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I. Introduction

We present in this paper econometric methods designed to analyze the workhorse model

of modern asset pricing: X, typically the log of an asset price, is assumed to follow an Itô

semimartingale. As is well known, for an asset pricing model to avoid arbitrage opportuni-

ties, asset prices must follow semimartingales (see Harrison and Pliska (1981), Delbaen and

Schachermayer (1994)). Semimartingales are very general models that nest most if not all

continuous-time models used in asset pricing. A semimartingale can be decomposed into

the sum of a drift, a continuous Brownian-driven part and a discontinuous, or jump, part.

The jump part can in turn be decomposed into a sum of small jumps and big jumps. The

continuous part can be scaled by a stochastic volatility process, which may be correlated

with the asset price, may jump in conjunction or independently of the asset price, and in

fact be a semimartingale itself.

This paper is devoted to analyzing the specification of semimartingales on the basis

of high frequency financial returns. We wish to decide on the basis of statistical tests

which component(s) need to be included in the model (jumps, finite or infinite activity,

continuous component, etc.) and determine their relative magnitude. We may then magnify

specific components of the model if they are present, so that we can analyze their finer

characteristics such as the degree of activity of jumps.1 While the underlying mathematical

1Alternative methodologies exist for some of the questions we consider when taken individually. For

example, tests for the presence of jumps have been proposed by Aït-Sahalia (2002), Carr and Wu (2003b),

Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), Andersen, Bollerslev, and Diebold

(2007), Jiang and Oomen (2008), Lee and Mykland (2008), Aït-Sahalia and Jacod (2009b) and Lee and

Hannig (2010), among others. And some of these methods are applicable (in fact, designed for) splitting

the quadratic variation into continuous and discontinuous proportions, another of the issues of interest. To

study the finer characteristics of jumps, Todorov and Tauchen (2010) use the test statistics of Aït-Sahalia

and Jacod (2009b), study its logarithm for different values of the power argument and contrast the behavior

of the plot above two and below two in order to identify the presence of a Brownian component. Cont and

Mancini (2009) use threshold or truncation-based estimators of the continuous component of the quadratic

variation, originally proposed in Mancini (2001), in order to test for the presence of a continuous component

in the price process. The resulting test is applicable when the jump component of the process has finite

variation, and a test for whether the jump component indeed has finite variation is also proposed. Belomestny

(2009) proposes a different estimator of the index of jump activity based on low frequency data.

However, to the best of our knowledge, none of the alternative methods are able to address all the questions

we consider here in a common framework. In fact, for some of the issues addressed in this paper, there exist
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tools are heavily technical, and are developed elsewhere2, the end result happens to be

straightforward from the point of view of applications. It requires little more than the

recording of asset returns at high frequency, and the computation of a few key quantities

which we call truncated power variations.

Relative to the existing literature, this paper makes three separate contributions. First,

we show that seemingly disparate test statistics developed individually can in fact be un-

derstood as part of a common framework, relying on an analogy with spectrography, which

we will carry through the entire paper, hence its title. This contribution is primarily ex-

positional but hopefully has the benefit of facilitating the application of all these methods.

Second, we provide new theoretical results regarding the asymptotic behavior of these test

statistics in situations where market microstructure noise is present, a contribution which

is essential for practical applications to high frequency financial data. Third, we compare

the empirical results obtained on asset returns measured in different complementary ways,

comparing the results obtained from transaction prices and quotes, but also by constructing

from quotes the National Best Bid and Offer (NBBO) prices at each point time in order

to filter the transactions into different liquidity categories, and by comparing the results

obtained on the Dow Jones Industrial Average (DJIA) index from those obtained on its

thirty individual constituents. We then provide economic interpretations and implications

of the results for option pricing, risk management and the distinction between systematic

and idiosyncratic risk in the individual stocks and the index.

To describe the methodology, it can be helpful to proceed by analogy with a spectro-

graphic analysis. We observe a time series of high frequency returns, that is a single path,

over a finite length of time [0, T ]. Using that time series as input, we will then design a set

of statistical tools that can tell us something about specific components of the process that

produced the observations. These tools play the role of the measurement devices used in

astrophysics to analyze the light emanating from a star, for instance. Our observations are

as of this writing no other alternative(s), hence our focus on a unified approach to address all these issues

together.
2 In earlier work, we developed tests to determine on the basis of the observed log-returns whether a

jump part was present (Aït-Sahalia and Jacod (2009b)), whether the jumps had finite or infinite activity

(Aït-Sahalia and Jacod (2008b)), in the latter situation proposed a definition and an estimator of a degree

of jump activity parameter (Aït-Sahalia and Jacod (2009a)), and finally whether a Brownian continuous

component was needed when infinite activity jumps are included (Aït-Sahalia and Jacod (2008a)).
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the high frequency returns; in astrophysics it would be the light, visible or not. Here, the

data generating mechanism is assumed to be a semimartingale; in astrophysics it would be

whatever nuclear reactions inside the star are producing the light that is collected. Astro-

physicists can look at a specific range of the light spectrum to learn about specific chemical

elements present in the star. Here, we design statistics that focus on specific parts of the

distribution of high frequency returns in order to learn about the different components of

the semimartingale that produced those returns.

From the time series of returns, we can get the distribution of returns at time interval

∆n. Based on the information contained in that distribution, we would like to figure out

which components should be included in the model (continuous? jumps? which types of

jumps?) and in what proportions. That is, we would like to deconstruct the observed series

of returns back into its original components, continuous and jumps, as described in Figure

1. Figure 1 cannot be produced by visual inspection alone of either the time series of returns

or its distribution. We need to run the raw data through some devices that will emphasize

certain components to the exclusion of others, magnify certain aspects of the model, etc.

Similarly to what is done in spectrographic analysis, we will emphasize visual tools

in this paper. In spectrography, one needs to be able to recognize the visual signature

of certain chemical elements. Here, we need to know what to expect to see if a certain

component of the model is present or not in the observed data. This means that we will

need to have a law of large numbers, obtained by imagining that we had collected a large

number of sample paths instead of a single one. This allows us to determine the visual

signature of specific components of the model. We will not attempt here to measure the

dispersion around the expected pattern, and instead refer to the papers in the reference list

for the corresponding central limit theorems, the formal derivations of the results including

regularity conditions, as well as simulation evidence on the adequacy of the asymptotics.

Those papers are technically demanding because of the very nature of semimartingales, but

also because depending upon which component is included or not in the model — precisely

the questions we wish to answer — the asymptotics are driven by components with very

different characteristics. By contrast, the intuition is fairly clear and this is what this

paper focuses on, with the objective of facilitating applications of the results rather than

their derivation, with the exception of the new results concerning the limits of all the test

statistics when market microstructure noise is present.
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The methodology helps determine which components should be included in a given

semimartingale model of asset returns. This knowledge has various economic implications

for asset pricing. Many high frequency trading strategies rely on specific components of the

model being present or absent. If jumps need to be included in the model, then the familiar

consequences of market completeness for contingent claims valuation typically no longer

hold. And changes of measure will vary depending upon the type of jumps that are included.

Optimal portfolios will vary depending upon the nature of the underlying asset dynamics.

Risk management is also heavily dependent upon the underlying dynamics: clearly, a model

with only a continuous component will yield very different risk measures than one with jump

components also present, and different types of jumps aggregate separately over longer

horizons. And in derivative pricing, the type of components included change the nature

of observed prices: see for example the analysis of Carr and Wu (2003b) which shows how

to distinguish between option prices when the price jumps and when it does not, based on

their asymptotic behavior for short times to expiration. We will discuss these economic

implications in more detail below.

A word on data considerations before we proceed: when implementing the method on

returns data, we will rely on ultra-high frequencies, meaning that the sampling intervals we

use are typically of the order of a few seconds to a few minutes. This has two consequences.

First, obviously, it limits the analysis to data series for which such sampling frequencies

are available. This is becoming less and less of a restriction as such data are rapidly

becoming more readily available, but it does limit our ability to use long historical series, or

returns data from less liquid assets. Second, this means that even for liquid assets market

microstructure noise is going to be at least potentially a concern. Continuing with the

spectrography analogy, market microstructure noise plays the same role as the blurring

of astronomical images due to the Earth’s atmosphere or light pollution. And we do not

have the equivalent of a space-based telescope enabling the direct observation of the true or

fundamental asset price. We will in the course of our analysis examine the consequences of

this noise on the various statistics. From the mathematical standpoint, the new theoretical

results in this paper are the development of the various asymptotic behaviors of all the

test statistics under consideration when market microstructure noise is present. We then

proceed to analyze the data in light not only of the idealized no-noise limits but also of these

new limits, and contrast the first order asymptotic behavior identified at different sampling

4



frequencies where the impact of the noise can be expected to be more or less significant.

The paper is organized as follows. Section II presents the common measurement device

we designed to answer the various specification questions. In latter sections, we analyze

these questions one by one: which components are present (Section III), in what relative

proportions (Section IV), and some of the finer characteristics of the jump component

(Section V). Section VII analyzes theoretically the impact of the noise on the various

statistics under consideration. Section VIII describes the data and the transformation and

filtering algorithms we employ to transactions, quotes, and transactions filtered by quotes

for the DJIA and its individual components. Section IX reports the results of applying the

analysis to the data, analyzes the patterns that emerge in terms of liquidity and discuss the

economic implications of the results for option pricing, risk management and the distinction

between systematic and idiosyncratic risk in the individual DJ components vs. the DJ index.

Section X concludes.

II. The Measurement Device

The log-price Xt follows an Itô semimartingale, a hypothesis maintained throughout,

and formally stated as

Xt = X0 +

Z t

0
bsds| {z }

drift

+

Z t

0
σsdWs| {z }

continuous part

+ JUMPS (1)

JUMPS =

Z t

0

Z
{|x|≤ε}

x(μ− ν)(ds, dx)| {z }
small jumps

+

Z t

0

Z
{|x|>ε}

xμ(ds, dx)| {z }
big jumps

(2)

where as usual W denotes a standard Brownian motion, and μ is the jump measure of X,

and its predictable compensator is the Lévy measure ν (both μ and ν are random positive

measures on R+×R, and further ν factorizes as ν(ω, dt, dx) = dt Ft(ω, dx)). In the perhaps

more familiar differential form,

dXt = btdt+ σtdWt + dJt (3)

where Jt is the jump term.

5



The distinction between small and big jumps is based on a cutoff level ε > 0 in (2) that is

arbitrary. What is important is that ε > 0 is fixed. A semimartingale will always generate a

finite number of big jumps on [0, T ]. But it may give rise to either a finite or infinite number

of small jumps. For any measurable subset A of R at a positive distance of the origin, the
increasing process ν ([0, t]×A) is increasing and “compensates” the number of jumps of

X whose size is in A, in the sense that the difference of these two processes is a (local)

martingale. Therefore, ν ([0, t]× (−∞,−ε) ∪ (ε,+∞)) <∞, whereas ν ([0, t]× [−ε, ε]) may
be finite or infinite, although we must have

R
{|x|≤ε} x

2 ν([0, t], dx) <∞.

In economic terms, each component of the model can be fairly naturally mapped into an

economic source of risk in the underlying asset: the continuous part of the model captures

the normal risk of the asset, which is hedgeable using standard differential methods; the big

jumps component which can capture default risk, or more generally big news-related events;

and the small jumps component can represent price moves which are large on a time scale

of a few seconds, but generally not significant on a daily and below sampling frequency.

