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1 Introduction

Mostly motivated by the aging of the population, several countries around the world have

adopted new approaches in the ways their citizens prepare for retirement. Countries with

substantially different economic structures and histories like Australia, Chile, Mexico and

Sweden have partially replaced unfunded “pay as you go” retirement systems with funded

retirement systems featuring private accounts.1 Even in many countries where such changes

have not occurred (such as the US), there has been intense political debate on proposals to

introduce individual accounts into the social security system. Simultaneously, in the private

sector, defined contribution plans have increased in popularity and importance as opposed

to defined benefit plans.

A common concern, acknowledged even by proponents of these trends, is that such

changes imply an increased importance of financial markets, exposing retirement income

to market risk. For instance, a downturn in the stock market could create pressures to

provide direct or indirect transfers to the affected retirees, increasing distortionary taxes. 2

Because of these concerns, it is common for countries to complement the shift towards

private accounts and defined contribution plans with various measures to ensure a mini-

mum standard of living in retirement. Such measures include minimum return guarantees,

minimum retirement incomes, phased (as opposed to lump sum) withdrawals upon entering

retirement, and mandates to use part of the accumulated balances to purchase a fixed annu-

ity and ensure a minimum defined benefit. For instance, a recent Government Accountability

Office report3 investigates such regulations in the UK, Switzerland and the Netherlands and

documents that these countries use some combination of the above measures. The idea to

use incentives or mandates, so that part of the accumulated balances in defined contribution

plans be taken in the form of a defined-benefit annuity, is also the topic of a current policy

1Mitchell and Lachance (2003) report that more than 20 countries have established individual accounts.
2For instance Shoffner et al. (2005) note in a Social Security Report that a common fear about individuals

that have ran out of assets is that “ ...Such individuals might then qualify for, and as a result place a greater
burden on, means-tested antipoverty programs.”

3Bovbjerg (2009)
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discussion in the US.4

The pervasive use of measures to ensure a minimum standard of living in retirement

has led to various studies that evaluate the costs and benefits of specific (and sometimes

ad-hoc) policy interventions adopted in certain countries.5 Less emphasis has been placed

on developing a unified theoretical framework to discuss, compare and design policies that

would ensure a minimum standard of living in a fully funded retirement system. The present

paper takes a first step in that direction by using methods developed in the last two decades

in financial economics.

The proposed framework is in the tradition started by Ramsey (1927). A benevolent,

rational central planner aims to maximize social welfare. Agents in the society maximize

their individual welfare, which does not coincide with social welfare. The reason for the

discrepancy is that an agent’s consumption in retirement can have negative, external effects.

This occurs when retirement consumption drops below a given minimum level and triggers

“bailout” transfers financed by distortionary taxes.6 To avoid such negative external effects,

the central planner adopts policies to ensure that a retiree’s consumption does not fall below

the specified minimum level.

The allowed interventions are transfers from and to the agent. They can be chosen

subject to two constraints:

The first constraint is informational. The central planner does not observe the agent’s

assets or consumption, just the returns in financial markets. This informational constraint

leads to a “hidden action” problem, analogous to the problems considered in the voluminous

literature on moral hazard. The fact that the central planner cannot observe (and hence

4See e.g. “The Obama administration is weighing how the government can encourage workers to turn
their savings into guaranteed income streams following a collapse in retiree accounts when the stock market
plunged.” by Theo Francis in http://www.bloomberg.com/apps/news?pid=20603037&sid=aHFCE999fWR0
.

5For some examples see e.g. Feldstein (2005b), Feldstein (2005a), Feldstein and Ranguelova (2001), Fuster
et al. (2008), Mitchell and Lachance (2003), Constantinides et al. (2002), and the numerous contributions in
the special NBER volume edited by Campbell and Feldstein (2001).

6Inside the model, such negative and external effects arise, when agents find it optimal to falsely claim
that they experienced adverse idiosyncratic shocks, as a result overburdening the welfare system, which is
financed by distortionary taxes on workers.
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cannot dictate) the agent’s consumption, savings, and portfolio choices implies that inter-

ventions need to induce the agent to choose consumption levels that are consistent with the

goal of a minimum standard of living.

The second constraint is a full-financing constraint. The net present value of the transfers

provided to the agent should be equal to the present value of the taxes raised by the agent.

This makes the analysis applicable to private accounts and pensions. The broader issue of

the advantages and disadvantages of full funding - as opposed to “pay as you go” - is outside

the scope of this paper, and the reader is referred to the large literature that discusses

this issue.7 A practical implication of the full-financing constraint is that all of the policies

considered in the paper can be implemented by having agents purchase appropriate financial

products provided by the private sector.

Besides their intuitive and practical appeal, the above two constraints also help to make

the theoretical results of the paper most surprising for the following reason: Fundamental

results in finance and macroeconomics imply that in the absence of frictions, only the net

present value of an agent’s resources guides her consumption choices. Hence, if agents can

choose their consumption freely, and the transfers received by the agent are financed by

herself, then no intervention can succeed in affecting the agent’s consumption choices. The

agent will simply “undo” the effects of the transfers by altering her portfolio and her savings

plans. In the literature this insight is known as “Ricardian Equivalence”.8

To overcome this hurdle, I assume a friction, which leads to the failure of Ricardian

Equivalence. Specifically, I assume that agents cannot borrow against future transfers. (Such

constraints can be easily enforced in courts by forbidding securitization of such payments).

Because of the resulting borrowing constraint, the central planner can affect the agent’s

consumption choices and the optimization problem becomes non-trivial.

Within the context of the baseline model, I show that there can be (at least) two in-

7For some exemplary recent contributions, see e.g., Krueger and Kubler (2006) and Ball and Mankiw
(2007) for two alternative views on the issue.

8Barro (1974) and Abel (1987) contain a modern treatment of this idea that is originally due to D.
Ricardo. Similar results are obtained in Bodie et al. (1992), who show that an agent’s consumption is
proportional to an agent’s total wealth, which includes the net present value of all sorts of income etc..
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terventions that maximize the postulated social welfare function. One such intervention is

to require new retirees to use part of their accumulated assets upon entering retirement to

purchase a fixed income stream for the duration of their life, while leaving the rest of the

assets at their disposal. The level of that fixed income stream is explicitly derived and shown

to be a multiple of the minimum level of consumption that the central planner is aiming

to enforce. An alternative intervention takes the form of “portfolio insurance”. The central

planner (or some insurance company) sets certain incentive compatible “guidelines” as to

how the consumer is expected to consume, save and allocate her assets. Based on these

guidelines, the central planner infers the agent’s asset evolution, and makes transfers once

the value of the agent’s portfolio threatens to become zero.

A surprising feature of the analysis is that these two policies imply the same welfare for

the agent, but in general the initial payment required to finance the first policy is larger than

the respective payment for the second policy. I show that this result is driven by the fact

that the insights of Ricardian equivalence continue to apply in states of the world where the

borrowing constraint is not binding. From a practical perspective, this implies that pricing

retirement benefit guarantees as contingent claims (as is routinely done in the literature) may

be informative for determining premiums, but may be misleading for welfare comparisons.

Methodologically the paper relates to the finance literature on optimal portfolio choice

in the presence of constraints, and in particular to the literature that uses convex duality /

dynamic Lagrange multiplier methods to solve such problems.9 The typical approach in this

literature is to take the income process of the agent as given (see e.g. He and Pages (1993))

and derive the Lagrange multipliers associated with the borrowing constraint. The new

methodological aspect of the present paper is that the convex duality approach is applied

in a “backwards” fashion. The central planner first solves for the best possible Lagrange

multiplier process that is associated with the borrowing constraint, and then searches for a

transfer process that is associated with these Lagrange multipliers. This new methodology

9The monograph by Karatzas and Shreve (1998) contains a thorough treatment of such methods. A
sample of general-equilibrium finance applications of this approach include Cuoco (1997), Basak and Cuoco
(1998), and Gallmeyer and Hollifield (2008) amongst many others.
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could prove useful in a variety of “hidden-action” setups, where the principal designs com-

pensation schemes that exploit constraints faced by the agent. Finally, the paper relates to

a literature in dynamic public finance10. That literature considers optimal insurance and

contract design problems predominantly in setups of “hidden information” and idiosyncratic

shocks. The present paper differs from that literature in that it deals with a “hidden action”

problem in the presence of aggregate shocks.

The paper is structured as follows. Section 2 sets up the model. Section 3 introduces

a central planner with the task of keeping the agent’s consumption above a minimum level

by usage of appropriate taxes and transfers. Section 4 considers the agent’s reaction to

the presence of such intervention. Section 5 derives an upper bound to welfare no matter

which set of admissible taxes/transfers is utilized. Section 6 illustrates two distinct ways

of attaining that upper bound. Section 7 discusses pre-retirement implications. Section

8 provides a justification for the assumed negative externality that arises when an agent’s

consumption drops below the minimum level. Section 9 discusses the implications of closing

the model in general equilibrium. Section 10 concludes. All proofs are in the appendix.

2 The model

2.1 Agents, preferences, and endowments

The baseline model is very similar to the small open economy version of Blanchard (1985) and

the life-cycle model of Farhi and Panageas (2007). Accordingly, the investment opportunity

set (interest rate, equity premium etc.) is taken as given. Section 9 shows that the main

conclusions of this baseline model remain valid in a closed, general-equilibrium economy.

All agents are identical. The typical agent faces a probability of death q per unit of time

dt, and newly born agents also arrive at the same rate. All agents have constant relative risk

aversion γ, and a constant discount rate ρ. To expedite the exposition and shorten proofs, I

10See e.g. Cole and Kocherlakota (2001), Golosov and Tsyvinski (2006) amongst many others.
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concentrate on the empirically relevant case γ > 1.11

Life has two phases. A “work” phase and a “retirement phase”. During the work phase

agents enjoy a constant level of leisure l < 1 and obtain an income stream equal to Y. Once

they retire, leisure irreversibly jumps to l = 1 and they receive no more labor income.

Agents’ instantaneous utility is given by the standard specification used in the macroe-

conomics literature, namely12 u (ct, lt) ≡ lαt
c1−γ
t

1−γ
. To ensure that ul > 0, I assume that α < 0.

Letting τ denote the time of retirement, the agent maximizes

Ftb = Etb

∫ τ

tb
e−(ρ+q)(t−tb) (l

α) (ct)
1−γ

1 − γ
dt +

∫ ∞

τ

e−(ρ+q)(t−tb) (ct)
1−γ

1 − γ
dt, (1)

I allow τ to be either a fixed time or optimally chosen by the agent, as part of her opti-

mization problem. Section 7 discusses the implications of these two alternative assumptions.

2.2 Investment opportunity set

Agents can invest in the money market, where they receive a constant strictly positive interest

rate r > 0. In addition they can invest in a risky security with a price per share that evolves

as

dPt

Pt

= µdt + σdBt,

where µ > r and σ > 0 are given constants and Bt is a one-dimensional Brownian motion

on a complete probability space (Ω, F, P ).13 The realization of this Brownian motion is the

only source of uncertainty in this economy. The extension to multiple assets is straightfor-

ward and is left out.

As is well understood, dynamic trading in the stock and the bond leads to a dynamically

11With a few additional technical assumptions the results can be extended to γ < 1 at the cost of lengthier
proofs.

12This specification is identical to the utility specification used in Farhi and Panageas (2007) up to a
re-definition of the parameters. The reason for the popularity of this specification in macroeconomics is that
it leads to a stationary choice of hours in general equilibrium models, consistent with the data.

13F = {Ft} denotes the P -augmentation of the filtration generated by Bt.

