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1 Introduction

Despite major advances in the design and collection of survey and administrative data, missingness

remains a pervasive feature of virtually every modern economic dataset. Hirsch and Schumacher

(2004), for instance, find that nearly 30% of the earnings observations in the Outgoing Rotation

Groups of the Current Population Survey are imputed. Similar allocation rates are present in other

major earnings sources such as the March CPS and Decennial Census with the problem growing

worse in more recent years.

The dominant framework for dealing with missing data has been to assume that it is “missing

at random” (Rubin (1976)) or “ignorable” conditional on observable demographics; an assumption

whose popularity owes more to convenience than plausibility. Even in settings where it is reason-

able to believe that non-response is approximately ignorable, the extent of missingness in modern

economic data suggests that economists ought to assess the sensitivity of their conclusions to small

deviations from this assumption.

Previous work on non-ignorable missing data processes has either relied upon parametric models

of missingness in conjunction with exclusion restrictions to obtain point identification (Greenlees

et al. (1982) and Lillard et al. (1986)) or considered the “worst case” bounds on population moments

that result when all assumptions regarding the missingness process are abandoned (Manski (1994,

2003)). Neither approach has garnered much popularity.1 It is typically quite difficult to find

variables which shift the probability of missingness but are uncorrelated with population outcomes.

And for most applied problems, the worst case bounds are overly conservative in the sense that

they consider missingness processes unlikely to be found in modern datasets.

We propose here an alternative approach for use in settings where one lacks prior knowledge of

the missing data mechanism. Rather than ask what can be learned about the parameters of interest

given assumptions on the missingness process, we investigate the level of non-ignorable selection

necessary to undermine ones’ conclusions regarding the conditional distribution of the data obtained

under a missing at random (MAR) assumption. We do so by making use of a nonparametric

measure of selection – the maximal Kolmogorov-Smirnov (KS) distance between the distributions

of missing and observed outcomes across all values of the covariates. The KS distance yields a

natural parameterization of deviations from ignorability, with a distance of zero corresponding to

MAR and a distance of one encompassing the totally unrestricted missingness processes considered

in Manski (1994). Between these extremes lie a continuum of selection mechanisms which may be

studied to determine a critical level of selection above which conclusions obtained under an analysis

predicated upon MAR may be overturned.

To enable such an analysis, we begin by deriving sharp bounds on the conditional quantile

function (CQF) under nominal restrictions on the degree of selection present. We focus on the

commonly encountered setting where outcome data are missing and covariates are discrete. In order

1See DiNardo et al. (2006) for an applied example comparing these two approaches.
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to facilitate the analysis of datasets with many covariates, results are also developed summarizing the

conclusions that can be drawn regarding “pseudo-true” parametric approximations to the underlying

nonparametric CQF of the sort considered by Chamberlain (1994). When point identification of the

CQF fails due to missingness, the identified set of pseudo true parameters consists of all coefficients

associated with minimum mean square approximations to functions lying within the CQF bounds.

We obtain sharp bounds on the coordinates of the pseudo true parameter vector and propose

computationally simple estimators for them. We show that these estimators converge in distribution

to a Gaussian process indexed by the quantile of interest and the level of the nominal restriction on

selection and develop a weighted bootstrap procedure for consistently estimating that distribution.

This procedure enables inference on the entire pseudo-true quantile process as indexed both by the

quantile of interest and the level of the selection bound.

Substantively these methods allow a determination of the critical level of selection for which

hypotheses regarding conditional quantiles, parametric approximations to conditional quantiles, or

entire conditional distributions cannot be rejected. For example we study the “breakdown” function

defined implicitly as the level of selection necessary for conclusions to be overturned at each quantile.

The uniform confidence region for this function effectively summarizes the differential sensitivity of

the entire conditional distribution to violations of MAR. These techniques substantially extend the

recent econometrics literature on sensitivity analysis (Altonji et al. (2005, 2008), Imbens (2003),

Rosenbaum and Rubin (1983), Rosenbaum (2002)), most of which has focused on the sensitivity of

scalar treatment effect estimates to confounding influences, typically by using assumed parametric

models of selection.

Having established our inferential procedures, we turn to an empirical assessment of the sensi-

tivity of heavily studied patterns in the conditional distribution of U.S. wages to deviations from

the MAR assumption. We begin by revisiting the results of Angrist et al. (2006) regarding changes

across Decennial Censuses in the quantile specific returns to schooling. Weekly earnings informa-

tion is missing for roughly a quarter of the observations in their study, suggesting the results may

be sensitive to small deviations from ignorability. We show that despite extensive missingness in

the dependent variable, the well-documented increase in the returns to schooling between 1980 and

1990 is relatively robust to deviations from the missing at random assumption except at the lowest

quantiles of the conditional distribution. However, deterioration in the quality of Decennial Census

data renders conclusions regarding heterogeneity in returns and changes in the returns function be-

tween 1990 and 2000 very sensitive to departures from ignorability at all quantiles. We also show,

using a more flexible model studied by Lemieux (2006), that the apparent convexification of the

earnings-education profile between 1980 and 2000 is robust to modest deviations from MAR while

changes in the wage structure at lower quantiles are more easily obscured by selection.

To gauge the practical relevance of these sensitivity results we analyze a sample of workers from

the 1973 Current Population Survey for whom IRS earnings records are available. This sample allows

us to observe the earnings of CPS participants who, for one reason or another, failed to provide
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valid earnings information to the CPS. We show that IRS earnings predict non-response to the CPS

within demographic covariate bins, with very high and very low earning individuals most likely to

have invalid CPS earnings records. Measuring the degree of selection using our proposed KS metric

we find significant deviations from ignorability with patterns of selection that vary substantially

across demographic groups. Given recent trends in survey imputation rates, these findings suggest

economists’ knowledge of the location and shape of conditional earnings distributions in the U.S.

may be more tentative than previously supposed.

The remainder of the paper is structured as follows: Section 2 describes our index of selection

and our general approach to assessing sensitivity. Section 3 develops our approach to assessing

the sensitivity of parametric approximations to conditional quantiles. Section 4 obtains the results

necessary for estimation and inference on the bounds provided by restrictions on the selection

process. In Section 5 we present our empirical study and briefly conclude in Section 6.

2 Assessing Sensitivity

Consider the random variables (Y,X,D) with joint distribution F , where Y ∈ R, X ∈ Rl and

D ∈ {0, 1} is a dummy variable that equals one if Y is observable and zero otherwise. Denote the

distribution of Y given X and the distribution of Y given X and D respectively as:

Fy|x(c) ≡ P (Y ≤ c|X = x) Fy|d,x(c) ≡ P (Y ≤ c|D = d,X = x) , (1)

where d ∈ {0, 1} and further define the probability of Y being observed conditional on X to be:

p(x) ≡ P (D = 1|X = x) . (2)

In conducting a sensitivity analysis the researcher seeks to assess how the identified features

of Fy|x(c) depend upon alternative assumptions regarding the process generating D. In particular,

we will concern ourselves with the sensitivity of conclusions regarding q(τ |X), the conditional τ -

quantile of Y given X, which is often of more direct interest than the distribution function itself.

Towards this end, we impose the following assumptions on the data generating process:

Assumption 2.1. (i) X ∈ Rl has finite support X ; (ii) Fy|d,x(c) is continuous and strictly increas-

ing at all c such that 0 < Fy|d,x(c) < 1; (iii) D equals one if Y is observable and zero otherwise.

The discrete support requirement in Assumption 2.1(i) simplifies inference as it obviates the

need to employ nonparametric estimators of conditional quantiles. While this assumption may be

restrictive in some environments, it is still widely applicable as illustrated in our study of quantile

specific returns to education in Section 5. It is also important to emphasize that Assumption 2.1(i)

is not necessary for our identification results, but only for our discussion of inference. Assumption

2.1(ii) ensures that for any 0 < τ < 1, the τ -conditional quantile of Y given X is uniquely defined.

Most previous work on sensitivity analysis (e.g. Rosenbaum and Rubin (1983), Altonji et al.
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(2005)) has relied upon parametric models of selection. While potentially appropriate in cases where

particular deviations from ignorability are of interest, such approaches risk understating sensitivity

by implicitly ruling out a wide class of selection mechanisms. We now develop an alternative

approach designed to allow an assessment of sensitivity to arbitrary deviations from ignorability

that retains much of the parsimony of parametric methods. Specifically, we propose studying a

nonparametric class of selection models indexed by a scalar measure of the deviations from MAR

they generate. A sensitivity analysis may then be conducted by considering the conclusions that

can be drawn under alternative levels of the selection index, with particular attention devoted to

determination of the threshold level of selection necessary to undermine conclusions obtained under

ignorability.

Since ignorability occurs when Fy|1,x equals Fy|0,x, it is natural to measure deviations from MAR

in terms of the distance between these two distributions. We propose as an index of selection

the maximal Kolmogorov-Smirnov (KS) distance between Fy|1,x and Fy|0,x across all values of the

covariates.2 Thus, for X the support of X, we define the selection metric:

S(F ) ≡ sup
x∈X

sup
c∈R
|Fy|1,x(c)− Fy|0,x(c)| . (3)

Note that the missing at random assumption may be equivalently stated as S(F ) = 0, while

S(F ) = 1 corresponds to severe forms of selection where Fy|1,x and Fy|0,x fail to overlap at some

point x ∈ X . For illustrative purposes, Appendix A provides a numerical example mapping the

parameters of a bivariate normal selection model into values of S(F ) and plots of the corresponding

observed and missing data CDFs.

Restrictions on S(F ) can be shown to yield sharp tractable bounds on the conditional distribu-

tion function Fy|x(·) as well as its value at any particular point of evaluation Fy|x(c). This facilitates

the study of both conditional quantiles (F−1
y|x(c)) and conditional quantile processes (F−1

y|x(·)) in fam-

ilies of non-ignorable selection mechanisms indexed by S(F ). By construction, any scalar metric of

selection will be less informative than a full description of the selection process. Researchers who

suspect particular forms of heterogeneity in the selection mechanism across covariate values may

wish to consider separate indices of selection for each point in the support of X or consider a max-

imum of weighted KS distances in (3). Likewise, if one has in mind particular classes of selection

mechanisms, it is possible to consider indices based upon weighted KS distances with weights that

vary across points of evaluation c. Though such approaches entail a simple extension of our meth-

ods, we do not pursue them here. Our approach is tailored to environments where prior knowledge

of the selection mechanism is not available. If substantial prior information is available, or if par-

ticular sorts of violations of MAR are of interest, it may be better to work with a semi-parametric

or even parametric model of selection.

We note in passing that parametric models of selection often imply stronger restrictions on the

relationship between the observed and missing data distributions than is sometimes appreciated.

2The Kolmogorov-Smirnov distance between two distributionsH1(·) and H2(·) is defined as supc∈R |H1(c)−H2(c)|.
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For example, the bivariate normal selection model considered in Appendix A tends to achieve maxi-

mal distances between missing and observed distributions at points near the center of the unselected

distribution while points in the tails of the distribution exhibit relatively small discrepancies. How-

ever, this model cannot accommodate patterns of selection that would lead the CDFs of missing

and observed outcomes to cross at some values as might occur if individuals with very high or very

low values of Y are most likely to have missing observations – a pattern conjectured to be present

in earnings data by Lillard et al. (1986) and corroborated in our later analysis of earnings validation

data in Section 5.3 In cases where crossing occurs, the maximal distance between distributions will

tend to be achieved far from the crossing point, often in the tails of the unselected distribution.

Since one typically does not know whether or where the CDFs cross, or how this behavior varies

across covariate bins, it can be difficult to develop a model of non-response suitable for the study

of conditional distributions. For this reason, the consideration of a nonparametric measure of devi-

ations from MAR of the sort indexed by our maximal KS metric S(F ), is likely to be of interest in

most settings where missing data are present.

For q(τ |X) the conditional τ -quantile of Y given X, we examine what can be learned about the

conditional quantile function q(τ |·) under the nominal restriction:

S(F ) ≤ k . (4)

Knowledge of a true value of k for which (4) holds is not presumed. Rather, we propose examining

the conclusions that may be drawn on the CQF given various candidate values of k. By consid-

ering multiple values of k, it is possible to deduce what level of selection is necessary to overturn

conclusions of interest obtained under a MAR analysis.