Such jumps may result for example from the limited ability of the marketplace to absorb

large transactions without a price impact. That component represents risk that is relevant

in particular for trading strategies that are executed at high frequency.

Note that we have compensated the small jumps part, but not the big jumps one.

Compensating the big jumps part is not always possible because the moments may not

exist, whereas summing small jumps without compensation may lead to a divergent sum.

However, when jumps have finite activity, or more generally when they are summable, that

is
P

s≤t |∆Xs| <∞ for all t, where

∆Xs = Xs −Xs−, (4)

is the size of the jump at time s, it turns out that
R
{|x|≤ε} |x| ν([0, t], dx) < ∞. Then

compensating the small jumps is not necessary, and we may rewrite (1) as follows:

Xt = X0 +

Z t

0
b0sds| {z }

drift

+

Z t

0
σsdWs| {z }

continuous part

+
X
s≤t
∆Xs (5)

with a different drift term: namely b0s = bs −
R
{|x|≤ε} xFs(dx).

We will assume that the model produces observations that are collected at a discrete

sampling interval ∆n: this means in particular that only “regular” sampling schemes are
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considered below, although the methodology can be extended to some non-regular sampling

scheme, at the expense of — significantly more — mathematical sophistication. There are

[T/∆n] (where [x] denotes the integer part of the positive real x) observed increments of X

on [0, T ], which are

∆n
i X = Xi∆n −X(i−1)∆n

, (6)

to be contrasted with the actual (unobservable) jumps ∆Xs of X, as described in Figure 2.

Our basic methodology consists in constructing realized power variations of these incre-

ments, suitably truncated and/or sampled at different frequencies. These realized power

variations are defined as follows, where p ≥ 0 is any nonnegative real and un > 0 is a

sequence of truncation levels:

B(p, un,∆n) =

[T/∆n]X
i=1

|∆n
i X|p 1{|∆n

i X|≤un} (7)

Throughout, T is fixed, and asymptotics are all with respect to ∆n → 0. Typically the

truncation levels un go to 0, and this is usually achieved by taking un = α∆'
n for some

constants ' ∈ (0, 1/2) and α > 0. Setting ' < 1/2 allows us to keep all the increments

which mainly contain a Brownian contribution. There will be further restrictions on the

rate at which un → 0, expressed in the form of restrictions on the choice of '. In some

instances, we do not want to truncate at all and we then write B(p,∞,∆n). Sometimes we

will truncate in the other direction, that is retain only the increments larger than u :

U(p, un,∆n) =

[T/∆n]X
i=1

|∆n
i X|p 1{|∆n

i X|>un}. (8)

With un = α∆'
n as above, that can allow us to eliminate all the increments from the

continuous part of the model. Then obviously

U(p, un,∆n) = B(p,∞,∆n)−B(p, un,∆n). (9)

Finally, we sometimes simply count the number of increments of X, that is, take the power

p = 0

U(0, un,∆n) =

[T/∆n]X
i=1

1{|∆n
i X|>un}. (10)

We exploit the different asymptotic behavior of the variations B(p, un,∆n) and/or

U(p, un),∆n) as we vary: the power p, the truncation level un and the sampling frequency
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∆n. This gives us three degrees of freedom, or tuning parameters, with enough flexibility

to isolate what we are looking for. Having these three parameters to play with, p, un and

∆n, is akin to having three knobs to adjust in the measurement device.

A. The First Knob: Varying the Power

The role of the power variable is to isolate either the continuous or jump components,

or to keep them both present. As illustrated in Figure 3, powers p < 2 will emphasize the

continuous component of the underlying sampled process while powers p > 2 will conversely

accentuate its jump component. The power p = 2 (which receives much attention in the

form of measuring realized volatility) puts them on an equal footing, which turns out to be

useful here only when we seek to measure the relative magnitude of the components.

B. The Second Knob: Varying the Truncation Rate

Truncating the large increments at a suitably selected cutoff level can eliminate the big

jumps when needed. The key is that there is a finite number of large jumps. Asymptotically,

as the sampling frequency increases, the cutoff level gets smaller. But the large jumps have

a fixed size, so at some point along the asymptotics the cutoff level becomes smaller than

the large jumps, which are thus no longer part of the realized power variation B(p, un,∆n),

as illustrated in Figure 4.

Alternatively, we can truncate to eliminate the Brownian component if we use the up-

wards power variation U(p, un,∆n), since the continuous component is only capable of

generating increments that are smaller than un = α∆'
n when ' < 1/2.

C. The Third Knob: Varying the Sampling Frequency

Sampling at different frequencies can let us distinguish between the three situations

where the variations converge to a finite limit, converge to zero or diverge to infinity. We will

achieve this by computing the ratio of two B’s evaluated at the biggest available frequency

∆n and at the same time at some lower frequency k∆n where k ≥ 2 is an integer. Sampling
at frequency k∆n is obtained from the same data series, simply retaining one out of every
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k data points in Figure 2. As described in Figure 5, the limiting behavior of the ratio (1,

less than 1 or greater than 1) will identify the underlying limiting behavior of B.

As we will see, the various limiting behaviors of the variations are indicative of which

component of the model dominates at a particular power and in a certain range of returns (by

truncation), just like certain chemical elements have a very specific spectrographic signature.

So they will effectively allow us to distinguish between all manners of null and alternative

hypotheses if we can identify which situation corresponds to which of the spectrographic

signatures of B.

III. Which Component(s) Are Present

Leaving aside the drift, which is effectively invisible at high frequency, the model (1)-(2)

has three components: a continuous part, a small jumps part and a big jumps part. The

analogy with spectrography would be that we are looking for the signature of three possible

chemical elements (say, hydrogen, helium and everything else) in the light being recorded.

Here, based on the observed log-returns, what can we tell about which component(s) of the

model are present ?

Consider the following sets defined pathwise on [0, T ] :

ΩcT = {X is continuous in [0, T ]}
ΩjT = {X has jumps in [0, T ]}
ΩfT = {X has finitely many jumps in [0, T ]}
ΩiT = {X has infinitely many jumps in [0, T ]}
ΩWT = {X has a Wiener component in [0, T ]}
ΩnoWT = {X has no Wiener component in [0, T ]}

(11)

Formally, ΩWT =
nR T

0 σ2sds > 0
o
and ΩnoWT =

nR T
0 σ2sds = 0

o
, and the definition of the four

other sets is clear.

We observe a time series originating in a given unobserved path, and wish to deter-

mine in which set(s) the path is. At any given — fixed — frequency this is a theoretically

unanswerable question since for example any such time series can be obtained by discretiza-

tion of a continuous path, and also of a discontinuous one. However we wish to construct
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test statistics that behave well asymptotically, as ∆n → 0, and if possible under the only

structural assumptions (1)—(2). That is, they should be model-free in the sense that their

implementation and their asymptotic properties do not require that we specify or calibrate

the model, which can potentially be quite complicated (stochastic volatility, jumps, jumps

in volatility, jumps in jump intensity, etc.).

It turns out that this aim is achievable, using the power variations introduced above,

for some of the problems. For others we need some additional structural assumptions, to

be explained later when needed. Let us also mention that for all results one also needs

some weak boundedness-like or smoothness-like assumptions on the coefficients, such as the

process bt should be (locally) bounded: as a rule, these assumptions are not explicitly stated

here, and we refer to the original papers for the mathematically precise statements.

A. Jumps: Present or Not

The first question we address is whether the path of X contains jumps or not. As

discussed in the Introduction, there is by now a vast literature concerned with detecting

jumps but we will focus on the approach which lends itself to answering the full range of

specification questions listed for semimartingales.

Using the methodology of power variations, we start with two processes which measure

some kind of variability of X and depend on the whole (unobserved) path of X:

A(p) =

Z T

0
|σs|pds, B(p) =

X
s≤T

|∆Xs|p (12)

where p > 0. The variable A(p) is finite for all p > 0, and positive on the set ΩWT . The

variable B(p) is finite if p ≥ 2 but often not when p < 2. The quadratic variation of X is

[X,X]T = A(2) +B(2).

Of course, hoping to estimate B(p) using B(p, un,∆n) is too naive in general, but it

works in specific cases. Namely, we have the following behavior of B(p,∞,∆n)⎧⎨⎩ p > 2, all X ⇒ B(p,∞,∆n)
P−→ B(p)

all p, on ΩcT ⇒ ∆
1−p/2
n
mp

B(p,∞,∆n)
P−→ A(p)

(13)

where mp denotes the pth absolute moment of the standard normal variable.
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So we see that, when p > 2, B(p,∞,∆n) tends to B(p) : the jump component dominates.

If there are jumps, the limit B(p)t > 0 is finite. On the other hand when X is continuous,

then the limit is B(p) = 0 and B(p,∞,∆n)t converges to 0 at rate ∆
p/2−1
n .

These considerations lead us to pick a value of p > 2 and compare B(p,∞,∆n)t on two

different sampling frequencies. Specifically, for an integer k, consider the test statistic SJ :

SJ(p, k,∆n) =
B(p,∞, k∆n)

B(p,∞,∆n)
. (14)

The ratio in SJ exhibits a markedly different behavior depending upon whether X has

jumps or not:

SJ(p, k,∆n)→

⎧⎨⎩ 1 on ΩjT

kp/2−1 on ΩcT ∩ΩWT
(15)

That is, in the context of Figure 5, under ΩjT the variation converges to a finite limit and so

the ratio tends to 1 (the middle situation depicted in the figure) while under ΩcT ∩ΩWT the

variation converges to 0 and the ratio tends to a limit greater than 1, with value specifically

depending upon the rate at which the variation tends to 0 (the lower situation depicted in

the figure). The notion of a set ΩcT ∩ ΩWT may seem curious at first, but it is possible for

a process to have continuous paths without a Brownian component if the process consists

only of a pure drift. Because this would be an unrealistic model for financial data, we are

excluding the set ΩcT ∩ΩnoWT from consideration.

If one desires a formal statistical test of ΩcT ∩ΩWT vs. ΩjT , with a prescribed asymptotic

level α ∈ (0, 1), one can use a CLT under ΩcT ∩ ΩWT and one under ΩjT , such CLT being

available again in a model-free situation, apart from some additional smoothness assump-

tions: so one can in fact test either H0 : Ω
c
T ∩ ΩWT vs. H1 : Ω

j
T or the reverse H0 : Ω

j
T vs.

H1 : Ω
c
T ∩ΩWT . Note that the first limit in (15) is valid on Ω

j
T whether the jump component

includes finite or infinite components, or both. It is not designed to disentangle the two

types of jumps. How to do this is the question we now turn to.

B. Jumps: Finite or Infinite Activity

Many models in mathematical finance do not include jumps. But among those that

do, the framework most often adopted consists of a jump-diffusion: these models include a
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drift term, a Brownian-driven continuous part, and a finite activity jump part (compound

Poisson process): early examples include Merton (1976), Ball and Torous (1983), Bates

(1991) and Duffie, Pan, and Singleton (2000).

Other models are based on infinite activity jumps: see for example Madan and Seneta

(1990), Madan and Milne (1991), Eberlein and Keller (1995), Barndorff-Nielsen (1997),

Barndorff-Nielsen (1998), Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003a),

Carr and Wu (2004) and Schoutens (2003), although with the exception of Carr, Geman,

Madan, and Yor (2002) models of this type are justified primarily by their ability to produce

interesting pricing formulae rather than necessarily an attempt at empirical realism.