6



complete market. (See e.g. Duffie (2001) or Karatzas and Shreve (1998)). As Karatzas and

Shreve (1998) show, the assumptions of a constant interest rate and risk premium imply the

existence of a unique stochastic discount factor Ht, so that the time-t price of any claim

that delivers dividends equal to Du, for u ≥ t is given by14

Et

∫ ∞

t

Hu

Ht
Dudu,

and Ht is given by:

H(t) ≡ exp

{
−

∫ t

0

κdBs − rt −
1

2
κ2t

}
, κ ≡

µ − r

σ
. (2)

The agent can also enter into “annuity-style” contracts with a competitive life insurance

company as in Blanchard (1985). Specifically, these contracts specify the following cash-

flows: The insurance company offers an income stream of p per unit of time dt, in exchange

for receiving one dollar if the agent dies over the next interval dt. Competition between

insurance companies implies that p = q.

2.3 Portfolio and wealth processes

Throughout life, an agent chooses a portfolio process πt and a consumption process ct. The

portfolio process πt is the dollar amount invested in the risky asset (the “stock market”) at

time t. The rest, Wt − πt, is invested in the money market. Since the key insights do not

depend on the presence of bequest motives, I simplify matters and assume that the agent has

no bequest motives. As a result, the agent has an incentive to enter Blanchard-style annuity

contracts for the full amount of her financial wealth. This results in an income stream of qWt

per unit of time dt while she is alive. In exchange, the entire remaining wealth of the agent

gets transferred to the insurance company when the agent dies. Accordingly, the wealth

14From a macroeconomic perspective, one can also think of Ht as the marginal utility of consumption of
the world-representative agent.
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process of a retired agent evolves as

dWt = qWtdt + πt {µdt + σdBt} + {Wt − πt} rdt − ctdt, (3)

and the wealth process of a working agent is given by:

dWt = qWtdt + πt {µdt + σdBt} + {Wt − πt} rdt + Y dt − ctdt.

An additional requirement is that wealth must remain non-negative throughout:

Wt ≥ 0 for all t. (4)

This constraint excludes un-collateralized borrowing.

2.4 Externalities when consumption falls below a minimum stan-

dard of living

As already mentioned in the introductory section, societies typically opt to introduce regula-

tory measures to ensure that retirees’ consumption does not fall below a minimum standard.

To capture the reasons for such interventions in a simple way and expedite the presen-

tation of the main results, it is easiest to start by assuming that every time an individual’s

consumption falls below a level ξ in retirement, this drop has a negative externality on the

rest of society. The source of this externality is revisited in section 8, which shows how this

externality can arise endogenously in a society that provides transfers to individuals with

insufficient assets through distortionary taxation on other individuals.

Section 8 also shows that in the presence of such external effects, there is a wedge between

an individual’s and the central planner’s objectives, since the central planner wants to ensure

that agents choose consumption plans that satisfy

ct ≥ ξ for all t > tb + τ (5)
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From now and until section 8, I simply assume that the central planner aims to impose

constraint (5) on the agents. Based on this assumption, I derive the implications of this

constraint for the provision of retirement benefits.

3 Introducing a role for the central planner

To achieve the goal of imposing constraint (5) on the agent’s choices, the central planner can

use transfers to modify the agent’s behavior so that her consumption plans satisfy equation

(5).

To make matters realistic, the central planner’s information set is limited. The central

planner can observe an agent’s income and the realized returns on the stock market, but not

the agent’s assets or her consumption.

Based on that information set, the central planner needs to structure transfers to the

individual so as to ensure that constraint (5) holds. To keep with the assumption that the

retirement system is fully funded, such transfers are financed by the agent upon entering

retirement.

To obtain these optimal transfers it is most useful to use backward induction and split the

problem into a “post- retirement” part (which is is solved first) and a “pre-retirement” part,

which is solved subsequently. In the post-retirement part the central planner determines

the optimal transfer process that maximizes the agent’s retirement utility subject to (5),

and the appropriate incentive compatibility constraints, assuming that these transfers are

financed with a lump sum tax upon entering retirement. This is done in sections 3.1 - 6.

The pre-retirement part is discussed in section 7.

3.1 The post-retirement problem

It is now possible to provide a mathematical formulation to the central planner’s post-

retirement problem. Because of the time-invariance of the problem, I henceforth simplify

notation and normalize the time of retirement tb + τ to be equal to zero. I also normalize

9



the value of the stochastic discount factor at retirement to be equal to H0 = 1.15

Problem 1 The central planner’s objective is to determine an admissible cumulative non-

decreasing transfer process Gt and an initial tax D0 so as to maximize:

Ω ≡ max
Gt,D0

E0

∫ ∞

0

e−(ρ+q)t c1−γ
t

1 − γ
dt (6)

subject to

ct ≥ ξ for all t > 0 (7)

D0 = E0

∫ ∞

0

e−qtHtdGt (8)

and subject to the constraint that ct solves the agent’s optimization problem given Gt

ct = arg max
<ct,πt>

E0

∫ ∞

0

e−(ρ+q)t c1−γ
t

1 − γ
dt (9)

s.t.:

dWt = qWtdt + πt {µdt + σdBt} + {Wt − πt} rdt − ctdt + dGt (10)

W0+ = W0 − D0 (11)

Wt ≥ 0 for all t > 0 (12)

Equation (6) states that the central planner aims to maximize the agent’s welfare, subject

to the additional requirement that the agent’s consumption not fall below the minimum level

ξ that would trigger the assumed negative externalities on the rest of society.

Equations (8) and (11) state that the cost of providing the transfer process Gt to the

consumer should be self-financed by a tax D0. Parenthetically, this “self-financing” require-

ment implies that the central planner can simply specify the process Gt that each consumer

should purchase and leave it to competitive financial companies to price and provide these

15This latter normalization is without loss of generality since all quantities of interest depend on the ratio
of the stochastic discount factor between two points in time, rather than its level.
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transfers.

Finally, equations (9)-(12) capture the incentive compatibility requirement. Equation

(9) states that the optimal process ct cannot be mandated by the central planner (since the

central planner observes neither the consumption nor the assets of the agent). Instead, the

optimal consumption process is chosen optimally by the consumer, who is faced with the

budget dynamics of equation (10). These dynamics are identical to the ones in equation (3),

except for the presence of the transfers dGt, and the fact that the consumer needs to finance

these transfers by paying the amount D0 upon entering retirement. Accordingly, an instant

after entering retirement, her wealth W0+ is equal to the funds she has accumulated in the

pre-retirement phase (W0) net of the lump sum payment D0.

The final requirement that constrains a consumer’s choices is the borrowing constraint

(12). This constraint plays a central role in the analysis. Without this constraint, it would be

impossible for the central planner to find a set of taxes and transfers that would induce the

agent to choose a consumption path that satisfies (7). The reason is due to a well understood

result in Public Finance, known as Ricardian Equivalence: Since the market is dynamically

complete in the absence of the constraint (12), a consumer’s feasible consumption plans are

only constrained by the consumer’s intertemporal budget constraint, i.e. the requirement

that the net present value of her consumption be equal to the wealth she has accumulated.

Since the net present value of transfers is equal to the lump sum tax D0, the consumer’s

intertemporal budget constraint is unaffected by the intervention, no matter what process Gt

the central planner chooses. Accordingly, the tax-financed transfers cannot affect the con-

sumer’s plans. Agents can continue to consume as they would in the absence of intervention

and only modify their portfolios so as to undo the effects of the transfers.

The presence of a borrowing constraint such as (12), however, makes taxes and transfers

non-neutral. The reason is that a borrowing constraint implies stronger restrictions than a

simple intertemporal budget constraint on the agent’s feasible consumption choices. Hence,

by a judicious choice of an initial tax and subsequent transfers, the central planner can

affect the agent’s consumption. Parenthetically, the borrowing constraint (12) is realistic
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and easy to implement in practice. It suffices that the central planner instruct courts not to

enforce agreements that would let lenders seize future transfers as collateral for loans.

Because of the central role played by the borrowing constraint (12), the next section

reviews some known results related to the implications of the constraint (12) for optimal

consumption processes. Subsequent sections use these results to solve problem 1.

4 The agent’s consumption choices in the presence of

transfers and borrowing constraints

Suppose that at the time of retirement (time 0) the central planner collects an amount D0

and then promises an admissible cumulative transfer process Gt. It is natural to ask how

the agent’s consumption choices will be affected by this intervention in the presence of the

constraint (12).

To gain some intuition, it is useful to start by assuming that there is no uncertainty

(σ = 0) , so that µ = r, the agent’s dynamic budget constraint is given by dWt = (q + r)Wtdt

−ctdt +dGt, and the stochastic discount factor is deterministic (Ht = e−rt). The deterministic

dynamics of Wt, Ht imply that the constraint Wt ≥ 0 amounts to the requirement16

∫ t

0

cse
−qsHs ≤ W0 − D0 +

∫ t

0

e−qsHsdGs for all t ≥ 0. (13)

Applying the Lagrangian method, an agent’s problem can be converted into an uncon-

strained problem by attaching Lagrange multipliers λ, ζt ≥ 0 to obtain

L =

∫ ∞

0

e−(ρ+q)t c1−γ
t

1 − γ
dt + λ

[
W0 − D0 +

∫ ∞

0

e−qtHt(dGt − ctdt)

]
(14)

+

{∫ ∞

0

ζt

(
W0 − D0 +

∫ t

0

e−qsHs(dGs − csds)

)
dt

}

16To derive this equation, note that in the deterministic case d(e−qtHtWt) = e−qtHt (dGt − ctdt) . Inte-
grating the left and right hand side of this equation and imposing the requirement Wt ≥ 0 leads to (13).
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Applying integration by parts to the second line of (14) and imposing the transversality

condition limt→∞ e−qtHtWt = 0 gives

L =

∫ ∞

0

e−(ρ+q)t

(
c1−γ
t

1 − γ
− eρtλXtHtct

)
dt + λ

∫ ∞

0

e−qsHsXsdGs + λ [W0 − D0] , (15)

where

Xt ≡ 1 −

∫ t

0

ζs

λ
ds.

Maximizing L over ct amounts to simply maximizing the expression inside round brackets

in equation (15), which gives

ct =
(
λeρtHtXt

)− 1
γ . (16)

If all ζs = 0 (i.e. when the borrowing constraint Wt ≥ 0 is not binding) then Xt = 1, and

equation (16) amounts to the familiar result that an agent’s marginal utility of consumption
(
e−ρtc−γ

t

)
be proportional to the stochastic discount factor Ht.

However, when the borrowing constraint is binding, then consumption is affected by the

presence of the decreasing process Xt, which reflects the cumulative effect of the Lagrange

multipliers associated with the borrowing constraint. By construction Xt is a process that

is non-increasing and starts at X0 = 1.

To fully determine the solution to the consumer’s problem, one needs to determine the

Lagrange multipliers λ, ζs. He and Pages (1993) show that this amounts to first maximizing

L over ct (given arbitrary λ, Xt) and then minimizing the resulting expression over λ, Xt.

Specifically, He and Pages (1993) show the following Proposition, which holds also in the

presence of uncertainty:17

Proposition 1 Let D be the set of non-increasing, non-negative and progressively measur-

able processes that start at X(0) = 1. Then, the value function V (W0) of an agent can be

17Marcet and Marimon (1998) show a similar result in the context of recursive contracts.
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expressed as:

V (W0) = min
λ>0, Xs∈D

[
E

(∫ ∞

0
e−(ρ+q)s max

cs

(
c
1−γ
s

1 − γ
− λeρsHsXscs

)
ds+ λ

∫ ∞

0
e−qsHsXsdGs

)
+ λ (W0 −D0)

]

(17)

Let X∗
t , λ∗ denote the process Xt and the constant λ that minimize the above expression.

