,t)dt+ ηi
p
Vi,tdW

V
i,t, (2.6)

with κi, θi, ηi constant parameters. Model (2.4) corresponds to the special case where the initial
value is Vi,0 = θi and ηi = 0. Note that Vi,t is a local variance rather than a local standard deviation;
while keeping this in mind we will refer to Vi,t as the stochastic volatility variable. Vi,t follows the
square root process of Feller (1951) and is bounded below by zero. The boundary value zero cannot
be achieved as long as Feller’s condition, 2κiθi ≥ η2i , is satisfied.

The extended model allows for correlations among the individual Brownian motions driving
equations (2.6) as well as between the individual Brownian motions driving equations (2.5) and
(2.6), thereby capturing a potential leverage effect. But in the presence of systematic jumps, the
Brownian correlation, even if it increases, will not play a major role: in times of crisis, jumps swamp
everything else.8

Our estimation procedure can cover general stochastic volatility specifications, and we show
below how to derive closed-form expressions for observable moments of the log-returns. But we need
to settle on a specific model with interpretable parameters to do the actual parametric estimation,
and for this purpose we assume that the volatility follows the model (2.6).

Our model, with mutually exciting jump processes added to a continuous Brownian component
with (possibly stochastic) volatility as well as a drift, will be referred to as a Hawkes jump-diffusion.
Hawkes jump-diffusion processes will generate observed time-varying correlations and maximal
correlations around crisis times, due to the systematic jumps. Isolating a change in the structure
of the Brownian variance-covariance matrix Σ becomes difficult in this context, because linear
correlation measures weigh equally all returns; as a result, they will tend to average out any
contagion that happens over a limited number of days among the comparatively large number of
days where no jumps occur.9 Similarly, the observed clustering of extreme returns is generated
by Hawkes jump-diffusion processes in a different manner from pure stochastic volatility models
where periods of high volatility can also lead to clusters of larger absolute returns, although not of
a magnitude and rate of occurrence compatible with what is actually observed in the data.

8The linear correlation measure of dependence is not an appropriate measure for the type of financial propagation
observed in crises (see Bae et al. (2003) and Longin and Solnik (2001) for a discussion). Abandoning the correlation
framework, Bae et al. (2003) use a multinomial logistic regression model to model and evaluate joint occurrences of
large absolute value returns.

9Analyzing correlation structures between asset returns, Goetzmann et al. (2005) find that (linear) correlations
across world markets vary significantly over time. Evidence from capital markets history suggests that periods of
poor market performance are associated with high correlations. They find that average correlations went up and
reached a peak in the 1930’s (Great Depression) that has been unequaled until the modern era. Bekaert and Harvey
(1995) and Bekaert and Harvey (2000) provide evidence that market integration and financial liberalization change
the comovement of emerging markets stock returns with the global market factor.
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Figure 4: Jump Intensity Processes: A Sample Path. This figure plots a sample path of the intensity
processes (λ1,t, λ2,t) generated by a bivariate mutually exciting Hawkes process with exponential
decay (see Section 2.3).

2.3. Mean Reversion in Jump Intensities

The tractability of the jump part of our model, and hence the possibility of estimating it, depends
on the parameterization of the intensity processes λi,t. A special case of interest occurs when

gi,j(t− s) = βi,je
−αi(t−s), s < t, i, j = 1, . . . ,m, (2.7)

with αi > 0, βi,j ≥ 0 for all i, j = 1, . . . ,m. In this case, a jump in asset prices causes the intensities
to jump up, and then the intensity decays exponentially back: λi,t jumps by βi,j whenever a shock
in sector j occurs, and then decays back towards a level λi,∞ at speed αi. Figure 4 illustrates a
sample path of the jump intensity processes in the bivariate mutually exciting case. Asset return
dynamics of equity markets that are highly interrelated may exhibit jumps that take place almost
simultaneously. In our model this corresponds to the case in which mutual excitation is very severe
(large βi,j , i 6= j).

With this model, the Γ matrix is given by

Γ =

⎛⎜⎝
β11
α1

· · · β1m
α1

...
. . .

...
βm1
αm

· · · βmm

αm

⎞⎟⎠ . (2.8)

Under exponential decay (2.7), each jump intensity has the mean-reverting dynamics

dλi,t = αi (λi,∞ − λi,t) dt+
mX
j=1

βi,jdNj,t. (2.9)
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Other specifications of the intensity process may also be considered and it is possible to obtain
the covariance density matrix and spectral density for general gi,j functions. In even more general
specifications, the intensity may depend not only on the amount of time elapsed since a jump event
but also on the size of past jump events.

The jump part of the model is able to generate the two features we are after: First, jump
activity is variable over time, with many (of the few) jumps typically being concentrated in short
periods of time; this is jump clustering. Second, adverse shocks propagate across the world in a
contagious way, with adverse events in one region of the world seemingly increasing the likelihood
of shocks in other regions of the world; this is jump propagation. Under exponential decay, the
element-by-element Laplace transform V ∗N(s) of the covariance density matrix VN (τ) is given by

V ∗N(s) = (I −G∗(s))−1
¡
G∗(s)Diag(Λ) + βV ∗N

0{α}/{α+ s}
¢
, (2.10)

with G(τ) the m×m-matrix given by

G(τ) =

⎛⎜⎝ β11e
−α1τ · · · β1me

−α1τ

...
. . .

...
βm1e

−αmτ · · · βmme
−αmτ

⎞⎟⎠ , (2.11)

and G∗(s) its element-by-element Laplace transform. The indices of {a} and {a+ s} correspond to
the element-by-element indices of β.

With stochastic volatilities and stochastic jump intensities added to the state vector, our model
can be restricted to be part of the class of generalized affine jump-diffusion processes. To see this,
consider a generalized affine jump-diffusion A in a state space D ⊂ R3×m, defined as a strong
solution to the stochastic differential equation

dAt = μA(At)dt+ σA(At)dW
A
t +

mX
j=1

dJj,t, (2.12)

where μA : D → R3×m, σA : D → R(3×m)×(3×m), WA is a Brownian motion in R3×m, and Ji, i =
1, . . . ,m, are pure jump processes with jump intensities λAi,t = λAi (At), for some λAi : D → [0,∞),
and with fixed jump size distributions on R3×m. It is possible to restrict a process A of the form
(2.12) to be affine, by considering the special case where μA, σAσA0 and λAt are affine on D. Then
our Hawkes jump-diffusion model with exponential decay can be restricted to be affine by setting
At = [Xt, Vt, λt]

0 with the corresponding μA, σAσA0 and λAt being affine.

2.4. Jump Size Distribution

We have noted that the analysis can proceed without assumptions on the distribution of the jump
magnitudes, and in fact, we will provide expressions for the moments of the process as functions
of the generic moments of the jump size Zt, which we denote M [Z, k] := E

£
Zk
t

¤
. In order to

estimate a specific parametric model, however, we need to parameterize these moments to reduce
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the dimensionality of the parameter space, given that the distribution of jumps of finite activity is
difficult to pin down since large jumps are by nature rare.

For this purpose, we will assume that Zi is a scalar random variable with cumulative probability
distribution

FZi(x) =

(
pie

−γi,1(−x), −∞ < x ≤ 0;
pi + (1− pi)(1− e−γi,2x), 0 < x <∞; (2.13)

where γi,1, γi,2 > 0 and 0 ≤ pi ≤ 1, i = 1, . . . ,m. The corresponding density is

fZi(x) =

(
piγi,1e

−γi,1(−x), −∞ < x ≤ 0;
(1− pi)γi,2e

−γi,2x, 0 < x <∞.
(2.14)

One easily verifies that

E
h
Zk
i

i
= (−1)k k! pi

γki,1
+

k! (1− pi)

γki,2
, k = 1, 2, . . . . (2.15)

This jump size distribution is also used by Kou (2002) in the context of option pricing.

In our empirical study below we use equity index data. As such, our analysis does not suffer
from survivorship bias. However, survivorship bias, when present (for example, when individual
stock returns are used), can easily be dealt with in this model. Explicitly modeling the survival
and death process involves introducing a point mass at Zi = −∞ in the distribution of the jump
size for log-returns.

3. Estimation Procedure

Neither the point processes Ni,t and the intensity processes λi,t, nor the stochastic volatilities Vi,t,
i = 1, . . . ,m, are directly observable. Instead, what is observed are asset prices, hence log-returns
Xi,t. It turns out that we can derive explicit expressions for the moments of the log-returns that are
implied by the model, as a function only of the observable state variables, in effect integrating out
the unobservable state variables. We will therefore develop a GMM-based estimation procedure.

3.1. Explicit Expressions for the Moments: Markov Infinitesimal Generator

The key to the estimation procedure is the availability in closed-form of the main moments for the
model. Having the moment conditions in closed-form means that the effort involved in minimizing
the GMM criterion function becomes minimal, despite the number of parameters and moment
functions. The moment conditions that we will use to carry out GMM estimation of the model are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

E [∆Xi,t]

E [(∆Xi,t − E [∆Xi,t])
r] , r = 2, . . . , 4

E [∆Xi,t∆Xj,t − E [∆Xi,t]E [∆Xj,t]] , i 6= j

E [∆Xi,t+τ∆Xj,t − E [∆Xi,t]E [∆Xj,t]] , τ > 0.

(3.1)
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As we will see, the reason for using these moment functions is two-fold. First, they are “natural”
in the sense of being easily interpretable: variance, kurtosis, autocovariances. Second, and more
importantly, each moment function plays a specific role in identifying parts of the model.

Throughout the analysis, we use unconditional moments as opposed to conditional moments. To
compute the unconditional moments, we first compute the conditional moments using the full state
vector: asset returns, stochastic volatilities, jumps and jump intensities. Next, we take expected
values, integrating out the latent state variables: volatilities, jumps and jump intensities. Doing so,
we obtain expressions that depend only upon the observable state variables: asset returns. These
expressions, however, contain all the parameters of the model, including those related to the latent
state variables.

To compute the conditional moments, we use the explicit expression of the generator of the
Markov process (2.4) or (2.5)-(2.6) driven by the processes (W,N, λ). Specifically, the computation
of the moment functions reduces to the evaluations of conditional expectations of functions of the
form f(y1, y0, δ) where y1 and y0 denote log-returns separated by some function of the sampling
interval δ. We assume that sampling is equidistant in time. We need to evaluate expressions of the
form EY1,Y0 [f(Y1, Y0,∆)]. The dynamics of the system depends upon additional latent variables
which at the same instants we denote by ξ1 = (v1, l1) and ξ0 = (v0, l0), respectively, where v is the
volatility and l the jump intensity. The standard infinitesimal generator A is the operator which,
when applied to a function g(y1, y0, ξ1, ξ0, δ) in its domain, returns the function A · g given in full
generality by

A · g = ∂g

∂δ
+

mX
i=1

μXi
∂g

∂y1,i
+

mX
i=1

μVi
∂g

∂v1,i
+

mX
i=1

μλi
∂g

∂l1,i
(3.2)

+
1

2

mX
i=1

mX
j=1

σY Yij

∂2g

∂y1,i∂y1,j
+
1

2

mX
i=1

mX
j=1

σY Vij

∂2g

∂y1,i∂v1,j
+
1

2

mX
i=1

mX
j=1

σV Vij

∂2g

∂v1,i∂v1,j

+
mX
i=1

l1,i

Z
zi

{g(y1 + zi, y0, v1, l1 + βi, v0, l0, δ)− g(y1, y0, v1, l1, v0, l0, δ)} fZi(zi)dzi,

where μX is the vector of expected log-returns, μV the vector of stochastic volatility drifts, μλ the
vector of jump intensity drift, σY Y the variance-covariance matrix of log-returns, σY V the variance-
covariance matrix of interactions between returns and volatilities, σV V the variance-covariance
matrix of stochastic volatilities and finally βi = [βi,1, ..., βi,m]

0 the vector of excitation parameters
for the ith jump term. In the case of the mean-reverting jump intensity model described in Section
2.3, we have μλi = αi (λi,∞ − l1,i) .