So, which is it, based on the data? Our objective is now to discriminate between finite

and infinite activity jumps using again the same set of tools.

B.1. Null Hypothesis: Finite Activity

We first set the null hypothesis to be finite activity, that is H0 : Ω
f
T ∩ ΩWT , whereas the

alternative is H1 : Ω
i
T . As in the previous subsection, we rule out the set Ω

f
T ∩ΩnoWT which,

for all models in use in finance, is empty. We choose an integer k ≥ 2 and a real p > 2. The
only difference with testing for jumps using SJ is that we now truncate

SFA(p, un, k,∆n) =
B(p, un, k∆n)

B(p, un,∆n)
. (16)

Without truncation, as in SJ , we could discriminate between jumps and no jumps,

but not among different types of jumps. Like before, we set p > 2 to magnify the jump

component at the expense of the continuous component. But since we want to separate big

and small jumps, we now truncate as a means of eliminating the large jumps. Since the

large jumps are of finite size (independent of ∆n), at some point in the asymptotics the

truncation level un = α∆'
n will have eliminated all the large jumps: see Figure 4 earlier.

Then if there are only big jumps and the Brownian component, the two truncated power

variations B(p, un, k∆n) and B(p, un,∆n) will behave as if there were no jumps, leaving

only the Brownian component. The limit of the ratio will be kp/2−1 as in the test for jumps

when there are no jumps.

But if there are infinitely many jumps, which are necessarily small, then the truncation
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cannot eliminate them. This is because however small un is, there are still infinitely many

jumps in each ∆n−increment. The Brownian component is dominated in every increment
by the small jumps because p > 2. Both B(p, un, k∆n) and B(p, un,∆n) behave like the

sum of the pth power of the jumps that are smaller than un, and although they both go to

0, their ratio tends to 1. In the context of Figure 5, we are in the limiting case where both

B’s go to zero but at the same rate: hence the ratio is 1.

That is, we have:

SFA(p, un, k,∆n)
P−→

(
kp/2−1 on ΩfT ∩ ΩWT .

1 on ΩiT
(17)

B.2. Null Hypothesis: Infinite Activity

We next set the null hypothesis to be infinite activity, that is H0 : Ω
i
T , whereas the

alternative is H1 : Ω
f
T ∩ΩWT . We need a different statistic, SIA, because although SFA goes

to 1, the distribution of SFA is not model-free under ΩiT . The problem comes form the fact

that the behavior of the truncated power variations B(p, un,∆n) depend on the degree of

activity of the jumps when there are infinitely many jumps. So we need to specify what we

precisely mean by “degree of activity”.

To this end, recalling the definition of B(p) given in (12), we consider now the set IT

= {p ≥ 0 : B(p) < ∞}. This (random) set IT is of the form [βT ,∞) or (βT ,∞) for some
βT (ω) ∈ [0, 2], and 2 ∈ IT always. It turns out that βT (ω), the lower bound of the set IT ,

is a sensible measure of jump activity for the path t 7→ Xt(ω) at time T . In the special

case where X is a Lévy process, then βT (ω) = β does not depend on (ω, T ), and it is also

the infimum of all r ≥ 0 such that
R
{|x|≤1} |x|rF (dx) < ∞, where F is the Lévy measure,

and this number has been introduced by Blumenthal and Getoor (1961) and by extension

we call βT the (generalized) Blumenthal-Getoor index, or degree of jump activity, of the

process.

In other words the degree of jump activity measure the rate at which the jump measure

diverge near 0, so it characterizes the concentration of small jumps. Many examples of

models proposed in finance for asset returns fall in this category, with either fixed values of

β or β being a free parameter. (We will discuss estimating β below.) Examples are included
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in Figure 7. They include compound Poisson-based models starting with Merton (1976),

the variance gamma model of Madan and Seneta (1990) and Madan, Carr, and Chang

(1998) (β = 0), the Normal Inverse Gaussian model of Barndorff-Nielsen (1998) (β = 1),

the hyperbolic model of Eberlein and Keller (1995), the generalized hyperbolic model of

Barndorff-Nielsen (1977) and the CGMY model of Carr, Geman, Madan, and Yor (2002)

(in which β is a free parameter).

A priori the degree of jump activity can be random and depend on time, but we assume

for tractability that this index is in fact constant in time and non-random as is the case is

all known examples. More precisely, we assume that the Lévy measure ν in (2) is of the

form

ν(dt, dx) =
1

|x|1+β
³
a+t 1(0,z+t ]

(x) + a−t 1[−z−t ,0)
(x)
´
+ ν0(dt, dx), (18)

where a±t are nonnegative and z±t are positive stochastic processes, and ν 0 is another Lévy

measure whose index is smaller than β. Note that the assumption (18) is only about the

local behavior of the jump measure ν near 0, that is, only about the behavior of the small

jumps. The big jumps, controlled by ν0, are unrestricted. The processes a±t are intensity

parameters: as they go up, there are more and more small jumps. The processes z±t control

the range of returns over which the behavior of the overall jump measure is stable-like with

index β.

Note that, necessarily, β ∈ (0, 2) here, otherwise (18) would not be a Lévy measure.
Then, if further

R T
0 (a

+
s + a−s )ds > 0, the number β is the index of X on the full interval

[0, T ]. Note that when X is a (possibly asymmetric) stable process, that is a process whose

jump measure is proportional to 1/|x|1+β, then it satisfies this assumption, β being the index
of the stable process. In fact, this assumption amounts to saying that the small jumps of X

behave like the small jumps of a stable or tempered stable process, or more accurately as

those of a process which is a stochastic integral with respect to a stable or tempered stable

process, whereas the big jumps are governed by ν0. We call processes which satisfy (18)

“proto-stable” processes. Most models in finance which exhibit jumps of infinite activity are

proto-stable. While we will propose estimators of β below, the true β is of course unknown,

and our model-free requirement means here that we wish to construct a test which does not

depend upon β, the processes a±t or z
±
t , nor the residual jump measure ν

0.
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Coming back to our problem, we consider the set

ΩiβT = {
Z T

0
(a+s + a−s )ds > 0}

on which the jump activity index of X equals β. Note that ΩiβT ⊂ ΩiT , the inclusion possibly
being strict. However testing the null being ΩiT is impossible without further restriction,

and so we set the null to be ΩiβT .

We choose three reals γ > 1 and p0 > p > 2 and define a family of test statistics as

follows:

SIA(p, un, γ,∆n) =
B(p0, γun,∆n)B(p, un,∆n)

B(p0, un,∆n)B(p, γun,∆n)
(19)

which has the following limits:

SIA(p, un, γ,∆n)
P−→

(
γp

0−p on ΩiβT
1 on ΩfT ∩ΩWT

(20)

Intuitively, under the alternative of finite jump activity, the behavior of each one of the four

truncated power variations in (19) is driven by the continuous part of the semimartingale.

The truncation level is such that essentially all the Brownian increments are kept. Then the

truncated power variations all tend to zero at rates ∆p/2−1
n and ∆p0/2−1

n respectively and by

construction the (random) constants of proportionality cancel out in the ratios, producing

a limit 1 given under H1 in (20).

If, on the other hand, jumps have infinite activity, then the small jumps are the ones

that matter and the truncation level becomes material, producing four terms that all tend

to zero but at the different orders in probability up−βn , up
0−β
n , (γun)

p−β and (γun)p
0−β re-

spectively, resulting in the limit γp
0−p given under H0 in (20). By design, that limit in SIA

is independent of β.

C. Brownian Motion: Present or Not

We now would like to construct procedures which allow to decide whether the Brownian

motion is really there, or if it can be forgone with in favor of a pure jump process with

infinite activity. When infinitely many jumps are included, there are a number of models in

the literature which dispense with the Brownian motion altogether. The log-price process
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is then a purely discontinuous Lévy process with infinite activity jumps, or more generally

is driven by such a process. Is this a realistic model in light of the data?

C.1. Null Hypothesis: Brownian Motion Present

In order to construct a test, we seek a statistic with markedly different behavior under

the null and alternative. Using the same class of tools, the idea is now to consider powers

p less than 2, since in the presence of Brownian motion the power variation would be

dominated by it while in its absence it would behave quite differently. Specifically, the large

number of small increments generated by a continuous component would cause a power

variation of order less than 2 to diverge to infinity: recall Figure 5.

Without the Brownian motion, however, and when p is bigger than the Blumenthal-

Getoor index βT = β, assuming the structural assumption (18), the power variation con-

verges to 0 at exactly the same rate for the two sampling frequencies ∆n and k∆n, whereas

with a Brownian motion the choice of sampling frequency will influence the magnitude of

the divergence. Taking a ratio will eliminate all unnecessary aspects of the problem and

focus on that key aspect.

So we choose an integer k ≥ 2 and a real p < 2 and propose the test statistic

SW (p, un, k,∆n) =
B(p, un,∆n)

B(p, un, k∆n)
(21)

which has the limits

SW (p, un, k,∆n)
P−→

(
k1−p/2 on ΩWT
1 on ΩnoWT ∩ΩβT , p > β

. (22)

Note that the first convergence above, on ΩWT , does not require any specific assumptions on

the jumps, only the second convergence requires (18).

C.2. Null Hypothesis: No Brownian Motion

When there are no jumps, or finitely many jumps, and no Brownian motion, X reduces

to a pure drift plus occasional jumps, and such a model is fairly unrealistic in the context

of most financial data series. But one can certainly consider models that consist only of a
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jump component, plus perhaps a drift, if that jump component is allowed to be infinitely

active. If one wishes to set the null model to be a pure jump model (plus perhaps a drift),

then the issue becomes to design a test statistic using power variations whose behavior

is independent of the specific nature of the infinitely active pure jump process. In other

words, we again assumes (18), but we do not know β and wish to design a test that remains

model-free in the sense that it does not depend on β, a±t or z
±
t in (18).

We choose a real γ > 1 to define two different truncation ratios and define a family of

test statistics as follows:

SnoW (p, un, γ,∆n) =
B(2, γun,∆n) U(0, un,∆n)

B(2, un,∆n) U(0, γun,∆n)
. (23)

To understand the construction of this test statistic, recall that in a power variation of

order 2 the contributions from the Brownian and jump components are of the same order.

If the Brownian motion is present (H1 : Ω
W
T ) then once that power variation is properly

truncated, the Brownian motion will dominate it if it is present. And the truncation can be

chosen to be sufficiently loose that it retains essentially all the increments of the Brownian

motion at cutoff level un and a fortiori γun, thereby making the ratio of the two truncated

quadratic variations converge to 1 under the alternative hypothesis.

If on the other hand the Brownian motion is not present (H0 : Ω
noW
T ∩ ΩβT ), then the

nature of the tail of jump distributions is such that the difference in cutoff levels between

un and γun remains material no matter how far we go in the tail and the limit of the ratio

B(2, γun,∆n)/B(2, un,∆n) in (23) will reflect it: it will now be γ2−β. But since absence of

a Brownian motion is now the null hypothesis, the issue for constructing a test is that this

limit depends on the unknown β.