Then the optimal consumption process c∗t for a consumer faced with the borrowing constraint

(12) is given by (16) evaluated at λ = λ∗, Xt = X∗
t . Moreover, the process X∗

t decreases only

when the associated wealth process (Wt) falls to zero and is otherwise constant, i.e.:

∫ ∞

0

WtdX∗
t = 0 (18)

Finally, the resulting wealth process for any t > 0 satisfies:

Wt =
Et

(∫∞

t
e−q(s−t)X∗

s Hsc
∗
sds
)

X∗
t Ht

−
Et

(∫∞

t
e−q(s−t)X∗

s HsdGs

)

X∗
t Ht

(19)

5 Government transfers and their welfare effects: an

upper bound

Proposition 1 gives an intuitive way to summarize the effects of the incentive compatibility

requirement (equations [9]-[12]).

It asserts that every transfer process Gt will be associated with a constant λ∗ (Gt) and a

Lagrange multiplier process X∗
t (Gt). Given this correspondence between a choice of Gt and

the resulting pair (λ∗, X∗
t ), there is a straightforward way to obtain an upper bound to the

value function of problem 1. In particular consider the following problem:

Problem 2 Maximize:

J (W0) ≡ max
ct,Xt∈D,λ>0

E0

∫ ∞

0

e−(ρ+q)s c1−γ
s

1 − γ
ds (20)
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Figure 1: An illustration of Lemma 1. The admissible choices of problem 1 map into a subset
of the admissible choices of problem 2.

subject to:

E0

(∫ ∞

0

e−qsHscsds

)
≤ W0 (21)

ct ≥ ξ (22)

ct =
(
λeρtHtXt

)− 1
γ (23)

Problem 2 is the problem of a central planner that can choose directly the consumption

of the agent, subject to the intertemporal budget constraint (21), the constraint on the

minimum consumption level (equation [22]), and the additional requirement that any chosen

consumption process should have a representation in the form of equation (23) for some Xt.

In effect, problem 2 allows the central planner to choose directly the Lagrange multipliers

(λ, Xt) without being concerned whether there exists any pair of taxes and transfers (D0, Gt)

that would render these Lagrange multipliers as shadow values of the consumer’s optimization

problem (9).

Figure 1 gives an intuitive argument to show that the optimized value J to Problem 2

provides an upper bound to the value function Ω of problem 1. Indeed, any admissible
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consumption process of problem 1 needs to satisfy18 equations (21) and (22). Moreover,

Proposition 1 asserts that there always exists some pair of λ, Xt such that any admissible

consumption process of problem 1 can be expressed in the form of equation (23). Therefore,

any Gt, D0 maps into a subset of pairs (Xt, λ) allowed by Problem 2, and the value function

of problem 2 must therefore provide an upper bound to problem 1. The following Lemma

provides a formal proof.

Lemma 1 Let G be the class of all transfer processes Gt that enforce (7) and satisfy (8).

Furthermore, let V (W0) be given as in equation (17). Then the value functions of problems

1 and 2 satisfy :

V (W0) ≤ J (W0) (24)

The remainder of this section derives an explicit solution to problem 2, while the next

section shows that there exist transfer processes G∗
t that are optimal, because they make

equation (24) hold with equality.

As a first step towards solving problem 2 it is useful to ask whether constraints (21), (22),

and (23) will bind at an optimum. The top panel of figure 1 gives an optimal consumption

path for a random realization of Ht assuming that one maximizes (20) subject only to the

intertemporal budget constraint (21). The resulting solution is c∗∗∗t = (λ∗∗∗eρtHt)
− 1

γ and it

corresponds to what the consumer would choose, if left alone. Because Ht is log-normal, so is

ct and accordingly ct < ξ with positive probability. Imposing the constraint ct ≥ ξ (but not

the constraint [23]) leads to the optimal consumption path c∗∗t = max
[
ξ, (λ∗∗eρtHt)

− 1
γ

]
.19

The solution c∗∗t is what the central planner would choose, if she could directly observe and

mandate the agent’s consumption and portfolio choices.

18The consumer’s dynamic budget constraint (10) implies the intertemporal budget constraint

W0 −D0 +

∫
∞

0

e−qtHt(dGt − ctdt) ≥ 0.

Combining the intertemporal budget constraint with condition (8) implies (21).
19Clearly, (λ∗∗)

−
1

γ < (λ∗∗∗)
−

1

γ , otherwise it would be impossible that both c∗∗∗t and c∗∗t satisfy (21).
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c∗∗t = max
[
ξ, (λ∗∗eρtHt)

− 1
γ

]

c∗∗∗t = (λ∗∗∗eρtHt)
− 1

γ

c∗∗t

c∗∗∗t

time

time

Figure 2: Implications of the constraints in problem 2

However, the central planner cannot directly observe these choices. Instead, she needs

to induce the agent to choose consumption paths that satisfy ct ≥ ξ, by exploiting binding

borrowing constraints. This is captured by equation (23). The bottom panel of Figure 2

shows that this incentive compatibility requirement is in general binding. Indeed, equation

(23) implies that any admissible consumption process should satisfy the property that the

ratio ct/c
∗∗∗
t =

(
λ

λ∗∗∗

)− 1
γ X

− 1
γ

t should be a non-decreasing process (since Xt is non-increasing).

Clearly, the ratio c∗∗t /c∗∗∗t has decreasing sections and therefore c∗∗t cannot satisfy (23). There-

fore, J (W0) (and accordingly the value function Ω in problem 1) will in general be lower

than what the central planner could attain if it observed and mandated consumption.

The next proposition determines the solution of problem 2:

17



Proposition 2 Let the constants φ, K be defined as20

φ ≡
−
(
ρ − r − κ2

2

)
+

√(
ρ − r − κ2

2

)2
+ 2 (ρ + q) κ2

κ2
> 1, (25)

K ≡
γ

γ−1
γ

κ2

2
+ γ (r + q) + (ρ − r)

, (26)

and assume that

W0 ≥

1
γ

+ φ − 1

φ − 1
Kξ. (27)

Additionally, for any λ > 0, let the process X∗
t be given by

X∗
t (λ) ≡ min

[
1,

ξ−γ/λ

max0≤s≤t (eρsHs)

]
. (28)

Then the value function of problem (2) is given by

J (W0) = min
λ≥0

[
E

(∫ ∞

0

e−(ρ+q)s (λeρsHsX
∗
s )1− 1

γ

1 − γ
ds − λ

∫ ∞

0

e−qsHs (λeρsHsX
∗
s )−

1
γ ds + λW0

)]

(29)

= min
λ≥0

[
−

Kξ1−γ

γφ (φ − 1)

(
λ

ξ−γ

)φ

+ K
γ

1 − γ
λ1− 1

γ + λW0

]
. (30)

Letting λ∗ be the scalar that minimizes (30), the optimal triplet that solves problem (2) is

given by λ∗, X∗
t = Xt (λ

∗) ,and c∗t = (λ∗eρtHtX
∗
t )

− 1
γ .

20To see why φ > 1, notice that φ solves the quadratic equation

κ2

2
φ2 +

(
ρ− r −

κ2

2

)
φ− (ρ+ q) = 0

Evaluating the left hand side of this equation at φ = 1 gives:

−(r + q) < 0

Hence the larger of the two roots of the quadratic equation is larger than 1.
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Proposition 2 provides the optimal solution and the value function of problem 2, assuming

that the agent enters retirement with a level of assets that are no smaller than the lower

bound of equation (27). Assumption (27) will be maintained henceforth and discussed in

further detail in section 7.

6 Optimal Transfer Processes

This section illustrates two distinct processes G∗
t that attain the upper bound V (W0; G

∗
t ) =

J (W0) .

6.1 A constant income stream

The simplest form of transfer process is a constant income stream: The central planner

collects a lump sum tax of D0 = y0

r+q
and in exchange she delivers a constant stream of y0

until the agent dies. Surprisingly, this policy is a solution to problem 1, as long as y0 is

chosen judiciously. The following proposition gives a closed form solution for y0.

Proposition 3 Let y0 be given by

y0 ≡ (r + q) Kξ

(
1
γ

+ φ − 1

φ − 1

)
, (31)

where K is given in (26) and φ is given in (25). The policy of collecting D0 = y0

r+q
and

providing transfers equal to y0 until the agent dies, attains the upper bound V (W0; Gt = y0) =

J (W0) and is therefore a solution to problem 1.

An interesting feature of the optimal policy in proposition 3 is contained in the following

Lemma

Lemma 2 The optimal policy of proposition 3 has the property

y0

ξ
> 1
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Lemma 2 shows that if the central planner wants to ensure a minimum consumption

of one dollar, she needs to deliver more than one dollar in guaranteed income. This result

is driven by the fact that agents cannot be excluded from markets, and the presence of a

constant income guarantee incentivizes them to use some of the constant income to take

risks in the stock market. Therefore the central planner needs to set y0 > ξ to ensure that

ct ≥ ξ.

6.2 Portfolio Insurance

Providing agents with a constant income is not the unique way to attain the upper bound

in Proposition 2. The approach presented in this section also succeeds in attaining the same

upper bound. To describe this approach, let λ∗ be the scalar that minimizes (30). Then

define the transfer process as:

dGt = −

(
1

γ
+ φ − 1

)
Kξ

dX∗
t

X∗
t

(32)

where X∗
t (λ∗) is the process defined in (28).

This section shows the following two results:

a) The process (32) attains the upper bound of Proposition 2.

b) The process (32) has an intuitive economic interpretation as a type of minimum return

guarantee (portfolio insurance) on the agent’s optimal portfolio of stocks and bonds.

The following proposition formalizes the first claim and provides results that are useful

towards establishing the second claim.

Proposition 4 Let λ∗ be the scalar that minimizes (30) and X∗
t (λ∗) be the process that is

given in (28). Consider an agent who anticipates transfers given by (32) and is faced with

an initial tax of D0, where D0 satisfies (8). Then

a) her value function will coincide with the upper bound given in (30)
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b) Letting

Zt ≡ λ∗eρtHtX
∗
t , (33)

the agent will invest

πt =
κ

σ
Kξ

[
(φ − 1)

(
Zt

ξ−γ

)φ−1

+
1

γ

(
Zt

ξ−γ

)− 1
γ

]
(34)

dollars in the stock market and consume

ct = Z
− 1

γ

t , (35)

while the agent’s optimal wealth process Wt is given by

Wt = −Kξ

(
Zt

ξ−γ

)φ−1

+ KZ
− 1

γ

t . (36)

c) The initial tax D0 associated with (32) is given by

D0 = Kξ

1
γ

+ φ − 1

φ − 1

(
λ∗

ξ−γ

)φ−1

(37)

The portfolio policy (34) will aid in the interpretation of (32) as a form of portfolio

insurance. To obtain some intuition on the nature of (32), consider first the following puzzling

feature of the optimal portfolio policy: As ct → ξ, equation (35) implies that Zt → ξ−γ and

(36) implies that Wt → 0. However, the portfolio of the agent becomes

lim
Zt→ξ−γ

πt =

(
1

γ
+ φ − 1

)
Kξ

κ

σ
> 0. (38)

Because the agent’s financial wealth approaches zero as Zt → ξ−γ, but her stock position

doesn’t, a further negative return on the stock market would lead to a negative financial

asset position in the absence of any transfers. This means that the transfers given by (32)
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act as a minimum return guarantee, which ensures that the agent receives just enough funds

to sustain her financial wealth at zero and keep her consumption at ξ.

It is useful here to clarify that these transfers do not require that the central planner

actually observe the path of the agent’s assets or her consumption. By the definition of

X∗
t in equation (28), the central planner only needs to know the evolution of the stochastic

discount factor Ht, which can be inferred from the path of the stock market21 and the assets

of the agent at the time of retirement,22 which can be inferred from the consumer’s optimal

retirement decision as section 7 shows. A simple way of thinking about the transfer process

Gt in (32) is that the central planner and the agent have a joint understanding of how the

consumer will consume and invest in the presence of the transfers given by (32). Based on

its (correct) understanding of the consumer’s optimal policies, the central planner can infer

the agent’s wealth and make just enough transfers when needed, so as to keep the agent’s

wealth above 0 and her optimal consumption above ξ.