The usefulness of the infinitesimal generator for our purpose lies in the fact that

EY1,ξ1 [g(Y1, Y0, ξ1, ξ0,∆)|Y0, ξ0] = exp (∆A) · g(Y0, Y0, ξ0, ξ0, 0)

=
JX
j=0

∆j

j!

¡
Aj · g

¢
(Y0, Y0, ξ0, ξ0, 0) +Op

¡
∆J+1

¢
, (3.3)
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where subscripts in EY1,ξ1 indicate the random variables that the expected value operates on, and
Aj · g is defined recursively by Aj · g = A · (Aj−1 · g) for all j ≥ 1. As we will see in the theorems
that follow, (3.2) and its iterates Aj · g, hence the terms in (3.3), can be evaluated in closed-form
for the moment functions of interest given in (3.1). While the starting moment function f(y1, y0, δ)
does not depend directly upon the latent variables (ξ1, ξ0), A · f and successive iterates will, since
the coefficients {μX , μV , μλ, σY Y , σY V , σV V , βi} will in general depend on the full state variables
[X,V, λ].

In other words, we can obtain the conditional expectation of g, using the full state vector
including its unobservable components, EY1,ξ1 [g(Y1, Y0, ξ1, ξ0,∆)|Y0, ξ0] .We then need to “condition
down” by integrating out the unobservable state variables in order to produce moment functions
that can be fitted to the log-returns data. All the expectations are taken with respect to the law
of the process at the true parameter values. From the law of iterated expectations, we have that

EY1,Y0,ξ1,ξ0 [g(Y1, Y0, ξ1, ξ0,∆)] = EY1,Y0,ξ1,ξ0 [EY1,ξ1 [g(Y1, Y0, ξ1, ξ0,∆)|Y0, ξ0]]

=
JX
j=0

∆j

j!
EY0,ξ0

£¡
Aj · g

¢
(Y0, Y0, ξ0, ξ0, 0)

¤
+Op

¡
∆J+1

¢
, (3.4)

so the last step in the necessary calculations will involve computing unconditional expectations
with respect to the stationary law of the state variables.

3.2. The Univariate Case

For ease of exposition, we first provide the expressions of these moments in the univariate case
m = 1. In this situation, we are looking at a single asset with stochastic volatility and jumps that
self-excite, meaning that future jump intensities depend upon the history of their own past jumps:⎧⎪⎨⎪⎩

dXt = μdt+
√
VtdW

X
t + ZtdNt

dVt = κ(θ − Vt)dt+ η
√
VtdW

V
t

dλt = α (λ∞ − λt) dt+ βdNt

(3.5)

with E
£
dWX

t dWV
t

¤
=: ρV dt and λ := E [λt] = αλ∞/(α−β). Note that classical compound Poisson

process jumps are obtained when β = 0 and λ0 = λ∞. Then λt = λ∞ = λ at all t.

At this stage, we can leave the distribution of the jump size essentially unrestricted, and provide
expressions as functions of the moments of the jump size Zt, for which we writeM [Z, k] := E

£
Zk
t

¤
.

Our first main result states that:

Theorem 1. For the univariate model (3.5), the moments are given in closed-form up to order ∆2
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by the following expressions

E [∆Xt] = (μ+ λM [Z, 1])∆+ o(∆2)

E
£
(∆Xt − E [∆Xt])

2
¤
= (θ + λM [Z, 2])∆+

βλ (2α− β)

2(α− β)
M [Z, 1]2∆2 + o(∆2)

E
£
(∆Xt − E [∆Xt])

3
¤
= λM [Z, 3]∆

+
3

2

µ
ηθρV +

(2α− β)βλM [Z, 1]M [Z, 2]

(α− β)

¶
∆2 + o(∆2)

E
£
(∆Xt − E [∆Xt])

4
¤
= λM [Z, 4]∆+

µ
3θη2

2κ
+ 3θ2 + 6θλM [Z, 2]

+ 3λ

µ
λ+

(2α− β)β

2(α− β)

¶
M [Z, 2]2

+
2(2α− β)βλM [Z, 1]M [Z, 3]

(α− β)

¶
∆2 + o(∆2)

while the autocorrelation function of the process is given by

E [(∆Xt − E [∆Xt])(∆Xt+τ − E [∆Xt+τ ])] =
βλ(2α− β)

2(α− β)
e−(α−β)τM [Z, 1]2∆2 + o(∆2)

for all τ > 0.

Intuitively, the identification of the parameters is achieved as follows: the higher order moments
(3 and 4) isolate the jump parameters at the leading order, while the variance puts them on an
equal footing with the diffusive parameters.10 The autocovariance isolates the jump parameters.
Indeed, if the model had no jump component, then from (3.5) with Zt ≡ 0, the law of iterated
expectations implies that

E [(∆Xt) (∆Xt+τ )] = E [(∆Xt)E [(∆Xt+τ ) |Ft+τ ]] = E [(∆Xt) (μ∆)]

= E [E [(∆Xt) |Ft] (μ∆)] = μ2∆2

and so E [(∆Xt − E [∆Xt])(∆Xt+τ − E [∆Xt+τ ])] = 0.

Thus any autocovariance is due to the jump component. Further, if the jump component is
Poissonian, then the increments would be independent and it is the self-excitation of the jumps
that gives rise to the autocorrelation. Thus the observed autocovariance of the increments isolates
the self-exciting component of the model.

As noted above, the model reduces to a Poissonian jump-diffusion if β = 0. Then we indeed

10We use regular moments as opposed to absolute moments. The use of absolute moments —especially absolute
moments of order less than 1 (see Aït-Sahalia (2004))— may be considered in addition, especially for estimating
parameters of the volatility process. Since we are mainly interested in the parameters of the jump process we have
chosen to consider only regular moments in the interest of simplicity and parsimony.
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have

E [∆Xt] = (μ+ λM [Z, 1])∆+ o(∆2)

E
£
(∆Xt − E [∆Xt])

2
¤
= (θ + λM [Z, 2])∆+ o(∆2)

E
£
(∆Xt − E [∆Xt])

3
¤
= λM [Z, 3]∆+

3

2
ηθρV∆2 + o(∆2)

E
£
(∆Xt − E [∆Xt])

4
¤
= λM [Z, 4]∆+ 3

µ
θη2

2κ
+ (θ + λM [Z, 2])2

¶
∆2 + o(∆2)

and the model does not generate any autocorrelation.

It is clear from the explicit expressions of these moments that there will be difficulty in practice
identifying the stochastic volatility parameters: there are simply too many latent processes: Vt, Nt,

λt; while those are integrated out as part of the development of the unconditional moments, their
corresponding parameters remain. So they are theoretically identified, but this identification can
be tenuous in practice. This is an unavoidable consequence of the unobservability of those state
variables. This will be especially so in the multivariate context where there are many potential
correlation coefficients: between each asset’s log-return and all the volatilities, among the different
asset log-returns and among the different volatilities. To avoid this problem, we will restrict some
of the parameters to be identical, and identify only the level of the volatility.

3.3. The Bivariate Case

We now turn to the bivariate case, m = 2. We consider the general case in the Appendix, but
restrict attention here to the more tractable triangular excitation case, where β12 = 0, with state-
independent volatilities. That is, the base model is⎧⎪⎪⎪⎨⎪⎪⎪⎩

dX1t = μ1dt+ σ1dW
1
t + Z1tdN1t

dX2t = μ2dt+ σ2dW
2
t + Z2tdN2t

dλ1t = α1 (λ1∞ − λ1t) dt+ β11dN1t
dλ2t = α2 (λ2∞ − λ2t) dt+ β21dN1t + β22dN2t

(3.6)

with E[dW 1
t dW

2
t ] =: ρdt.

Theorem 2. For the bivariate model (3.6), the mean and variance of the log-returns are given in
closed-form up to order ∆2 by the following expressions

E [∆X1t] = (μ1 + λ1M [Z1, 1])∆+ o(∆2)
E [∆X2t] = (μ2 + λ2M [Z2, 1])∆+ o(∆2)
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and

E
£
(∆X1t − E [∆X1t])2

¤
=
¡
σ21 + λ1M [Z1, 2]

¢
∆+ (2α1−β11)β11λ1

2(α1−β11)
M [Z1, 1]

2∆2 + o(∆2)

E
£
(∆X2t − E [∆X2t])2

¤
= (σ22 + λ2M [Z2, 2])∆+

µ
β221(α21+(α1−β11)(α2−β22))λ1

2(α1−β11)(α2−β22)(α1+α2−β11−β22)

+ (2α2−β22)β22λ2
2(α2−β22)

´
M [Z2, 1]

2∆2 + o
¡
∆2
¢

E [(∆X1t − E [∆X1t])(∆X2t − E [∆X2t])] = ρσ1σ2∆

+
β21(α21+(α1−β11)(α2−β22))λ1
2(α1−β11)(α1+α2−β11−β22) M [Z1, 1]M [Z2, 1]∆

2 + o
¡
∆2
¢
.

As expected, the variance places the contributions from the diffusive and jump components of
the model on the same level. However, the leading terms of the higher order moments isolate the
jump component:

Theorem 3. The higher order moments of the bivariate model are given up to order ∆2 by the
following expressions:

E
£
(∆X1t − E [∆X1t])3

¤
= λ1M [Z1, 3]∆+

3(2α1−β11)β11λ1
2(α1−β11) M [Z1, 1]M [Z1, 2]∆

2 + o(∆2)

E
£
(∆X2t − E [∆X2t])3

¤
= λ2M [Z2, 3]∆+

3
2

³
(2α2−β22)β22λ2

(α2−β22)

+
(α21+(α1−β11)(α2−β22))λ1β221

(α1−β11)(α2−β22)(α1+α2−β11−β22)

¶
M [Z2, 1]M [Z2, 2]∆

2 + o(∆2)

E
£
(∆X1t − E [∆X1t])2(∆X2t − E [∆X2t])

¤
=

β21(α21+(α2−β22)(α1−β11))λ1
2(α1−β11)(α1+α2−β11−β22)
×M [Z1, 2]M [Z2, 1]∆

2 + o(∆2)

E
£
(∆X1t − E [∆X1t])(∆X2t − E [∆X2t])

2
¤
=

β21(α21+(α2−β22)(α1−β11))λ1
2(α1−β11)(α1+α2−β11−β22)
×M [Z1, 1]M [Z2, 2]∆

2 + o(∆2)

E
£
(∆X1t − E [∆X1t])

4
¤
= λ1M [Z1, 4]∆+

¡
3σ41 + 6M [Z1, 2]λ1σ

2
1

+3M [Z1,2]
2λ1(2α1(β11+λ1)−β11(β11+2λ1))

2(α1−β11) + 2(2α1−β11)β11λ1
(α1−β11) M [Z1, 1]M [Z1, 3]

´
∆2 + o(∆2)

E
£
(∆X2t − E [∆X2t])

4
¤
= λ2M [Z2, 4]∆+

¡
3σ41 + 6M [Z2, 2]λ2σ

2
2

+3M [Z2, 2]
2 (η22 + β22λ2) + 4 (η22 + (β22 − λ2)λ2)M [Z2, 1]M [Z2, 3])∆

2 + o(∆2).