Canceling out that dependence is the role devoted to the ratio U(0, un,∆n)/U(0, γun,∆n)

of the number of large increments. The U 0s are always dominated by the jump components

of the model whether the Brownian motion is present or not. Their inclusion in the statistic

is merely to ensure that the statistic is model-free, by effectively canceling out the depen-

dence on the jump characteristics that emerges from the ratio of the truncated quadratic

variations.

Indeed, the limit of the ratio of the U 0s is γβ under both the null and alternative

hypotheses. As a result, the probability limit of SnoW will be γ2 under the null, independent
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of β:

SnoW (p, un, γ,∆n)
P−→

(
γ2 on ΩnoWT ∩ΩβT
γβ on ΩWT

(24)

Generally speaking, the statistic SW is more robust than SnoW ; similarly SFA is more

robust than SIA. This is due to their simpler design, and the lesser reliance on subtle

cancellations to achieve their respective objectives. As a result, we recommend using SFA

and SW in practical applications.

IV. The Relative Magnitude of the Components

A typical “main sequence” star might be made of 90% hydrogen, 10% helium and 0.1%

everything else. In astrophysics, a natural metric to compare different atoms and address

the question of percentages of various components is atomic mass. Here, what is the relative

magnitude of the two jump and continuous components? We can answer this question using

the same power variation devices. The natural metric is now to consider p = 2 since this is

the power where all the components are present together, instead of powers p > 2 or p < 2

that eliminate one or the other of the components, and ask the question of percentages of

total quadratic variation (QV) attributable to each component.

As illustrated in Figure 6, by using truncations at the right rate we can split the QV

into its continuous and jump components, and not truncate to estimate the full QV:⎧⎨⎩
B(2,un,∆n)
B(2,∞,∆n)

= %QV due to the continuous component

1− B(2,un,∆n)
B(2,∞,∆n)

= %QV due to the jump component
(25)

The use of truncation to estimate the continuous part of the quadratic variation when

there are jumps was proposed by Mancini (2001), who relied on the law of the iterated

logarithm for that purpose. Alternatively, one can split the QV based on bipower variations

instead of truncating: see Barndorff-Nielsen and Shephard (2004), Huang and Tauchen

(2005) and Andersen, Bollerslev, and Diebold (2007).

Note that (25) suggests that an alternative test for the presence of jumps can be con-

structed based on the ratio B(2, un,∆n)/B(2,∞,∆n). However, this would work only if the
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null hypothesis is that no jumps are present, and the null hypothesis is that the ratio is

1. With jumps under the null, one would have to specify exogenously as part of the null

hypothesis how large the fraction of QV due to jumps is.

We can split the rest of the QV, which by construction is attributable to jumps, into

a small jumps and a big jumps component. This depends on the cutoff level ε selected to

distinguish big and small jumps:⎧⎨⎩
U(2,ε,∆n)
B(2,∞,∆n)

= %QV due to big jumps
B(2,∞,∆n)−B(2,un,∆n)−U(2,ε,∆n)

B(2,∞,∆n)
= %QV due to small jumps

. (26)

We can then obtain a plot that looks like Figure 8 and provides a split of the QV into the

various components.

V. Estimating the Degree of Jump Activity

The method described in Section B is able to tell finite activity jumps from infinite

activity ones. Among jump processes, however, finite activity are the exception rather than

the norm. And “infinite activity” can mean quite different things depending upon “how

infinite” that infinite jump activity is. In fact, the degree of activity is accurately measured

by the Blumenthal-Getoor index βT introduced earlier: at one end of the spectrum, infinite

activity jump processes such as the Gamma process, whose jump measure diverge at a sub-

polynomial rate, can look like Poisson jumps; at the other end, they can look almost like

Brownian motion, which is to say extremely active. So it seems natural to try to estimate

the index βT . As discussed above, specific models in finance correspond either to fixed

values of β (such as β = 0 for the Gamma and Variance Gamma models, β = 1/2 for the

Lévy model and the Inverse Gaussian model, β = 1 for the Cauchy model and the Normal

Inverse Gaussian Process) or β is a free parameter (as in the stable model, the Generalized

Hyperbolic model and the CGMY model).

The next issue is then to estimate βT , or rather β under the somewhat restricted as-

sumption (18). The problem is made more challenging by the potential presence in X of a

continuous, or Brownian, martingale part. β characterizes the behavior of ν near 0. Hence

it is natural to expect that the small increments of the process are going to be the ones
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that are most informative about β. But that is where the contribution from the continuous

martingale part of the process is inexorably mixed with the contribution from the small

jumps. In other words, we need to see through the continuous part of the semimartingale

in order to say something about the number and concentration of small jumps.

So we are now looking in a different range of the spectrum of returns, namely by con-

sidering only returns that are larger than the cutoff un = α∆'
n for some ' ∈ (0, 1/2), as

opposed to those that are smaller than the cutoff. This allows us to eliminate the increments

due to the continuous component. We can then use all values of p, not just those p > 2,

despite the fact that we wish to concentrate on jumps: see Figure 6. In fact, we will simply

use the power p = 0.

We propose two estimators of β based on counting the number of increments greater

than the cutoff un. The first one is based on varying the actual cutoff level: fix 0 < α < α0

and consider two cutoffs un = α∆'
n and u0n = α0∆'

n with γ = α0/α :

bβn(',α, α0) =
log(U(0, un,∆n)/U(0, γun,∆n))

log(γ)
, (27)

The second one is based on varying the sampling frequency: sample at two time scales, ∆n

and 2∆n : bβ0n(',α, k) =
log(U(0, un,∆n)/U(0, un, k∆n))

' log k
. (28)

These estimators are consistent for β, and we have derived CLTs for them.

These basic estimators are based on the first-order asymptotics

U(0, un,∆n) ∼ b0∆
−'β
n

1

αβ
(29)

where b0 is independent of un and ∆n. In small samples, a bias corrected procedure is based

on the second-order asymptotics

U(0, un,∆n) ∼ b0∆
−'β
n

1

αβ
+ b1∆

1−2'β
n

1

α2β
(30)

works as follows: we can estimate β, along with the unknown coefficients b0 and b1 in (30)

by a straightforward nonlinear regression of U(0, un,∆n) on α by varying α in the cutoff

un = α∆'
n .
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One can then test various hypotheses involving β. The approach described in this Section

to estimate β is due to Aït-Sahalia and Jacod (2009a). Related approaches include Woerner

(2006), who proposes an estimator of the jump activity index in the case of fractionally

integrated processes, Cont and Mancini (2009), who are testing whether β > 1 or β < 1,

which correspond to finite or infinite variation for X, and Todorov and Tauchen (2010), who

provide a graphical method to determine whether β = 2 or β < 2 using the test statistic of

Aït-Sahalia and Jacod (2009b), and Belomestny (2009) who proposes a method based on

low frequency historical and options data.

VI. Summary of the Spectrogram Methodology: Tuning

Power, Truncation and Sampling Frequency

We have seen that setting the three knobs of power, truncation level and sampling

frequency in various combinations allowed us to determine which component of the model

was likely to be present, in what proportion, and estimate the degree of activity of the

jumps. Tables I summarizes the choice of the three tuning parameters (p, u,∆) for the

corresponding tasks under consideration.

In a nutshell, we address specification questions that require an emphasis on the jump

component of the model with powers p > 2, those that require an emphasis on the continuous

component with powers p < 2, and those that require them on an equal footing with the

singular power p = 2. Truncating makes it possible to eliminate either the big jumps or the

Brownian component, as necessary. And finally sampling at different frequencies allows us

to identify the asymptotic behavior of the relevant power variations, thereby discriminating

between components of the model that are present or absent in the sampled data.

VII. Theoretical Limits When Market Microstructure

Noise Dominates

We consider in the empirical analysis that follows sampling frequencies up to 5 seconds.

In different applications, this selection is going to be asset-dependent, as a function of the
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assets’ liquidity and other trading characteristics. But in any event, real data observa-

tions of the process X at such ultra high frequencies are blurred by market microstructure

noise, which has the potential to change the asymptotic behavior of many statistics at very

high frequency, and can force us to downsample as is often done in the classical volatility

estimation setting.

When observations are affected by an additive noise, then instead of Xi∆n we observe

Yi∆n = Xi∆n + εi, and the εi are i.i.d. with E(ε2i ) and E(ε4i ) finite, and not depending of

the observation frequency. When rounding is introduced, we observe Yi∆n = [Xi∆n ]a which

is X rounded to the nearest multiple of a, say 1 cent for a decimalized asset, or for many

bond markets, α = 1/32nd of a dollar: again the rounding level α does not depend on n.

As a matter of fact, the real microstructure noise is probably a mixture of the two types

above, first an additive noise (or perhaps a “colored” additive noise) which may account for

some bouncebacks, and then the noisy price is rounded at the level α.3

The power variations that form the building blocks of our methodology are affected by

either type of noise, in a rather drastic way, since the presence of noise modifies the limit

in probability of most of our statistics, not to speak about their second order behavior

like CLTs. In order to be able to interpret the empirical results, we need to extend the

existing theory by explicitly incorporating the noise into the probability limits of the various

statistics. As discussed, we will consider in turn the two polar cases of a pure additive noise,

and of a pure rounding noise.

3While far from being complete descriptions of the reality, these two specifications for the noise can

be thought of as proxies for some of the main features identified as relevant in the market microstructure

literature: see e.g., Hasbrouck (1993), who discusses the theoretical market microstructure underpinnings of

an additive noise model and argues that the standard deviation of the noise, E(ε2i )
1/2, is a summary measure

of market quality. In the Roll (1984) model, the noise is due entirely to the bid-ask spread. Harris (1990b)

considers additional sources of noise and their impact on the Roll model and its estimators. More complex

structural models, such as Madhavan, Richardson, and Roomans (1997), also give rise to reduced forms

where the observed transaction price takes the form of an unobserved price plus noise. Adverse selection

effects are considered in Glosten (1987) and Glosten and Harris (1988), where the spread has different

components. Especially when asymmetric information is involved, the noise term may no longer satisfy

the basic assumptions here (such as i.i.d. or uncorrelatedness with the price process). The second case we

consider, where the noise is due to rounding, has been analyzed in the market microstructure literature (see

e.g., Gottlieb and Kalay (1985)). The specification of the model in Harris (1990a) combines both rounding

and bid-ask effects as the dual sources of noise.
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A. Additive noise

Pure additive noise has been considered by many authors for the purpose of estimating

the volatility, but its effect on power variations, truncated or not, has not been thoroughly

analyzed so far, to the best of our knowledge. So, in contrast with the style of the rest of

the paper, we now present theorems. To avoid intricate statements, we make two basic, and

mild, assumptions on the noise, which is a sequence (εi)i≥0 of i.i.d. variables, independent

of the underlying process. Namely we assume that

m0
p = E(|εi|p) is finite for all p > 0, and the noise is centered: E(εi) = 0. (31)

and

the variables εi − εi−1 have a density f which is continuous and positive at 0. (32)

We also write B0(p, un,∆n) and U 0(p, un,∆n) for the variables introduced in (7), (8)

and (10), where the increments ∆n
i X of (6) are substituted with

(Xi∆n + εi)−
¡
X(i−1)∆n

+ εi−1
¢
. (33)

In other words, in the case of additive noise, the observations on the process, Xi∆n , are

replaced by Xi∆n + εi. The limits that are relevant for the spectrogram analysis are given

by the following result (recall that B0(p,∞,∆n) = U 0(p, 0,∆n)):

Theorem 1. Assume (31) and (32).

a) If p ≥ 0, then for any sequence un of nonnegative numbers going to 0 we have

∆n U
0(p, un,∆n)

P−→ m0
p T. (34)

b) If p > 0 and if further

∆n

urn
→ 0, where r =

⎧⎪⎪⎨⎪⎪⎩
2p+2
p if p ≤ 1

4 if 1 ≤ p ≤ 3
p+ 1 if p ≥ 3

(35)

then we have
∆n

up+1n

B0(p, un,∆n)
P−→ 2f(0)

p+ 1
T. (36)

The proof is given in the appendix.