In the absence of additional restrictions, the conditional quantile function ceases to be identified

under any deviation from ignorability (k > 0). Nonetheless, q(τ |·) may still be shown to lie within

a nominal identified set. This set consists of the values of q(τ |·) that would be compatible with the

distribution of observables were the putative restriction S(F ) ≤ k known to hold. We qualify such

a set as nominal due to restriction (4) being part of a hypothetical exercise only.

The following Lemma provides a sharp characterization of the nominal identified set:

Lemma 2.1. Suppose Assumptions 2.1(ii)-(iii) hold, S(F ) ≤ k and let F−y|1,x(c) = F−1
y|1,x(c) if

0 < c < 1, F−y|1,x(c) = −∞ if c ≤ 0 and F−y|1,x(c) =∞ if c ≥ 1. Defining (qL(τ, k|x), qU(τ, k|x)) by:

qL(τ, k|x) ≡ F−y|1,x

(τ −min{τ + kp(x), 1}(1− p(x))

p(x)

)
qU(τ, k|x) ≡ F−y|1,x

(τ −max{τ − kp(x), 0}(1− p(x))

p(x)

)
,

it follows that the identified set for q(τ |·) is C(τ, k) ≡ {θ : X → R : qL(τ, k|·) ≤ θ(·) ≤ qU(τ, k|·)}.

The bounds in Lemma 2.1 are given by quantiles of the conditional distribution of observed

3Crossing of CDFs may also occur in two-sided selection models of the sort considered by Neal (2004).
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outcomes. The nominal identified set C(τ, k) is sharp for q(τ |·) in that for every function θ ∈ C(τ, k)

there exists a distribution F̃ of (Y,X,D) that matches the distribution of observables, satisfies

S(F̃ ) ≤ k and has conditional τ -quantile function θ. It is interesting to note that C(τ, k) provides

a smooth parametrization between identification under MAR (k = 0) and the bounds derived in

Manski (1994) which impose no restrictions on the selection mechanism (k = 1). Between these

two extremes, however, lie a continuum of identified sets corresponding to families of selection

mechanisms yielding different degrees of departure from ignorability.

2.1 Examples

We conclude this section by illustrating through examples how the bound functions (qL, qU) may

be used to evaluate the sensitivity of conclusions obtained under MAR. For simplicity, we let X be

binary so that the conditional τ -quantile function q(τ |·) takes only two values.

Example 2.1. (Pointwise Conclusions) Suppose interest centers on whether q(τ |X = 1) equals

q(τ |X = 0) for a specific quantile τ0. A researcher who finds them to differ under a MAR analysis

may easily assess the sensitivity of his conclusion to the presence of selection by employing the

functions (qL(τ0|·), qU(τ0|·)). Concretely, the minimal amount of selection necessary to overturn the

conclusion that the conditional quantiles differ is given by:

k0 ≡ inf k : qL(τ0, k|X = 1)− qU(τ0, k|X = 0) ≤ 0 ≤ qU(τ0, k|X = 1)− qL(τ0, k|X = 0) . (5)

That is, k0 is the minimal level of selection under which the nominal identified sets for q(τ0|X = 0)

and q(τ0|X = 1) contain a common value.

Example 2.2. (Distributional Conclusions) A researcher is interested in whether the con-

ditional distribution Fy|x=0 first order stochastically dominates Fy|x=1, or equivalently, whether

q(τ |X = 1) ≤ q(τ |X = 0) for all τ ∈ (0, 1). She finds under MAR that q(τ |X = 1) > q(τ |X = 0)

at multiple values of τ leading her to conclude that first order stochastic dominance does not hold.

Employing the functions (qL, qU), she may assess what degree of selection is necessary to cast doubt

on this conclusion by examining:

k0 ≡ inf k : qL(τ, k|X = 1) ≤ qU(τ, k|X = 0) for all τ ∈ (0, 1) . (6)

Here, k0 is the smallest level of selection for which an element of the identified set for q(·|X = 1)

(qL(·, k0|X = 1)) is everywhere below an element of the identified set for q(·|X = 0) (qU(·, k0|X =

0)). Thus, k0 is the threshold level of selection under which Fy|x=0 may first order stochastically

dominate Fy|x=1.

Example 2.3. (Breakdown Analysis) A more nuanced sensitivity analysis might examine what

degree of selection is necessary to undermine the conclusion that q(τ |X = 1) 6= q(τ |X = 0) at each

specific quantile τ . As in Example 2.1, we can define the quantile specific critical level of selection:

κ0(τ) ≡ inf k : qL(τ, k|X = 1)− qU(τ, k|X = 0) ≤ 0 ≤ qU(τ, k|X = 1)− qL(τ, k|X = 0) . (7)
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By considering κ0(τ) at different values of τ , we implicitly define a “breakdown” function κ0(·)
which reveals the differential sensitivity of the initial conjecture at each quantile τ ∈ (0, 1).

3 Parametric Modeling

Analysis of the conditional τ -quantile function q(τ |·) and its corresponding nominal identified set

C(τ, k) can be cumbersome when many covariates are present as the resulting bounds will be of

high dimension and difficult to visualize. Moreover, it can be arduous even to state the features

of a high dimensional CQF one wishes to examine for sensitivity. It is convenient in such cases to

be able to summarize q(τ |·) using a parametric model. Failure to acknowledge, however, that the

model is simply an approximation can easily yield misleading conclusions.

Figure 1 illustrates a case where the nominal identified set C(τ, k) possesses an erratic (though

perhaps not unusual) shape. The set of linear CQFs obeying the bounds provide a poor description

of this set, covering only a small fraction of its area. Were the true CQF known to be linear this

reduction in the size of the identified set would be welcome, the benign result of imposing additional

identifying information. But in the absence of true prior information these reductions in the size of

the identified set are unwarranted – a phenomenon we term “identification by misspecification”.

The specter of misspecification leaves the applied researcher with a difficult choice. One can

either conduct a fully nonparametric analysis of the nominal identified set, which may be difficult

to interpret with many covariates, or work with a parametric set likely to overstate what is known

about the CQF. Under identification, this tension is typically resolved by estimating parametric

models that possess an interpretation as best approximations to the true CQF and adjusting the

corresponding inferential methods accordingly as advocated in Chamberlain (1994) and Angrist

et al. (2006). Following Horowitz and Manski (2006), Stoye (2007), and Ponomareva and Tamer

(2009), we extend this approach and develop methods for conducting inference on potentially mis-

specified parametric models under partial identification.

We focus on linear parametric models and approximations that minimize a known quadratic

loss function. For S a known measure on X and ES[g(X)] denoting the expectation of g(X) when

X is distributed according to S, we define the pseudo true parameter to be:4

β(τ) ≡ arg min
γ∈Rl

ES[(q(τ |X)−X ′γ)2] . (8)

Lack of identification of the conditional quantile function q(τ |·) due to missing data implies lack

of identification of the pseudo true parameter β(τ). We therefore consider the set of pseudo true

4The measure S weights the squared deviations in each covariate bin. Its specification is an inherently context-
specific task depending entirely upon the researcher’s objectives. In Section 4 we weight the deviations by sample
size. Other schemes (including equal weighting) may also be of interest in some settings.
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parameters which constitute a best approximation to some CQF in C(τ, k). Formally, we define:

P(τ, k) ≡ {β ∈ Rl : β ∈ arg min
γ∈Rl

ES[(θ(X)−X ′γ)2] for some θ ∈ C(τ, k)} . (9)

Figure 2 illustrates an element of P(τ, k) graphically. While intuitively appealing, the definition of

P(τ, k) is not necessarily the most convenient for computational purposes. Fortunately, the choice

of quadratic loss and the characterization of C(τ, k) in Lemma 2.1 imply a tractable alternative

representation for P(τ, k), which we obtain in the following Lemma.

Lemma 3.1. If Assumptions 2.1(ii)-(iii), S(F ) ≤ k and ES[XX ′] is invertible, then it follows that:

P(τ, k) = {β ∈ Rl : β = (ES[XX ′])−1ES[Xθ(X)] s.t. qL(τ, k|x) ≤ θ(x) ≤ qU(τ, k|x) for all x ∈ X} .

Interest often centers on either a particular coordinate of β(τ) or the pseudo-true conditional

quantile at a specified value of the covariates. Both these quantities may be expressed as λ′β(τ)

for some known vector λ ∈ Rl. Using Lemma 3.1 it is straightforward to show that the nominal

identified set for parameters of the form λ′β(τ) is an interval with endpoints characterized as the

solution to linear programming problems.5

Corollary 3.1. Suppose Assumptions 2.1(ii)-(iii), S(F ) ≤ k, ES[XX ′] is invertible and define:

πL(τ, k) ≡ inf
β∈P(τ,k)

λ′β = inf
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. qL(τ, k|x) ≤ θ(x) ≤ qU(τ, k|x) (10)

πU(τ, k) ≡ sup
β∈P(τ,k)

λ′β = sup
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. qL(τ, k|x) ≤ θ(x) ≤ qU(τ, k|x) . (11)

The nominal identified set for λ′β(τ) is then given by the interval [πL(τ, k), πU(τ, k)].

Corollary 3.1 provides sharp bounds on the quantile process λ′β(·) at each point of evaluation τ

under the restriction that S(F ) ≤ k. However, sharpness of the bounds at each point of evaluation

does not, in this case, translate into sharp bounds on the entire process. To see this, note that

Corollary 3.1 implies λ′β(·) must belong to the following set:

G(k) ≡ {g : [0, 1]→ R : πL(τ, k) ≤ g(τ) ≤ πU(τ, k) for all τ} . (12)

While the true λ′β(·) must belong to G(k), not all functions in G(k) can be justified as some

distribution’s pseudo-true process.6 Therefore, G(k) does not constitute the nominal identified set

for the process λ′β(·) under the restriction S(F ) ≤ k. Fortunately, πL(·, k) and πU(·, k) are in the

identified set over the range of (τ, k) for which the bounds are finite. Thus, the set G(k), though

not sharp, does retain the favorable properties of: (i) sharpness at any point of evaluation τ , (ii)

containing the true identified set for the process so that processes not in G(k) are also known not to

be in the identified set; (iii) sharpness of the lower and upper bound functions πL(·, k) and πU(·, k);

and (iv) ease of analysis and graphical representation.

5Since X has discrete support, we can characterize the function θ by the finite number of values it may take.
Because the weighting scheme S is known, so is λ′(ES [XX ′])−1, and hence the objectives in (10) and (11) are of the
form w′θ where w is a known vector and θ is a finite dimensional vector over which the criterion is optimized.

6For example, under our assumptions λ′β(·) is a continuous function of τ . Hence, any g ∈ G(k) that is discontin-
uous is not in the nominal identified set for λ′β(·) under the hypothetical that S(F ) ≤ k.

9



3.1 Examples

We now revisit Examples 2.1-2.3 from Section 2.1 in order to illustrate how to characterize the

sensitivity of conclusions drawn under MAR with parametric models. We keep the simplifying

assumption that X is scalar, but no longer assume it is binary and instead consider the model:

q(τ |X) = α(τ) +Xβ(τ) . (13)

Note that when X is binary equation (13) provides a non-parametric model of the CQF, in which

case our discussion coincides with that of Section 2.1.

Example 2.1 (cont.) Suppose that an analysis under MAR reveals β(τ0) 6= 0 at a specific quantile

τ0. Employing the functions (πL, πU) we may then define the critical level of selection k0 necessary

to cast doubt on this conclusion as:

k0 ≡ inf k : πL(τ0, k) ≤ 0 ≤ πU(τ0, k) . (14)

That is, under any level of selection k ≥ k0 it is no longer possible to conclude that β(τ0) 6= 0.

Example 2.2 (cont.) In a parametric analogue of first order stochastic dominance of Fy|x over

Fy|x′ for x < x′, a researcher examines whether β(τ) ≤ 0 for all τ ∈ (0, 1). Suppose that a MAR

analysis reveals that β(τ) > 0 for multiple values of τ . The functions (πL, πU) enable her to assess

what degree of selection is necessary to undermine her conclusions by considering:

k0 ≡ inf k : πL(τ, k) ≤ 0 for all τ ∈ (0, 1) . (15)

Note that finding πL(τ, k0) ≤ 0 for all τ ∈ (0, 1) does in fact cast doubt on the conclusion that

β(τ) > 0 for some τ because πL(·, k0) is itself in the nominal identified set for β(·). That is, under

a degree of selection k0, the process β(·) may equal πL(·, k0).