The other contemporaneous cross-terms that are not listed above,

E
h
(∆X1t − E [∆X1t])

j(∆X2t − E [∆X2t])k
i
,

of order j + k = 4, are of smaller order O(∆2).

The expressions above depend upon expected values and variances of the jump intensities, which
are given by

λ1 := E [λ1t] = α1λ1,∞
α1−β11

λ2 := E [λ2t] = α1β21λ1,∞+α1α2λ2,∞−α2β11λ2,∞
(α1−β11)(α2−β22)

and
η11 := E

£
λ21t
¤
= λ21 +

β211λ1
2(α1−β11)

η22 := E
£
λ22t
¤
= λ22 +

β222λ2
2(α2−β22) +

(α21+(α2−β22)α1+β11(β22−α2))λ1β221
2(α1−β11)(α2−β22)(α1+α2−β11−β22)

η12 := E [λ1tλ2t] = λ2λ1 +
(2α1−β11)β11β21λ1

2(α1−β11)(α1+α2−β11−β22) .
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The final result provides the autocovariance function of the bivariate model:

Theorem 4. For the bivariate model (3.5), the autocovariances of the log-returns at lag τ > 0,

Ci,j(τ) := E [(∆Xj,t − E [∆Xj,t])(∆Xi,t+τ − E [∆Xi,t+τ ])] ,

are given in closed-form up to order ∆2 by the following expressions, which are driven by the
mutually exciting component of the model:

C1,1(τ) = e−τ(α1−β11)a11,1M [Z1, 1]
2∆2 + o(∆2)

C1,2(τ) = e−τ(α1−β11)a12,1M [Z1, 1]M [Z2, 1]∆
2 + o(∆2)

C2,1(τ) =
¡
e−τ(α1−β11)a21,1 + e−τ(α2−β22)a21,2

¢
M [Z1, 1]M [Z2, 1]∆

2 + o(∆2)

C2,2(τ) =
¡
e−τ(α1−β11)a22,1 + e−τ(α2−β22)a22,2

¢
M [Z2, 1]

2∆2 + o(∆2)

where
a11,1 =

(2α1−β11)β11λ1
2(α1−β11)

a12,1 =
(2α1−β11)β11β21λ1

2(α1−β11)(α1+α2−β11−β22)
a21,1 =

(2α1−β11)β11β21λ1
2(α1−β11)(−α1+α2+β11−β22)

a21,2 =
β21(α21−(α2−β22)

2)λ1
(α1+α2−β11−β22)(α1−α2−β11+β22)

a22,1 =
(2α1−β11)β11λ1β221

2(α1−β11)(α1+α2−β11−β22)(−α1+α2+β11−β22)

a22,2 =
(2α2−β22)β22λ2
2(α2−β22) +

(α21−(α2−β22)
2)λ1β221

2(α2−β22)(α1+α2−β11−β22)(α1−α2−β11+β22) .

As in the univariate case, the diffusive component of the model generates no autocorrelation.
Also, the autocorrelation structure is asymmetric, reflecting the fact that the excitation from jumps
in sector 1 to jumps in sector 2 is not the same as that from jumps in sector 2 to jumps in sector 1.

3.4. Interval-Based Moment Functions

GMM can be carried out using the instantaneous moments above, on short time intervals (daily).
However, in order to improve accuracy and reduce the number of moment conditions to be used, we
calculate in addition the unconditional interval-based moments (i, j = 1, 2; 0 ≤ s1 < s2 < s3 < s4)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E
hR s2

s1
dXi,t

i
E
∙³R s2

s1
dXi,t − E

hR s2
s1

dXi,t

i´2¸
E
hR s2

s1
dXi,t

R s2
s1

dXj,u − E
hR s2

s1
dXi,t

i
E
hR s2

s1
dXj,u

ii
, i 6= j

E
hR s4

s3
dXi,u

R s2
s1

dXj,t − E
hR s4

s3
dXi,u

i
E
hR s2

s1
dXj,t

ii
which can be applied on time intervals of arbitrary lengths. We are also able to compute these
integrated moment conditions in closed-form.

The explicit formulae we derive for the moment conditions are contained in the Appendix. The
(lengthy) closed-form expressions for the integrals Iτi,j,N and Ii,j,N defined in the Appendix as well
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as for the derivatives of the moment conditions (needed to compute Ω; see (3.11) below) are not
displayed in this paper to save space. These expressions are available in computer form from the
authors upon request.

3.5. Array of Autocovariances and Cross-Covariances

To implement GMM with these interval-based moment conditions, a choice has to be made on the
“array” of autocovariances and cross-covariances (i.e., the number of autocovariances and cross-
covariances, and the length of the intervals of integration) to be used. Autocorrelograms and
cross-correlograms of the data can be used as exploratory tools for determining the total length of
the time period on which autocovariances and cross-covariances are to be considered.

Finding the “optimal” array of autocovariances and cross-covariances, striking a balance be-
tween accuracy and computational feasibility, has been one of our objectives in an extensive Monte
Carlo study, which we will present below. Also, in case the sampling interval ∆ that we use to
compute the first four moments and the instantaneous autocovariances and cross-covariances is
different from the sampling interval ∆ that we use to compute (lagged) autocovariances and cross-
covariances, we use a varying number of observations for different elements in the GMM procedure
and as such the scalar N needs to be replaced by a vector in the relevant places.

3.6. GMM Estimation

Given the expressions for the moment functions above, we proceed to estimate the parameters of
the model using standard GMM. Let Yn∆ := Xn∆−X(n−1)∆, n = 1, . . . , N , ∆ > 0, with N∆ = T ,
denote the log-returns on the interval [0, T ] and let θ ∈ Θ denote our d-dimensional parameter
vector. To estimate θ we consider a vector ofM moment conditions h(y,∆, θ),M ≥ d, continuously
differentiable in θ. Let θ0 denote the true value of θ and suppose that E [h(Yn∆,∆, θ0)] = 0. This
is the key requirement for consistency of the GMM estimator. The closed-form expressions for the
moments derived above ensure that it will be satisfied, since we will use for each component of
the vector h the difference between the corresponding sample moment of the log-returns and its
closed-form expression derived under the model.

We assume that the log-returns are stationary, which is the case for our model under the
parameter restrictions discussed above. Let gT (y,∆, θ) denote the sample average of h(yn∆,∆, θ),
that is gT (y,∆, θ) := 1

N

PN
n=1 h(yn∆,∆, θ). Then the GMM estimator θ̂T is the value of θ ∈ Θ that

minimizes the quadratic form
gT (y,∆, θ)

0 WT gT (y,∆, θ), (3.7)

where WT is an M ×M positive definite weight matrix assumed to converge in probability to a
positive definite limit W . The system is exactly identified if M = d, in which case the choice of
WT becomes irrelevant.

The weight matrix WT can be chosen optimally in the following way: Suppose that the process
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{h(Yn∆,∆, θ0)}∞n=−∞ is strictly stationary with mean zero and v-th autocovariance matrix Γv :=
E
£
h(Yn∆,∆, θ0) h(Y(n−v)∆,∆, θ0)

0¤ . Assuming that these autocovariances are absolutely summable
(i.e., that the sequence of partial absolute sums has a finite limit), let S :=

P∞
v=−∞ Γv. We note

that S is the asymptotic variance of the sample average of h(yn∆,∆, θ0):

S = lim
N→∞

N E
£
gTN (Y,∆, θ0) gTN (Y,∆, θ0)

0¤ . (3.8)

The optimal weight matrix turns out to be S−1. A non-negative definite estimator of S is

ŜT = Γ̂0,T +
Xq

v=1

µ
1− v

q + 1

¶³
Γ̂v,T + Γ̂

0
v,T

´
, (3.9)

with
Γ̂v,T =

1

N

XN

n=v+1
h(yn∆,∆, θ̃) h(y(n−v)∆,∆, θ̃)

0. (3.10)

Here θ̃ is an initial consistent estimate of θ0, which can be obtained by minimizing (3.7) with
WT = I.

Under standard regularity conditions (see Hansen (1982)),
√
TN(θ̂ − θ0) converges in law to

N(0,Ω) where
Ω−1 := ∆−1D0WD(D0WSWD)−1D0WD, (3.11)

and D is the gradient of E [h(Yn∆,∆, θ)] with respect to θ0 evaluated at θ00. When WT is chosen
optimally, W = S−1 and (3.11) reduces to Ω−1 = ∆−1D0S−1D.

3.7. Testing for the Presence of Contagion

If desired, it is possible to test for the presence of contagion in the context of our model. Whether
or not contagion occurs boils down here to testing the joint hypothesis that all the coefficients
of mutual excitation βi,j ’s are 0. We can further separate between testing for self- or time-series
contagion: diagonal βi,i = 0 and testing for cross-sectional contagion: off-diagonal βi,j = 0, i 6= j.

Since the inference is based on standard GMM given the relevant moment functions, GMM-based
testing tools apply to test these parameter restrictions. We will employ below for this purpose the
χ2 statistic that follows from (3.11).

4. Finite Sample Behavior: A Monte Carlo Study

One major advantage of the proposed estimation method is that it is numerically tractable, so
that large numbers of Monte Carlo simulations can be conducted to determine the finite sample
distribution of the estimators. From the onset, one should be aware of the fact that one cannot
expect degrees of accuracy similar or even close to what we are used to when estimating, e.g., a
standard stochastic volatility model. By definition, extreme events occur infrequently and there is
a positive probability that no jump occurs in any given finite time interval. When no jump occurs,
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Figure 5: Monte Carlo Results: Univariate Case. This figure plots the empirical distribution
functions of the parameter estimators for the univariate Hawkes jump-diffusion model, obtained
from 5,000 simulated sample paths.

there is no identification whatsoever, while when few jumps occur identification is expected to be
weak. This is a consequence of the classical peso problem. Furthermore, we are effectively after
subtle effects concerning the jumps of the process, not just whether they are present or not, but
their finer structure: whether they self-excite, whether they cross-excite, etc. Finally, the estimation
procedure can rely only on the time series of the log-returns of the various assets, since all other
state variables are latent (volatility, jumps, jump intensities.) In other words, we are asking for a
lot out of the data. So one should not expect miracles from a time series of necessarily finite length.

Nevertheless, what emerges out of the Monte Carlos is evidence that, using the estimation
methodology outlined above, the parameters of the data generating process can be recovered with
sufficient degree of precision in a realistic context.

Before taking our model to financial data, we study by means of extensive Monte Carlo simula-
tions the “optimal” array of autocovariances and cross-covariances, and the corresponding degree
of accuracy of our estimation method for various sets of (fictitious) parameter values.