23



B. Rounding noise

The situation of rounding noise is much more delicate to analyze. There, instead of

observing Xi∆n , we observe [Xi∆n ]α, that is Xi∆n rounded to the nearest multiple of α. For

instance, if the market under consideration is decimalized, then α = 1 cent. For many bond

markets, α = 1/32nd of a dollar.

If X is continuous, then most of the increments ∆n
i X vanish, and all are integral multi-

ples of the rounding value α. So the key role is played by the upcrossings and downcrossings

of the levels (q + 1/2)α by X, for all integers q. So, not surprisingly, the limit of the vari-

ations involve the local times of X at those levels, that is the amount of time that the

process spends in a neighborhood of the crossing levels. The same is true when X jumps,

except that in this case the theory of local times is not even well established unless the

Blumenthal-Getoor index of the jump is smaller than 1.

More specifically, only the case when X is continuous is completely determined, and the

following result is due to Delattre (1997). Below, La
t denotes the local time of X at level

a ∈ R (see the Appendix for a precise definition of the local time), and as before we denote
by B00(p, un,∆n) and U 00(p, un,∆n) for the variables introduced in (7), (8) and (10), where

the increments ∆n
i X of (6) are substituted with

[Xi∆n ]α − [X(i−1)∆n
]α. (37)

Theorem 2. If X is a continuous semimartingale with the drift process locally bounded, as

well as the volatility process σt and its inverse 1/σt, then

p
∆nB

00(p,∞,∆n)
P−→ αp

r
2

π

X
q∈Z

Z T

0

1

σs
dL(q+1/2)αs . (38)

The same still holds if the semimartingale is discontinuous, but with finite activity: we

will show this in the Appendix. Otherwise, no precise mathematical result is known so far

in this domain.

The behavior of the truncated power variations is quite different in the presence of

rounding. Indeed, if un → 0, for n large enough we have un < α since the rounding level

is fixed. In this case all increments of the noisy process are either 0 or bigger than un. In
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other words, we have for n large enough:

B00(p, un,∆n) = 0, U 00(p, un,∆n) = B00(p,∞,∆n). (39)

C. Limit of our statistics

If we gather the previous results together with those for the observations without noise,

we see that SJ has four possible limits:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/k : additive noise dominates

1/k1/2 : rounding error dominates (and jumps have finite activity)

1 : jumps present and no significant noise

kp/2−1 : no jumps present and no significant noise

. (40)

The impact of the noise on SFA is given by (where “no limit” means that for n large

the statistics is the ratio 0/0):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/k : additive noise dominates

no limit : rounding error dominates

1 : infinite activity jumps and no significant noise

kp/2−1 : finite activity jumps and no significant noise

. (41)

SW , taking market microstructure noise into account, has four possible limits:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/k : additive noise dominates

no limit : rounding error dominates

1 : No Brownian motion and no significant noise

k1−p/2 : Brownian motion present and no significant noise

. (42)

Taking microstructure noise into account yields the following limits for our measure of

the fraction of QV due to the continuous component:⎧⎪⎪⎨⎪⎪⎩
0 : additive noise dominates

0 : rounding error dominates

actual fraction of QV : no significant noise

. (43)

We will now analyze the data in light of these predictions of the theory.
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VIII. The Data

A. The Starting Data

We use a dataset consisting of all transactions and quotes on all thirty individual com-

ponents of the Dow Jones Industrial Average in 2006. The data source is the TAQ database.

Using the correction variables in the dataset, we retain only transactions that are labeled

“good trades” by the exchanges: regular trades that were not corrected, changed, or signi-

fied as canceled or in error; and original trades which were later corrected, in which case the

trade record contains the corrected data for the trade. Beyond that, no further adjustment

to the raw data are made to produce what we call the “unfiltered transactions.” We also

consider and use the corresponding quotes, as we explain below.

We sample the price series at up to the 5 second frequency, and then lower frequency

multiples. The most liquid stocks in the DJIA trade on average more than once every

second, so we are not retaining every transaction by doing so, which avoids incorporating

every bid-ask bounce. For the less liquid stocks, some smoothing is involved. When no

transaction is available at the exact time stamp, we use the closest one available. When

more than one transaction is available at the same time stamp, we average them. We do

not include the overnight returns.

B. Bouncebacks and National Best Bid and Offer (NBBO) Filter

Different measurements of the stock returns lead to different properties of the con-

structed price process. One particular issue that deserves careful attention in the data is

that of “bouncebacks.” We call “bouncebacks” price observations that are either higher or

lower than the sequences of prices that both immediately precede and follow it. Such prices

generate a log-return from one transaction to the next that is large in magnitude, and is

followed immediately by a log-return of the same magnitude but of the opposite sign, so

that the price returns to its starting level before that particular transaction. To the extent

that we have no reason to believe that those transactions did not actually take place, as

we already eliminate transactions known to TAQ to be incorrect, we start with the premise

that bouncebacks should not be arbitrarily removed from the sample. However one may
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think that bouncebacks, although significant in a sense, should not be incorporated in the

model for the “true” latent price process, whatever this “true” might mean.

The prevalence of bouncebacks can lead to a large number of relatively small jumps

in the raw data, and bias the empirical results towards finding more small jumps than

actually happen if the data were correctly measured, or biasing the estimated degree of

jump activity. By contrast, a true jump can be followed by another jump (due to the

prevalence of jump clustering in the data), but these successive jumps will not necessarily

be of the same magnitude and of the opposite sign.

One straightforward approach to eliminate bouncebacks would be to eliminate all log-

returns that are followed immediately by another log-return of the opposite sign, when they

are both greater than a pre-determined magnitude, such as some number of ticks. There is

however typically in the data a continuum of bouncebacks in terms of such magnitude, so

this approach ends up creating a discontinuity at the arbitrary pre-determined magnitude

selected: many of them of size less than that level and then none. On the other hand,

setting that level within one tick would be extreme and would change the nature of the

observed prices.

To deal with bouncebacks endogenously, we will instead make use of the matched quotes

data. Transactions that take place outside the currently prevailing quotes are known as

“out-trades.” In our context, a single out-trade will generate a bounceback. As discussed

by Stoll and Schenzler (2006), they tend to occur on Nasdaq because of delays in reporting

trades; because of the ability of dealers to delay the execution of trades, thereby creating

a look-back option which when exercised results in out-trades; and because large trades

can take place at prices outside the quotes. Out-trades are less frequently observed on

the NYSE because the market is more centralized. Of the 30 DJIA components in 2006,

Microsoft and Intel trade on Nasdaq while the other components all trade on the NYSE.

We will use the quotes data in order to reduce the incidence rate of bouncebacks in

the transactions data, in a manner that is compatible with market rules. SEC regulations

require brokers to guarantee customers the best available ask price when buying securities,

and the best available bid price when selling securities. These are called the National Best

Bid and Offer (NBBO) prices.
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We compute the NBBO at each point in time as follows. We collect all quotes at each

instant retaining only those with positive sizes and prices, and eliminating crossed quotes,

those where the bid price is greater than the ask price. We then compute trimmed size-

weighted means (eliminating the extreme 10% of quotes at each end, in price levels and

sizes) of the bid and ask prices in effect at that time. Eliminating quotes with small depths

or extreme prices is important: bad or erroneous quotes tends to have smaller size, hence

the need to trim the weighted average to smooth them away. Quotes with small depths or

extreme bid and ask prices (“off-market”) are often used by market makers to effectively pull

out of the market, usually temporarily, while still posting quotes. Incidentally, bouncebacks

can happen in quotes data as well. But they tend to appear when there is only a very small

number of quotes at that point in time, with one or more that is off-market for the reasons

just described. Quote bouncebacks seem to be unrelated to transaction bouncebacks.

Given our computed NBBO at each point in time, we then take a moving window of 90

seconds. For instance, a block trade might have been arranged by a manual broker and its

reporting delayed. Or opening trades done manually can be delayed, for instance, even at

small sizes. The 90-second window we employ is set to reflect the SEC rules that specify that

exchanges must report trades within 90 seconds. Trades that are delayed beyond 90 seconds

are marked as “late,” and already excluded from the starting data by our TAQ filters. We

use this 90-second moving window to construct a running minimum of the national best

bid prices and a running maximum of the national best offer prices over the time window.

This NBBO bid-offer moving envelope is then used as our filter for transactions: we retain

only transactions that take place inside the envelope.

There are many reasons for trades to be delayed, especially when some form of manual

execution is involved. For example, in the case of negotiated trades, brokers might work

the order over time, leading to a sequence of smaller trades reports. Or the broker might

(acting as principal) sell the whole amount to the customer, in which case we would see a

single trade report. Another practice involves “stopping” the order: the broker does not

execute the order immediately, but does guarantee the buyer a price. The broker can then

work the order, deferring any trade reports until the execution is complete, at which time an

average price is reported. The average price can appear out of line with the prices around

it and lead to a bounceback.
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The NBBO filter we employ tends to be conservative — erring on the side of retaining

transactions — since there is no guarantee that an out-trade is actually necessarily due to a

time delay, or that even if delayed it took place at a time when the bid-ask spread was less

than the maximal width of the spread over the 90-second time window. On the other hand,

block (negotiated) trades usually carry a price concession and so could be executed outside

this envelope and thereby be wrongly excluded. To the extent that, for it to lead to a

bounceback, this is by a definition a single isolated transaction, it did not have a permanent

price impact, but rather was associated with a transient liquidity effect.

We do not make use of the NBBO quotes depth: from the list of prevailing quotes by

exchange, we already determine the best (maximum) bid price, and the best (minimum)

ask price. Using the prevailing quote list, we could sum the bid sizes for quotes at the best

bid price, and sum the ask sizes for the quotes at the best ask price. This would produce

the NBBO sizes available to trade at each point of time and one could consider filtering

out transactions with size that exceeds it. However, this would also eliminate legitimate

transactions, such as block trades, or for that matter any trade that has a price impact. In

any event, we find empirically that filtering the transactions by the NBBO filter as described

above reduces drastically the number of bouncebacks in the data.

We started with the unfiltered transactions data, and this procedure results in a time

series of NBBO-filtered transactions. We also produce a series of the midpoint of the just

computed NBBO bid and ask prices and use this as our measurement of the quote price

at that point in time. We therefore end up comparing three different measurements of the

“price” series, for each stock:

• The unfiltered transactions;

• The NBBO-filtered transactions;

• The NBBO quotes midpoint.

We will apply the spectrogram methodology to each price series for each one of the 30

individual DJIA components and compare the results.
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C. Individual Stocks vs. Indices

The DJIA is defined as a simple average of the stock prices of 30 of the largest and most

widely held public companies in the U.S., as determined by the Dow Jones Co. The index is

adjusted by a divisor, which changes whenever one of the component stocks has a stock split

or stock dividend, or one of the component is replaced by another stock, so as to generate

a continuous value for the index at the time of the split, dividend or change of component.