Example 2.3 (cont.) Generalizing the considerations of Example 2.1, we can examine what

degree of selection is necessary to undermine the conclusion that β(τ) 6= 0 at each specific τ . In

this manner, we obtain a quantile specific critical level of selection:

κ0(τ) ≡ inf k : πL(τ, k) ≤ 0 ≤ πU(τ, k) . (16)

As in Section 2.1, the resulting “breakdown” function κ0(·) enables us to characterize the differential

sensitivity of the entire conditional distribution to deviations from MAR.

4 Estimation and Inference

In what follows we develop methods for conducting sensitivity analysis using sample estimates of

πL(τ, k) and πU(τ, k). This section is primarily technical and applied readers may wish to skip to

the application in Section 5 before studying these methods in detail.
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Our strategy for estimating the bounds πL(τ, k) and πU(τ, k) consists of first obtaining estimates

q̂L(τ, k|x) and q̂U(τ, k|x) of the conditional quantile bounds and then employing them in place of

qL(τ, k|x) and qU(τ, k|x) in the linear programming problems given in (10) and (11). Thus, an

appealing characteristic of our estimator is the reliability and low computational cost involved in

solving a linear programming problem – considerations which become particularly salient when

implementing a bootstrap procedure for inference.

Recall that the conditional quantile bounds qL(τ, k|x) and qU(τ, k|x) may be expressed as quan-

tiles of the observed data (see Lemma 2.1). We estimate these bounds using their sample analogues.

For the development of our bootstrap procedure, however, it will be useful to consider a represen-

tation of these sample estimates as the solution of a general M-estimation problem. Towards this

end, we define a family of population criterion functions (as indexed by (τ, b, x)) given by:

Qx(c|τ, b) ≡ (P (Y ≤ c,D = 1, X = x) + bP (D = 0, X = x)− τP (X = x))2 . (17)

Under appropriate restrictions on (τ, k), to be shortly specified, qL(τ, k|x) and qU(τ, k|x) then satisfy:

qL(τ, k|x) = arg min
c∈R

Qx(c|τ, τ + kp(x)) qU(τ, k|x) = arg min
c∈R

Qx(c|τ, τ − kp(x)) . (18)

Hence, there exists a direct relationship between the bounds qL(τ, k|x) and qU(τ, k|x) as indexed by

(τ, k) and the minimizers of Qx(c|τ, b) as indexed by (τ, b).

We therefore employ the sample analogue to Qx(c|τ, b) for estimation, which we denote by:

Qx,n(c|τ, b) ≡
( 1

n

n∑
i=1

{1{Yi ≤ c,Xi = x,Di = 1}+ b1{Di = 0, Xi = x} − τ1{Xi = x}}
)2

. (19)

Exploiting (17), the extremum estimators for the bounds qL(τ, k|x) and qU(τ, k|x) are then:

q̂L(τ, k|x) ∈ arg min
c∈R

Qx,n(c|τ, τ + kp̂(x)) q̂U(τ, k|x) ∈ arg min
c∈R

Qx,n(c|τ, τ − kp̂(x)) , (20)

where p̂(x) ≡ (
∑

i 1{Di = 1, Xi = x})/(
∑

i 1{Xi = x}). Finally, solving the sample analogues to

the linear programming problems given in (10) and (11) we obtain the estimators:

π̂L(τ, k) ≡ inf
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. q̂L(τ, k|x) ≤ θ(x) ≤ q̂U(τ, k|x) (21)

π̂U(τ, k) ≡ sup
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. q̂L(τ, k|x) ≤ θ(x) ≤ q̂U(τ, k|x) (22)

For this approach to prove successful we focus our analysis on choices of (τ, k) for which (18)

holds, which is guaranteed by two restrictions. First, we require that (τ, k) be such that the bounds

πL(τ, k) and πU(τ, k) are finite. Second, we demand that (τ, k) be such that S(F ) ≤ k proves more

informative than the restriction that Fy|0,x lie between zero and one. Succinctly, for an arbitrary

fixed ε > 0, we focus on values of (τ, k) that lie in the set:

B ≡

{
(τ, k) ∈ [0, 1]2 :

(i) kp(x)(1− p(x)) + 2ε ≤ τp(x) (iii) k ≤ τ

(ii) kp(x)(1− p(x)) + 2ε ≤ (1− τ)p(x) (iv) k ≤ 1− τ
for all x ∈ X

}

11



Provided that the conditional probability of missing is bounded away from one and ε is small, the

set B is nonempty since it contains the MAR analysis as a special case. In general, however, the set

B imposes that large or small values of τ must be accompanied by small values of k. This simply

reflects that the fruitful study of quantiles close to one or zero requires stronger assumptions on the

nature of the selection process than the study of, for example, the conditional median.

We introduce the following additional assumption in order to develop our asymptotic theory:

Assumption 4.1. (i) B 6= ∅; (ii) Fy|1,x(c) has a continuous bounded derivative fy|1,x(c); (iii)

fy|1,x(c) has a continuous bounded derivative f ′y|1,x(c); (iv) ES[XX ′] is invertible; (v) fy|1,x(c) is

bounded away from zero uniformly on all c satisfying ε ≤ Fy|1,x(c)p(x) ≤ p(x)− ε ∀x ∈ X .

Letting π̂L and π̂U be the functions defined pointwise by (21) and (22), we obtain their asymptotic

distribution as elements of L∞(B) (the space of bounded functions on B). Such a result is a key

step towards constructing confidence intervals for πL(τ, k) and πU(τ, k) that are uniform in (τ, k).

As we illustrate in Section 4.2, these uniformity results are particularly useful for conducting the

sensitivity analyses illustrated in Examples 2.1-2.3.

Theorem 4.1. If Assumptions 2.1, 4.1 hold and {Yi, Xi, Di}ni=1 is an i.i.d. sample, then:

√
n
( π̂L − πL
π̂U − πU

)
L−→ G , (23)

where G is a Gaussian process on the space L∞(B)× L∞(B).

We note that since G is a Gaussian process, its marginals G(τ, k) are simply bivariate normal

random variables. For notational convenience, we let G(i)(τ, k) denote the ith component of the vec-

tor G(τ, k). Thus, G(1)(τ, k) is the limiting distribution corresponding to the lower bound estimate

at the point (τ, k), while G(2)(τ, k) is the limiting distribution of the upper bound estimate at (τ, k).

4.1 Examples

We now return to the Examples of Section 2.1 and 3.1 and discuss how to conduct inference on the

various sensitivity measures introduced there. For simplicity, we assume the relevant critical values

are known. In Section 4.2 we develop a bootstrap procedure for their estimation.

Example 2.1 (cont.) Since under any level of selection k larger than k0 it is also not possible to

conclude β(τ0) 6= 0, it is natural to construct a one sided (rather than two sided) confidence interval

for k0. Towards this end, let r
(i)
1−α(k) be the 1− α quantile of G(i)(τ0, k) and define:

k̂0 ≡ inf k : π̂L(τ0, k)−
r

(1)
1−α(k)√
n
≤ 0 ≤ π̂U(τ0, k) +

r
(2)
1−α(k)√
n

. (24)

The confidence interval [k̂0, 1] then covers k0 with asymptotic probability at least 1− α.
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Example 2.2 (cont.) Construction of a one sided confidence interval for k0 in this setting is more

challenging as it requires us to employ the uniformity of our estimator in τ . First, let us define:

r1−α(k) = inf r : P
(

sup
τ∈B(k)

G(1)(τ, k)

ωL(τ, k)
≤ r
)
≥ 1− α , (25)

where B(k) = {τ : (τ, k) ∈ B} and ωL is a positive weight function chosen by the researcher. For

every fixed k, we may then construct the following function of τ :

π̂L(·, k)− r1−α(k)√
n

ωL(·, k) (26)

which lies below πL(·, k) with asymptotic probability 1 − α. The function in (26) thus provides a

one sided confidence interval for the process πL(·, k). The weight function ωL allows the researcher

to account for the fact that the variance of G(1)(τ, k) may depend heavily on (τ, k). Defining:

k̂0 ≡ inf k : sup
τ∈B(k)

π̂L(τ, k)− r1−α(k)√
n

ωL(τ, k) ≤ 0 , (27)

it can then be shown that [k̂0, 1] covers k0 with asymptotic probability at least 1− α.

Example 2.3 (cont.) Employing Theorem 4.1 it is possible to construct a two sided confidence

interval for the function κ0(·). Towards this end, we exploit uniformity in τ and k by defining:

r1−α ≡ inf r : P
(

sup
(τ,k)∈B

max
{ |G(1)(τ, k)|

ωL(τ, k)
,
|G(2)(τ, k)|
ωL(τ, k)

}
≤ r
)
≥ 1− α , (28)

where as in Example 2.2, ωL and ωU are positive weight functions. In addition, we also let:

κ̂L(τ) ≡ inf k : π̂L(τ, k)− r1−α√
n
ωL(τ, k) ≤ 0 , and 0 ≤ π̂U(τ, k) +

r1−α√
n
ωU(τ, k) (29)

κ̂U(τ) ≡ sup k : π̂L(τ, k) +
r1−α√
n
ωL(τ, k) ≥ 0 , or 0 ≥ π̂U(τ, k)− r1−α√

n
ωU(τ, k) . (30)

It can then be shown that the functions (κ̂L(·), κ̂U(·)) provide a functional confidence interval for

κ0(·). That is, κ̂L(τ) ≤ κ0(τ) ≤ κ̂U(τ) for all τ with asymptotic probability at least 1− α.

4.2 Bootstrap Critical Values

As illustrated in Examples 2.1-2.3, conducting inference requires use of critical values that depend

on the unknown distribution of G, the limiting Gaussian process in Theorem 4.1, and possibly on

weight functions ωL and ωU (as in (25), (28)). We will allow the weight functions ωL and ωU to be

unknown, but require the existence of consistent estimators of them:

Assumption 4.2. (i) ωL(τ, k) ≥ 0 and ωU(τ, k) ≥ 0 are continuous and bounded away from zero

on B; (ii) There exist estimators ω̂L(τ, k) and ω̂U(τ, k) that are uniformly consistent on B.
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Given (ωL, ωU), let Gω be the Gaussian process on L∞(B)×L∞(B) that is pointwise defined by:

Gω(τ, k) =
( G(1)(τ, k)/ωL(τ, k)

G(2)(τ, k)/ωU(τ, k)

)
. (31)

The critical values employed in Examples 2.1-2.3 can be expressed in terms of quantiles of some

Lipschitz transformation L : L∞(B) × L∞(B) → R of the random variable Gω. For instance, in

Example 2.2, the relevant critical value, defined in (25), is the 1−α quantile of the random variable:

L(Gω) = sup
τ∈B(k)

G(1)
ω (τ, k) . (32)

Similarly, in Example 2.3 the appropriate critical value defined in (28) is the 1− α quantile of:

L(Gω) = sup
(τ,k)∈B

max{G(1)
ω (τ, k), G(2)

ω (τ, k)} . (33)

We therefore conclude by establishing the validity of a weighted bootstrap procedure for consis-

tently estimating the quantiles of random variables of the form L(Gω). The bootstrap procedure is

similar to the traditional nonparametric bootstrap with the important difference that the random

weights on different observations are independent from each other. Specifically, letting {Wi}ni=1 be

an i.i.d. sample from a random variable W , we impose the following:

Assumption 4.3. (i) W is positive almost surely, independent of (Y,X,D) and satisfies E[W ] = 1

and V ar(W ) = 1; (ii) The functional L : L∞(B)× L∞(B)→ R is Lipschitz continuous.

A consistent estimator for quantiles of L(Gω) may then be obtained through the algorithm:

Step 1: Generate a random sample of weights {Wi}ni=1 satisfying Assumption 4.3(i) and define:

Q̃x,n(c|τ, b) ≡
( 1

n

n∑
i=1

Wi{1{Yi ≤ c,Xi = x,Di = 1}+ b1{Di = 0, Xi = x} − τ1{Xi = x}}
)2

. (34)

Employing Q̃x,n(c|τ, b), obtain the following bootstrap estimators for qL(τ, k|x) and qU(τ, k|x):

q̃L(τ, k|x) ∈ arg min
c∈R

Q̃x,n(c|τ, τ + kp̃(x)) q̃U(τ, k|x) ∈ arg min
c∈R

Q̃x,n(c|τ, τ − kp̃(x)) (35)

where p̃(x) ≡ (
∑

iWi1{Di = 1, Xi = x})/(
∑

iWi1{Xi = x}). Note that q̃L(τ, k|x) and q̃U(τ, k|x)

are simply the weighted empirical quantiles of the observed data evaluated at a point that depends

on the reweighted missingness probability. Note also that if we had used the conventional bootstrap

we would run the risk of drawing a sample for which a covariate bin is empty. This is not a concern

with the weighted bootstrap as the weights are required to be strictly positive.