6.3 Comparing the two policies

Given that both policies attain the upper bound of equation (30), this means that they imply

the same value function for the agent, and hence are equivalent from a welfare perspective23.

However, the two policies do differ. They make transfers of different magnitudes in

different states of the world. The initial payments that they imply are also different. Indeed,

the initial payment associated with the constant income policy is:

Dconst.
0 =

y0

r + q
= Kξ

(
1
γ

+ φ − 1

φ − 1

)
, (39)

21Note that log (Ht) − log (H0) = −(r + 0.5κ2)t − κ (Bt −B0) = −(r + 0.5κ2)t − κ
σ
σ (Bt −B0) = −

−(r + 0.5κ2)t− κ
σ

[
logPt − logP0 −

(
µ− 0.5σ2

)
t
]

= κ
σ
(Pt − P0) +

(
κ
σ

(
µ− 0.5σ2

)
− (r + 0.5κ2)

)
t.

22The level of assets at retirement determine λ∗ by equation (30).
23The derivations in the appendix also show that they imply exactly the same consumption process “path

by path”.
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whereas by equation (37), the initial payment of the portfolio insurance policy is:

Dp.i.
0 = Kξ

(
1
γ

+ φ − 1

φ − 1

)(
λ∗

ξ−γ

)φ−1

(40)

Since c0 ≥ ξ and24 c−γ
0 = λ∗, it follows that λ∗/ξ−γ ≤ 1 and accordingly

Dp.i.
0

Dconst.
0

≤ 1.

Hence the “portfolio insurance” policy implies an initial payment that cannot be larger than

the initial payment of the “constant income” policy. This is intuitive, since the constant

income policy delivers the same transfers in all states of the world, including states of the

world where the borrowing constraint doesn’t bind. By contrast, the “portfolio insurance”

policy delivers payments only when the borrowing constraint binds.

However, when c0 = ξ (or alternatively W0+ = 0) the two policies imply the same initial

payment. Hence the initial payment of the two policies differs only when the borrowing

constraint is not binding, but is identical when the borrowing constraint does bind. This

is the reason why the two policies imply different initial payments, but are identical from a

welfare perspective. The additional resources delivered by the constant income policy are

delivered in states of the world where the borrowing constraint is not binding and hence can

be “undone” by agents’ portfolio choice, consistent with the Ricardian Equivalence theorem.

The above discussion illustrates that simply comparing the costs of retirement benefit

guarantees does not provide sufficient information for welfare comparisons.25

24Recall that H0 = X∗

0 = 1.
25As a final remark, a source of difference between the two policies is informational. The constant income

policy does not require exact knowledge of the level of an agent’s assets at retirement, whereas the portfolio
insurance policy does. However, even if assets were unobservable at retirement, an agent who could hide,
but not over-report her assets, would have an incentive to report her assets truthfully. The reason is that
D

p.i.
0 is decreasing26 in W0. Since a larger Dp.i.

0 “tightens” the agent’s borrowing constraints at retirement,
an agent has an incentive to report as large a value of W0 as she can. Assuming that the agent can hide,
but not over-report her assets, she would voluntarily report the actual value of W0.
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7 Minimum level of assets and implications for pre-

retirement savings

A maintained assumption of the analysis sofar was that the agent’s assets upon entering

retirement were above the minimum level of equation (27). As the next Proposition shows,

this assumption is not only sufficient, but it is also necessary for the existence of transfer

processes that can induce a consumption process that satisfies ct ≥ ξ.

Proposition 5 An admissible transfer process Gt that can induce ct ≥ ξ exists if and only

if W0 ≥ Wmin.

Proposition 5 has implications for the agent’s pre-retirement problem. Specifically, the

feasibility of enforcing the constraint ct ≥ ξ post-retirement is equivalent to requiring that

the agent arrives in retirement with assets that are at least as large as implied by condition

(27).

If the central planner can enforce lump-sum taxation in retirement (say through direct

punishments),27 the results in Farhi and Panageas (2007) imply that an agent who can choose

her retirement time optimally will retire only once her assets reach some level W , which will

be at least as large as
1
γ
+φ−1

φ−1
Kξ. Hence, no intervention is required pre-retirement.

However, in many cases it may be more realistic to assume that agents have no choice

as to their retirement age (say because productivity deteriorates), and the central planner

cannot enforce lump sum taxation. In that case, some measure to ensure a mandatory level

of pre-retirement savings is required. For instance, if the retirement date τ is a fixed time,

and the central planner’s only pre-retirement instrument is levying a constant fraction of

income, the central planner would have to collect a fraction χ of the agent’s income and

place it in a riskless asset on the agent’s behalf. Because of the constraint (12) this would be

sufficient to ensure that the agent has enough assets at retirement to pay D0. The minimum

level of χ that will enforce condition (27) is given by requiring that the net present value of

27Mathematically, this would imply that Ω (W0) = −∞ whenever W0 is smaller than Wmin.
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labor tax payment
∫ tb+τ

tb
e−(r+q)(t−tb)χY dt equals the net present value of minimum required

assets e−(r+q)τWmin. This implies that the minimum level of χ is given by

χ =
(r + q) e−(r+q)τ

1 − e−(r+q)τ

Kξ

Y

(
1
γ

+ φ − 1

φ − 1

)
. (41)

An intuitive argument also shows that it is not optimal to collect more than χ. Given

that the agent is faced with borrowing constraints prior to retirement, any intervention that

reduces income today and returns it in the form of a lump sum payment upon entering

retirement will reduce the agent’s ability to smooth consumption. The following proposition

states this formally:

Proposition 6 The optimal pre-retirement mandatory savings rate that will ensure (27) is

given by (41).

8 Alternative justifications for the constraint ct ≥ ξ

The underlying assumption behind problem 1 is that there is a difference between the central

planner’s objective and the individual agent’s objective. The difference stems from the

assumed negative external effects that arise, when an agent’s consumption falls below the

level ξ. This section revisits the reasons behind the assumed wedge between the central

planner’s and the agent’s objectives.

8.1 The constraint ct ≥ ξ in the presence of a welfare system

One potential reason for ensuring that agents can self-finance a minimum standard of living

in retirement is to deter them from over-burdening the welfare system, which is financed

through distortionary taxation.

To substantiate this claim, I enrich the model to give a reason for the presence of a welfare

system, along with a stylized model of such a system. Specifically, assume that the cohort

of agents that are born at time tb retire at some fixed date tb + τ . Until then, agents are
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identical in every respect. Upon entering retirement, however, a small fraction θ of agents

experiences an unobservable and idiosyncratic shock that results in a negative income stream

of Y for the rest of their lives. (The remaining fraction of the agents remain identical to the

agents described in the paper sofar). The idiosyncratic shock is catastrophic, in the sense

that no agent could self-insure against that shock by accumulating savings

∫ tb+τ

tb

e−(q+r)(t−tb)Y dt <

∫ ∞

tb+τ

e−(q+r)(t−tb)Y dt (42)

Equation (42) states that even if an agent saved all her wages, the resulting present value

would still be smaller than the present value of the negative shock Y .

Because of these catastrophic idiosyncratic shocks, the central planner can raise the

welfare of the time tb−cohort of agents by creating a “welfare” system, which works as

follows. Any agent who enters retirement can request transfers (dNt ≥ 0) from the central

planner. Requesting such transfers requires time and effort (filing paperwork, staying in lines

etc.). Specifically, an agent incurs a utility reduction of ξ−γ units per unit of transfer that

she receives. Accordingly, an agent maximizes

∫ ∞

tb+τ

e−(ρ+q)(t−tb−τ) c1−γ
t

1 − γ
dt −

∫ ∞

tb+τ

e−(ρ+q)(t−tb−τ)ξ−γdNt.

Given the above assumptions, any agent (whether she has experienced an idiosyncratic

shock or not) can always guarantee herself a consumption process above ξ by requesting

welfare transfers. To see this, let V (Wt) denote an agent’s value function and suppose that

the agent considers some deviation from her optimal plan, whereby she requests a small

amount ε > 0 from the central planner. Since V (Wt) is the value function, such deviations

should not be optimal, so that V (Wt) ≥ V (Wt + ε) − ξ−γε or V (Wt)−V (Wt+ε)
ε

≥ −ξ−γ. Since

this inequality must hold for any ε, letting ε → 0 gives VW ≤ ξ−γ. Additionally, an agent’s

optimal consumption decisions must satisfy the first order condition c−γ
t = VW . Therefore,

it must be the case that ct ≥ ξ. Alternatively put, an agent can always guarantee herself a
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level of consumption above ξ by using the welfare system.

A final assumption is that the welfare system is financed by distortionary taxation. Specif-

ically, the central planner collects a labor tax equal to ωY, during the work years of the

agents, so as to finance any welfare payments later on. However, taxation is distortionary,

i.e, even though agents pay ωY in taxes, only a fraction (1 − δ)ωY reaches the central plan-

ner. The constant δ captures the work-disincentives and the associated deadweight costs

resulting from distortionary labor taxes. (See e.g. Barro (1979) for a seminal treatment).

The resulting budget constraint of the central planner is given by

∫ tb+τ

tb

e−(r+q)(t−tb) (1 − δ) ωY = θ

∫ ∞

tb+τ

e−q(t−tb)

(
Ht

Htb

)
dNt,

assuming that only the θ-fraction of agents who suffer the idiosyncratic shock ever request

transfers. Because distortionary taxation and the utility costs of requesting welfare transfers

are both deadweight costs, the ex-ante welfare of the time-tb cohort of agents is maximized

if transfers are only requested from agents who experience idiosyncratic shocks. Obviously,

since the idiosyncratic shock is private information, “separation” of the two types of agents

can only occur if the agents modeled in section 2 (i.e. the agents who do not experience

idiosyncratic shocks) find it optimal to not use the welfare system. In that sense the con-

straint (5) is a standard incentive compatibility constraint, which ensures that only agents

who experience idiosyncratic shocks find it optimal to access the welfare system, but not the

agents who don’t experience such shocks.28.

8.2 Behavioral justifications

Problem 1 is also consistent with a behavioral interpretation. Several authors in behavioral

economics model the inability of an agent to commit as a principal-agent problem. The

principal is taken as the “prudent”, time-zero “self”, who has a different objective than the

28The above reasoning is valid for sufficiently small θ. As θ → 0, the ex-ante social welfare of the time-
tb cohort coincides with the welfare of problem 1, as long as the value function of agents who experience
idiosyncratic shocks in retirement is finite. Because of the welfare system, agents who experience idiosyncratic
shocks can keep their consumption bounded from below, and hence their value function is finite
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subsequent “reckless selves” who are making decisions.29 For instance, if one were to inter-

pret ξ as inelastic retirement expenditures associated with aging (say medical costs), then

the “prudent” self would like to impose the constraint ct ≥ ξ on the choices made by the

subsequent “reckless” selves, who will simply ignore this constraint. In such a behavioral

interpretation of the problem, the central planner’s choice of post-retirement transfers maxi-

mizes the welfare of the prudent “self”, by exploiting borrowing constraints on the “reckless”

selves.

9 Arbitrary stochastic discount factors and multiple

assets and sources of uncertainty

The assumption of a small open economy facilitated the analysis by rendering the stochastic

discount factor exogenous to the model. Another simplifying assumption is that everything

is driven by a single shock. Neither of these assumptions is restrictive. Even if the stochastic

discount factor were endogenous and driven by multiple sources of uncertainty, most of the

results of the paper would survive.