We collect high frequency data (sampled every 5 seconds, down from an average sampling

interval of 3 seconds) on the cash value of the DJIA index from Tick Data, Inc. The data

provider uses proprietary data filters.

2006 was a rather unremarkable, or quiet, year from the perspective of systematic jumps

(i.e., jumps that would be visible at the level of the index), as perusal of financial news for

that period would confirm. In what follows, we will compare the results obtained from the

index to those on its individual components.

IX. Empirical Results and Economic Implications

A. Jumps: Present or Not

The empirical values of SJ are shown in the form of a histogram in Figure 9 for each of

the three possible measurements of the data. The data for the histogram are produced by

computing SJ for the four quarters of the year, the thirty stocks, and for a range of values

of p from 3 to 6 (in increments of 0.25), ∆n from 5 seconds to 2 minutes (with values 5,

15, 30, 60, 90 and 120 seconds), and k = 2, 3. The top left histogram corresponds to the

unfiltered transactions, the top right one to the NBBO-filtered transactions and the lower

left one to the NBBO midpoint quotes.

As indicated in (40), values below 1 are indicative of noise of one form or another

dominating. We find that this is the case only for the unfiltered transactions data, and

only at the highest sampling frequencies, the histogram then displaying a left tail. For the

other data measurements, the histograms display very little mass in the regions where the

noise dominates. The conclusion from SJ is that the noise is not a major concern, except
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for the unfiltered transactions at the ultra high frequencies, but once past this domain, the

evidence points towards the presence of jumps with the histograms centered around 1.

This conclusion is not surprising per se, even for the index and a fortiori for the individual

assets. The fact that the tails of high-frequencies log-return distributions exhibit a power

decay, which points towards a model including jumps, has been recognized a long time ago,

see for example Eberlein and Keller (1995). A power law fits the data quite well and a

continuous component alone (with typically exponentially decaying tails) would be rather

unlikely to generate such returns.

The middle right panel in Figure 9 displays the median value of SJ (across values of p and

k, and the four quarters) as a function of the sampling interval ∆n. Unfiltered transactions

are marked “U”, filtered transactions are marked “F” and the NBBO midpoint quotes are

marked “M.” In all cases, the median value of SJ starts around 1 at the highest frequencies

and then rises. Comparing different data measurements, we find that SJ is generally highest

for “F” (meaning less evidence of jumps there), then for “U” and then for “M”. Similar

results obtain if the mean is employed instead of the median.

But as the sampling frequency increases, the evidence in favor of the presence of jumps

becomes more mixed, when the 30 components of the DJIA are taken in the aggregate.

When implemented on the DJIA index itself, we find values of SJ that range between 1.5

and 2.5, providing between less evidence in favor of jumps and evidence against them for

the index.

However, two points should be emphasized here. First, the histogram is more spread

out when frequency decreases because less data are used and the statistical error increases,

so that the procedure becomes less conclusive. Second, when the sampling frequency is low,

the statistic SJ should not necessarily be expected to be close to its limiting value, 1 or 2,

which is the theoretical limit when the frequency 1/∆n goes to infinity.

Finally, we check if any cross-sectional differences in SJ can be explained by cross-

sectional differences in liquidity among the thirty stocks. To this aim, the lower two panels

on Figure 9 show the results of a nonlinear regression of the statistic SJ on two stock-level

measures of liquidity, the average time between successive trades, and the average size of the

transactions. Both regressions show a slight decrease in SJ values as the asset becomes less
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liquid, meaning higher time between trades and lower transaction size, but neither result is

strong enough to be noticeable.

B. Jumps: Finite or Infinite Activity

SJ tells us that jumps are likely to be present, but it cannot distinguish between finite

and infinite activity jumps. For this, we turn to the statistic SFA which is like SJ with the

addition of truncation.

Whenever we need to truncate, we express the truncation cutoff level un in terms of a

number α of standard deviations of the continuous part of the semimartingale. That initial

standard deviation estimate is obtained by using B(2, 4σ∆1/2n ,∆n) where σ is a fixed realistic

value for the asset under consideration; we use σ = 0.25. The specific value of this number

serves only to identify a reasonable range of values; it does not matter asymptotically. It

does of course matter in small samples, and so we suggest picking a realistic value for the

asset and time period. We then use for the truncation level un different multiples of it.

Our view of the joint choice of (',α) is that they are not independent parameters in finite

sample: they are different parameters for asymptotic purposes but in finite samples the only

relevant quantity is the actual resulting cutoff size un. This is why we are reporting the

values of the cutoffs un in the form of the α that would correspond to ' = 1/2. This has

the advantage of providing an easily interpretable size of the cutoff compared to the size

of the increments that would be expected from the Brownian component of the process:

we can then think in terms of truncating at a level that corresponds to α = 4, 6, etc.,

standard deviations of the continuous part of the model. Since the ultimate purpose of

the truncation is either to eliminate or conserve that part, it provides an immediate and

intuitively clear reference point. Given un and this α, it is possible to back this into the

value of the α corresponding to any ', for that given sample size, including the value(s) of

' that satisfy the required inequalities imposed by the asymptotic results. This approach

would lose its effectiveness if we were primarily interested in testing the validity of the

asymptotic approximation as the sample size varies, but for applications, by definition on a

finite sample, it seems to us that the interpretative advantage outweighs this disadvantage.

Each one of the statistic below is computed separately for each quarter of 2006 and for

each asset. The data for the histogram in Figure 10 are produced by computing for the
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four quarters of the year and each stock the value of SFA for a range of values of p from

3 to 6, α from 5 to 10 standard deviations, ∆n from 5 seconds to 2 minutes, and k = 2, 3.

We find that the empirical values of SFA are distributed around 1, which is indicative of

infinite activity jumps. That is, even as we truncate, the statistic continues to behave as

if jumps are present. If only a finite number of jumps had been present, then the statistic

should have behaved as if the process were continuous. But the histograms do display a

fat right tail, indicative of finite activity jumps for at least some of the DJIA components.

The histograms are quite similar for all three data measurements, suggesting that they tend

to differ only because of the larger increments: those are indeed the ones that are filtered

in “F” compared to “U”, but since they are truncated away by SFA anyway, then for the

purpose of computing SFA the two data measurements produce close results.

The middle right panel in Figure 10 displays the mean value of SFA (across the four

quarters, two stocks, and values of p, α and k) as a function of ∆n. A pattern similar to

the corresponding plot in Figure 9 emerges. Even for very small values of ∆n, the noise

does not dominate (limits below 1), instead the limit is around 1 as ∆n increases away

from the frequencies where the noise would have been expected to dominate. Unless we

start downsampling more (reaching 5 to 10 minutes), the limit does not get close to kp/2−1.

The lower panels examine any patterns linking SFA to stock-level measures of liquidity; no

strong cross-sectional pattern emerges.

Overall, the evidence suggests the presence of infinite activity jumps in the DJIA 30

components. To the extent that jumps are present in the DJIA index itself, the evidence is

in favor of finite activity jumps: we find values of SFA ranging from 1.7 to 2.2 for the index.

C. Brownian Motion: Present or Not

In light of the likely presence of infinite activity jumps identified by SFA, it makes sense

to ask empirically whether a Brownian component is needed at all. For this purpose, we

turn to the statistic SW .

Figure 11 displays histograms of the distribution of SW obtained by computing its value

for the four quarters of the year for a range of values of p from 1 to 1.75, α from 5 to 10

standard deviations, ∆n from 5 seconds to 2 minutes, and k = 2, 3. The empirical estimates
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are always on the side of the limit arising in the presence a continuous component. Even

as the sampling frequency increases, the noise is not a dominant factor, although as usual,

lower values of SW below 1 are now obtained and for very high sampling frequencies, the

results are consistent with some mixture of the noise driving the asymptotics.

This is confirmed by the middle right panel in Figure 11 which displays the mean value

of SW (across the four quarters, two stocks, and values of p, α and k) as a function of ∆n.

As we downsample away from the noise-dominated frequencies, the average value of the

statistic settles down towards the one indicating presence of a Brownian motion.

Because values of p less than 2 are employed by the statistic SW , we find relatively small

differences between the results for filtered and unfiltered transactions: since they differ

mainly by a few of their large increments, but values of p < 2 tend to under-emphasize

large increments, we obtain similar results for “F” and “U”. The lower panels look at the

relationship between SW and the underlying asset’s liquidity. Like SJ , we find that there

is a very slight increase in the value of the statistic as the asset becomes more liquid.

In the case of the DJIA index, we find that a Brownian motion is likely present, except

at the highest frequencies where an alternative made of a pure jump infinite activity process

would be plausible. Indeed, high frequency increments of the index tend to be very smooth

owing to the nature of the index as an average.

D. QV Relative Magnitude

The previous empirical results indicate that are likely in the presence of a jump as well

as a continuous component in the DJIA 30 stocks. We can then ask what fraction of the

QV is attributable to the continuous and jump components.

The histograms in Figure 12 are obtained from computing the fraction of QV from the

Brownian component using the four quarters, two stocks, values of α ranging from 2 to 5

standard deviations, in increments of 1, and ∆n from 5 seconds to 2 minutes in the same

increments as earlier. We find values around 75% for “F” and “U”, and somewhat lower

for “M”, around 60% with some stock/quarter samples leading to values that are in fact

indicative of an almost pure jump process in the quotes data.
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In the middle right panel (similar but as a function of ∆n), we see that the estimated

fraction is fairly stable as we vary the sampling frequency. It is also quite stable for the

two different measurements of the transactions data, “F” and “U”, and the quotes data

“M”, going up slightly as the sampling frequency decreases. The lower panels show a more

pronounced increase in the Brownian-driven of QV as a function of the asset’s liquidity:

using both measures, we find that more liquid assets are associated with a higher proportion

of Brownian-driven QV.

In the case of the DJIA index, we find values that range from 85% to 95%, suggesting

in line with the previous evidence that jumps are less of a factor for the index. Incidentally,

one could imagine measuring the proportion of jumps that are systematic vs. those that

are idiosyncratic on the basis of the comparison between %QV estimated for the index and

for its components.

E. Estimating the Degree of Jump Activity

Finally, we estimate the degree of jump activity β.We found above that infinite activity

jumps were likely present in the data. We are now asking how active are those jumps among

all infinitely active jumps.

Of all the empirical methods employed in the paper, estimating β is the one that requires

the largest sample size due to its reliance on truncating from the right in the power variations

U. That is, the estimators of β discard by construction a large fraction of the original sample

and to retain a sufficient number of observations to the right of a cutoff un given by 5 or

more standard deviations of the continuous part, we need to have a large sample to begin

with. So we will estimate β using only the first two sampling frequencies, 5 and 10 seconds

on a quarterly basis. In the case of the previous statistics, we noted that these sampling

frequencies were subject to market microstructure noise. Here, however, because we are

only retaining the increments larger than the cutoff un instead of those smaller than the

cutoff, this could be be less of a concern despite the ultra high sampling frequencies.