Step 2: Using the bootstrap bounds q̃L(τ, k|x) and q̃U(τ, k|x) from Step 1, obtain the estimators:

π̃L(τ, k) ≡ inf
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. q̃L(τ, k|x) ≤ θ(x) ≤ q̃U(τ, k|x) (36)

π̃U(τ, k) ≡ sup
θ
λ′(ES[XX ′])−1ES[Xθ(X)] s.t. q̃L(τ, k|x) ≤ θ(x) ≤ q̃U(τ, k|x) . (37)

Algorithms for quickly solving linear programming problems of this sort are available in most modern
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computational packages. The weighted bootstrap process for Gω is then defined pointwise by:

G̃ω(τ, k) ≡
√
n
( (π̃L(τ, k)− π̂L(τ, k))/ω̂L(τ, k)

(π̃U(τ, k)− π̂U(τ, k))/ω̂U(τ, k)

)
. (38)

Step 3: Our estimator for r1−α, the 1 − α quantile of L(Gω), is then given by the 1 − α quantile

of L(G̃ω) conditional on the sample {Yi, Xi, Di}ni=1 (but not {Wi}ni=1):

r̃1−α ≡ inf
{
r : P

(
L(G̃ω) ≥ r

∣∣∣{Yi, Xi, Di}ni=1

)
≥ 1− α

}
. (39)

In applications, r̃1−α will generally need to be computed through simulation. This can be accom-

plished by repeating Steps 1 and 2 until the number of bootstrap simulations of L(G̃ω) is large. The

estimator r̃1−α is then well approximated by the empirical 1− α quantile of the bootstrap statistic

L(G̃ω) across the computed simulations.

We conclude our discussion of inference by establishing r̃1−α is indeed consistent for r1−α.

Theorem 4.2. Let r1−α be the 1−α quantile of L(Gω). If Assumptions 2.1, 4.1, 4.2, and 4.3 hold,

the cdf of L(Gω) is strictly increasing and continuous at r1−α and {Yi, Xi, Di,Wi}ni=1 is i.i.d, then:

r̃1−α
p→ r1−α .

5 Evaluating the U.S. Wage Structure

We turn now to an empirical assessment of the sensitivity of observed patterns in the U.S. wage

structure to deviations from the MAR assumption. A large literature reviewed by (among others)

Autor and Katz (1999), Heckman et al. (2006) and Acemoglu and Autor (2010) finds important

changes over time in the conditional distribution of earnings with respect to schooling levels.

We begin our investigation of the sensitivity of these findings to alternative missing data assump-

tions by revisiting the results of Angrist et al. (2006) regarding changes across Decennial Censuses

in the quantile specific returns to schooling. We analyze the 1980, 1990, and 2000 Census samples

considered in their study but, to simplify our estimation routine, and to correct small mistakes

found in the IPUMS files since the time their extract was created, we use new extracts of the 1%

unweighted IPUMS files for each decade rather than their original mix of weighted and unweighted

samples.7 Sample sizes and imputation rates for the weekly earnings variable are given in Table 1.

We estimate linear conditional quantile models for log earnings per week of the form:

q(τ |X,E) = X ′γ(τ) + Eβ(τ) , (40)

7The sample consists of native born black and white men ages 40-49 with six or more years of schooling who
worked at least one week in the past year. Rather than dropping observations with allocated earnings we treat
them as missing. We also drop 10 observations falling in demographic cells with greater than 66% missing and 1,404
observations falling into demographic cells with less than 20 observations. Use of the original extracts analyzed in
Angrist et al. (2006) yields nearly identical results.

15



where X consists of an intercept, a black dummy, and a quadratic in potential experience, and E

represents years of schooling. Our analysis focuses on the quantile specific “returns” to a year of

schooling β(τ) though we note that, particularly in the context of quantile regressions, the Mincerian

earnings coefficients need not map into any proper economic concept of individual returns (Heckman

et al. (2006)).

Figure 3 provides estimates of the pseudo-true returns functions β(·) in 1980, 1990, and 2000

that result from assuming the data are missing at random. Uniform confidence regions for these

estimates were constructed by applying the methods of Section 3 subject to the restriction that

S(F ) = 0.8 In defining our parametric approximation metric we weight bin-specific deviations by

sample size (i.e. we choose S equal to empirical measure, see Section 3).

Our MAR results are similar to those found in Figure 2A of Angrist et al. (2006). They suggest

that the returns function increased uniformly across quantiles between 1980 and 1990 but exhibited

a change in slope in 2000. The change between 1980 and 1990 is consistent with a general economy-

wide increase in the return to human capital accumulation as conjectured by Juhn et al. (1993).

However the finding of a shape change in the quantile process between 1990 and 2000 represents

a form of heteroscedasticity in the conditional earnings distribution with respect to schooling that

appears not to have been present in previous decades. This pattern of heteroscedasticity is consistent

with nonlinear human capital pricing models of the sort studied in Card and Lemieux (1996) and

more nuanced multi-factor views of technical change reviewed in Acemoglu and Autor (2010).

5.1 Sensitivity Analysis

A natural concern is the extent to which some or all of the conclusions regarding the wage structure

drawn under a missing at random assumption are compromised by limitations in the quality of

Census earnings data. As Table 1 shows, the prevalence of earnings imputations increases steadily

across Censuses with roughly a quarter of the observations allocated by 2000.9 With these levels

of missingness, the bounds on quantiles below the 25th percentile and above the 75th are not even

finite in the absence of restrictions on the missingness process.

We begin by examining the sensitivity of conclusions regarding changes in the wage structure

between 1990 and 2000. Figures 4 shows the 95% uniform confidence regions for the set G(k), as

defined in (12), that result when we allow for a small amount of selection by setting S(F ) ≤ 0.05.

Though it remains clear the returns function increased between 1980 and 1990, we cannot reject

the null hypothesis that the quantile process was unchanged from 1990 to 2000. Moreover, there is

little evidence of heterogeneity across quantiles in the returns in any of the three Census samples –

8In constructing uniform confidence intervals we set ωL(τ, k) = ωU (τ, k) = φ(Φ−1(τ))1/2, where φ(·) and Φ(·) are
the standard normal density and CDF . These weights are inversely proportional to the square root of the variance
of the quantiles of a standard normal. The bootstrap weights {Wi}ni=1 were drawn from an exponential distribution.

9It is interesting to note that only 7% of the men in our sample report working no weeks in the past year. Hence,
at least for this population, assumptions regarding the determinants of non-response appear to be more important for
drawing conclusions regarding the wage structure than assumptions regarding non-participation in the labor force.
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a straight line can be fit through each sample’s confidence region.

To further assess the robustness of our conclusions regarding changes between 1980 and 1990,

it is informative to find the level of k necessary to fail to reject the hypothesis that no change in

fact occurred between these years under the supposition that S(F ) ≤ k. Specifically, for πtL(τ, k)

and πtU(τ, k) the lower and upper bounds on the returns coefficients in year t, we aim to obtain a

confidence interval for the values of selection k under which:

π80
U (τ, k) ≥ π90

L (τ, k) for all τ ∈ [0.2, 0.8] . (41)

As in Example 2.2, we are particularly interested in k0, the smallest value of k such that (41) holds,

as it will hold trivially for all k ≥ k0. A search for the smallest value of k such that the 95% uniform

confidence intervals for these two decades overlap at all quantiles between 0.2 and 0.8 found this

“critical k” to be k̂0 = 0.175. Due to the independence of the samples between 1980 and 1990,

the one-sided interval [k̂0, 1] provides an asymptotic coverage probability for k0 of at least 90%.

The lower end of this confidence interval constitutes a large deviation from MAR (see Appendix

A) indicating the evidence is quite strong that the returns process changed between 1980 and 1990.

Figure 5 plots the uniform confidence regions corresponding to the hypothetical S(F ) ≤ k̂0.

Though severe selection would be necessary for all of the changes between 1980 and 1990 to

be spurious, it is clear that changes at some quantiles may be more robust than others. It is

interesting then to conduct a more detailed analysis by evaluating the critical level of selection

necessary to undermine the conclusion that the returns increased at each quantile. Towards this

end, we generalize Example 2.3 and define κ0(τ) to be the smallest level of k such that:

π80
U (τ, k) ≥ π90

L (τ, k) . (42)

The function κ0(·) summarizes the level of robustness of each quantile-specific conclusion. In this

manner, the “breakdown” function κ0(·) reveals the differential sensitivity of the entire conditional

distribution to violations of the missing at random assumption.

The point estimate for κ0(τ) is given by the value of k where π̂80
U (τ, k) intersects with π̂90

L (τ, k)

(see Figure 6). To obtain a confidence interval for κ0(τ) that is uniform in τ we first construct

95% uniform two sided confidence intervals in τ and k for the 1980 upper bound π80
U (τ, k) and the

1990 lower bound π90
L (τ, k). Given the independence of the 1980 and 1990 samples, the intersection

of the true bounds π80
U (τ, k) and π90

L (τ, k) must lie between the intersection of their corresponding

confidence regions with asymptotic probability of at least 90%. Since κ0(τ) is given by the intersec-

tion of π80
U (τ, k) with π90

L (τ, k), a valid lower bound for the confidence region of the function κ0(·)
is given by the intersection of the upper envelope for π80

U (τ, k) with the lower envelope for π90
L (τ, k)

and a valid upper bound is given by the converse intersection.

Figure 7 illustrates the resulting estimates of the breakdown function κ0(·) and its corresponding

confidence region. Unsurprisingly, the most robust results are those for quantiles near the center

of the distribution for which very large levels of selection would be necessary to overturn the
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hypothesis that the returns increased. However the curve is fairly asymmetric with the returns at

low quantiles being much more sensitive to deviations from ignorability than those at the upper

quantiles. Hence, changes in reporting behavior between 1980 and 1990 pose the greatest threat to

hypotheses regarding changes at the bottom quantiles of the earnings distribution.

To conclude our sensitivity analysis we also consider the fitted values that result from the more

flexible earnings model of Lemieux (2006) which allows for quadratic effects of education on earnings

quantiles.10 Figure 8 provides bounds on the 10th, 50th, and 90th conditional quantiles of weekly

earnings by schooling level in 1980, 1990, and 2000 using our baseline hypothetical restriction

S(F ) ≤ 0.05. Little evidence exists of a change across Censuses in the real earnings of workers at

the 10th conditional quantile. At the conditional median, however, the returns to schooling (which

appear roughly linear) increased substantially, leading to an increase in inequality across schooling

categories. Uneducated workers witnessed wage losses while skilled workers experienced wage gains,

though in both cases these changes seem to have occurred entirely during the 1980s. Finally, we

also note that, as observed by Lemieux (2006), the returns to schooling appear to have gradually

convexified at the upper tail of the weekly earnings distribution with very well educated workers

experiencing substantial gains relative to the less educated.

5.2 Estimates of the Degree of Selection in Earnings Data

Our analysis of Census data revealed that the finding of a change in the quantile specific returns to

schooling process between 1990 and 2000 is easily undermined by small amounts of selection while

changes between 1980 and 1990 (at least above the lower quantiles of the distribution) appear to

be relatively robust. Employing a sample where validation data are present, we now turn to an

investigation of what levels of selection, as indexed by S(F ), are plausible in U.S. survey data.