Specifically, the fact that (29) provides an upper bound to problem 1 remains valid for

any continuous stochastic discount factor Ht. It is also straightforward to show that the

portfolio insurance policy would attain the upper bound of proposition 2 for any stochastic

discount factor. However, the result that seems to depend on the constant nature of the

investment opportunity set is the optimality of the constant income policy. Nevertheless,

since the upper bound (29) is attainable for any stochastic discount factor, one can use

equation (29) to evaluate the magnitude of potential welfare losses, and balance these losses

against the simplicity of a constant income policy.

In summary, the qualitative findings of the model would survive even in a closed, general

equilibrium economy.30 In that case, the prices of the guarantees and all the parametric

29For economic applications of the concept of “multiple selves”, see e.g. Amador et al. (2006).
30Of course in general equilibrium care should be taken to make sure that aggregate consumption stays

above the level ξ multiplied by the mass of retirees. In an endowment economy this could be done by
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formulas would be altered. However, the key results of the paper, namely the nature of

the upper bound of equation (29) and the the existence of a portfolio insurance policy that

attains the upper bound, would remain unchanged.

10 Conclusion

By exploiting borrowing restrictions of agents, this paper proposed a framework to design

transfer processes that can ensure a minimum standard of living in retirement.

Within the framework of the baseline life-cycle model, two policies were shown to be

maximizing the central planner’s objective: According to the first policy, retirees use part

of their accumulated assets to purchase a fixed annuity that pays off a constant income

stream. The second policy is an appropriate form of portfolio insurance that ensures retirees

against further negative returns, once their assets approach zero. Somewhat surprisingly,

even though the two alternative policies lead to the same welfare, the cost of these guaran-

tees is different in general. This suggests caution in drawing welfare conclusions from the

literature that prices guarantees as contingent claims.

Several issues are unexplored by the present paper. A first question concerns unobserved

preference heterogeneity. If agents have different risk aversions, or discount factors, then

the central planner needs to offer menus of contracts in the spirit of discriminatory pricing.

It appears straightforward to extend the analysis to allow for this possibility. An open

question is whether the need to enforce sorting into different types of contracts would affect

the qualitative features of the guarantees.

A second question concerns the implications of such guarantees for asset prices. Even

though the results of the paper go through for arbitrary stochastic discount factors, it is likely

that extensive coverage of retirees by these guarantees would affect the stochastic discount

factor in general equilibrium. Studying these two questions is left for future research.

boundedness assumptions on the aggregate endowment. Alternatively one could introduce production and
relax the bounds on the fundamental shocks.
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A Appendix

Proof of proposition 1. Subject to minor modifications, the proof of this proposition is identical

to the first theorem of He and Pages (1993) and the reader is referred to that paper for a proof.

Proof of Lemma 1. The proof of this lemma is contained in the proof of proposition 2

(Particularly Lemma 4).

Proof of Proposition 2. The proof of this proposition is established in steps. The following

Lemma contains a useful first result.

Lemma 3 Take any λ ∈ (0, ξ−γ ] and any process Gt and define

X̂t ≡ arg min
Xs∈D

E0

(∫ ∞

0
e−(ρ+q)s max

cs

(
c
1−γ
s

1 − γ
− λeρsHsXscs

)
ds+ λ

∫ ∞

0
e−qsHs (Xs − 1) dGs

)
.

(43)

Then:

λE0

(∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs

)
= E0

∫ ∞

0
e−(ρ+q)s

(
eρsλHsX̂s

)1− 1
γ

(
1 −

1

X̂s

)
ds. (44)

Proof of Lemma 3. Let Λt ≡ 1 − 1
X̂t
. Applying Ito’s Lemma to Λt, one obtains dΛt ≡ dX̂t

(X̂t)
2 .

Hence Λt changes when and only X̂t changes. By Theorem 1 of He and Pages (1993):

∫ ∞

0

[
Et

(∫ ∞

t
X̂se

−qsHsdGs

)
− Et

(∫ ∞

t
X̂se

−qsHscsds

)]
dX̂t = 0, (45)

where cs is given explicitly by (23). Plugging (23) into (45), and observing that Λt changes when

and only when X̂t changes implies that

∫ ∞

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs − Et

∫ ∞

t
X̂se

−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

)
dΛt = 0.

Then, for any admissible Gt and X̂t given by (43)

λE0

(∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs

)
=

λE0

[∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs −

∫ ∞

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt

]
(46)

+ λE0

{∫ ∞

0
Et

[∫ ∞

t
X̂se

−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

]
dΛt

}
.
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Next consider the martingale

Mt ≡ Et

∫ ∞

0
X̂se

−qsHsdGs =

∫ t

0
X̂se

−qsHsdGs +Et

∫ ∞

t
X̂se

−qsHsdGs. (47)

According to the martingale representation theorem, there exists a square integrable ψ̃s such that

Mt = M0 +

∫ t

0
ψ̃sdBs. (48)

Combining (47) and (48) gives

d

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
= dMt − X̂te

−qtHtdGt

= ψ̃tdBt − X̂te
−qtHtdGt.

Now, fixing an arbitrary ε > 0, letting τ ε be the first time t such that |Λt| ≥
1
ε , applying

integration by parts and using the fact that Λ0 = 0, gives

−E0

∫ T∧τε

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt = −E0

∫ T∧τε

0
ΛsX̂se

−qsHsdGs + E0

∫ T∧τε

0
Λsψ̃sdBs

− E0

[
ΛT∧τε

(
ET∧τε

∫ ∞

T∧τε

X̂se
−qsHsdGs

)]
.

Since ψs is square integrable and |Λs| is bounded in
[
0, 1

ε

]
the second term on the right hand

side of the above expression is 0. Also note that

−E0

[
ΛT∧τε

(
ET∧τε

∫ ∞

T∧τε

X̂se
−qsHsdGs

)]
= −E0

[
X̂T∧τεΛT∧τεJ

]
, (49)

where

J ≡

(
ET∧τε

∫ ∞

T∧τε

X̂s

X̂T∧τε

e−qsHsdGs

)
≤ ET∧τε

∫ ∞

T∧τε

e−qsHsdGs, (50)

since X̂t is non-increasing. Combining (50) with (49) and noting that 0 < X̂t ≤ 1,

−E0

[
X̂T∧τεΛT∧τεJ

]
= E0

[(
1 − X̂T∧τε

)
J
]
≤ ET∧τε

∫ ∞

T∧τε

e−qsHsdGs. (51)

Given that E
∫∞

0 e−qsHsdGs <∞ it follows that

ET∧τε

∫ ∞

T∧τε

e−qsHsdGs → 0, (52)
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as ε→ 0, T → ∞. This leads to the inequalities:

−E0

∫ ∞

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt ≥ −E0

∫ T∧τε

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt

≥ −E0

∫ T∧τε

0
ΛsX̂se

−qsHsdGs.

Letting ε→ 0, T → ∞, using the monotone convergence theorem, and using (51) and (52), gives

−

∫ ∞

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt = −E0

∫ ∞

0
ΛsX̂se

−qsHsdGs. (53)

Using (53) and the definition of Λt gives

λE0

[∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs −

∫ ∞

0

(
Et

∫ ∞

t
X̂se

−qsHsdGs

)
dΛt

]
=

= E0

[
λ

∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs − λ

∫ ∞

0
e−qsHsX̂sΛsdGs

]
= 0.

Returning now to (46) and using the above equation yields

λE0

(∫ ∞

0
e−qsHs

(
X̂s − 1

)
dGs

)
= λE0

{∫ ∞

0
Et

[∫ ∞

t
X̂se

−qsHs

(
eρsλHsX̂s

)− 1
γ
ds

]
dΛt

}

(54)

= E0

[∫ ∞

0
e−(ρ+q)t

(
eρtλHtX̂s

)1− 1
γ

Λtdt

]
, (55)

where (55) follows from a similar integration by parts argument as the one in equations (47)-(53).

The next Lemma uses Lemma 3 to prove (24).

Lemma 4 For all admissible processes Gt ∈ G:

max
Gt∈G

V (W0) ≤ min
λ∈(0,ξ−γ ]

[
E

(∫ ∞

0
e−(ρ+q)s (λeρsHsX

∗
s )

1− 1
γ

1 − γ
ds− λ

∫ ∞

0
e−qsHs (λeρsHsX

∗
s )−

1
γ ds+ λW0

)]

(56)

Proof of Lemma 4. Proposition 1 along with Lemma 3 implies that for any admissible process
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Gt there exists a λG > 0 and a decreasing process XG
t ∈ D that minimizes (17) such that

V (W0) = E

(∫ ∞

0
e−(ρ+q)s max

cs

(
c
1−γ
s

1 − γ
− λGeρsHsX

G
s cs

)
ds+ λG

∫ ∞

0
e−qsHs

(
XG

s − 1
)
dGs

)
+ λGW0

= E

∫ ∞

0
e−(ρ+q)s



(
eρsλGHsX

G
s

)1− 1
γ

1 − γ
− λGeρsHs

(
eρsλGHsX

G
s

)− 1
γ


 ds+ λGW0.

(57)

Moreover, since the process Gt enforces ct ≥ ξ, equation (16) implies that λG ≤ ξ−γ . Next take

an arbitrary λ > 0. Since ct =
(
eρtλGHtX

G
t

)− 1
γ is an optimal consumption process, it exhausts the

“budget constraint” of the consumer so that

E

∫ ∞

0
e−(ρ+q)seρsHs

(
eρsλGHsX

G
s

)− 1
γ ds = W0 −D0 + E

∫ ∞

0
e−qsHsdGs.

Using (8), this implies that E
∫∞

0 e−(ρ+q)seρsHs

(
eρsλGHsX

G
s

)− 1
γ = W0. This furthermore implies

that (57) can be rewritten as

V (W0) = E

∫ ∞

0
e−(ρ+q)s



(
eρsλGHsX

G
s

)1− 1
γ

1 − γ
− λeρsHs

(
eρsλGHsX

G
s

)− 1
γ


 ds+ λW0. (58)

Next define X∗
t as in equation (28), and let the process Nt be given as Nt ≡

λG

λ
XG

t

X∗
t
. Using Nt, one

can rewrite equation (58) as

V (W0) = E

∫ ∞

0
e−(ρ+q)s

(
(eρsλHsX

∗
sNs)

1− 1
γ

1 − γ
− λeρsHs (eρsλHsX

∗
sNs)

− 1
γ

)
ds+ λW0. (59)

Since λGXG
t is a decreasing process that starts at λG and always stays below ξ−γ , the Skorohod

equation31 implies that there exists another decreasing process λGX∗G
t that also starts at λG and

stays below ξ−γ , with the property

λGXG
t ≤ λGX∗G

t . (60)

This process is given by X∗G
t = min

[
1, ξ−γ/λG

max0≤s≤t(eρsHs)

]
. Note that X∗G

t is identical to X∗
t with the

31For the Skorohod equation see Karatzas and Shreve (1991) p. 210.
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exception that λ replaces λG. Using (60) and the definition of Nt yields

Nt =
λG

λ

XG
t

X∗
t

≤
λG

λ

X∗G
t

X∗
t

. (61)

Using (61) and (59) leads to

V (W0) ≤ E

∫ ∞

0
e−(ρ+q)sA(s)ds+ λW0, (62)

where

A (s) ≡ max
Ns≤Qs

(
Ã (s)

)
, (63)

and Ã (s) is defined as Ã (s) ≡ (eρsλHsX∗
s Ns)

1− 1
γ

1−γ −λeρsHs (eρsλHsX
∗
sNs)

− 1
γ , whileQs ≡ max

[
1, λG

λ
X∗G

s

X∗
s

]
.