In general, we find that for daily data, the optimal array of moment conditions, striking a
balance between accuracy and computational feasibility, is to use daily means and instantaneous
(co)variances and to use daily, weekly or monthly autocovariances and cross-covariances depending
on the degree of excitation. We find that using autocovariances and cross-covariances between
periods of the same length rather than of different lengths produces the most stable results. Visual
inspection of the autocorrelograms and cross-correlograms is used to determine the number of
autocovariances and cross-covariances we need to include in our GMM estimation. In the bivariate
case, the restrictions that α1 = α2 and λ1,∞ = λ2,∞ appear to be necessary to have a good degree
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Figure 6: Monte Carlo Results: Bivariate Case. This figure plots the empirical distribution func-
tions of the parameter estimators for the bivariate Hawkes jump-diffusion model, obtained from
5,000 simulated sample paths.

of identification.

To facilitate disentangling diffusion from jumps we adopt a two stage procedure: we first es-
timate the parameters from the continuous part of our model using truncated data. We suppose
that truncation removes (most of) the jumps so that the truncated data can be viewed as being
generated by the continuous part of our model. We fit the truncated data using moment conditions
that are derived from the continuous part of our model, ignoring the discontinuous jump part.
Then in a second stage we treat the obtained parameter estimates for the continuous part of our
model as fixed and given and identify the parameters of the Hawkes process using the full set of
moment conditions. With these types of moment conditions the estimates that we obtain from
Monte Carlo simulated data are usually quite accurate. Due to the truncation, the volatility and
correlation parameters are slightly biased downwards (but we will correct for this in our empirical
analysis contained in Section 5).

The small selection of Monte Carlo results that we present below is obtained in a setting that
mimics that of our empirical analysis described in Section 5. In particular, we impose similar para-
meter restrictions, use a similar sample period and use parameter values similar to the parameter
estimates obtained from real data.

We first consider the univariate version of the Hawkes jump-diffusion model. Figure 5 plots
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the small sample distribution of our estimators for the univariate Hawkes jump-diffusion process
parameters obtained from 5,000 simulated sample paths. The true parameter values are α = 20.3,
β = 17.1, λ∞ = 0.40,

√
θ = 0.14, 1/γ = 0.030, μ = 0 and p = 1. We use the interval-based

expressions for the first moment and the autocovariances, derived in the Appendix, and use the
leading terms of the third and fourth moments, contained in Theorem 1. Because μ cannot be
estimated consistently in finite time, we fix it in our GMM estimation and we further fix p.

In the bivariate case, which we are ultimately interested in, due to the cross-covariances (and
under the restrictions that α1 = α2 =: α and λ1,∞ = λ2,∞ =: λ∞), we might expect even better
identification than in the univariate case. Figure 6 plots the small sample distribution of our esti-
mators for the bivariate Hawkes jump-diffusion process parameters obtained from 5,000 simulated
sample paths. The true parameter values are α = 20.3, β11 = 17.1, β12 = 1.2, β21 = 13.1, β22 = 7.1,
λ∞ = 0.40,

√
θ1 = 0.14,

√
θ2 = 0.17, ρ = 0.39, 1/γ1 = 0.030, 1/γ2 = 0.027, μ1 = 0.21, μ2 = 0.20

and p1 = p2 = 1. Because on a fixed time horizon μ1 and μ2 can never be estimated consistently,
we fix these parameters in our GMM estimation. Also, we fix 1/γ1, 1/γ2 and p1, p2 so that we need
not consider the (approximated) third and fourth moments for identification, and rely solely on the
interval-based moments derived in the Appendix. Doing so we can focus on the identification of
the Hawkes process parameters, which are our prime interest in this paper.

The Monte Carlo results show that the population parameters of the Hawkes jump-diffusion
model can be identified with sufficient degree of precision from data generated by the presupposed
Hawkes jump-diffusion model. We can also analyze the situation in which the data generating
process is in fact a Poissonian jump-diffusion (with constant jump intensities) but is presupposed
to be a Hawkes jump-diffusion (with stochastic jump intensities). We find that our estimation
methodology is robust in this respect, finding parameter estimates for α, β11, β12, β21 and β22 that
are close to and statistically not significantly different from zero. With β’s that are exactly zero
the Hawkes jump-diffusion model reduces to a Poissonian jump-diffusion model.

5. Empirical Analysis

We now take the model to real data. While the same model could equally well be fitted to various
sectors of the economy, or different stocks on the same sector, in the following we focus on capturing
patterns of contagion between stock indices around the world.

5.1. Data

We use Morgan Stanley Capital International (MSCI) international equity index data. We will
study six indices: US; Latin America (LA); UK; Developed countries Europe (EU); Japan (JA);
Emerging markets Asia (ASEM). Daily data are available from January 1, 1980 (for US, UK, EU
and JA), from January 29, 1988 (for LA) and from January 1, 1988 (for ASEM). Summary statistics
are in Table 1. Autocorrelograms and cross-correlograms are in Figure 7.
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Panel A US UK EU JA
Mean 0.000278 0.000235 0.000270 0.000228

St. Deviation 0.011037 0.012360 0.010893 0.014114
Skewness -1.385245 -0.375330 -0.364734 -0.103119

Excess Kurtosis 32.929671 10.259949 10.936663 8.481328

Panel B US LA ASEM
Mean 0.000234 0.000527 0.000157

St. Deviation 0.010958 0.017487 0.013179
Skewness -0.280164 -0.479455 -0.309408

Excess Kurtosis 10.741348 10.572756 7.289829

Table 1: Descriptive Statistics: MSCI International Equity Indices. This table reports descriptive
statistics for the log-returns of daily MSCI international equity index data. Panel A: Sample period: January
1, 1980 to December 31, 2008. Panel B: Sample period US and Latin America: January 29, 1988 to December
31, 2008; sample period Emerging Markets Asia: January 1, 1988 to December 31, 2008.

We observe from Table 1 that for all the regions under study the Excess Kurtosis is substantially
larger than that for a Gaussian distribution. Jumps in equity index returns can cause such Excess
Kurtosis. Notice the difference in Excess Kurtosis between the US return series of panel A and the
US return series of panel B. This difference is mainly due to the 1987 crisis, the returns of which
are included in the longer sample period but not in the shorter sample period.

The plots in Figure 7 exhibit substantial correlations between US returns on day j and returns
of other regions of the world on the following day j + 1, except for Latin America where this
phenomenon is not pronounced. It becomes apparent from the plots that autocorrelations and
cross-correlations die out quickly, so that in five days time (or even fewer) most correlation has
disappeared. As discussed in Section 3, the existence of these short-run correlations is where the
identification of the self- and cross-excitation parameters comes from.

5.2. Data Sequencing

The model predicts that the empirical autocorrelation and cross-correlation is decreasing and con-
vex, hence that the instantaneous correlation is the largest. Figure 7 plots the empirical autocor-
relations and cross-correlations using the (raw) MSCI data. Due to the fact that different markets
operate in different time zones, and the empirical observation that transmission of some markets
(US) seems to be stronger than transmission of other markets (non-US) we find a kink in some of
the cross-correlations, for example, US-JA.

To get a qualitative insight in the direction of jump transmissions, we sort daily US returns to
find the most extreme declines (over 3.0% in a single day) in the US stock market in the period
January 1, 1980 to December 31, 2008. If the inter-arrival time of these “jumps” was less than
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Figure 7: Autocorrelations and Cross-Correlations (Raw Data). This figure plots autocorrelations
and cross-correlations for the log-returns of the daily MSCI international equity data of Table 1.
The unit of the index j is days.

6 weeks, we grouped the returns as being one event, or a related sequence of events. We end up
with 63 declines and 23 groups. We read the analysis in the press in the days following each event
(statements such as “Tokyo opened lower after Wall Street closed down 3%” vs. “Wall Street
opened lower following a rout in European markets”) to confirm the sequencing: where and when
the event started, and whether transmission (contagion) took place following one of these events.

Tables 2, 3 and 4 summarize our findings. Generally speaking, we find that it is either (and
primarily) a US news announcement that causes the US market to slump, and often such a decline
transmits contagiously, or it is a non-US event, typically an adverse shock in emerging markets, and
then other regions of the world decline once the US start declining. There are a few exceptions to
this general pattern of transmission. In order to cope with the (institutionally introduced) different
time zones and hours of operation of the markets around the world some adjustments need to be
made to the raw data. We detail below the adjustments made.

5.2.1. US and Japan, and US and Emerging Markets Asia

To get the sequencing right given the time difference, we calculate the instantaneous correlation by
leading the Japanese return series by one day. To calculate the lagged cross-correlations we lead the
Japanese return series by one day when computing corr(∆XUS

t ,∆XJA
t+j), j = 1, 2, . . ., and we do not
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Group Date Event Starts in Transmits?
1 October 14, 1987 News on US trade deficit US Yes

October 16, 1987 „ „ „
October 19, 1987 Black Monday Hong Kong Yes
October 22, 1987 „ „ „
October 26, 1987 „ „ „
November 30, 1987 Approaching US recession and accelerating inflation US Yes
December 3, 1987 „ „ „
January 8, 1988 „ „ „

2 September 9, 2008 Fannie Mae and Freddie Mac placed into conservatorship US No
September 15, 2008 Bankruptcy of Lehman Brothers and sale of Merrill Lynch US Yes
September 17, 2008 „ „ „
September 22, 2008 Goldman Sachs and Morgan Stanley converted to bank

holding companies US No
September 29, 2008 Four bailouts in Europe and US House of Representatives

voted against $ 700 billion rescue plan Europe / US Yes
October 2, 2008 Prospects of the $700 billion US dollars bailout became reality

after approval on October 1 (Senate) and October 3
(House of Representatives)
"The financial markets, however, were not enthusiastic.
... weighed down by another round of bleak economic data,
including a report showing that 159,000 jobs were lost
in September..."
(October 3, 2008; The New York Times) US Yes

October 6, 2008 Major financial crisis in Iceland
and several European governments guarantee bank deposits Europe Yes

October 7, 2008 „ „ „
October 9, 2008 Simultaneous cuts of interest rates by Central Banks US Yes
October 15, 2008 Losses in Europe precipitated further losses in the US Europe Yes
October 21, 2008 Stock markets continued to decline worldwide

during the week of October 20, 2008.
October 22, 2008 „ „ „
October 24, 2008 Losses in Europe precipitated further losses in the US.