In order to estimate S(F ) we first derive an alternative representation of the distance between

Fy|0,x and Fy|1,x which illustrates its dependence on the conditional probability of the outcome being

missing. Towards this end, let us define the following conditional probabilities:

pL(x, τ) ≡ P (D = 1|X = x, Fy|x(Y ) ≤ τ) (43)

pU(x, τ) ≡ P (D = 1|X = x, Fy|x(Y ) > τ) . (44)

By applying Bayes’ Rule, it is then possible to express the distance between the distribution of

missing and non-missing observations at a given quantile as a function of the selection probabilities:11

|Fy|1,x(q(τ |x))− Fy|0,x(q(τ |x))| =
√

(pL(x, τ)− p(x))(pU(x, τ)− p(x))τ(1− τ)

p(x)(1− p(x))
. (45)

Notice that knowledge of the missing probability P (D = 0|X = x, Fy|x(Y ) = τ) is sufficient to

compute by integration all of the quantities in (45) and (by taking the supremum over τ and x)

10The model also includes a quartic in potential experience. Our results differ substantively from those of Lemieux
both because of differences in sample selection and our focus on weekly (rather than hourly) earnings.

11See Appendix B for a detailed derivation of (45).
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of S(F ) as well.12 For this reason, our efforts focus on estimating this function in a dataset with

information on the earnings of survey non-respondents.

We work with an extract from the 1973 March Current Population Survey (CPS) for which

merged Internal Revenue Service (IRS) earnings data are available. Our sample consists of black

and white men between the ages of 25 and 50 with six or more years of schooling who reported

working at least one week in the past year and had valid IRS earnings. We drop observations with

annual IRS earnings less than $1,000 or equal to the IRS topcode of $50,000.

As in our study of the Decennial Census, we take the relevant covariates to be age, years of

schooling, and race. However, because our CPS sample is much smaller than our Census sample,

we coarsen our covariate categories and drop demographic cells with fewer than 50 observations.13

This yields an estimation sample of 13,598 observations distributed across 33 demographic cells.

Because weeks worked are only measured categorically in this CPS extract we simply take log IRS

earnings as our measure of Y and use response to the March CPS annual civilian earnings question

as our measure of D. This yields a missingness rate of 8.4%.

We approximate the probability of non-response P (D = 0|X = x, Fy|x(Y ) = τ) with the follow-

ing sequence of increasingly flexible logistic models:

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(b1τ + b2τ
2 + δx) (M1)

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(b1τ + b2τ
2 + γ1δxτ + γ2δxτ

2 + δx) (M2)

P (D = 0|X = x, Fy|x(Y ) = τ) = Λ(b1,xτ + b2,xτ
2 + δx) (M3)

where Λ(·) = exp(·)/(1 + exp(·)) is the Logistic CDF. These models differ primarily in the degree of

demographic bin heterogeneity allowed for in the relationship between earnings and the probability

of responding to the CPS. Model M1 relies entirely on the nonlinearities in the index function Λ(·)
to capture heterogeneity across cells in the response profiles. The model M2 allows for additional

heterogeneity through the interaction coefficients (γ1, γ2) but restricts these interactions to be linear

in the cell fixed effect δx. Finally, M3, which is equivalent to a cell specific version of M1, places no

restrictions across demographic groups on the shape of the response profile.

Maximum likelihood estimates from the three models are presented in Table 2.14 A comparison

of the model log likelihoods reveals that the introduction of the interaction terms (γ1, γ2) in Model

2 yields a substantial improvement in fit over the basic separable logit of Model 1 despite the in-

significance of the resulting parameter estimates. However, the restrictions of the linearly interacted

Model 2 cannot be rejected relative to its fully interacted generalization in Model 3 which appears

12Note that P (D = 0, Fy|x(Y ) ≤ τ |X = x) =
∫ τ
0
P (D = 0|Fy|x(Y ) = u,X = x)du because Fy|x(Y ) is uniformly

distributed on [0, 1] conditional on X = x. Thus pL(x, τ) =
∫ τ
0
P (D = 0|Fy|x(Y ) = u,X = x)du/τ . Likewise

pU (x, τ) =
∫ 1

τ
P (D = 0|Fy|x(Y ) = u,X = x)du/(1− τ) and p(x) =

∫ 1

0
P (D = 0|Fy|x(Y ) = u,X = x)du.

13We use five-year age categories instead of single digit ages and collapse years of schooling into four categories:
<12 years of schooling, 12 years of schooling, 13-15 years of schooling, and 16+ years of schooling.

14We use the respondent’s sample quantile in his demographic cell’s distribution of Y as an estimate of Fy|x(Y ).
It can be shown that sampling errors in the estimated quantiles have asymptotically negligible effects on the limiting
distribution of the parameter estimates.
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to be substantially overfit.

A Wald test of joint significance of the earned income terms (b1, b2) in the first model easily

rejects the null hypothesis that the data are missing at random. Evidently, missingness follows a U-

shaped response pattern with very low and very high wage men least likely to provide valid earnings

information – a pattern conjectured (but not directly verified) by Lillard et al. (1986). This pattern

is also found in the two more flexible logit models as illustrated in the third panel of the table which

provides the average marginal effects of earnings evaluated at three quantiles of the distribution.

These average effects are consistently negative at τ = 0.2 and positive at τ = 0.8. It is important

to note however that Models 2 and 3 allow for substantial heterogeneity across covariate bins in

these marginal effects which in some cases yields response patterns that are monotonic rather than

U-shaped.

It is straightforward to estimate the distance between missing and nonmissing earnings distribu-

tions in each demographic bin by integrating our estimates of P (D = 0|X = x, Fy|x(Y ) = τ) across

the relevant quantiles of interest. We implement this integration numerically via one dimensional

Simpson quadrature. The bottom panel of Table 2 shows quantiles of the distribution of resulting

cell specific KS distance estimates. Model 1 is nearly devoid of heterogeneity in KS distances across

demographic bins because of the additive separability implicit in the model. Model 2 yields sub-

stantially more heterogeneity with a minimum KS distance of 0.02 and a maximum distance S(F )

of 0.12. Finally, Model 3, which we suspect has been overfit, yields a median KS distance of 0.11

and an enormous maximum KS distance of 0.44.

Figure 9 provides a visual representation of our estimates from Model 2 of the underlying distance

functions |Fy|1,x(q(τ |x))−Fy|0,x(q(τ |x))| in each of the 33 demographic bins in our sample. The outer

envelope of these functions corresponds to the quantile specific level of selection considered in the

breakdown analysis of Figure 7, while the maximum point on the envelope corresponds to S(F ).

Note that while some of the distance functions exhibit an unbroken inverted U shaped pattern

others exhibit double or even triple arches. The pattern of multiple arches occurs when the CDFs

are estimated to have crossed at some quantile which yields a distance of zero at that point. A

quadratic relationship between missingness and earnings can easily yield such patterns. Because of

the interactions in Model 2, some cells exhibit effects that are not quadratic and tend to generate

CDFs exhibiting first order stochastic dominance. It is interesting to note that the demographic cell

obtaining the maximum KS distance of 0.12 corresponds to young (age 25-30), black, high school

dropouts for whom more IRS earnings are estimated to monotonically increase the probability of

responding to the CPS earnings question. This leads to a distribution of observed earnings which

stochastically dominates that of the corresponding unobserved earnings.

Our estimates of selection in Figure 9, when compared to the breakdown function of Figure 7,

reinforce our earlier conclusion that most of the apparent changes in wage structure between 1980

and 1990 are robust to plausible violations of MAR but that conclusions regarding lower quantiles

could be overturned by selective non-response. Likewise, the apparent emergence of heterogeneity in
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the returns function in 2000, may easily be justified by selection of the magnitude found in our CPS

sample. Though our estimates of selection are fairly sensitive to the manner in which cell specific

heterogeneity is modeled, we take the patterns in Table 2 and Figure 9 as suggestive evidence that

small, but by no means negligible, deviations from missing at random are likely present in modern

earnings data. These deviations may yield complicated discrepancies between observed and missing

CDFs about which it is hard to develop strong priors. We leave it to future research to examine

these issues more carefully with additional validation datasets. Given however the likely absence of

such prior knowledge for most prospective studies, we expect the sensitivity techniques developed

in this paper to be quite useful for applied research.

6 Conclusion

We have proposed assessing the sensitivity of estimates of conditional quantile functions with missing

outcome data to violations of the MAR assumption by considering the minimum level of selection,

as indexed by the maximal KS distance between the distribution of missing and nonmissing out-

comes across all covariate values, necessary to overturn conclusions of interest. Inferential methods

were developed that account for uncertainty in estimation of the nominal identified set and that

acknowledge the potential for model misspecification. We found in an analysis of U.S. Census data

that the well-documented increase in the returns to schooling between 1980 and 1990 is relatively

robust to alternative assumptions on the missing process, but that conclusions regarding hetero-

geneity in returns and changes in the returns function between 1990 and 2000 are very sensitive to

departures from ignorability.

While we have focused on methods for gauging sensitivity to non-response in cross-sectional

datasets, a number of interesting extensions are possible. An obvious (and important) one is an

adaptation to environments where missingness arises due to non-participation in the labor force

as in Heckman (1974) and Blundell et al. (2007). Additional side restrictions may be appropriate

here, particularly in a panel data setting of the sort studied by Johnson et al. (2000) and Neal

(2004). Another extension is to treatment effects where, again, researchers may wish to combine

our nominal KS restriction with additional restrictions of the sort studied by Lee (2009) or (if

outcomes are discrete) those of Shaikh and Vytlacil (2005) and Bhattacharya et al. (2008). Adding

restrictions will shrink the nominal identified set and, in general, reduce sensitivity, but will also

substantially complicate inference. We leave the development of such methods to future work.
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Appendix A - The bivariate normal selection model and KS distance

To develop intuition for our metric S(F ) of deviations from missing at random we provide here a

mapping between the parameters of a standard bivariate selection model, the resulting CDFs of

observed and missing outcomes, and the implied values of S(F ). Using the notation of Section 2,

our DGP of interest is:

(Yi, vi) ∼ N(0,
(

1 ρ
ρ 1

)
) Di = 1{µ+ vi > 0} . (46)

In this model, the parameter ρ indexes the degree of non-ignorable selection in the outcome variable

Yi. We choose µ = .6745 to ensure a missing fraction of 25% which is approximately the degree of

missingness found in our analysis of earnings data in the US Census. We computed the distributions

of missing and observed outcomes for various values of ρ by simulation, some of which are plotted

in Figures A.1 and A.2. The resulting values of S(F ), which correspond to the maximum vertical

distance between the observed and missing CDFs across all points of evaluation, are given in the

table below:

Table A.1: S(F ) as a function of ρ

ρ S(F ) ρ S(F ) ρ S(F )

0.05 0.0337 0.35 0.2433 0.65 0.4757

0.10 0.0672 0.40 0.2778 0.70 0.5165

0.15 0.1017 0.45 0.3138 0.75 0.5641

0.20 0.1355 0.50 0.3520 0.80 0.6158

0.25 0.1721 0.55 0.3892 0.85 0.6717

0.30 0.2069 0.60 0.4304 0.90 0.7377

Figure A.1: Missing and Observed Outcome CDFs
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Figure A.2: Vertical Distance Between CDFs
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Appendix B - Derivations of Section 5.2

The following Appendix provides a justification for the derivations in Section 5.2, in particular

of the representation derived in equation (45). Towards this end, observe first that by Bayes’ rule:

Fy|1,x(c) =
P (D = 1|X = x, Y ≤ c)× Fy|x(c)

p(x)

=
P (D = 1|X = x, Fy|x(Y ) ≤ Fy|x(c))× Fy|x(c)

p(x)
, (47)

where the second equality follows from Fy|x being strictly increasing. Evaluating (47) at c = q(τ |x),

employing the definition of pL(x, τ) in (43), and noting that Fy|x(q(τ |x)) = τ yields:

Fy|1,x(q(τ |x)) =
pL(τ, x)× τ

p(x)
. (48)

Moreover, by identical arguments, but working instead with the definition of pU(τ, x), we derive:

1− Fy|1,x(q(τ |x)) =
P (D = 1|Y > q(τ |x), X = x)× (1− Fy|1,x(q(τ |x)))

p(x)
=
pU(τ, x)× (1− τ)

p(x)
(49)

Finally, we note that the same manipulations applied to Fy|0,x instead of Fy|1,x enable us to obtain:

Fy|0,x(q(τ |x)) =
(1− pL(τ, x))× τ

1− p(x)
1− Fy|0,x(q(τ |x)) =

(1− pU(τ, x))× (1− τ)

1− p(x)
. (50)

Hence, we can obtain by direct algebra from the results (47) and (50) that we must have:

|Fy|1,x(q(τ |x))− Fy|0,x(q(τ |x))| = |p(x)− pL(x, τ)| × τ
p(x)(1− p(x))