We find estimated β’s in the range from 1.5 to 1.8, indicating a very high degree of

jump activity, in effect much closer to Brownian motion than to compound Poisson. The

filtered transactions produce the highest estimates of β, leading on average to a process
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that effectively looks like Brownian motion. Figure 13 reports the values of the estimator

β̂ computed for the four quarters of the year, the two stocks, a range of values of α from

5 to 10 standard deviations, and ∆n from 5 to 10 seconds. The middle right plot reports

the corresponding data against the limited range of ∆n employed. Within the context of

their parametric model, Carr, Geman, Madan, and Yor (2002) also found estimates of β

on most stock return series that were greater than zero. (By contrast, the estimates here

do not rely on a parametric structure for the rest of the model, so they can be thought

of as semiparametric.) The lower panels, relating the estimated values of β to stock-level

liquidity, do not display strong patterns.

Looking at the DJIA index itself, to the extent that an infinite activity component is

present, we find that it is less active, with estimated values of β ranging from 0.9 to 1.4.

But in light of the results of the test of finite vs. infinite jump activity, this component is

likely small in the index relative to the finite activity component.

F. Economic Implications of the Empirical Results

F.1. Implications for Option Pricing

We have documented some of the salient features of asset returns viewed through the

prism of a semimartingale. The analysis in this paper is, and can only be, entirely conducted

under the physical probability measure, P. As such, it does not lend itself directly to

conclusions for option or other derivative prices, which depend upon the properties of the

semimartingale under an equivalent martingale measure, Q. However, important features
of the process identified under P do translate into similar features under Q.

Specifically, economic theory dictates that P and Q must be absolutely continuous with
respect to each other, P ∼ Q, meaning that the two probability measures must have the
same null sets. This requirement limits the possible ways in which the features of the

process under Q can differ from those already identified empirically under P. As is well
known, if the process is continuous under P, it must be continuous under Q, and vice versa.
Hence, if jumps are possible under one measure they must be possible under the other as

well. Thus the evidence in favor of jumps in the dynamics of the underlying asset therefore

argues in favor of models with jumps in option pricing. This is of course well-accepted in
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the empirical option pricing, see, e.g., Bates (1991) for some early evidence.

But more subtle findings of our analysis can also be translated into similar features

under the pricing measure Q. Two types of quantities are indeed almost surely identical
pathwise, that is, are the same under both P and Q: one is the quadratic variation of the
process, hence in particular its continuous part, that is the process

R t
0 σ

2
sds. The other is

the set IT of nonnegative reals p for which the sum
P

s≤T |∆Xs|p is almost surely finite. In
other words, the process

R t
0 σ

2
sds for all t ∈ [0, T ] and the set IT are the same under P and

under Q.

As a consequence, the proportion of QV estimated in the empirical analysis under P
must be the same under Q. Also, the absence of Brownian motion (tested under P using
SW ), which amounts to saying that σt = 0 for Lebesgue-almost all t in [0, T ], holds under

P if and only if it holds under Q. The degree of jump activity β (the Blumenthal-Getoor

index, estimated above), which is the infimum of all p in the set IT , is also the same under

the two measures, that is

βP = βQ. (44)

And the fact that jumps have finite activity (tested under P using SFA) which amounts to
saying that 0 belongs to IT , is again true under P if and only if it is true under Q.

On the other hand, some features of the model may hold under P and not under Q,
or vice-versa: typically, these concern the drift, which changes more or less arbitrarily

when we change the measure, or the law of the big jumps, that is the tails of ν. In other

words, the components of the model that are identified at high frequency under P by the
spectrogram analysis (volatility, presence or not of jumps, finite or infinite activity, degree

of jump activity, presence or not of the Brownian motion, proportion of continuous QV)

happen to be the ones that are also restricted by the change of measure, while those that

cannot be identified at high frequency (drift, law of the big jumps) are not.

The consequence of the previous discussion, and in particular of the restriction (44),

combined with the empirical evidence regarding the estimated value of βP is to make some

option pricing models more likely than others to be in agreement with the empirical evidence

on the dynamics of the underlying asset price process. There are many option pricing

models in the literature which include jumps, and quite often rely on specific Lévy processes,

with specific values of βQ. Examples include compound Poisson-based models starting with
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Merton (1976), the variance gamma model of Madan and Seneta (1990) and Madan, Carr,

and Chang (1998) (βQ = 0), the Normal Inverse Gaussian model of Barndorff-Nielsen (1998)

(βQ = 1), the hyperbolic model of Eberlein and Keller (1995), the generalized hyperbolic

model of Barndorff-Nielsen (1977) and the CGMY model of Carr, Geman, Madan, and Yor

(2002) (in which βQ is a free parameter). In the case of the data studied in this paper,

models which allow for unrestricted values of βQ are likely to be more plausible candidates

than those that restrict βQ to be small, 0 in particular. Indeed we tend to find empirically

relatively high degrees of jump activity in βP. This is compatible with the findings from the

literature on empirical option pricing with Lévy processes, where models with significant

infinite-activity return innovations, that is a component with a βQ > 0, tend to be more

accurate in their pricing of equity options than those with finite activity or sub-polynomial

infinite activity, βQ = 0 (see e.g., Carr, Geman, Madan, and Yor (2002) and Huang and Wu

(2004).)

Models with jumps of finite or infinite activity also have differential implications for the

prices of options at short and long horizons. As option maturities approach zero, out-of-

the-money option values tend to zero. The speed of decay is exponential when the process

is continuous, but linear in time-to-maturity T in the presence of jumps (see Carr and Wu

(2003b)). In the presence of jumps, the implied volatility for an out-of-the-money option

diverges as T → 0. This holds in the presence of small and big jumps alike.

As option maturity increases, on the other hand, the big jumps component becomes a

key element. From the Black-Scholes scenario, one would expect the implied volatility smile

to flatten as a result of the Central Limit Theorem. The empirical evidence suggests, on

the other hand, that the smile steepens instead (see, e.g., Foresi and Wu (2005)). The big

jumps component can explain this fact. In a model where the variance of returns is infinite,

a situation which can only arise because of the big jumps, the Central Limit Theorem

ceases to apply for long-maturity asymptotics. But on the other hand, if most big jumps

are negative, then the option would still retain a finite value, as observed empirically. In

other words, the combination of components identified here under P results in a plausible
configuration for the model in light of the available evidence under Q from the empirical

option pricing literature.
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F.2. Implications for Risk Management

Risk management is primarily concerned with the tails of the returns distributions over

different horizons, from the very short term horizons (a few seconds or minutes for high

frequency trading applications), to the typical 10 days characteristic of VaR calculations,

to the longer horizons relevant in portfolio management.

On a micro time scale, the main risk faced by a market participant practicing high

frequency trading comes from the small jumps component, since the continuous component

is small (of order∆n), and the big jumps component is very unlikely to give rise to realization

over a very short interval. As discussed, we find the small jumps risk to be prevalent in

individual equities we studied. The finer properties of the small jump component become

an important consideration: as β increases, small jumps become more and more likely, and

anecdotal evidence from the rapidly growing practice of high frequency trading suggests

that the small jumps component is indeed a key consideration in the implementation of

some of these strategies.

On a macro time scale, the implications are much more tenuous. The specification of the

price process derived from the spectrogram methodology is nonparametric in nature, and

relies on high frequency observations. As such, it fully identifies the behavior of the jump

measure near 0. It is common in finance to rely on parametric models. One can imagine

the nonparametric methodology employed here serving as a guide to pick one parametric

model over another. Most parametric models rely on extrapolation in that the tails of the

jump measure (i.e., the big jumps driver) is linked through parametric assumptions to the

behavior of the jump measure near 0; within that framework, identifying the behavior of ν

near 0 is sufficient to characterize fully the jump measure. It is of course difficult in any

case to pin down precisely how heavy the tail distributions are, since rare events require

extremely large samples, that is, long time periods, to get realized in sufficient quantities

to characterize precisely the big jumps component (see e.g., Heyde and Kou (2004)). Long

sample sizes in turn require an implicit assumption of model stability over the observation

horizon. Alternatively, by time aggregation, one can derive the implications for long horizons

of the continuous-time model identified over short horizons, typically by simulations. But,

overall, drawing long-horizon implications from this analysis entails successive leaps of faith

that make it potentially fraught with dangers.
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F.3. Individual Assets vs. Stock Indices, Factor Models and Systematic vs. Idiosyncratic

Risk

As part of the empirical analysis above, we compared the result of the spectrogram

methodology on the DJIA and its components. We found that while the individual com-

ponents seemed to contain an infinite activity jump component with a fairly high degree

of jump activity, the evidence for the index was pointing more towards a finite activity

component only.

This empirical evidence can be interpreted in light of a factor model with systematic

and idiosyncratic components. If we further decompose the two jump components in the

model (2) for individual stocks into a common component and an idiosyncratic component,

then when an idiosyncratic jump occurs the other stock prices do not jump, so the influence

of this particular jump on the index, which is an average, is essentially wiped out: the index

will not exhibit a jump of significant size. In contrast, a systematic jump will typically occur

at the same time (and often with the same sign) for most or all stocks, resulting in a jump

of the index. Therefore, the absence of empirical evidence in favor of infinite activity jumps

in the index, combined with their presence in the individual components, point towards

purely idiosyncratic small jump components in the individual assets.

This makes sense if we think of most systematic, i.e., market-wide, price moves as driven

by important macroeconomic news and therefore likely to be large. On the other hand,

small infinite activity jumps are more likely to reflect individual stock-level considerations,

such as stock-specific information and its immediate trading environment, and therefore be

idiosyncratic.

Consistent with this, we also found that the proportion of quadratic variation attribut-

able to jumps is lower for the index than for its individual components. One could conceiv-

ably measure the proportion of jumps that are systematic vs. those that are idiosyncratic on

the basis of the comparison between the proportions of quadratic variation estimated for the

index and for its components. Doing this using the empirical results above would suggest a

proportion of systematic jumps representing about 10% of the total quadratic variation, and

a proportion of idiosyncratic jumps representing about 15% of total quadratic variation.

40



X. Conclusions

The empirical results on the DJIA 30 components appear to indicate that jumps are

present in the data; point towards the presence of infinite activity jumps; of degree of jump

activity that is around 1.5 or higher; indicate that, on top of the jump components, a

continuous component is present; which represents approximately 3/4 of the total QV.

The analysis of different measurement mechanisms suggests that the results are fairly

consistent when various ways of measuring the data (“F”, “U” or “M”) are employed. The

DJIA index itself looks quite different, when viewed through this prism, than its individual

components. In particular, although market microstructure noise is less a factor for all

DJIA 30 stocks than it actually is for its two Nasdaq components (Microsoft and Intel),

there is very little evidence of noise even at the highest frequencies for the index itself. And

there is less evidence for the presence of jumps in the index than in its components, and

less evidence for infinite activity jumps than in the components, or at least less active small

jumps.

Of course, we do not claim on the basis of this limited evidence that these empirical

results are in any way “universal”: they are likely in general to depend upon the assets

under consideration, the time period, what type of data are used (transactions, quotes,

etc.), among other considerations.

In terms of methodology, our assessment at present is the following. The pros of the

approach are: we have a unified methodology to address all these seemingly disparate spec-

ification questions in a common framework; the method allows for a symmetric treatment

of null and alternative hypotheses in each case, including the full distribution theory; all

the test statistics are model-free; they are extremely simple to implement in practical ap-

plications; and, finally, we are able to characterize the impact of two important types of

market microstructure noise, additive and rounding, on the various statistics.