Stock markets declined sharply worldwide amidst growing
fears among investors that a global recession is imminent
if not already settled in. The panic was partly fueled
by remarks by Alan Greenspan that the crisis is
“a once-in-a-century credit tsunami”. Europe / US Yes

October 27, 2008 „ US Yes
November 5, 2008 Bad news on economic activity US Yes
November 6, 2008 „ „ „
November 12, 2008 The prospects of a government rescue for US auto

makers dwindled US No
November 14, 2008 „ „ „
November 19, 2008 Proposed federal bailouts of US auto makers failed US Yes
November 20, 2008 „ „ „
December 1, 2008 "The declines on Wall Street came after stocks fell

in Europe..." Europe / US Yes
(December 1, 2008; The Wall Street Journal)
Announcement that US economy had officially entered
recession in December 2007

December 4, 2008 „ „ „

Table 2: Narrated Table of Major US Stock Market Drops.

lead the Japanese return series (i.e., use the original timing) when computing corr(∆XJA
t ,∆XUS

t+j),
j = 1, 2, . . .. The same applies for the pair US and emerging markets Asia. This sequencing proce-
dure is symmetric in the sense that both corr(∆XUS

t ,∆XJA
t+1) and corr(∆X

JA
t ,∆XUS

t+1) correspond
to a 36 hours lag.
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Group Date Event Starts in Transmits?
3 August 4, 1998 "Coming on a day with no significant bad news,

the fall marks a shift in investors’ mood."
(August 5, 1998; The Wall Street Journal) US No

August 27, 1998 "Global markets tumbled on speculation that Yeltsin
may resign, along with an indefinite suspension of
ruble trading and fear Russia may partially return
to Soviet-style economics."
(August 28, 1998; The Wall Street Journal) Russia Yes

August 31, 1998 „ „ „
October 1, 1998 "Greenspan painted a frightening picture of the damage

that Long-Term Capital’s failure could have inflicted
on global economies, as he defended its rescue.
He also suggested that more such threats may
lurk in the markets."
(October 2, 1998; The Wall Street Journal)
"The Japanese economy, the world’s second largest,
appears to be on the brink of depression."
(October 1, 1998; Financial Times) Japan / US Yes

4 October 27, 1997 Asian flu Thailand Yes
5 October 13, 1989 "Friday’s sell-off was triggered by the collapse of UAL’s

buy-out plan and a big rise in producer prices."
(October 16, 1989; The Wall Street Journal) US Yes

6 April 14, 2000 US News US Yes
7 September 17, 2001 WTC terrorist attack US Yes

September 20, 2001 „ „ „
8 September 11, 1986 Worries about higher interest rates and

renewed inflation in US US Yes
9 March 12, 2001 "Europe’s stock markets cracked under the pressure

of the plunging Nasdaq Stock Market in the U.S.
and other technology-industry anxieties."
(March 13, 2001; The Wall Street Journal) US Yes

April 3, 2001 "In Tokyo, the Nikkei Stock Average fell 4.1%
as investors dumped shares following Friday’s
declines in the U.S. markets."
(April 10, 2001; The Wall Street Journal) US Yes

10 April 4, 1988 Fed increases rates US Yes

Table 3: Narrated Table of Major US Stock Market Drops, continued.

5.2.2. US and UK, and US and Developed Countries Europe

To get the sequencing right, we calculate the instantaneous correlation by averaging the instanta-
neous and 1-day lagged UK returns. To calculate the lagged cross-correlations we average the j-day
lagged and j+1-day lagged UK returns when computing corr(∆XUS

t ,∆XUK
t+j), j = 1, 2, . . ., and we

do not modify the UK series (i.e., use the original timing) when computing corr(∆XUK
t ,∆XUS

t+j),
j = 1, 2, . . .. The same applies for the pair US and developed countries Europe. We finally note
that the pair US and Latin America does not require any modification because they operate in the
same time zone.
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Group Date Event Starts in Transmits?
11 July 10, 2002 "Stocks tumbled, hurt by waning confidence in the market

and in corporate integrity. Stock markets
plunged around the world following analyst
downgrades and the S&P 500 shake-up."
(July 11, 2002; The Wall Street Journal) US Yes

July 19, 2002 Internet bubble burst „ „
July 22, 2002 Internet bubble burst „ „
August 1, 2002 Bearish economic data from the US; Internet bubble burst US Yes
August 5, 2002 Internet bubble burst „ „
September 3, 2002 "Foreign markets usually take their cue from the U.S.

Yesterday, the opposite happened."
(September 4, 2002; The Wall Street Journal) Japan Yes

September 19, 2002 Internet bubble burst US Yes
September 27, 2002 "European markets began the day sharply lower in reaction

to a late selloff in the U.S. on Friday."
(October 1, 2002; The Wall Street Journal) US Yes

12 January 4, 2000 The prospect of rising US interest rates shook
investor confidence in the technology shares US Yes

13 October 25, 1982 Decline of Nasdaq US Yes
14 November 15, 1991 US news (statements Bush) US Yes
15 March 24, 2003 "Waning optimism about quick Iraq war"

(March 26, 2003; The Wall Street Journal) US Yes
16 December 20, 2000 US news (statements Fed) US Yes
17 February 27, 2007 See Introduction of this paper China / US Yes
18 August 6, 1990 Mideast conflict US Yes
19 February 5, 2008 US news on service sector US Yes
20 July 7, 1986 Worries about US economy US Yes
21 March 8, 1996 US jobs data US Yes
22 June 6, 2008 "Concerns about reliability of world (Red. oil) supplies;

surge, ..., sends stock market plunging and raises fears
that US economy could be in for period of inflation and
slow growth"
(June 7, 2008; The Wall Street Journal) US Yes

23 January 9, 1998 Indonesian crises Indonesia Yes

Table 4: Narrated Table of Major US Stock Market Drops, continued.

5.3. Empirical Results

We use 4m + m(m − 1)/2 + m2 × (#lags of autocovariances and cross-covariances) moment
conditions to identify the parameters of our model, where in the bivariate case that we consider
here m = 2: the interval-based first moments, autocovariances and cross-covariances, and the third
and fourth moments approximated at the leading order in ∆. Dictated by our Monte Carlo results,
it is assumed that α1 = α2 =: α and that λ1,∞ = λ2,∞ =: λ∞, and we fix p1 = p2 = 1. We further
use 3 lags of daily autocovariances and cross-covariances. This leaves us with 13 parameters to be
identified by 21 moment conditions. GMM parameter estimates are in Table 5.

We note the following:

• The model is fairly parsimonious, but as in any rich multivariate model, relatively large
numbers of parameter must be allowed at least until we have a sense of which parameters
are not needed, and the initial empirical analysis can then be sensitive to starting values.
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1 US US US US US
2 UK EU JA LA ASEM
α 20.3∗∗ 21.8∗∗ 21.3∗∗∗ 24.2∗∗∗ 23.5∗∗∗

(9.3) (9.2) (6.5) (4.9) (0.8)
β11 17.1∗∗ 18.6∗∗∗ 17.0∗∗ 17.8∗∗ 16.2∗∗∗

(6.7) (6.2) (7.9) (7.6) (4.9)
β12 1.2 1.2 1.9 3.0 3.9

(2.9) (2.3) (4.0) (8.4) (3.3)
β21 13.1∗∗∗ 8.2∗∗ 4.0 5.6 8.6∗∗∗

(3.9) (3.5) (5.9) (4.1) (1.6)
β22 7.2 13.6∗∗ 17.3∗∗∗ 18.5∗∗ 14.3∗∗∗

(4.9) (6.8) (5.0) (7.6) (1.8)
λ∞ 0.40∗∗∗ 0.31∗∗∗ 0.37∗∗ 1.80∗∗∗ 3.14∗∗∗

(0.081) (0.066) (0.159) (0.252) (0.156)
λ1 4.63 3.88 4.81 19.83 29.54
λ2 5.25 4.70 6.78 27.56 35.85√
θ1 0.146∗∗∗ 0.148∗∗∗ 0.146∗∗∗ 0.142∗∗∗ 0.138∗∗∗

(0.0132) (0.0123) (0.0153) (0.0063) (0.0049)√
θ2 0.175∗∗∗ 0.155∗∗∗ 0.199∗∗∗ 0.211∗∗∗ 0.164∗∗∗

(0.0078) (0.0073) (0.0059) (0.0094) (0.0052)
ρ 0.396∗∗∗ 0.456∗∗∗ 0.408∗∗∗ 0.757∗∗∗ 0.632∗∗∗

(0.0493) (0.0401) (0.0693) (0.0748) (0.0503)
μ1 0.215∗∗∗ 0.199∗∗∗ 0.218∗∗∗ 0.370∗∗∗ 0.470∗∗∗

(0.0458) (0.0412) (0.0418) (0.0395) (0.0465)
μ2 0.204∗∗∗ 0.188∗∗∗ 0.245∗∗∗ 0.774∗∗∗ 0.578∗∗∗

(0.0383) (0.0346) (0.0461) (0.0751) (0.0606)
1/γ1 0.0307∗∗∗ 0.0326∗∗∗ 0.0304∗∗∗ 0.0156∗∗∗ 0.0138∗∗∗

(0.00726) (0.00737) (0.00669) (0.00169) (0.00138)
1/γ2 0.0272∗∗∗ 0.0250∗∗∗ 0.0273∗∗∗ 0.0231∗∗∗ 0.0150∗∗∗

(0.00342) (0.00306) (0.00339) (0.00189) (0.00087)

Table 5: Parameter Estimates for the Bivariate Hawkes Jump-Diffusion Model. This table reports
the GMM parameter estimates for the 13 parameters of the bivariate Hawkes jump-diffusion model under
exponential decay; standard errors are in parentheses. ∗, ∗∗, and ∗∗∗ indicate significance at the 90%, 95%,
and 99% confidence levels, respectively.

To address this issue, a two-stage procedure is adopted: we first estimate the parameters
{μ1, μ2, θ1, θ2, ρ} from the continuous part of our model on the basis of truncated data. To
this end, we use moments conditions that are derived from the continuous part of our model,
ignoring the discontinuous jump part. Then in a second stage, we use the obtained parameter
estimates to identify the parameters {γ1, γ2, λ∞, α, β11, β12, β21, β22}. Using the starting values
obtained in this way, we then estimate all the parameters of the Hawkes jump-diffusion
model simultaneously using the full set of moments conditions (doing so removes the slight
downward bias in the correlation and volatility parameters). We repeat this multiple times,
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Figure 8: Autocorrelations and Cross-Correlations (Adjusted Data). This figure plots autocorre-
lations and cross-correlations for the adjusted log-returns of the daily MSCI international equity
data with cutoffs. The sequencing adjustments made are described in detail in Section 5.2, while
the cutoffs are listed in Section 5.3. The unit of the index j is number of days.

using parameter estimates as starting values, and continuing until starting values coincide
with corresponding parameter estimates and a minimal value function is obtained.

• Rather than using the standard identity matrix as the weight matrix in first stage GMM, we
put extra weights on the third and fourth moments to make them relatively comparable in
magnitude to the other moments.

• When computing the empirical third and fourth moments as well as the empirical lagged
autocovariances and cross-covariances, the population counterparts of which are completely
determined by the jump component of the model, we apply one-sided cutoffs to the data (of
-2% for US, UK, EU and JA; -2.5% for ASEM; and -3% for LA), considering only the returns
(likely jumps) that are smaller than the given cutoffs. The magnitudes of the cutoffs are
dictated by inspection of the corresponding higher order moments and lagged autocovariances
and cross-covariances, selecting values for which these moments are robust to changes in
the cutoff magnitudes. Figure 8 plots the resulting empirical autocorrelations and cross-
correlations.

• As in the Monte Carlo study, visual inspection of the autocorrelograms and cross-correlograms
is used to determine the number of autocovariances and cross-covariances we need to include
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(i.e., to determine the total length of the time period to be considered). In addition, “adaptive
analysis” has been carried out: when Hawkes parameter estimates are large, the period
considered should be small.