To study the maximization problem of equation (63) it is useful to compute the derivative of Ãs

with respect to Ns. Performing this computation and combining terms gives

∂Ãs

∂Ns
= −

1

γ
(eρsλHsX

∗
sNs)

1− 1
γ N−1

s

(
1 −

1

NsX∗
s

)
. (64)

At this stage it is useful to consider two cases separately. The first case is λ > λG. In this case, it

is straightforward to show that Qs = 1. Hence in maximizing Ã(s), one can constrain attention to

values of Ns ≤ 1. An examination of (64) reveals that ∂Ã(s)
∂Ns

≥ 0 for all Ns ≤ 1 and all X∗
s , since

X∗
s ≤ 1. Hence the solution to (63) is Ns = 1 when λ > λG.

In the case where λ < λG it is also true that the optimal Ns in (63) is equal to one. To see this,

observe that

Qs =

{ λG

λ
X∗G

s

X∗
s

when X∗
s = 1

1 when X∗
s < 1

.

Using this observation in (64) reveals that the optimal choice for Ns is always equal to 1.32

The above reasoning shows that the optimal solution of (63) is given by Ns = 1. Returning to

(62), this implies that

V (W0) ≤ E

∫ ∞

0
e−(ρ+q)s

(
(eρsλHsX

∗
s )1−

1
γ

1 − γ
ds− λeρsHs (eρsλHsX

∗
s )

− 1
γ ds

)
+ λW0.

32To see this distinguish cases. When X∗

s = 1, then solving ∂Ã(s)
∂Ns

= 0 gives Ns = 1 ≤ Qs. Hence Ns is the

unique interior solution. When X∗

s < 1, then ∂Ã(s)
∂Ns

> 0 for all Ns ≤ Qs = 1. Hence the solution is given by
the corner Ns = Qs = 1.
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Since this bound holds for arbitrary λ ∈ (0, ξ−γ ] and arbitrary Gt ∈ G, it also holds for the

λ ∈ (0, ξ−γ ] that minimizes the right hand side of the above equation and the Gt ∈ G that maximizes

the right hand side. Hence (56) follows.

The next part of the proof of Proposition 2 is to show that equation (29) holds. A first step is

to show that (29) provides an upper bound to J (W0) .

Lemma 5 The value function of problem 2 is bounded above by

J (W0) ≤ min
λ∈(0,ξ−γ ]

[
E

(∫ ∞

0
e−(ρ+q)s (λeρsHsX

∗
s )1−

1
γ

1 − γ
ds − λ

∫ ∞

0
e−qsHs (λeρsHsX

∗
s )

− 1
γ ds+ λW0

)]
.

(65)

Proof of Lemma 5. The proof of this Lemma follows identical steps to the proof of the

previous Lemma. To see this, take an arbitrary triplet < λ̂,Xt, ct > that satisfies equations (21)-

(23) of Problem 2. Then for any λ > 0, one obtains

J (W0) ≤ E



∫ ∞

0
e−(ρ+q)s

(
λ̂eρsHsXs

)1− 1
γ

1 − γ
− λ

∫ ∞

0
e−qsHs

(
λ̂eρsHsXs

)− 1
γ

+ λW0




Notice that this equation is identical to equation (58), with the exception that λG is replaced by λ̂

and XG
t is replaced by Xt. Since the equations following (58) hold for any λG,XG

t they also hold

for λ̂,Xt. Accordingly, by repeating the same steps, one can arrive at (65).

The next step in the proof of the proposition is to show that the inequality in (65) holds with

equality for the optimal policy. The following Lemma presents a step in this direction.

Lemma 6 Let F (λ) be given by

F (λ) = E

(∫ ∞

0
e−(ρ+q)s (λeρsHsX

∗
s )

1− 1
γ

1 − γ
ds− λ

∫ ∞

0
e−qsHs (λeρsHsX

∗
s )−

1
γ ds

)
(66)

Then

F (λ) = −
Kξ1−γ

γφ (φ− 1)

(
λ

ξ−γ

)φ

+K
γ

1 − γ
λ

1− 1
γ (67)

Assume moreover that (27) is met. Then

min
λ∈(0,ξ−γ ]

[F (λ) + λW0] = min
λ>0

[F (λ) + λW0] (68)
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and (65) can be rewritten as J (W0) ≤ minλ>0 [F (λ) + λW0]. Moreover, letting λ∗ be given as

λ∗ ≡ arg minλ>0 [F (λ) + λW0] implies that E0

[∫∞

0 e−qsHs (λ∗eρsHsX
∗
s )

− 1
γ

]
= W0, and accordingly

c∗s = (λ∗eρsHsX
∗
s )

− 1
γ is a feasible consumption process for problem 2.

Proof of Lemma 6. To save notation, let

Zt ≡ λeρtHtX
∗
t , (69)

and note that Z0 = λ, and that Zt ∈ (0, ξ−γ ] by the definition of X∗
t in equation (28). Equation

(66) can now be rewritten as

F (λ) = E



∫ ∞

0
e−(ρ+q)s 1

1 − γ
(Zs)

1− 1
γ ds−

∫ ∞

0
e−(ρ+q)sZ

1− 1
γ

s

X∗
s

ds


 . (70)

It will be convenient to compute the two terms inside equation (70) separately. Define first

G (Zt) ≡ E

[∫ ∞

t
e−(ρ+q)(s−t) 1

1 − γ
(Zs)

1− 1
γ ds|Zt

]
. (71)

To compute G (Zt), it is easiest to let τ ε be the first hitting time of Zt to the level ε > 0, namely

τ ε ≡ infs≥t {Zs = ε} , and then compute the expression:

Gε (Zt) = E

[∫ τε

t
e−(ρ+q)s 1

1 − γ
(Zs)

1− 1
γ ds|Zt

]
. (72)

To compute (72), apply first Ito’s Lemma to (69) to obtain dZt

Zt
= (ρ− r) dt − κdBt +

dX∗
t

X∗
t
. Next,

construct a function Gε(Z) that satisfies the ODE

κ2

2
Gε

ZZZ
2 +Gε

ZZ (ρ− r) − (ρ+ q)Gε +
1

1 − γ
(Z)1−

1
γ = 0, (73)

subject to the boundary conditions Gε
Z (ξ−γ) = 0, Gε(ε) = 0.

Equation (73) is a linear ordinary differential equation with general solution

Gε (Z) = C1Z
φ−

+ C2Z
φ +K

1

1 − γ
Z

1− 1
γ ,

where C1, C2 are arbitrary constants, K is given in equation (26), φ > 0 in (25), and φ− is given

by

φ− ≡
−
(
ρ− r − κ2

2

)
−

√(
ρ− r − κ2

2

)2
+ 2 (ρ+ q)κ2

κ2
< 0 (74)
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To satisfy the two boundary conditions Gε
Z (ξ−γ) = 0, Gε(ε) = 0, the constants C1 and C2 must be

chosen so that

φ−C1

(
ξ−γ

)φ−

+ φC2

(
ξ−γ
)φ

−
1

γ
K
(
ξ−γ
)1− 1

γ = 0, C1ε
φ−

+ C2ε
φ +K

1

1 − γ
ε
1− 1

γ = 0.

Solving this system yields:

C2 =
K
[

1
γφ− (ξ−γ)

1− 1
γ
−φ−

εφ
−

+ 1
1−γ ε

1− 1
γ

]

φ
φ− (ξ−γ)φ−φ−

εφ
− − εφ

, C1 = −C2ε
φ−φ−

−K
1

1 − γ
ε
1− 1

γ
−φ−

.

It remains now to verify that Gε (Zt) satisfies (72). To this end, apply Ito’s Lemma to

e−(ρ+q)tGε(Zt) to obtain for any time T ∧ τ ε

e−(ρ+q)TGε(ZT∧τ ) − e−(ρ+q)tGε(Zt) =

∫ T∧τε

t

(
κ2

2
Gε

ZZZ
2
s +Gε

ZZs (ρ− r) − (ρ+ q)Gε

)
e−(ρ+q)sds

−

∫ T∧τε

t
e−(ρ+q)sκGε

ZZsdBs +

∫ T∧τε

t
e−(ρ+q)sGε

Z

(
ξ−γ
)
ξ−γ dX

∗
s

X∗
s

.

Using (73) inside the first term on the right hand side of the above equation along with

Gε
Z (ξ−γ) = 0 inside the third term, letting T → ∞ along with Gε(ε) = 0, and using the monotone

convergence theorem gives

Gε(Zt) = Et

[∫ τε

t
e−(ρ+q)(s−t) 1

1 − γ
(Zs)

1− 1
γ ds+

∫ τε

t
e−(ρ+q)(s−t)κGε

ZZsdBs

]
. (75)

Since Gε
ZZ is bounded between t and τ ε, the second term in the above expression is a martingale

and hence (94) follows. Next, letting ε→ 0, it is straightforward to show that

C2 =
K
[

1
γφ− (ξ−γ)

1− 1
γ
−φ−

− 1
1−γ ε

1− 1
γ
−φ−

]

φ
φ− (ξ−γ)φ−φ−

− εφ−φ−
→ K

1

γφ

(
ξ−γ

)1− 1
γ
−φ
,

since εφ−φ−
→ 0 and ε

1− 1
γ
−φ−

→ 0. By a similar argument it is easy to show that C1 → 0 and

hence:

lim
ε→0

Gε(Z) = G(Z) =
1

φ

1

γ
Kξ1−γ

(
Z

ξ−γ

)φ

+K
1

1 − γ
Z

1− 1
γ . (76)

Equation (71) follows as a consequence of the monotone convergence theorem.
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It remains to compute the expression

N (Zt,X
∗
t ) = Et



∫ ∞

t
e−(ρ+q)(s−t)Z

1− 1
γ

s

X∗
s

ds


 . (77)

Following similar steps as for G (Zt), N(Z,X∗) is given by

N(Z,X∗) =
1

(φ− 1)

1

γ

K (ξ−γ)
1− 1

γ

X∗

(
Z

ξ−γ

)φ

+K
Z

1− 1
γ

X∗
. (78)

It is now possible to compute F (λ) which is given by

F (λ) = G(λ) −N (λ, 1) == −
Kξ1−γ

γφ (φ− 1)

(
λ

ξ−γ

)φ

+K
γ

1 − γ
λ

1− 1
γ . (79)

To show the second part of the proposition, observe that (77), (69) and (78) imply that

N (λ, 1)

λ
=

1

λ
E0



∫ ∞

0
e−(ρ+q)sZ

1− 1
γ

s

X∗
s

ds


 = E0

(∫ ∞

0
e−qsHs (λeρsHsX

∗
s )−

1
γ ds

)
=

=
Kξ1−γ

(φ− 1)

1

γ

(
λ

ξ−γ

)φ 1

λ
+Kλ

− 1
γ . (80)

Moreover, computing F ′(λ) in (79) yields

F ′(λ) = −
Kξ1−γ

(φ− 1)

1

γ

(
λ

ξ−γ

)φ 1

λ
−Kλ

− 1
γ . (81)

Combining (80) and (81) leads to

F ′(λ) = −
N (λ, 1)

λ
= −E0

(∫ ∞

0
e−qsHs (λeρsHsX

∗
s )

− 1
γ ds

)
. (82)

Using the formula for F (λ), equation (65) can be expressed as minλ∈(0,ξ−γ ] {F (λ) + λW0} ,which

leads to the first order condition F ′ (λ∗) = −W0. Using (82) leads to

W0 = E0

(∫ ∞

0
e−qsHs (λ∗eρsHsX

∗
s )

− 1
γ ds

)
= E0

(∫ ∞

0
e−qsHsc

∗
sds

)
.