The cons of the approach, at present, are the flip side of the commonality of technique:

if we take individually each one of the specification questions we have identified, then the

statistic we have proposed for that problem, based on that common approach, is not nec-

essarily the optimal approach for that individual specification question. Also, the practical

implementation of this method does require high frequency data (particularly the estima-
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tion of the degree of jump activity β, which requires ultra-high frequency data). Finally,

while we understand what happens to each one of the statistics when microstructure noise

dominates, we do not yet have noise-robust statistics that would be fully immune to the

presence of the noise.

To conclude, we certainly expect to see refinements of our approach (see e.g., Fan and

Fan (2008)) or perhaps entirely different techniques proposed in the future for each one

of these problems, some already existing. However, we think that the main appeal of the

approach comes from the commonality of technique, as well as the resulting simplicity of

implementation.
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APPENDIX: PROOFS

Appendix 1. Proof of Theorem 1

Proof. We assume (31) and (32). We start with the behavior of the power variations when
there is only noise, that is we consider the variables

B(p, un,∆n) =

[T/∆n]X
i=1

|εni − εni−1|p 1{|εni −εni−1|≤un}. (A.1)

U(p, un,∆n) =

[T/∆n]X
i=1

|εni − εni−1|p 1{|εni −εni−1|>un}. (A.2)

We also write Gp(x) = E
¡
|ε1 − ε0|p1{|ε1−ε0|≤x}

¢
. Then (32) readily implies

Gp(x)

xp+1
→ 2f(0)

p+ 1
. (A.3)

Lemma 1. Let p ≥ 0. Then

∆nB
0
(p,∞,∆n)

P−→ m0
p T. (A.4)

If further un > 0 with un → 0 and ∆nu
p
n/Gp(un)→ 0, we have

∆n

Gp(un)
B(p, un,∆n)

P−→ T. (A.5)

Proof. We denote by B+(p, un,∆n) and B−(p, un,∆n) the quantities defined by the right
side of (A.1), but where the sum is extended over all indices i that are even, resp. odd. It
is then sufficient to prove that, suitably normalized, both these variables converge to half
the limit in (A.4) or (A.5), and it suffices to prove the result for, say, B+(p, un,∆n).

For (A.4) this is immediate: indeed B+(p, un,∆n) is the sum of [[T/∆n]/2] ∼ T/2∆n

i.i.d. terms with mean m0
p and a law independent of n, so the law of large numbers applies.

For (A.5) the summands ζni = |εni − εni−1|p 1{|εni −εni−1|≤un} are still i.i.d. for each n (recall
that i is even), but their law depends on n. We have E(ζni ) = Gp(un) and E((ζni )2) ≤
upnGp(un). The result then readily follows from standard properties of i.i.d. triangular
arrays, because ∆nun/Gp(un)→ 0.

We are now ready to prove Theorem 1. Below, K denotes a constant which may change
from line to line.
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a) In view of the previous lemma, it is enough to prove that

∆n

¯̄
U 0(p, un,∆n)− |B(p,∞,∆n)

¯̄ P−→ 0. (A.6)

For this, we recall the following properties, under our standing assumptions on X:(
p ≥ 2 ⇒ the sequence B(p,∞,∆n) is bounded in probability

p < 2 ⇒ ∆
1−p/2
n B(p,∞,∆n)

P−→ mp

R T
0 |σs|p ds

(A.7)

where mp is the pth absolute moment of the law N (0, 1). We observe that for all reals x, y,

¯̄
|x+ y|p 1{|x+y|>un} − |y|p

¯̄
≤

⎧⎪⎨⎪⎩
un if p = 0

K(|x|p + u
p/2
n |y|p/2) if p ∈ (0, 1]

K(|x|p + u
p/2
n |y|p/2 + |x| |y|p−1) if p > 1.

Then if p = 0 the left side of (A.6) is smaller than unT , hence the result. If p ∈ (0, 1] it is
smaller than ∆nB(p,∞,∆n) + u

p/2
n ∆nB(p,∞,∆n), and the result follows from (A.7) and

from (A.4) applied with p/2. If p > 1 it is smaller than

K∆n(B(p,∞,∆n) +Kup/2n ∆nB(p,∞,∆n) +K (∆nB(p,∞,∆n))
1/p ¡∆nB(p,∞,∆n)

¢1−1/p
and (A.4) and (A.7) again yield (A.6).

b) The proof is more complicated. We assume now p > 0. A standard localization
procedure yields that one may assume that

E(|∆n
i X|2) ≤ K∆n. (A.8)

In view of (A.3), and again because of the previous lemma, it is enough to show

∆n

up+1n

¯̄
B0(p, un,∆n)−B(p, un,∆n)

¯̄ P−→ 0. (A.9)

For all reals x, y we have, with the notation An = {(x, y) : |x+ y| ≤ un < |y|}∪ {|y| ≤ un <
|x+ y|}:¯̄
|x+ y|p 1{|x+y|≤un} − |y|p 1{|y|≤un}

¯̄
≤
½

K(|x|p + upn 1An(x, y)) if p ≤ 1
K(|x|p + upn 1An((x, y) + up−1n |x|) if p > 1.

Then if we set

Hn =
∆n

un

[T/∆n]X
i=1

1An(∆
n
i X, εni − εni−1). (A.10)

we see that when p ≤ 1, and by Hölder’s inequality, the left side of (A.9) is smaller than
K∆n

up+1n
B(p,∞,∆n) +KHn, whereas when p > 1 it is smaller than

K∆n

up+1n

B(p,∞,∆n) +
K∆n

u2n
B(1,∞,∆n) +KHn. (A.11)
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(35) and (A.7) imply that ∆n

up+1n
B(p,∞,∆n)

P−→ 0, and also K∆n
u2n

B(1,∞,∆n)
P−→ 0 when

p ≥ 1. Hence it remains to show that

E(Hn) → 0.

To see this we need to evaluate P(Ãn
i ), where Ã

n
i = {(∆niX, εni − εni−1) ∈ An}. By (A.8)

and Markov’s inequality and the independence of the εi’s from the process X, and since the
density f is an even function, we deduce for any q ∈ (0, 1) that

P(Ãn
i ) ≤ K∆q

n

µ
1

uqn
+

Z 2un

0

f(y)

|y − un|q
dy

¶
≤ K∆q

uqn
. (A.12)

Therefore E(Hn) ≤ KT∆q
n/u

1+q
n , which goes to 0 by (A.12) if we take q = 1/3. This finishes

the proof.

Appendix 2. Proof of Theorem 2

Proof. Theorem 2 is a rather complicated result, whose main elements of proof are due to
Delattre (1997). We will just sketch here the reason why such a result holds. The key points
are as follows:

a) When X is continuous, or when it has jumps with finite activity (or more generally
summable jumps), the local time La at level a is the unique continuous increasing adapted
process starting at 0, and such that

|Xt − a| = |X0 − a|+
R t
0 sign(Xs− − a)dXs + La

t

+
P

s≤t (|Xs − a|− |Xs− − a|− sign(Xs− − a)∆Xs)
(A.13)

(Tanaka’s formula; the function x 7→sign(x) takes the values −1, 0 and +1, according to
whether x < 0 or x = 0 or x > 0).

b) When X is continuous, any increment

χni = [Xi∆n ]α − [X(i−1)∆n
]α

is (for all n large enough and all i ≤ T/∆n equal to −α or 0 or α. In other words
Bn(p,∞,∆n) can be written as follows:

Bn(p,∞,∆n) = αp
X
q∈Z

V n(q), (A.14)

where V n(q) is the number of integers i less than T/∆n and such that the product ([Xi∆n ]α−
(q + 1/2)α) (

£
X(i−1)∆n

¤
α
− (q + 1/2)α) is negative (that is, the path of X crosses the level

(q + 1/2)α between times (i− 1)∆n and i∆n).
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c) Suppose that X = σW is a Wiener process with unit variance σ2. On the one hand
Rice’s formula connects the number of crossings of a given level a by X, suitably integrated
in a, with the occupation times, which themselves are integrals over a of the local time La

T .
On the other hand these properties can be discretized in time and “localized” around any
given level a, according to Azaïs (1989) for example: this gives that

√
∆n V

n(q) converges

in probability to
√
π/2

σ L
(q+1/2)α
T .

d) Coming back to a continuous Itô semimartingale, we can argue as if the process
σt were piecewise constant in time, whereas the drift plays no role: so we obtain that√
∆n V

n(q) converges in probability to
p
π/2

R T
0

1
σs
dL

(q+1/2)α
s .

e) Observing that the sum in (A.14) is indeed a finite sum (for any fixed ω), because
V n(q) = 0 for any q bigger than 1+2 sups≤T |Xs|/α, we deduce (38) when X is continuous.

f) When X has jumps with finite activity, the same argument holds provided we discard
the (finitely many) increments over the time intervals containing a jump. Those increments
are bounded (for n large enough) by the size of the jump, plus 2α. Since we normalize by√
∆n, they are wiped out, and we get the result.
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Figure 10
Empirical distribution of SFA for all 30 DJIA components, 2006, measured
using transactions (unfiltered and NBBO-filtered) and NBBO quotes

midpoint, median value of SFA as a function of the sampling interval ∆n, and
nonlinear regression of SFA against stock-level liquidity measures.
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Figure 11
Empirical distribution of SW for all 30 DJIA components, 2006, measured
using transactions (unfiltered and NBBO-filtered) and NBBO quotes

midpoint, median value of SW as a function of the sampling interval ∆n, and
nonlinear regression of SW against stock-level liquidity measures.
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Figure 12
Empirical distribution of the proportion of QV attributable to the continuous
component for all 30 DJIA components, 2006, measured using transactions
(unfiltered and NBBO-filtered) and NBBO quotes midpoint, median value of
%QV as a function of the sampling interval ∆n, and nonlinear regression of

%QV against stock-level liquidity measures.
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Figure 13
Empirical distribution of the index of jump activity β for all 30 DJIA

components, 2006, measured using transactions (unfiltered and
NBBO-filtered) and NBBO quotes midpoint, and median value of the

estimated β as a function of the sampling interval ∆n, and nonlinear regression
of the estimated β against stock-level liquidity measures.
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Jumps: Present or Not

SJ :

⎛⎝ p > 2
∞
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∞

∆n, k∆n
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H0 : Ω
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H1 : Ω
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T H1 : Ω

f
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Jumps: Finite or Infinite Activity

SFA :

⎛⎝ p > 2
un

∆n, k∆n

⎞⎠ SIA :

⎛⎝ p > 2, p0 > 2
un, γun
∆n

⎞⎠
H0 : Ω

W
T H0 : Ω

noW
T

H1 : Ω
noW
T H1 : Ω

W
T

Brownian Motion: Present or Not

SW :

⎛⎝ p < 2
un

∆n, k∆n

⎞⎠ SnoW :

⎛⎝ p = 0, p0 = 2
un, γun
∆n

⎞⎠
Relative Magnitude of the Components %QV :

⎛⎝ p = 2
un
∆n

⎞⎠
Estimating the Degree of Jump Activity β β̂ :

⎛⎝ p = 0
U : un, γun

∆n

⎞⎠ β̂0 :

⎛⎝ p = 0
U : un
∆n, k∆n

⎞⎠
Table I

Combinations of (p, u,∆) employed to implement the complete spectrogram
methodology: test for the presence of jumps, test whether jumps have finite
or infinite activity, test whether a continuous component is present, estimate
the relative magnitude of the components, and estimate the degree of jump

activity.
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