We find large estimated values for β11 and β22, measuring the degree of self-excitation. They
provide clear evidence that both the US market as well as other markets strongly self-excite. These
estimates come along with relatively moderate estimates for the volatility levels. It seems that, due
to the integrated nature of the moment conditions, the jump part of our model partially captures
what was traditionally (with continuous return dynamics) modeled as (instantaneous) volatility.

Also, we typically find relatively large estimated values for β21, measuring the degree of trans-
mission from the US to other regions of the world. Large values for β21 imply that when the US
jumps, there is a strong increase in the probability of a consecutive jump in another region of
the world. From the empirical cross-correlation plots (see Figure 8) the effect seems to be mainly
driven by transmission on the same day or the day following the day of occurrence of a US jump.11

Estimates of β12, measuring the degree of the reverse transmission, are positive but relatively small.
Statistically, the estimated values of the β12’s are not significantly different from zero with daily
data.

In addition to the parameter estimates, we also computed the reconstructed autocovariances
and cross-covariances that are obtained by substituting the parameter estimates into equations
(B.7), (B.8) and (B.9), as well as the reconstructed third and fourth moments. Comparing the
reconstructed covariances and higher order moments with their empirical counterparts, we find
that the model does quite well in matching the data.

As alluded to in Section 3.7, our estimation methodology allows straightforwardly for testing
for the presence of contagion. We test the following null hypotheses: HI0 : βi,j = 0, i, j = 1, 2;

HII0 : βi,i = 0, i = 1, 2; HIII0 : βi,j = 0, i, j = 1, 2, i 6= j. We adopt a Wald chi-square test based
on the GMM estimates. Test results are reported in Table 6. The null hypotheses are rejected in
the overwhelming majority of the cases, providing clear evidence for excitation (rejection of HI0),
self-excitation (rejection of HII0 ) and cross-excitation (rejection of HIII0 ).

5.4. Robustness Check: Open-to-Close and Close-to-Open Returns

To mitigate the need to carry out sequencing adjustments to the raw data, which depend on the
particular time zone in which the markets are operating, we also carry out an analysis with open-
to-close (= “daylight” return) and close-to-open returns (= “night” return). With a close-to-open
return computed from the previous afternoon’s closing price to the next morning’s opening price,
we have an instantaneous correlation to measure at the daily frequency; see Becker et al. (1990)
and Hamao et al. (1990) for other studies using open-to-close and close-to-open returns.

11Recall that, because of the sequencing procedure adopted (see Section 5.2), “the same day” for the pair US and
JA (ASEM) means here date t for US and date t+1 for JA (ASEM). Similarly, “the day following the occurrence of
a US jump” for the pair US and JA (ASEM) means here date t for US and date t+ 2 for JA (ASEM).
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US US US US US S&P500
Null Hypothesis UK EU JA LA ASEM Nikkei

HI0 No Excitation ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

HII0 No Self-Excitation ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗

HIII0 No Cross-Excitation ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

Table 6: Contagion Test Results. This table reports the rejection significance of the Wald chi-square test
statistics where the respective null hypotheses specify complete absence of excitation (βi,j = 0, i, j = 1, 2),
absence of self-excitation (βi,i = 0, i = 1, 2), and absence of cross-excitation (βi,j = 0, i, j = 1, 2, i 6= j).
∗, ∗∗, and ∗∗∗ indicate rejection at the 90%, 95%, and 99% confidence levels, respectively. The underlying
GMM parameter estimates are in Tables 5 and 8.

Panel A S&P500 Nikkei
Mean 0.000241 -0.000153

St. Deviation 0.011382 0.014234
Skewness -1.592521 -0.513620

Excess Kurtosis 34.612016 8.502970

Panel B S&P500 Nikkei
Mean 0.000277 -0.000109

St. Deviation 0.011434 0.013400
Skewness -1.581570 0.092117

Excess Kurtosis 35.468502 5.998946

Table 7: Descriptive Statistics Open-to-Close and Close-to-Open Data. This table reports descriptive
statistics for the log-returns derived from the open-to-close and close-to-open equity index data. Panel A:
The opening of the US market marks the beginning of a new day. Panel B: The opening of the Japanese
market marks the beginning of a new day. Sample period: January 4, 1984 to December 31, 2008.

Daily returns can be computed either by summing the open-to-close return and the following
close-to-open return or by summing the close-to-open return and the following open-to-close return.
If the opening of the US market marks the beginning of a new day, the US daily returns will be
computed by the former alternative while e.g., the Japanese daily returns will be computed by
the latter alternative. If, however, the opening of the Japanese market marks the beginning of a
new day, the US daily returns will be computed by the latter alternative while the Japanese daily
returns will be computed by the former alternative. As we will see below these “natural” daily
return definitions will introduce some asymmetry in the daily data.

We use open and close international equity index data from finance.yahoo.com. We will study
two indices: S&P500 and Nikkei. Open-to-close and close-to-open data are available from January
4, 1984. Summary statistics are in Table 7. In Panel A, the opening of the US market marks the
beginning of a new day, while in Panel B the opening of the Japanese market marks the beginning
of a new day. Autocorrelograms and cross-correlograms are in Figure 9.
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Figure 9: Autocorrelations and Cross-Correlations (Open-to-Close and Close-to-Open Data). This
figure plots autocorrelations and cross-correlations for the log-returns derived from the open-to-
close and close-to-open equity index data of Table 7. In Panel A the opening of the US market
marks the beginning of a new day, while in Panel B the opening of the Japanese market marks the
beginning of a new day. The unit of the index j is days.

From Figure 9 we observe some differences between autocorrelations and cross-correlations of
Panel A and those of Panel B. Panel A exhibits moderate correlation between Nikkei returns on day
j and S&P500 returns on the following day j+1, while the correlation between S&P500 returns on
day j and Nikkei returns on the following day j+1 is relatively small. Conversely, Panel B exhibits
substantial correlation between S&P500 returns on day j and Nikkei returns on the following day
j + 1, while the correlation between Nikkei returns on day j and S&P500 returns on the following
day j + 1 is approximately zero. This can be explained from the fact that for Panel A most
transmissions from the US to Japan will already be reflected in the Japanese returns of the same
day (“instantaneous”), hence a relatively small correlation between S&P500 returns on day j and
Nikkei returns on the following day j+1. For Panel B, the transmissions from the US to Japan can
only be reflected in the Japanese “night” returns of the same day or in the returns of the following
days. It appears from the results that the Japanese night return does not significantly reflect the
US cross-excitation, hence a substantial correlation between S&P500 returns on day j and Nikkei
returns on the following day j + 1. The converse applies to the transmission of shocks from Japan
to the US.

Because the direction (causality) of transmissions on the same day cannot be identified with
daily data (here composed from the intradaily open-to-close and close-to-open returns), GMM
learns most about the direction of transmission from the covariances between day j and day j +1.
Given the results of our qualitative analysis reported in Tables 2, 3 and 4, the most natural way to
proceed now is to restrict attention to Panel B, letting the opening of the Japanese market mark
the beginning of a new day. GMM parameter estimates are in Table 8. The GMM parameter
estimates are obtained under the same assumptions as in Section 5.3.

The parameter estimates we find are consistent with the parameter estimates reported ear-
lier in Section 5.3: there is clear evidence for self-excitation in the US market. The transmission
from the US market to Japan is more pronounced than earlier, and the self-excitation in the
Japanese market is still present, be it a little less pronounced. Again, we find positive but small
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1 S&P500 1 S&P500
2 Nikkei 2 Nikkei
α 20.8∗∗∗

√
θ1 0.142∗∗∗

(3.7) (0.0176)
β11 17.6∗∗

√
θ2 0.195∗∗∗

(8.5) (0.0064)
β12 1.5 ρ 0.360∗∗∗

(4.6) (0.0331)
β21 10.8∗ μ1 0.206∗∗∗

(6.5) (0.0452)
β22 10.1∗ μ2 0.132∗∗∗

(5.8) (0.0443)
λ∞ 0.38∗∗∗ 1/γ1 0.0327∗∗∗

(0.070) (0.00701)
λ1 5.11 1/γ2 0.0260∗∗∗

λ2 5.85 (0.00165)

Table 8: Parameter Estimates for the Bivariate Hawkes Jump-Diffusion Model: Open-to-Close and
Close-to-Open Data. This table reports the GMM parameter estimates for the 13 parameters of the
bivariate Hawkes jump-diffusion model under exponential decay; standard errors are in parentheses. ∗, ∗∗,
and ∗∗∗ indicate significance at the 90%, 95%, and 99% confidence levels, respectively. The underlying data
are the log-returns derived from open-to-close and close-to-open equity index data.

estimates, that are statistically not distinguishable from zero, for the reverse transmission from
Japan to the US. We recall here that the sample period for the pair S&P500 and Nikkei is dif-
ferent from (shorter than) the sample period for the MSCI pair US and Japan considered earlier.
Furthermore, while corr(∆XUS

t ,∆XJA
t+1) and corr(∆X

JA
t ,∆XUS

t+1) correspond to a 36 hours lag,
corr(∆XS&P500

t ,∆XNikkei
t+1 ) and corr(∆XNikkei

t ,∆XS&P500
t+1 ) correspond to a 24 hours lag. Contagion

test results were reported in the last column of Table 6 for this mesurement of returns. Again the
tests provide clear evidence for excitation, self-excitation as well as cross-excitation.

6. Implications of the Model

Our model is reduced-form: it cannot explain the source(s) of the contagion that is observed in
the data, or get at the channels of transmission of that contagion, whether trade linkages, financial
linkages, financial constraints, outflows of capital, herding behaviors, the fragility of the system, lack
of coordinated responses, etc. On the other hand, as a description of the process driving the asset
returns, the model can be employed as input for other purposes, in the Merton tradition. Three
such applications which we now briefly outline consist in measuring market stress, risk management
and optimal portfolio choice.
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Figure 10: Volatility Index (VIX). This figure plots the close index values of the VIX. Sample
period: January 2, 1990 to March 31, 2009.

6.1. Measuring Market Stress Using Filtered Values of the Jump Intensities

Stress in the marketplace is often measured using a volatility index such as the VIX from the
Chicago Board Options Exchange (CBOE), which has often been labeled the “fear gauge.” VIX
levels above 80% at an annualized rate were recorded at the height of the financial crisis in the Fall
of 2008, as shown in Figure 10. This is an unrealistic level from the perspective of a purely-diffusive
model, at least if we take the implications of such a level over a few months’ horizon, and is most
likely indicative that jumps are feared. If the model does not allow for jumps, then the only way
that high risk can be translated is through extreme volatility numbers. But what is measured by
VIX is a form of total (continuous plus jump) variance. To the extent that the risk that is truly
feared is that of jumps, then a measure that captures solely that risk would be advantageous.

Consider instead the Hawkes jump intensities as a measure of market stress. By construction,
higher values of λi,t lead to higher probability of jumps in asset i, and should be reflected in higher
derivative prices such as options. In a Hawkes model, these intensities are time-varying, and it is
likely that they will reflect market conditions at the time. Just like volatilities, jump intensities are
latent; unlike volatilities, no market instrument is currently traded which references jump intensity.
There are no “jump intensity swaps,” for instance. The only solution to infer jump intensities is
therefore to filter them out of the observed time series.