This last equation implies that λ∗,X∗
t and the associated consumption process c∗t =

(
λ∗eρtHtX

∗
t

)− 1
γ

satisfy (21) and (23). To show that the choice 〈λ∗,X∗
t , c

∗
t 〉 constitutes a feasible triplet, it remains

to show that it also satisfies (22). By construction of X∗
t this will be the case as long as λ∗ < ξ−γ .

This will indeed be the case as long as W0 satisfies (27). To see this, note that ξ−γ is the unique
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solution of F ′ (λ∗) = −W0, when W0 is given by W0 =
1
γ
+φ−1

φ−1 Kξ. Moreover, equation (81) implies

that:

F ′′(λ) = −K
(
ξ−γ
)1− 1

γ
1

γ

(
1

ξ−γ

)φ

λφ−2 +
1

γ
Kλ

− 1
γ
−1

=
1

γ
Kλ

− 1
γ
−1

[
1 −

(
λ

ξ−γ

)φ+ 1
γ
−1
]
> 0. (83)

The above equation shows that F
′
(λ) is an increasing function of λ for 0 < λ < ξ−γ and hence the

solution λ∗ of equation F ′ (λ∗) = −W0 is a decreasing function of W0. Hence, as long as W0 satisfies

(27), then λ∗ < ξ−γ . Since the interior solution λ∗ is smaller than ξ−γ , equation (68) follows.

Combining the above Lemma with (65) implies that

J(W0) ≤ min
λ>0

[F (λ) + λW0] = F (λ∗) + λ∗W0 =

= E



∫ ∞

0
e−(ρ+q)s

(
(λ∗eρsHsX

∗
s )

− 1
γ

)1−γ

1 − γ
ds




= E

(∫ ∞

0
e−(ρ+q)s (c∗s)

1−γ

1 − γ
ds

)
≤ J (W0) .

The last inequality follows because c∗s = (λ∗eρsHsX
∗
s )−

1
γ is a feasible consumption process for

problem for problem 2 and J (W0) is the value function of the problem. The above three lines

imply that equation (65) holds with equality as long as one chooses the optimal solution in the

statement of the proposition. This concludes the proof of Proposition 2.

Proof of Proposition 3. The proof of this Proposition is just a special case of Section 6 in

He and Pages (1993) and hence I give only a sketch and refer the reader to He and Pages (1993)

for details. To start, define

Ṽ (λ) = min
Xs∈D

E

[∫ ∞

0
e−(ρ+q)s max

cs

(
c
1−γ
s

1 − γ
− λeρsHsXscs

)
ds + λ

∫ ∞

0
e−qsHsXsy0ds

]
. (84)

By equation (8) and equation (17) of Proposition 1

V (W0) = min
λ>0

[
Ṽ (λ) + λ

(
W0 −

y0

r + q

)]
, (85)

since y0E
∫∞

0 Hsds = y0

r . Next, for an arbitrary decreasing process Xt let Zt be defined as Zt ≡
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λeρsHsXs, and note that Z0 = λ. Applying Ito’s Lemma to Zt gives:

dZt

Zt
= (ρ− r) dt − κdBt +

dXt

Xt
. (86)

With this definition of Zt one can solve the maximization problem inside (84) and rewrite Ṽ (λ) as

Ṽ (Z0) = min
Xs∈D

E

[∫ ∞

0
e−(ρ+q)s

(
γ

1 − γ
Z

1− 1
γ

s + y0Zs

)
ds

]
(87)

From this point on, one can use similar arguments to He and Pages (1993), and treat (87) as

a singular stochastic control problem over the set of decreasing processes Xt. As He and Pages

(1993) show, the optimal solution is to always decrease Xt appropriately, so as to keep Zt in the

interval (0, Z]. Z is a free boundary that is determined next.

Using this conjecture for the optimal policy one can now proceed as He and Pages (1993) to

establish that Ṽ (Z) satisfies the ordinary differential equation:

κ2

2
ṼZZZ

2 + (ρ− r) ṼZZ − (ρ+ q)Ṽ +
γ

1 − γ
Z

1− 1
γ + y0Z = 0 for all Z ∈ (0, Z].

The general solution to this equation is

Ṽ (Z) = C1Z
φ + C2Z

φ−

+K
γ

1 − γ
Z

1− 1
γ +

y0

r + q
Z, (88)

where K is given in (26), φ in (25) and φ− in (74) and C1, C2 are arbitrary constants. By arguments

similar to He and Pages (1993), one can set C2 = 0 (since φ− < 0). Hence it remains to determine C1

and the free boundary Z. As most singular stochastic control problems, one can employ a “smooth

pasting” and “high contact” principle, namely by determining C1 and Z so that ṼZ

(
Z
)

= 0,

ṼZZ

(
Z
)

= 0. Using the “smooth pasting” and “high contact” conditions, along with the general

solution in (88) and C2 = 0, one can solve for C1 and Z to obtain

Z
− 1

γ =
1

K

y0

r + q

(
φ− 1

1
γ + φ− 1

)
(89)

C1 = −

1
γ

y0

r+q

φZ
φ−1

[
1
γ + φ− 1

] (90)

The next steps to verify that the conjectured policy is indeed optimal are identical to He and Pages

(1993) and are left out.
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To conclude the proof, note that sofar the calculations were true for an arbitrary y0. To deter-

mine the y0 that will safeguard that ct ≥ ξ observe that ct = Z
− 1

γ by equation (16). Since the

optimal policy is to control Xt so as to “keep” Zt in the interval (0, Z ] it follows that the minimum

level of consumption is given by Z
− 1

γ . Hence, in order to guarantee condition ct ≥ ξ it suffices to

determine y0 so that

ξ = Z
− 1

γ =
1

K

y0

r + q

(
φ− 1

1
γ + φ− 1

)
.

Solving for y0 gives

y0 = ξ(r + q)K

1
γ + φ− 1

φ− 1
.

One can now substitute that level of y0 into (90), (89) and use the resulting expressions to obtain

from (88) the following expression for Ṽ (Z) :

Ṽ (Z) = −
Kξ1−γ

γφ (φ− 1)

(
Z

ξ−γ

)φ

+K
γ

1 − γ
Z

1− 1
γ +

y0

r + q
Z.

Evaluating this expression at Z0 = λ and using equation (85) gives equation (30), which shows that

the “constant income” policy of the current proposition attains the upper bound of Proposition 2.

Proof of Lemma 2. First note that limγ⇀∞

(
y0

ξ

)
= 1. To show the result, it suffices to show

that
d
(

y0
ξ

)

dγ < 0. Differentiating y0

ξ with respect to γ gives

d
(

y0

ξ

)

dγ
=

(r + q)

φ− 1

B
(

γ−1
γ

κ2

2 + γ (r + q) + ρ− r
)2 ,

where

B ≡ (φ− 1) (ρ− r) − (r + q) + (φ− 1)
κ2

2

− (φ− 1)
1

γ

κ2

2
− [γ (φ− 1) + 1]

1

γ2

κ2

2
.

Since φ > 1 and r + q > 0, it follows that
d
(

y0
ξ

)

dγ < 0, as long as (φ− 1) (ρ− r) − (r + q)+

(φ− 1) κ2

2 < 0. Since φ solves the quadratic equation κ2

2 φ
2+
(
ρ− r − κ2

2

)
φ −(ρ+ q) = 0, it follows
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that (φ− 1) (ρ− r) − (r + q)+ (φ− 1) κ2

2 = − (φ− 1)2 κ2

2 < 0.

Proof of Proposition 4. The proof of this proposition proceeds in steps. The first two

Lemmas establish that the proposed transfer policy will make it possible for an agent who follows

the optimal consumption process of proposition 4 to satisfy the intertemporal budget constraint.

The proof then continues to show that the wealth process associated with the optimal consumption

process of proposition 4, along with the portfolio process (34), will lead to non-negative levels of

wealth at all times. Finally, it is shown that the consumption policy of proposition 4, along with

the portfolio choice (34), are optimal for an agent who is faced with transfers given by (32) and

attain the upper bound of proposition 2.

Lemma 7 Let K and φ be given by (26) and (25) and for any 0 < λ < ξ−γ let Zt = λeρsHsX
∗
s .

Then
∫ ∞

0
Et

(∫ ∞

t
e−q(s−t)HsX

∗
s dGs −

∫ ∞

t
e−q(s−t)HsX

∗
sZ

− 1
γ

s ds

)
dX∗

t = 0. (91)

Proof of Lemma 7. It will simplify notation to let

η ≡ −Kξ

(
φ− 1 +

1

γ

)
. (92)

The first step is to compute

Et

∫∞

t e−qsHsX
∗
s dGs

e−qtHtX
∗
t

= η
Et

∫∞

t e−qsHsdX
∗
s

e−qtHtX
∗
t

. (93)

Applying integration by parts and using the definition of Zt gives

Et

(∫ ∞

t
e−qsHsdX

∗
s

)
=

1

λ

[
−e−(ρ+q)tZt + Et

(∫ ∞

t
(r + q) e−(ρ+q)sZsds

)]
. (94)

Using (94) in equation (93) gives

Et

∫∞

t e−qsHsX
∗
s dGs

e−qtHtX
∗
t

= η

[
(r + q)

Et

(∫∞

t e−(ρ+q)(s−t)Zsds
)

Zt
− 1

]
. (95)

By using a logic similar to equations (73)-(75),

Et

(∫ ∞

t
e−(ρ+q)(s−t)Zsds

)
= −

1

φ

ξ−γ

r + q

(
Zt

ξ−γ

)φ

+
1

r + q
Zt, (96)
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where φ is defined in equation (25). Plugging back (96) into (95) gives

Et

∫∞

t e−qsHsX
∗
s dGs

e−qtHtX
∗
t

= −
η

φ

(
Zt

ξ−γ

)φ−1

. (97)

To conclude the proof, note that equations (71) and (76) imply that

Et

(∫∞

t e−qsHsX
∗
sZ

− 1
γ

s ds

)

e−qtHtX
∗
t

=

Et

(∫∞

t e−(ρ+q)(s−t)Z
1− 1

γ
s ds

)

Zt
=

1
φ

1−γ
γ Kξ1−γ

(
Zt

ξ−γ

)φ
+KZ

1− 1
γ

t

Zt
.

(98)

Combining (98) with (97) gives:

Et

(∫∞

t e−qsHsX
∗
s dGs −

∫∞

t e−qsHsX
∗
sZ

− 1
γ

s ds

)

e−qtHtX
∗
t

=

= −
η

φ

(
Zt

ξ−γ

)φ−1

−

1
φ

1−γ
γ Kξ1−γ

(
Zt

ξ−γ

)φ
+KZ

1− 1
γ

t

Zt
.

Since dX∗
t 6= 0 when and only when Zt = ξ−γ , equation (91) amounts to checking that:

−
η

φ
−

(
1

φ

1 − γ

γ
+ 1

)
Kξ = 0

which follows easily from the definition of η.

Lemma 8 Let Zs be as in the statement of the proposition 4 and let Gt be as in (32). Then the
consumption policy:

c∗s = (Zs)
− 1

γ (99)

satisfies:

E

∫ ∞

0
e−qsHsX

∗
s c

∗
sds = W0 +

∫ ∞

0
e−qsHs (X∗

s − 1) dGs (100)

Proof of Lemma 8. Taking any λ ∈ ( 0, ξ−γ ], using the definition of X∗
t , and equation (91),

the same reasoning behind (46) leads to

E

(∫ ∞

0
e−(ρ+q)s max

cs

(
c
1−γ
s

1 − γ
− λeρsHsX

∗
s cs

)
ds+ λ

∫ ∞

0
e−qsHs (X∗

s − 1) dGs

)
+λW0 = (101)
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= E

[∫ ∞

0
e−(ρ+q)s γ

1 − γ
(eρsλHsX

∗
s )

γ−1
γ ds +

∫ ∞

0
e−(ρ+q)s (eρsλHsX

∗
s )

1− 1
γ

(
1 −

1

X∗
s

)
ds

]
+λW0

(102)

Hence the λ∗ that minimizes (30) (and hence minimizes [102]) also minimizes (101). But since

λ minimizes (101), the same argument as in He and Pages (1993) (Proof of Theorem 1) leads to

(100).