. (51)

Analogously, exploiting (47) and (50) once again, we can also obtain:

|Fy|1,x(q(τ |x))− Fy|0,x(q(τ |x))| = |(1− Fy|1,x(q(τ |x)))− (1− Fy|0,x(q(τ |x)))|

=
|p(x)− pU(x, τ)| × (1− τ)

p(x)(1− p(x))
. (52)

The desired equality in (45) then follows immediately from taking the square root of the product

of (51) and (52).
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Appendix C - Proof of Results

Lemma 6.1. Under Assumptions 2.1(ii)-(iii), if S(F ) ≤ k, then the nominal identified set C(τ, k) equals:

{θ : X → R : τ −min{τ + kp(x), 1}× {1− p(x)} ≤ Fy|1,x(θ(x))p(x) ≤ τ −max{τ − kp(x), 0}× {1− p(x)}}

Proof of Lemma 6.1: Letting KS(Fy|1,x, Fy|0,x) = supc |Fy|1,x(c)− Fy|0,x(c)|, we first observe that:

KS(Fy|1,x, Fy|0,x) =
1

p(x)
× sup
c∈R
|Fy|1,x(c)× p(x) + Fy|0,x(c)× {1− p(x)} − Fy|0,x(c)|

=
1

p(x)
× sup
c∈R
|Fy|x(c)− Fy|0,x(c)| . (53)

Therefore, if θ(x) = cτ (x), then it immediately follows from the hypothesis S(F ) ≤ k and result (53) that:

τ = Fy|1,x(θ(x))× p(x) + Fy|0,x(θ(x))× {1− p(x)}

≤ Fy|1,x(θ(x))× p(x) + min{Fy|x(θ(x)) + kp(x), 1} × {1− p(x)}

= Fy|1,x(θ(x))× p(x) + min{τ + kp(x), 1} × {1− p(x)} . (54)

By identical manipulations, Fy|1,x(θ(x))×p(x) ≤ τ −max{τ −kp(x), 0}×{1−p(x)} and hence θ ∈ C(τ, k).

To prove the bounds are sharp, let θ ∈ C(τ, k) and define the function κ : X → R by:

κ(x) ≡
τ − Fy|1,x(θ(x))× p(x)

1− p(x)
. (55)

Further observe that by virtue of θ ∈ C(τ, k), the following two inequalities hold uniformly in x ∈ X :

max{τ − kp(x), 0} ≤ κ(x) ≤ min{τ + kp(x), 1} |κ(x)− Fy|1,x(θ(x))| ≤ k . (56)

We now aim to construct a distribution for Y conditional on X and Y being missing such that all assump-

tions are met and in addition θ is the conditional quantile of Y given X. Define:

F̃+
y|0,x(c) ≡1{c ≥ θ(x)} ×max{Fy|1,x(c), min{1

2
(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x), 1}}

+ 1{c < θ(x)} ×max{Fy|1,x(c), 2(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x)}

F̃−y|0,x(c) ≡1{c ≥ θ(x)} ×min{Fy|1,x(c), 2(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x)}

+ 1{c < θ(x)} ×min{Fy|1,x(c), max{1

2
(Fy|1,x(c)− Fy|1,x(θ(x))) + κ(x), 0}} (57)

and let the distribution of Y conditional on X and Y being unobservable be pointwise given by:

F̃y|0,x(c) ≡ 1{κ(x) ≥ Fy|1,x(θ(x))} × F̃+
y|0,x(c) + 1{κ(x) < Fy|1,x(θ(x))} × F̃−y|1,x(c) . (58)

Note that F̃y|0,x(c) is strictly increasing and continuous at all c such that 0 < Fy|0,x(c) < 1 by virtue

of Fy|1,x(c) being strictly increasing and continuous. Since F̃y|0,x is bounded between zero and one, we

conclude it is a properly defined cdf. Denoting F̃y|x(c) = Fy|1,x(c)×p(x)+ F̃y|0,x(c)×{1−p(x)}, we obtain:

F̃y|x(θ(x)) = Fy|1,x(θ(x))×p(x)+F̃y|0,x(θ(x))×{1−p(x)} = Fy|1,x(θ(x))×p(x)+κ(x)×{1−p(x)} = τ , (59)
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so that θ(x) is the conditional τ -quantile of Y given X. In addition, by construction and (56) we have:

sup
c∈R
|F̃y|0,x(c)− Fy|1,x(c)| = |F̃y|0,x(θ(x))− Fy|1,x(θ(x))| ≤ k , (60)

uniformly in x ∈ X . It follows that S(F ) ≤ k and hence conclude the bounds are sharp as claimed.

Proof of Lemma 2.1: Follows immediately from Lemma 6.1.

Proof of Lemma 3.1: For any θ ∈ C(τ, k), the first order condition of the norm minimization problem

yields β(τ) = (ES [XiX
′
i])
−1ES [Xiθ(Xi)]. The Lemma then follows from Corollary 2.1.

Proof of Corollary 3.1: Since P(τ, k) is convex by Lemma 3.1, it follows that the identified set for

λ′β(τ) is a convex set in R and hence an interval. The fact that πL(τ, k) and πU (τ, k) are the endpoints

of such interval follows directly from Lemma 3.1.

Lemma 6.2. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1 and E[W 2
i ] <∞

and positive almost surely. If {Yi, Xi, Di,Wi} is an i.i.d. sample, then the following class is Donsker:

M≡ {mc : mc(y, x, d, w) ≡ w1{y ≤ c, d = 1, x = x0} − P (Yi ≤ c, Di = 1, Xi = x0), c ∈ R} .

Proof: For any 1 > ε > 0, by Assumption 2.1(ii) there is an increasing sequence {y0, . . . , yd 4
ε
e} such that

for {[yj−1, yj ]}
d 8
ε
e

i=1 partitions R and for any 1 ≤ j ≤ d8
ε e we have Fy|1,x(yj)− Fy|1,x(yj−1) < ε/4. Let

lj(y, x, d, w) ≡ w1{y ≤ yj−1, d = 1, x = x0} − P (Yi ≤ yj , Di = 1, Xi = x0) (61)

uj(y, x, d, w) ≡ w1{y ≤ yj , d = 1, x = x0} − P (Yi ≤ yj−1, Di = 1, Xi = x0) (62)

and notice the brackets {[lj , uj ]}
d 8
ε
e

j=1 form a partition of the class Mc (since w ∈ R+). In addition, note:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2]

≤ 2E[W 2
i 1{yj−1 ≤ Yi ≤ yj , Di = 1, Xi = x0}] + 2P 2(yj−1 ≤ Yi ≤ yj , Di = 1, Xi = x0)

≤ 4E[W 2
i ]× (Fy|1,x(yj)− Fy|1,x(yj−1)) , (63)

and hence each bracket has norm bounded by
√
E[W 2

i ]ε. Therefore, N[ ](ε,M, ‖ · ‖L2) ≤ 16E[W 2
i ]/ε2, and

the Lemma follows by Theorem 2.5.6 in van der Vaart and Wellner (1996).

Lemma 6.3. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞ and

positive almost surely. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X}
for some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (64)

Then s0(τ, b, x) is bounded in (τ, b, x) ∈ S × X and if {Yi, Xi, Di,Wi} is i.i.d. then for some M > 0:

P
(

sup
x∈X

sup
(τ,b)∈S

|ŝ0(τ, b, x)| > M
)

= o(1) .

Proof: First note that Assumption 2.1(ii) implies s0(τ, b, x) is uniquely defined, while ŝ0(τ, b, x) may be
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one of multiple minimizers. By Assumption 2.1(ii) and the definition of S, it follows that the equality:

P (Yi ≤ s0(τ, b, x), Di = 1|Xi = x) = τ − bP (Di = 0|Xi = x) (65)

implicitly defines s0(τ, b, x). Let s̄(x) and s(x) be the unique numbers satisfying Fy|1,x(s̄(x))×p(x) = p(x)−ε
and Fy|1,x(s(x))×p(x) = ε. By result (65) and the definition of the set S we then obtain that for all x ∈ X :

−∞ < s(x) ≤ inf
(τ,b)∈S

s0(τ, b, x) ≤ sup
(τ,b)∈S

s0(τ, b, x) ≤ s̄(x) < +∞ . (66)

Hence, we conclude that sup(τ,b)∈S |s0(τ, b, x)| = O(1) and the first claim follows by X being finite.

In order to establish the second claim of the Lemma, we define the functions:

Rx(τ, b) ≡ bP (Di = 0, Xi = x)− τP (Xi = x) (67)

Rx,n(τ, b) ≡ 1

n

n∑
i=1

Wi(b1{Di = 0, Xi = x} − τ1{Xi = x}) (68)

as well as the maximizers and minimizers of Rx,n(τ, b) on the set S, which we denote by:

(τn(x), bn(x)) ∈ arg max
(τ,b)∈S

Rx,n(τ, b) (τ̄n(x), b̄n(x)) ∈ arg min
(τ,b)∈S

Rx,n(τ, b) . (69)

Also denote the set of maximizers and minimizers of Q̃x,n(c|τ, b) at these particular choices of (τ, b) by:

Sn(x) ≡
{
sn(x) ∈ R : sn(x) ∈ arg min

c∈R
Q̃x,n(c|τn(x), bn(x))

}
(70)

S̄n(x) ≡
{
s̄n(x) ∈ R : s̄n(x) ∈ arg min

c∈R
Q̃x,n(c|τ̄n(x), b̄n(x))

}
(71)

From the definition of Q̃x,n(c|τ, b), we then obtain from (69), (70) and (71) that for all x ∈ X :

inf
sn(x)∈Sn(x)

sn(x) ≤ inf
(τ,b)∈S

ŝ0(τ, b, x) ≤ sup
(τ,b)∈S

ŝ0(τ, b, x) ≤ sup
s̄n(x)∈S̄n(x)

s̄n(x) . (72)

We establish the second claim of the Lemma, by exploiting (72) and showing that for some 0 < M <∞:

P
(

inf
sn(x)∈Sn(x)

sn(x) < −M
)

= o(1) P
(

sup
s̄n(x)∈S̄n(x)

s̄n(x) > M
)

= o(1) . (73)

To prove that infsn(x)∈Sn(x) sn(x) is larger than −M with probability tending to one, note that:

|Rx,n(τn(x), bn(x)) + εP (Xi = x)| = |Rx,n(τn(x), bn(x))− max
(τ,b)∈S

Rx(τ, b)| = op(1) , (74)

where the second equality follows from the Theorem of the Maximum and the continuous mapping theorem.

Therefore, using the equality a2 − b2 = (a− b)(a+ b), result (74) and Lemma 6.2, it follows that:

sup
c∈R
|Q̃x,n(c|τn(x), bn(x))− (Fy|1,x(c)p(x)− ε)2P 2(Xi = x)| = op(1) . (75)

Fix δ > 0 and note that since Fy|1,x(s(x))p(x) = ε and ε/p(x) < 1, Assumption 2.1(ii) implies that:

η ≡ inf
|c−s(x)|>δ

(Fy|1,x(c)p(x)− ε)2 > 0 . (76)
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Therefore, it follows from direct manipulations and the definition of Sn(x) in (70) and of s(x) that:

P
(
| inf
sn(x)∈Sn(x)

sn(x)− s(x)| > δ
)
≤ P

(
inf

|c−s(x)|>δ
Q̃x,n(c|τn(x), bn(x)) ≤ Q̃x,n(s(x)|τn(x), bn(x))

)
≤ P

(
η ≤ sup

c∈R
2|Q̃x,n(c|τn(x), bn(x))− (Fy|1,x(c)p(x)− ε)2P 2(Xi = x)|

)
.

We hence conclude from (75) that infsn(x)∈Sn(x) sn(x)
p→ s(x), which together with (66) implies that

infsn(x)∈Sn(x) sn(x) is larger than −M with probability tending to one for some M > 0. By similar

arguments it can be shown that sups̄n(x)∈S̄n(x) s̄n(x)
p→ s̄(x) which together with (66) establishes (73). The

second claim of the Lemma then follows from (72), (73) and X being finite.

Lemma 6.4. Let Assumption 2.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞ and

positive almost surely. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X}
for some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (77)

If {Yi, Xi, Di,Wi} is an i.i.d. sample, then supx∈X sup(τ,b)∈S |ŝ0(τ, b, x)− s0(τ, b, x)| = op(1).