To illustrate, we focus on the US and UK markets. In order to filter jump intensities from
the time series of asset returns, we insert the parameter estimates of Table 5 in (2.9), and call a
jump (hence, dNj,t = 1) each daily return in the corresponding time series that is below −1/γ̂US =
−3.07%, and −1/γ̂UK = −2.72%, respectively. (Filtering jumps on the basis of large returns is a
natural approach, see e.g., Lee and Mykland (2008).) The resulting plots of the estimated time
series of (λUS,t, λUK,t) are in Figure 11. The plots show that the filtered λi,t’s are plausible indicators
of market stress, increasing in particular in the sample around the crisis periods identified in Tables
2, 3 and 4. Indeed, from the plots we observe that the two most noticeable periods of market stress
are the summer of 2002 (Group 11 in the tables; Internet bubble burst) and the fall of 2008 (Group
2 in the tables; Credit crisis). Except here for the estimation of the parameters which is based on
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Figure 11: Estimated Time Series of the US and UK Jump Intensities. This figure plots the
estimated time series of λUS,t and λUK,t, filtered from the time series of asset returns. Sample
period: January 2, 1990 to March 31, 2009.

the full sample, this filtering approach is in principle not anticipative, i.e., it can be conducted in
nearly real time.

6.2. Risk Management and Tail Probabilities Implied by the Model

A second natural application of the model consists in computing various risk measures, which all are
functions of the left tail of the asset returns’ distribution. From a risk management perspective, one
may be interested in the “co-jump” risk of two assets jumping negatively together. For instance,
a banking regulator might be concerned with an event where two large financial institutions expe-
rience large losses during the same period, perhaps because they were following similar strategies.
In this context, reduced-form models are commonly used to set capital requirements, for stress
testing, or to generate scenarios in simulations. We have fitted above our model to international
equity indices, but the same model could just as easily be fitted to domestic markets, or to different
sectors of the economy, or to different stocks.

Our model consists of day-to-day (continuous) variations, but also incorporates jumps. As such,
it can conceivably be employed in times of crises, when the intensity of jumps is high, but also in
normal times, when the continuous part of the model is the primary driver of asset returns. Among
jumps, we argued that Poissonian jump models fail to capture jump clustering to the extent it
is present in the data, and that self- and cross-excitation modeling can be a parsimonious way of
generating the type of clustering that is observed empirically and that is therefore relevant for risk
management.

To illustrate, we start with the univariate case, and contrast the left tails’ magnitudes that
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Figure 12: Left Tail Comparison of Univariate Models. This figure plots the log-returns distribution
in a pure diffusion model (short dashes), a Poisson jump-diffusion (long dashes) and a self-exciting
Hawkes jump-diffusion (solid curve).

follow from a purely diffusive model with no jumps, a Poisson jump-diffusion model, and a Hawkes
jump-diffusion for returns measured over the typical VaR calculation horizon of∆ = 10 days. In the
univariate case, the only form of excitation that distinguishes Hawkes jumps from Poisson jumps
is self-excitation. As we saw above from the empirical parameter estimates, most of the excitation
happens over a matter of days, so it is quite plausible to expect that the left tails of the returns
distribution will be affected over the 10-day VaR horizon. We show in Figure 12 the respective
left tails from these three models.12 With realistic volatility values, a diffusion-only model will
not generate a tail with substantial risk. Incorporating a Poisson jump component into the model
gives rise to a larger left tail (the model with Poissonian constant intensities is calibrated to the
long-term average intensities already estimated). However, it is very unlikely under Poisson jumps
with these parameter values to give rise to more than a single jump over a 10-day horizon, which
limits the extent to which the investor or regulator should be concerned once proper capital reserves
have been set aside to cover a one-jump event. On the other hand, Hawkes jumps make it possible,
and even likely if the self-excitation parameter β is sufficiently high, to record more than one jump
in close succession. As the figure shows, this gives rise to a longer left tail with a visible inflexion
at the level where a second jump occurs in the same time period.

We now move to the perhaps more relevant situation where one faces the risk embedded in
multiple assets together, focusing for illustration purposes on the two-asset case. Consider again a

12Because jumps are relatively rare and inherently unpredictable, any model will produce tails that will necessarily
only be valid on average and inevitably lead to an underestimation of the risk when a jump actually happens. In no
way, is VaR interpretable as a worst-case or maximum tolerable loss once jumps are taken into account. This is an
issue with the use and interpretation of VaR, not with the model driving the asset returns per se.
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typical VaR calculation over a time horizon of∆ = 10 days, either from the perspective of a regulator
concerned with the probability of joint individual losses L1 and L2 in two firms under scrutiny,
P (∆X1 ≤ −L1,∆X2 ≤ −L2) , or that of a portfolio manager concerned with losses exceeding a level
L in a portfolio invested in the two assets in proportions ω1 and ω2, P (ω1∆X1 + ω2∆X2 ≤ −L) .

In both situations, the relevant calculation involves the joint distribution of returns or prices,
and specifically their left tails. And, for sufficiently large loss amounts or percentages, it is effectively
the jump component of the model that drives the result. We will therefore start by considering the
joint probability of obtaining multiple jumps, n1 for asset 1 and n2 for asset 2, in a time interval
of the length ∆. We will compare the results obtained from a classical Poisson jump process to
those obtained from a Hawkes mutually exciting jump process. For this purpose, we consider a
bivariate Poisson jump process (N1, N2) with arrival rates (λ1, λ2) and possibly correlated jumps.
We construct such a process (N1, N2) as N1 = Ñ1 + N, N2 = Ñ2 + N where Ñ1, Ñ2 and N are
independent Poisson processes with respective parameters λ̃1 = λ1 − φ, λ̃2 = λ2 − φ and φ. The
marginal distributions of N1 and N2 are Poisson with parameters λ1 and λ2, which are the mean and
variance of the two marginal jump processes, and cov(N1, N2) = φ. The corresponding correlation
coefficient must be restricted to the range [0,min((λ1/λ2)1/2, (λ2/λ1)1/2)]. The joint distribution of
the number of jumps (N1, N2) is then given by

P (N1,∆ = n1,N2,∆ = n2) = e−(λ1+λ2−φ)∆
min(n1,n2)X

i=0

(λ1 − φ)n1−i (λ2 − φ)n2−i φi∆n1+n2−i

(n1 − i)! (n2 − i)!i!
. (6.1)

The key difference between the mutually exciting model and the Poisson model is that in the
Poissonian model the fact that the first asset jumped, even with positive covariation φ, only predicts
a small increase in the probability that the second asset will jump too in the same time frame,

P (N2,∆ = n2|N1,∆ = n1) =
P (N1,∆ = n1, N2,∆ = n2)

P (N1,∆ = n1)
.

By contrast, in the mutually exciting model, the fact that the first asset jumps leads to a large
increase in the probability of the second asset jumping, by a factor β21, which we recall from the
previous empirical analysis is estimated at high values. For instance, the first asset jumping could
easily lead to a ten-fold increase in the probability that the second asset will also jump in short
order. In addition to the cross-excitation β21, we allow for the presence of self-excitation in the
form of β11 and β22. In order to examine the effect of excitation asymmetry between the two assets,
we rule out cross-excitation in the reverse direction, β12 = 0, which is generally approximately
compatible with the empirical findings.

From this perspective, cross-excitation introduces systemic risk since it raises significantly the
probability that multiple assets will jump over the same relatively short time period. To examine
the magnitude of the excitation effect empirically, we compare contour plots showing the returns
distributions over 10-day horizons obtained from the model in the three situations where: (i) there
are no jumps, all the dependence is due to the common factor variation in the Brownian risk; (ii)
the jumps are Poissonian, independent; (iii) the jumps are Poissonian, correlated with coefficient
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Hawkes Jump-Diffusion

Joint Bivariate Left Tails Contours

Figure 13: Left Tail Comparison of Bivariate Models. This figure plots the left tail contours of the
bivariate log-returns distribution in a correlated diffusion, an independent Poisson jump-diffusion,
a correlated Poisson jump-diffusion and a mutually exciting Hawkes jump-diffusion.

φ; (iv) the jumps are mutually exciting as in the model we have employed here. In the mutually
exciting case, as a first approximation over small time horizons ∆, we can assess the effect of
the mutual excitation in the form of an increase of the Poissonian jump intensity from λ1 to
λ1 +max(0, n1 − 1)β11 and from λ2 to λ2 +max(0, n2 − 1)β22 +max(0, n1)β21, which discards the
impact of the mean reversion over small ∆.

The results are reported in Figure 13 in the form of contour plots of the joint left tails of the re-
sulting distribution of returns (∆X1,∆X2). As in the univariate case, tails decay very quickly in the
Brownian-only model, even with a common factor structure generating a correlation of 0.5 between
the two assets’ returns. In the two Poissonian jump models, the probability of observing successive
jumps in the same small time period decreases rapidly with the number of jumps. It is very unlikely
that more than one jump will be recorded under such a model. Introducing positive correlation
(assumed to be 0.5) between the two Poisson jumps increases slightly the probability of observing
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jumps in the two assets together relative to the independent model but does not fundamentally
alter the patterns of probabilities. By contrast, the introduction of mutual excitation radically
increases the probability that multiple jumps will be recorded in the same time period compared to
the two Poissonian models. The asymmetry between self-excitation and cross-excitation manifests
itself for instance in the higher probability of observing n2 = 2 jumps when there have been n1 = 1
jumps than the reverse. As a result, the contour plots are slightly asymmetrical.

6.3. Optimal Portfolio Choice in Closed-Form

Using an extension to the present setting of the method of Aït-Sahalia et al. (2009), it is possible
to solve in closed-form for the optimal portfolio of a log-utility investor who faces mutually exciting
jump risk across assets. Specifically, consider the asset return dynamics

dS0,t
S0,t

= rdt,
dSi,t
Si,t−

= (r +Ri) dt+ σidWi,t + Zi,tdNi,t, i = 1, . . . ,m

where Si,t are the asset prices, r ≥ 0 is a constant rate of interest, Ri are expected excess rates of re-
turn, and Nt = [N1,t, . . . , Nm,t]

0 is an m-dimensional mutually exciting process with mean-reverting
intensity (2.9). The Brownian motions, random jump sizes and jump processes are assumed to be
mutually independent.

Across a potentially large number m of assets, it makes sense to impose a factor structure
on the variance-covariance matrix of Brownian risk Σ, with elements Σi,j = ρi,jσiσj , as in the
Arbitrage Pricing Theory. The investor’s problem at time t, then, is to pick consumption and
portfolio weights, {Cs, ωs}t≤s, to maximize the expected utility,

V (Yt, t) = max
{Cs,ωs; t≤s}

Et
∙Z ∞

t
e−(sU(Cs)ds

¸
,

subject to the wealth dynamics dYt = −Ctdt +
Pm

i=0 ωi,t
dSi,t
Si,t−

Yt. Here, U is the investor’s utility
function and ( the subjective discount rate.

With this structure, the optimal portfolio weights are solvable in closed-form in some specific
situations, for example, when the investor has logarithmic utility: U (x) = log (x) and the jump
sizes are equally distributed. The optimal portfolio weights are now time-varying, with the investor
reacting to changes in the intensity of the jumps. And, even though this is a log-utility investor,
the solution is not myopic! This is in contrast to what is obtained in the classical Merton optimal
solution for a log-utility investor, Brownian-driven (or even Brownian plus Poisson jumps), where
log-utility leads to a myopic solution.