Lemma 8 has asserted that the consumption policy (99) satisfies the intertemporal budget

constraint (100). It remains to show that this consumption policy along with the portfolio policy

(34) will lead to a process for financial wealth that satisfies Wt ≥ 0. To that end let η be given as

in (92) and define:

W ∗ (Zt) = −K
(
ξ−γ
)− 1

γ

(
Zt

ξ−γ

)φ−1

+KZ
− 1

γ

t (103)

It is straightforward to verify the following facts about W ∗ (Zt) :

κ2

2
Z2W ∗

ZZ +
(
ρ− r + κ2

)
ZW ∗

Z − (r + q)W + (Z)
− 1

γ = 0 (104)

W ∗
(
ξ−γ
)

= 0,W ∗ (Z) ≥ 0 for all Z ∈ (0, ξ−γ ] (105)

W ∗
Z

(
ξ−γ
)

= −Kξ

(
φ− 1 +

1

γ

)(
ξ−γ

)−1
=

η

ξ−γ
(106)

The next step is to verify that W ∗ (Zt) is the stochastic process for the financial wealth of the

agent. To see this, use the definition of c∗s (equation [99]) along with the definitions of dGt,W
∗
t

(equations [32] and [103] respectively) and apply Ito’s Lemma to obtain:

d

(∫ t

0
c∗sds−

∫ t

0
dGs +W ∗

t

)
=

= c∗t dt− η
dX∗

t

X∗
t

+W ∗
ZdZt +

κ2

2
W ∗

ZZZ
2
t dt

=

(
c∗t − Z

− 1
γ

t

)
dt +

[
W ∗

Z

(
ξ−γ
)
ξ−γ − η

] dX∗
t

X∗
t

+ (r + q)W ∗
t dt− κ2ZtW

∗
Zdt − κW ∗

ZZtdBt =

= (r + q)W ∗
t dt − κ2ZtW

∗
Zdt −

κ

σ
W ∗

ZZt

(
dPt

Pt
− µdt

)
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= (r + q)W ∗
t dt − κ2ZtW

∗
Zdt −

κ

σ
W ∗

ZZt

(
dPt

Pt
− (µ− r) dt− rdt

)
=

= qW ∗
t dt+ r

(
W ∗

t +
κ

σ
W ∗

ZZt

)
dt−

κ

σ
W ∗

ZZt
dPt

Pt
=

= qW ∗
t dt+ r (W ∗

t − π∗t ) dt + π∗t
dPt

Pt
.

Integrating gives

∫ t

0
c∗sds+W ∗

t = W0 −D0 +

∫ t

0
dGs +

∫ t

0
qW ∗

s dt+

∫ t

0
r (W ∗

t − π∗t ) dt+

∫ t

0
π∗t
dPt

Pt
.

Hence the process W ∗
t satisfies the equation (10) for an agent who chooses a consumption policy

given by (99) and a portfolio policy given by (34). Accordingly, it is the financial wealth process

that is associated with that policy pair. Moreover, by equation (105) the financial wealth process

is non-negative. Accordingly, the policies given by (99) and (34) are feasible for an agent who is

faced with the transfer process (32).

Verifying the optimality of the stated policy pair is simple. According to proposition 1

V (W0) = min
λ>0, Xs∈D


 E

(∫∞

0 e−(ρ+q)s maxcs

(
c1−γ
s

1−γ − λeρsHsXscs

)
ds+ λ

∫∞

0 e−qsHsXsdGs

)

+λ (W0 −D0)


 ≤ Q(W0),

where

Q(W0) ≡ min
λ>0


 E

(∫∞

0 e−(ρ+q)s maxcs

(
c1−γ
s

1−γ − λeρsHsX
∗
s cs

)
ds+ λ

∫∞

0 e−qsHsX
∗
s dGs

)

+λ (W0 −D0)


 .

One can use now Lemma 8 to illustrate that the consumption policy (99) leads to a payoff for

the agent equal to Q(W0) which is an upper bound to the value function of the agent V (W0). Since

the consumption policy (99) is also feasible, the payoff associated with that policy also provides a

lower bound to the value function V (W0). Hence this policy must be optimal. Finally, the easiest

way to show that

D0 = Kξ

1
γ + φ− 1

φ− 1

(
λ∗

ξ−γ

)φ−1

,

is to observe that the intertemporal budget constraint implies that

Eτ0

(∫ ∞

τ0

e−q(s−τ0) Hs

Hτ0

c∗sds

)
= Eτ0

(∫ ∞

τ0

e−q(s−τ0) Hs

Hτ0

dGs

)
,
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where τ0 is the first time that Xτ0 ≥ 1 (or equivalently the first time that Wτ0 = 0 and λ∗eρτ0Hτ0 =

ξ−γ) . A few manipulations can be used to show that

Eτ0

(∫ ∞

τ0

e−q(s−τ0) Hs

Hτ0

c∗sds

)
=
N (ξ−γ , 1)

ξ−γ
= Kξ

1
γ + φ− 1

φ− 1

where N is defined and computed in (78) and (77). Finally, since there are no transfers between 0

and τ0 :

D0 = E
(
e−qτ0Hτ0

)
Kξ

1
γ + φ− 1

φ− 1
=

1

λ∗
E
(
e−(ρ+q)τ0λ∗eρτ0Hτ0

)
Kξ

1
γ + φ− 1

φ− 1
=

=
ξ−γ

λ∗
E
(
e−(ρ+q)τ0

)
Kξ

1
γ + φ− 1

φ− 1
=

(
λ∗

ξ−γ

)φ−1

Kξ

1
γ + φ− 1

φ− 1

where the proof of E
(
e−(ρ+q)τ0

)
=
(

λ∗

ξ−γ

)φ
is identical to the one given in Oksendal (1998), Chapter

10.

Proof of Proposition 5. Take any transfer process Gt such that the resulting consumption

process of the agent satisfies ct ≥ ξ. Proposition 1 implies then that there exists a cumulative

multiplier process XG
t and a constant λG such that ct =

(
λGeρtHtX

G
t

)− 1
γ ≥ ξ. Letting X∗

t ≡

min
[
1, ξ−γ/λG

max0≤s≤t(eρsHs)

]
, and P ≡ E

(∫∞

0 e−qsHscsds
)

gives

P = E

(∫ ∞

0
e−qsHs

(
λGeρsHsX

G
s

)− 1
γ ds

)
≥ E

(∫ ∞

0
e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
(107)

since33 X∗
s

(
λG
)
≥ XG

s . Equation (80) implies that

E

(∫ ∞

0
e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
=
Kξ1−γ

(φ− 1)

1

γ

(
λG

ξ−γ

)φ
1

λG
+K

(
λG
)− 1

γ .

Combining (82) and (83) implies that the right hand side of the above equation is decreasing in λG

whenever λG ≤ ξ−γ . Since c0 =
(
λG
)− 1

γ ≥ ξ this implies furthermore

E

(∫ ∞

0
e−qsHs

(
λGeρsHsX

∗
s

)− 1
γ ds

)
≥
Kξ1−γ

(φ− 1)

1

γ

1

ξ−γ
+Kξ = Kξ

(
1 +

1

φ− 1

1

γ

)
(108)

= Kξ

(
1
γ + φ− 1

φ− 1

)
.

Combining (107) and (108) concludes the proof.

33This is an implication of the Skorohod equation. See Karatzas and Shreve (1991).
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Proof of Proposition 6. First note that a marginal increase in the minimum savings rate χ

in each period prior to retirement can raise the agents’ minimum assets by

ω = Y

∫ 0

−τ
e−(r+q)sds = Y

e(r+q)τ − 1

r + q
.

By an argument similar to Proposition 1, the agent’s value function at birth (time −τ) can be

rewritten as

F = min
X̃s,λ>0

E(−τ)




∫ 0
−τ e

−(ρ+q)(s+τ) maxcs

(
c1−γ
s

1−γ − λeρ(s+τ)X̃s
Hs

H(−τ)
cs

)
ds

+λ(1 − χ)Y
∫ 0
−τ e

−q(s+τ) Hs

H(−τ)
X̃sds+

maxW0+≥0

(
e−(ρ+q)τJ(W0+ + χω) − λX̃0e

−qτ H0
H(−τ)

W0+

)


 , (109)

where J (W0+ + χω) is given in proposition 2 and X̃s is a decreasing process starting at X̃(−τ) =

1. Let the expected value of the expression inside the square brackets be denoted as U(X̃s,λ), so

that

F (χ) = min
X̃s,λ

U(X̃s,λ;χ).

Differentiating U(X̃s,λ;χ) with respect to χ gives

Uχ = E(−τ)

[
1{

λX̃0
H0

H(−τ)
<ξ−γ

}e−(ρ+q)τJ ′(W0+ + χω)ω − λY

∫ 0

−τ
e−q(s+τ) Hs

H(−τ)
X̃sds

]
. (110)

Whenever λX̃0
H0

H(−τ)
≥ ξ−γ , so that the constraint W0+ ≥ 0 does not bind, one can use the first

order condition from the second maximization problem inside the square brackets of (109) to obtain

J ′(W0+ + χω) = λX̃0e
ρτ H0

H(−τ)
.

This allows one to rewrite expression (110) as

Uχ = E(−τ)

[(
1{

λX̃0
H0

H(−τ)
<ξ−γ

}λX̃0e
−qτ H0

H(−τ)
ω − λY

∫ 0

−τ
e−q(s+τ) Hs

H(−τ)
X̃sds

)]

≤ E(−τ)

[(
λX̃0e

−qτ H0

H(−τ)
ω − λY

∫ 0

−τ
e−q(s+τ) Hs

H(−τ)
X̃sds

)]

= λδe−qτω − λδE(−τ)

(∫ 0

−τ
e−q(s+τ)Y

Hs

H(−τ)

X̃s

δ
ds

)
, (111)
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where δ ≡ E(−τ)

(
X̃0

H0
H(−τ)

)
. Furthermore,

E(−τ)

(∫ 0

−τ
e−q(s+τ)Y

Hs

H(−τ)

X̃s

δ
ds

)
=

∫ 0

−τ
e−q(s+τ)Y

E(−τ)

(
HsX̃s

)

E(−τ)

(
H0X̃0

)ds =

= erτ

∫ 0

−τ
e−(r+q)(s+τ)Y

E(−τ)

(
er(s+τ) Hs

H(−τ)
X̃s

)

E(−τ)

(
erτ H0

H(−τ)
X̃0

) ds

≥ Y erτ

∫ 0

−τ
e−(r+q)(s+τ)ds = ωe−qτ , (112)

where the inequality follows from the fact that ersHs is a martingale while X̃s is a decreasing

process, so that X̃s ≥ X̃0 for all s ∈ [−τ, 0] . Combining (111) and (112) leads to Uχ ≤ 0.

Hence, letting χmin denote the minimum savings rate that will satisfy (27) as given by (41), it

follows that U(X̃s,λ;χmin) > U(X̃s,λ;χ) for all χ ∈
(
χmin, 1

)
. This furthermore implies that

F (χmin) = U(X̃χmin

s , λχmin
;χmin) ≥ U(X̃χmin

s , λχmin
;χ) ≥ U(X̃χ

s , λ
χ;χ) = F (χ),

where X̃χ
s , λ

χ denote the minimizers of U given χ and similar for X̃χmin

s , λχmin
. Hence it is never

optimal to set the minimum savings rate above χmin.
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