Proof: First define the criterion functions M : L∞(S × X )→ R and Mn : L∞(S × X )→ R by:

M(θ) ≡ sup
x∈X

sup
(τ,b)∈S

Qx(θ(τ, b, x)|τ, b) Mn(θ) ≡ sup
x∈X

sup
(τ,b)∈S

Q̃x,n(θ(τ, b, x)|τ, b) . (78)

For notational convenience, let s0 ≡ s0(·, ·, ·) and ŝ0 ≡ ŝ0(·, ·, ·). By Lemma 6.3, s0 ∈ L∞(S × X ) while

with probability tending to one ŝ0 ∈ L∞(S ×X ). Hence, (77) implies that with probability tending to one:

ŝ0 ∈ arg min
θ∈L∞(S×X )

Mn(θ) s0 = arg min
θ∈L∞(S×X )

M(θ) . (79)

By Assumption 2.1(ii) and (65), Qx(c|τ, b) is strictly convex in a neighborhood of s0(τ, b, x). Furthermore,

since by (65) and the implicit function theorem s0(τ, b, x) is continuous in (τ, b) ∈ S for every x ∈ X :

inf
‖θ−s0‖∞≥δ

M(θ) ≥ inf
x∈X

inf
(τ,b)∈S

inf
|c−s0(τ,b,x)|≥δ

Qx(c|τ, b)

= inf
x∈X

inf
(τ,b)∈S

min{Qx(s0(τ, b, x)− δ|τ, b), Qx(s0(τ, b, x) + δ|τ, b)} > 0 , (80)

where the final inequality follows by compactness of S which together with continuity of s0(τ, b, x) implies

the inner infimum is attained, while the outer infimum is trivially attained due to X being finite. Since

(80) holds for any δ > 0, s0 is a well separated minimum of M(θ) in L∞(S × X ). Next define:

Gx,i(c) ≡Wi1{Yi ≤ c,Di = 1, Xi = x} (81)

and observe that compactness of S, a regular law of large numbers, Lemma 6.2 and finiteness of X yields:

sup
x∈X

sup
(τ,b)∈S

sup
c∈R
| 1
n

n∑
i=1

Gx,i(c) +Rx,n(τ, b)− E[Gx,i(c)]−Rx(τ, b)|

≤ sup
x∈X

sup
c∈R
| 1
n

n∑
i=1

Gx,i(c)− E[Gx,i(c)]|+ sup
x∈X

sup
(τ,b)∈S

|Rx,n(τ, b)−Rx(τ, b)| = op(1) , (82)
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where Rx(τ, b) and Rx,n(τ, b) are as in (67) and (68) respectively. Hence, using (82), the equality a2− b2 =

(a− b)(a+ b) and Qx(c|τ, b) uniformly bounded in (c, τ, b) ∈ R×S due to the compactness of S, we obtain:

sup
θ∈L∞(S×X )

|Mn(θ)−M(θ)| ≤ sup
θ∈L∞(S×X )

sup
x∈X

sup
(τ,b)∈S

|Q̃x,n(θ(τ, b, x)|τ, b)−Qx(θ(τ, b, x)|τ, b)|

≤ sup
x∈X

sup
(τ,b)∈S

sup
c∈R
|Q̃x,n(c|τ, b)−Qx(c|τ, b)| = op(1) . (83)

The claim of the Lemma then follows from results (79), (80) and (83) together with Corollary 3.2.3 in

van der Vaart and Wellner (1996).

Lemma 6.5. Let Assumptions 2.1, 4.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞

and positive a.s. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1 − p(x)} + ε ≤ τ ≤ p(x) + b{1 − p(x)} − ε ∀x ∈ X} for

some ε satisfying 0 < 2ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (84)

For Gx,i(c) ≡Wi1{Yi ≤ c,Di = 1, Xi = x} and Rx,n(τ, b) as defined in (68), denote the criterion function:

Q̃sx,n(c|τ, b) ≡
( 1

n

n∑
i=1

{E[Gx,i(c)−Gx,i(s0(τ, b, x))] +Gx,i(s0(τ, b, x))}+Rx,n(τ, b)
)2

. (85)

If {Yi, Xi, Di,Wi} is an i.i.d. sample, it then follows that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

∣∣∣ = op(n
− 1

2 ) . (86)

Proof: We first introduce the criterion function M s
n : L∞(S × X )→ R to be given by:

M s
n(θ) ≡ sup

x∈X
sup

(τ,b)∈S
Q̃sx,n(θ(τ, b, x)|τ, b) . (87)

We aim to characterize and establish the consistency of an approximate minimizer of M s
n(θ) on L∞(S×X ).

Observe that by Lemma 6.2, compactness of S, finiteness of X and the law of large numbers:

sup
x∈X

sup
(τ,b)∈S

| 1
n

n∑
i=1

{Gx,i(s0(τ, b, x))− E[Gx,i(s0(τ, b, x))]}+Rx,n(τ, b)−Rx(τ, b)|

≤ sup
x∈X

sup
c∈R
| 1
n

n∑
i=1

{Gx,i(c)− E[Gx,i(c)]}|+ sup
x∈X

sup
(τ,b)∈S

|Rx,n(τ, b)−Rx(τ, b)| = op(1) , (88)

where Rx(τ, b) is as in (67). Hence, by definition of S and Rx(τ, b), with probability tending to one:

ε

2
P (Xi = x) ≤ 1

n

n∑
i=1

{E[Gx,i(s0(τ, b, x))]−Gx,i(s0(τ, b, x))} −Rx,n(τ, b)

≤ (p(x)− ε

2
)P (Xi = x) ∀(τ, b, x) ∈ S × X . (89)

By Assumption 2.1(ii), whenever (89) holds, we may implicitly define ŝs0(τ, b, x) by the equality:

P (Yi ≤ ŝs0(τ, b, x), Di = 1, Xi = x) =
1

n

n∑
i=1

{E[Gx,i(s0(τ, b, x))]−Gx,i(s0(τ, b, x))} −Rx,n(τ, b) , (90)
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for all (τ, b, x) ∈ S × X and set ŝs0(τ, b, x) = 0 for all (τ, b, x) ∈ S × X whenever (89) does not hold. Thus,

sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(ŝs0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)| = op(n
−1) . (91)

Let ŝs0 ≡ ŝs0(·, ·, ·) and note that by construction ŝs0 ∈ L∞(S × X ). From (91) we then obtain that:

M s
n(ŝs0) ≤ sup

x∈X
sup

(τ,b)∈S
inf
c∈R

Q̃sx,n(c|τ, b) + op(n
−1) ≤ inf

θ∈L∞(S×X )
M s
n(θ) + op(n

−1) . (92)

In order to establish ‖ŝs0− s0‖∞ = op(1), let M(θ) be as in (78) and notice that arguing as in (83) together

with result (88) and Lemma 6.2 implies that:

sup
θ∈L∞(S×X )

|M s
n(θ)−M(θ)| ≤ sup

θ∈L∞(S×X )
sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(θ(τ, b, x)|τ, b)−Qx(θ(τ, b, x)|τ, b)|

≤ sup
x∈X

sup
(τ,b)∈S

sup
c∈R
|Q̃sx,n(c|τ, b)−Qx(c|τ, b)| = op(1) . (93)

Hence, by (80), (92), (93) and Corollary 3.2.3 in van der Vaart and Wellner (1996) we obtain:

sup
x∈X

sup
(τ,b)∈S

|ŝs0(τ, b, x)− s0(τ, b, x)| = op(1) . (94)

Next, define the random mapping ∆n : L∞(S × X )→ L∞(S × X ) to be given by:

∆n(θ) ≡ 1

n

n∑
i=1

{(Gx,i(θ(τ, b, x))− E[Gx,i(θ(τ, b, x))])− (Gx,i(s0(τ, b, x))− E[Gx,i(s0(τ, b, x))])} , (95)

and observe that Lemma 6.2 and finiteness of X implies that ‖∆n(s̄)‖∞ = op(n
− 1

2 ) for any s̄ ∈ L∞(S ×X )

such that ‖s̄− s0‖∞ = op(1). Since Q̃x,n(ŝ0(τ, b, x)|τ, b) ≤ Q̃x,n(s0(τ, b, x)|τ, b) for all (τ, b, x) ∈ S ×X , and

by Lemma 6.2 and finiteness of X , supx∈X sup(τ,b)∈S Q̃x,n(s0(τ, b, x)|τ, b) = Op(n
−1), we conclude that:

sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ ‖∆2
n(ŝ0)‖∞ + 2‖∆n(ŝ0)‖∞ ×M

1
2
n (ŝ0)

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝs0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ op(n
−1) , (96)

where Mn(θ) is as in (78). Furthermore, since by (92) we have M s
n(ŝs0) ≤M s

n(s0) + op(n
−1) and by Lemma

6.2 and finiteness of X we have M s
n(s0) = Op(n

−1), similar arguments as in (96) imply that:

sup
x∈X

sup
(τ,b)∈S

{Q̃x,n(ŝs0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}

≤ ‖∆n(ŝs0)‖2∞ + 2‖∆n(ŝs0)‖∞ × [M s
n(ŝs0)]

1
2 = op(n

−1) . (97)

Therefore, by combining the results in (91), (96) and (97), we are able to conclude that:

sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)}

≤ sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)|τ, b)− Q̃sx,n(ŝs0(τ, b, x)|τ, b)}+ op(n
−1) ≤ op(n−1) . (98)
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Let εn ↘ 0 be such that εn = op(n
− 1

2 ) and in addition satisfies:

sup
x∈X

sup
(τ,b)∈S

|Q̃sx,n(ŝ0(τ, b, x)|τ, b)− inf
c∈R

Q̃sx,n(c|τ, b)| = op(ε
2
n) , (99)

which is possible by (98). A Taylor expansion at each (τ, b, x) ∈ S × X then implies:

0 ≤ sup
x∈X

sup
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x) + εn|τ, b)− Q̃sx,n(ŝ0(τ, b, x)|τ, b)}+ op(ε
2
n)

= sup
x∈X

sup
(τ,b)∈S

{
εn ×

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

+
ε2n
2
×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2

}
+ op(ε

2
n) , (100)

where s̄(τ, b, x) is a convex combination of ŝ0(τ, b, x) and ŝ0(τ, b, x) + εn. Since Lemma 6.4 and εn ↘ 0

imply that ‖s̄− s0‖∞ = op(1), the mean value theorem, fy|1,x(c) being uniformly bounded and (83) yield:

sup
x∈X

sup
(τ,b)∈S

∣∣∣ 1
n

n∑
i=1

{E[Gx,i(s̄(τ, b, x))−Gx,i(s0(τ, b, x))] +Gx,i(s0(τ, b, x))}+Rx,n(τ, b)
∣∣∣

≤ sup
c∈R

fy|1,x(c)p(x)P (Xi = x)× ‖s̄− s0‖∞ +M
1
2
n (s0) = op(1) . (101)

Therefore, exploiting (101), f ′y|1,x(c) being uniformly bounded and by direct calculation we conclude:

sup
x∈X

sup
(τ,b)∈S

∣∣∣d2Q̃sx,n(s̄(τ, b, x)|τ, b)
dc2

− 2f2
y|1,x(s̄(τ, b, x))p2(x)P 2(Xi = x)

∣∣∣
≤ sup

x∈X
sup

(τ,b)∈S
|f ′y|1,x(s̄(τ, b, x))p(x)P (Xi = x)| × op(1) = op(1). (102)

Thus, combining results (100) together with (102) and fy|1,x(c) uniformly bounded, we conclude:

0 ≤ εn × sup
x∈X

sup
(τ,b)∈S

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

+Op(ε
2
n) . (103)

In a similar fashion, we note that by exploiting (99) and proceeding as in (100)-(103) we obtain:

0 ≤ inf
x∈X

inf
(τ,b)∈S

{Q̃sx,n(ŝ0(τ, b, x)− εn|τ, b)− Q̃sx,n(ŝ0(τ, b, x)|τ, b)}+ op(ε
2
n)

≤ inf
x∈X

inf
(τ,b)∈S

{
− εn ×

dQ̃x,n(ŝ0(τ, b, x)|τ, b)
dc

+
ε2n
2
×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2

}
+ op(ε

2
n)

≤ −εn × sup
x∈X

sup
(τ,b)∈S

dQ̃x,n(ŝ0(τ, b, x)|τ, b)
dc

+Op(ε
2
n) . (104)

Therefore, since εn = op(n
− 1

2 ), we conclude from (103) and (104) that we must have:

sup
x∈X

sup
(τ,b)∈S

dQ̃sx,n(ŝ0(τ, b, x)|τ, b)
dc

= Op(εn) = op(n
− 1

2 ) . (105)

By similar arguments, but reversing the sign of εn in (100) and (104) it possible to establish that:

sup
x∈X

sup
(τ,b)∈S

−
dQ̃sx,n(ŝ0(τ, b, x)|τ, b)

dc
= op(n

− 1
2 ) . (106)

The claim of the Lemma then follows from (105) and (106).