7. Conclusions

We proposed a natural reduced-form model for asset returns that is able to capture jump clustering
in time and across assets, or financial contagion. The model is coined the Hawkes jump-diffusion
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model. Unlike other models based on Hawkes jump processes, our model incorporates the standard
elements of drift and volatility in addition to these jumps, thereby being most naturally thought of as
a generalization of the Poisson jump-diffusion model familiar to financial economists. We developed
an estimation procedure for the model based on GMM. The estimation procedure relies entirely
on closed-form moment functions, hence is amenable to a multivariate setting and is numerically
tractable. Monte Carlo evidence shows the population parameters of the data generating process
can be recovered with a sufficient degree of precision for practical applications. We implemented
the estimation procedure on international equity data, studying the patterns of jump excitation
among six world markets. Our empirical results indicate that both the US market as well as the
other markets strongly self-excite. Furthermore, we find that US jumps tend to get reflected quickly
in most other markets, while we find that statistical evidence for the reverse transmission is much
less pronounced.

The model is amenable to a few applications, some of which we briefly outlined: measuring
market stress using filtered values of the jump intensities, using the model to generate the tail
probabilities relevant in risk management context, and in particular the risk of observing jumps
in multiple assets (or firms) in the same time period, and the calculation of optimal portfolio
weights. Let us finally indicate possible future work: one could incorporate in the analysis the
information implied from derivatives data, or optimal portfolio returns obtained by solving the
corresponding consumption-portfolio selection problem, in addition to the time series observations
of the underlying asset returns.
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Appendix: Explicit Formulae for the Moment Conditions

A. Univariate Case

Let m = 1 and assume that ⎧⎪⎨⎪⎩
dXt = μdt+

√
VtdW

X
t + ZtdNt

dVt = κ(θ − Vt)dt+ η
√
VtdW

V
t

dλt = α (λ∞ − λt) dt+ βdNt

(A.1)

with E
£
dWX

t dWV
t

¤
=: ρV dt. The vector of Brownian motions W , the jump size Z and the jump

process N are assumed to be mutually independent. The corresponding integral equation for λt
reads:

λt = λ∞ +

Z t

−∞
βe−α(t−s)dNs. (A.2)

A.1. Moment Conditions: Univariate Self-Exciting Jumps

Write
λ := E [λt] , VN (τ) := E [dNt+τdNt] / (dt)

2 − λ2. (A.3)

Then E [dXt] /dt = μ+ λE [Z] , and

E[dXt+τdXt]

(dt)2
−
³
E[dXt]
dt

´2
= (E [Z])2 VN (τ), τ > 0; (A.4)

with λ = λ∞α/(α− β) and VN (τ) =
βλ(2α−β)
2(α−β) e−(α−β)τ for τ > 0. Furthermore,

E
h
(dXt − E [dXt])

2
i
/dt = θ + λE

£
Z2
¤

E
h
(dXt − E [dXt])

3
i
/dt = λE

£
Z3
¤

E
h
(dXt − E [dXt])

4
i
/dt = λE

£
Z4
¤
.

A.2. Interval-Based Moment Conditions: Univariate Self-Exciting Jumps

Let 0 ≤ s1 < s2 < s3 < s4 and let ∆1 := s2− s1, ∆2 := s4− s3 and τ := s3− s1. Write λ := E [λt] ,
and

fN(τ,∆1,∆2) :=
E s4

s3
dNu

s2
s1

dNt

∆1∆2
− λ2,

gN,Z(∆1) :=
E s2

s1
ZtdNt

2

∆1
− (E[Z])2 λ2∆1.

Then E
hR s2

s1
dXt

i
/∆1 = μ+ λE [Z] , and

E s4
s3

dXu
s2
s1

dXt

∆1∆2
−

E s4
s3

dXu E s2
s1

dXt

∆1∆2
= (E [Z])2 fN(τ,∆1,∆2);
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with

fN(τ,∆1,∆2) =
βλ(2α−β)

2∆1∆2(α−β)3
¡
e−(α−β)(τ−∆1) − e−(α−β)(τ−∆1+∆2) − e−(α−β)τ + e−(α−β)(τ+∆2)

¢
.

Furthermore,
E s2

s1
dXt

2

∆1
−

E s2
s1

dXt

2

∆1
= θ + gN,Z(∆1);

with
gN,Z(∆1) = λE

£
Z2
¤
+ (E[Z])2 βλ(2α−β)

(α−β)2
³
1 + 1

∆1(α−β)
¡
e−(α−β)∆1 − 1

¢´
.

B. Bivariate Case

Let m = 2 and assume that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1,t = μ1dt+
p
V1,tdW

X
1,t + Z1,tdN1,t

dX2,t = μ2dt+
p
V2,tdW

X
2,t + Z2,tdN2,t

dV1,t = κ(θ1 − V1,t)dt+ η1
p
V1,tdW

V
t

dV2,t = d
³
θ2
θ1

´
V1,t

dλ1,t = α1 (λ1,∞ − λ1,t) dt+ β11dN1,t + β12dN2,t
dλ2,t = α2 (λ2,∞ − λ2,t) dt+ β21dN1,t + β22dN2,t

(B.1)

with E[dWX
1,tdW

X
2,t] =: ρdt and E[dWX

i,tdW
V
t ] =: ρ

V
i dt, i = 1, 2. The vector of Brownian motions

W , the vector of jump sizes Z and the vector of jump processes N are assumed to be mutually
independent. The corresponding integral equation for λi,t reads:

λi,t = λ∞,i +

Z t

−∞
βi,1e

−αi(t−s)dN1,s +

Z t

−∞
βi,2e

−αi(t−s)dN2,s, i = 1, 2. (B.2)

B.1. Moment Conditions: Bivariate Mutually Exciting Jumps

Write

λi := E [λi,t] , i = 1, 2, VN(τ) :=

⎛⎝ E[dN1,t+τdN1,t]
(dt)2

− λ21
E[dN1,t+τdN2,t]

(dt)2
− λ1λ2

E[dN2,t+τdN1,t]
(dt)2

− λ1λ2
E[dN2,t+τdN2,t]

(dt)2
− λ22

⎞⎠ . (B.3)

Then E [dXi,t] /dt = μi + λiE [Zi] , for i = 1, 2, and⎛⎜⎝ E[dX1,t+τdX1,t]

(dt)2
−
³
E[dX1,t]

dt

´2 E[dX1,t+τdX2,t]

(dt)2
− E[dX1,t]

dt
E[dX2,t]

dt

E[dX2,t+τdX1,t]

(dt)2
− E[dX1,t]

dt
E[dX2,t]

dt
E[dX2,t+τdX2,t]

(dt)2
−
³
E[dX2,t]

dt

´2
⎞⎟⎠

=

Ã
(E[Z1])2 V1,1,N (τ) E[Z1]E[Z2]V1,2,N(τ)
E[Z1]E[Z2]V2,1,N(τ) (E[Z2])2 V2,2,N (τ)

!
, τ > 0;

(B.4)
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with
λ1 =

λ1,∞α1(α2−β22)+λ2,∞α2β12
(α1−β11)(α2−β22)−β12β21 ,

λ2 =
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where
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q
β211 + 4β12β21 − 2β11 (β22 + α1 − α2) + (β22 + α1 − α2)

2,

and τ > 0. The expressions for V2,2,N(τ) and V2,1,N(τ) are obtained from these by interchanging
suffices. Furthermore,

E[(dXi,t)
2]

dt − (E[dXi,t])
2

dt = θi + λiE
£
Z2i
¤
, i = 1, 2;

E[dX1,tdX2,t]
dt − E[dX1,t]E[dX2,t]

dt = ρ
√
θ1θ2.

(B.5)
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B.2. Interval-Based Moment Conditions: Bivariate Mutually Exciting Jumps

Let 0 ≤ s1 < s2 < s3 < s4 and let ∆1 := s2 − s1, ∆2 := s4 − s3 and τ := s3 − s1. Write

λi := E [λi,t] , i = 1, 2, VN(τ) :=

⎛⎝ E[dN1,t+τdN1,t]
(dt)2

− λ21
E[dN1,t+τdN2,t]

(dt)2
− λ1λ2

E[dN2,t+τdN1,t]
(dt)2

− λ1λ2
E[dN2,t+τdN2,t]

(dt)2
− λ22

⎞⎠ . (B.6)

Then E
hR s2

s1
dXi,t

i
/∆1 = μi + λiE [Zi] , for i = 1, 2, and⎛⎜⎝ E s4

s3
dX1,u

s2
s1

dX1,t

∆1∆2
−
E s4

s3
dX1,u

∆2

E s2
s1

dX1,t

∆1

E s4
s3

dX1,u
s2
s1

dX2,t

∆1∆2
−
E s4

s3
dX1,u

∆2

E s2
s1

dX2,t

∆1

E s4
s3

dX2,u
s2
s1

dX1,t

∆1∆2
−
E s4

s3
dX2,u

∆2

E s2
s1

dX1,t

∆1

E s4
s3

dX2,u
s2
s1

dX2,t

∆1∆2
−
E s4

s3
dX2,u

∆2

E s2
s1

dX2,t

∆1

⎞⎟⎠
=

⎛⎝ (E[Z1])2Iτ1,1,N (τ,∆1,∆2)

∆1∆2

E[Z1]E[Z2]Iτ1,2,N (τ,∆1,∆2)

∆1∆2
E[Z1]E[Z2]Iτ2,1,N (τ,∆1,∆2)

∆1∆2

(E[Z2])2Iτ2,2,N (τ,∆1,∆2)

∆1∆2

⎞⎠ ;
(B.7)

with
Iτ1,1,N(τ,∆1,∆2) :=

R s4
u=s3

R s2
t=s1

V1,1,N (u− t)dudt,

Iτ1,2,N(τ,∆1,∆2) :=
R s4
u=s3

R s2
t=s1

V1,2,N (u− t)dudt.

The expressions for Iτ2,2,N and I
τ
2,1,N are obtained from these by replacing V1,1,N and V1,2,N by V2,2,N

and V2,1,N , respectively. Explicit expressions for Vi,j,N(τ) have been derived earlier; see Section B.1.
Furthermore,

E s2
s1

dXi,t

2

∆1
−

E s2
s1

dXi,t

2

∆1
= θi + λiE

£
Z2i
¤
+

2(E[Zi])2Ii,i,N (∆1)
∆1

, i = 1, 2;
(B.8)

E s2
s1

dX1,t
s2
s1

dX2,u

∆1
−

E s2
s1

dX1,t E s2
s1

dX2,u

∆1
= ρ
√
θ1θ2 +

E[Z1]E[Z2](I1,2,N (∆1)+I2,1,N (∆1))
∆1

; (B.9)

with
Ii,i,N(∆1) :=

R s2
u=s1

R u
t=s1

Vi,i,N (u− t)dudt, i = 1, 2,

I1,2,N(∆1) :=
R s2
u=s1

R u
t=s1

V1,2,N (u− t)dudt.

The expression for I2,1,N is obtained by replacing V1,2,N in the above expression by V2,1,N .
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