Lemma 6.6. Let Assumptions 2.1, 4.1 hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1, E[W 2
i ] <∞
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and positive a.s. Also let S ≡ {(τ, b) ∈ [0, 1]2 : b{1 − p(x)} + ε ≤ τ ≤ p(x) + b{1 − p(x)} − ε ∀x ∈ X} for

some ε satisfying 0 < ε < infx∈X p(x) and denote the minimizers:

s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) ŝ0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) . (107)

If Gx,i(c) is as in (81), infx∈X inf(τ,b)∈S fy|1,x(s0(τ, b, x))p(x) > 0 and {Yi, Xi, Di,Wi} is i.i.d., then:

sup
x∈X

sup
(τ,b)∈S

∣∣∣(ŝ0(τ, b, x)− s0(τ, b, x))

− 1

n

n∑
i=1

Gx,i(s0(τ, b, x)) +Wi(b1{Di = 0, Xi = x} − τ1{Xi = x})
P (Xi = x)p(x)fy|1,x(s0(τ, b, x))

∣∣∣ = op(n
− 1

2 ) . (108)

Proof: For Q̃sx,n(c|τ, b) as in (85), note that the mean value theorem and Lemma 6.5 imply:

sup
x∈X

sup
(τ,b)∈S

∣∣∣(ŝ0(τ, b, x)− s0(τ, b, x))×
d2Q̃sx,n(s̄(τ, b, x)|τ, b)

dc2
+
dQ̃sx,n(s0(τ, b, x)|τ, b)

dc

∣∣∣ = op(n
− 1

2 ) (109)

for s̄(τ, b, x) a convex combination of s0(τ, b, x) and ŝ0(τ, b, x). Also note that Lemma 6.2 implies:

sup
x∈X

sup
(τ,b)∈S

∣∣∣dQ̃sx,n(s0(τ, b, x)|τ, b)
dc

∣∣∣
= sup

x∈X
sup

(τ,b)∈S

∣∣∣2fy|1,x(s0(τ, b, x))p(x)P (Xi = x)× { 1

n

n∑
i=1

Gx,i(s0(τ, b, x)) +Rn(τ, b)}
∣∣∣ = Op(n

− 1
2 ) . (110)

In addition, by (102), the mean value theorem and fy|1,x(c) being uniformly bounded we conclude that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣d2Q̃x,n(s̄(τ, b, x)|τ, b)
dc2

− 2f2
y|1,x(s0(τ, b, x))p2(x)P 2(Xi = 1)

∣∣∣
. sup

x∈X
sup

(τ,b)∈S
|f2
y|1,x(s̄(τ, b, x))− f2

y|1,x(s0(τ, b, x))|+ op(1) . sup
c∈R
|f ′y|1,x(c)| × ‖s̄− s0‖∞ + op(1) . (111)

Since by assumption fy|1,x(s0(τ, b, x))p(x) is bounded away from zero uniformly in (τ, b, x) ∈ S × X , it

follows from (111) and ‖s̄− s0‖∞ = op(1) by Lemma 6.4 that for some δ > 0:

inf
x∈X

inf
(τ,b)∈S

d2Q̃x,n(s̄(τ, b, x)|τ, b)
dc2

> δ (112)

with probability approaching one. Therefore, we conclude from results (109), (110) and (112) that we must

have ‖ŝ0 − s0‖∞ = Op(n
− 1

2 ). Hence, by (109) and (111) we conclude that:

sup
x∈X

sup
(τ,b)∈S

∣∣∣2(ŝ0(τ, b, x)− s0(τ, b, x))f2
y|1,x(s0(τ, b, x))p2(x)P 2(Xi = 1) +

dQ̃sx,n(s0(τ, b, x)|τ, b)
dc

∣∣∣ = op(n
− 1

2 )

(113)

The claim of the Lemma is then established by (110), (112) and (113).

Lemma 6.7. Let Assumptions 2.1, 4.1(ii)-(iii) hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1,

E[W 2
i ] <∞ and positive a.s. Let S ≡ {(τ, b) ∈ [0, 1]2 : b{1−p(x)}+ε ≤ τ ≤ p(x)+b{1−p(x)}−ε ∀x ∈ X}

for some ε satisfying 0 < 2ε < infx∈X p(x) and for some x0 ∈ X , denote the minimizers:

s0(τ, b, x0) = arg min
c∈R

Qx0(c|τ, b) .
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If inf(τ,b)∈S fy|1,x(s0(τ, b, x0))p(x0) > 0 and {Yi, Xi, Di,Wi} is i.i.d., then the following class is Donsker:

F ≡
{
fτ,b(y, x, d, w) =

w1{y ≤ s0(τ, b, x0), d = 1, x = x0}+ bw1{d = 0, x = x0} − τw1{x = x0}
P (Xi = x0)p(x0)fy|1,x(s0(τ, b, x0))

: (τ, b) ∈ S
}

Proof: For ε > 0, let {Bj} be a collection of closed balls in R2 with diameter ε covering S. Further notice

that since S ⊆ [0, 1]2, we may select {Bj} so its cardinality is less than 4/ε2. On each Bj define:

τ j = min(τ,b)∈S∩Bj τ τ̄j = max(τ,b)∈S∩Bj τ

bj = min(τ,b)∈S∩Bj b b̄j = max(τ,b)∈S∩Bj b

sj = min(τ,b)∈S∩Bj s0(τ, b, x0) s̄j = max(τ,b)∈S∩Bj s0(τ, b, x0)

f
j

= min(τ,b)∈S∩Bj fy|1,x(s0(τ, b, x0)) f̄j = max(τ,b)∈S∩Bj fy|1,x(s0(τ, b, x0)) ,

(114)

where we note that all minimums and maximums are attained due to compactness of S ∩ Bj , continuity

of s0(τ, b, x0) by (65) and the implicit function theorem and continuity of fy|1,x(c) by assumption 4.1(iii).

Next, for 1 ≤ j ≤ #{Bj} define the functions:

lj(y, x, d, w) ≡
w1{y ≤ sj , d = 1, x = x0}+ bjw1{d = 0, x = x0}

P (Xi = x0)p(x0)f̄j
− τ̄jw1{x = x0}
P (Xi = x0)p(x0)f

j

(115)

uj(y, x, d, w) ≡ w1{y ≤ s̄j , d = 1, x = x0}+ b̄jw1{d = 0, x = x0}
P (Xi = x0)p(x0)f

j

−
τ jw1{x = x0}

P (Xi = x0)p(x0)f̄j
(116)

and note that the brackets [lj , uj ] cover the class F . Since f̄−1
j ≤ f−1

j
≤ [inf(τ,b)∈S fy|1,x(s0(τ, b, x0))]−1 <∞

for all j, there is a finite constant M not depending on j so that M > 3E[W 2
i ]P−2(Xi = x0)p−2(x0)fj

−2f̄−2
j

uniformly in j. To bound the norm of the bracket [lj , uj ] note that for such a constant M it follows that:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2] ≤M × (b̄j f̄j − bjf j)

2 +M × (τ̄j f̄j − τ jf j)
2

+M × E[(1{Yi ≤ sj , Di = 1, Xi = x0}f j − 1{Yi ≤ s̄j , Di = 1, Xi = x0}f̄j)2] (117)

Next observe that by the implicit function theorem and result (65) we can conclude that for any (τ, b) ∈ S:

ds0(τ, b, x0)

dτ
=

1

fy|1,x(s0(τ, b, x0))

ds0(τ, b, x0)

db
= − 1− p(x0)

fy|1,x(s0(τ, b, x0))
. (118)

Since the minimums and maximums in (114) are attained, it follows that for some (τ1, b1), (τ2, b2) ∈ Bj ∩S
we have s0(τ1, b1.x0) = s̄j and s0(τ2, b2, x0) = sj . Hence, the mean value theorem and (118) imply:

|s̄j − sj | =
∣∣∣ 1

fy|1,x(s0(τ̃ , b̃, x0))
(τ1 − τ2) +

1− p(x)

fy|1,x(s0(τ̃ , b̃, x0))
(b1 − b2)

∣∣∣ ≤ √
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
(119)

where (τ̃ , b̃) is between (τ1, b1) and (τ2, b2) and the final inequality follows by (τ̃ , b̃) ∈ S by convexity of S,

(τ1, b1), (τ2, b2) ∈ Bj ∩ S and Bj having diameter ε. By similar arguments, and (119) we conclude:

|f̄j − f j | ≤ sup
c∈R
|f ′y|1,x(c)| × |s̄j − sj | ≤ sup

c∈R
|f ′y|1,x(c)| ×

√
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
. (120)
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Since bj ≤ b̄j ≤ 1 due to b̄j ∈ [0, 1] and |b̄j − bj | ≤ ε by Bj having diameter ε, we further obtain that:

(b̄j f̄j − bjf j)
2 ≤ 2f̄2

j (b̄j − bj)2 + 2b2j (f̄j − f j)
2 ≤ 2 sup

c∈R
f2
y|1,x(c)× ε2 +

4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

, (121)

where in the final inequality we have used result (120). By similar arguments, we also obtain:

(τ̄j f̄j − τ jf j)
2 ≤ 2 sup

c∈R
f2
y|1,x(c)× ε2 +

4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

. (122)

Also note that by direct calculation, the mean value theorem and results (119) and (120) it follows that:

E[(1{Yi ≤ sj , Di = 1,Xi = x0}f j − 1{Yi ≤ s̄j , Di = 1, Xi = x0}f̄j)2]

≤ 2(f̄j − f j)
2 + sup

c∈R
f2
y|1,x(c)× P (Xi = x0)p(x0)(Fy|1,x(s̄j)− Fy|1,x(sj))

≤ 4ε2

inf(τ,b)∈S f
2
y|1,x(s0(τ, b, x0))

+ sup
c∈R

f3
y|1,x(c)×

√
2ε

inf(τ,b)∈S fy|1,x(s0(τ, b, x0))
. (123)

Thus, from (117) and (121)-(122), it follows that for ε < 1 and some constant K not depending on j:

E[(uj(Yi, Xi, Di,Wi)− lj(Yi, Xi, Di,Wi))
2] ≤ Kε . (124)

Since #{Bj} ≤ 4/ε, we can therefore conclude that N[ ](ε,F , ‖ · ‖L2) ≤ 4K/ε2 and hence by Theorem 2.5.6

in van der Vaart and Wellner (1996) it follows that the class F is Donsker.

Lemma 6.8. Let Assumptions 2.1, 4.1(ii)-(iii) hold, Wi be independent of (Yi, Xi, Di) with E[Wi] = 1,

E[W 2
i ] <∞, positive a.s., S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)}∀x ∈ X} and

p̃(x) ≡
∑n

i=1Wi1{Di = 1, Xi = x}∑n
i=1Wi1{Xi = x}

p(x) ≡ P (Di = 1|Xi = x) s0(τ, b, x) = arg min
c∈R

Qx(c|τ, b) .

If inf(τ,b,x)∈S×X fy|1,x(s0(τ, b, x))p(x) > 0 and {Yi, Xi, Di,Wi} is an i.i.d. sample, then for a ∈ {−1, 1}:

s0(τ, τ + akp̃(x), x)− s0(τ, τ + akp(x), x)

= − (1− p(x))ka

fy|1,x(s0(τ, τ + akp(x), x))P (X = x)
× 1

n

n∑
i=1

R(Xi,Wi, x) + op(n
− 1

2 ) , (125)

where R(Wi, Xi, x) = p(x){P (X = x) −Wi1{Xi = x}} + Wi1{Di = 1, Xi = x} − P (D = 1, X = x) and

(125) holds uniformly in (B × X ). Moreover, the right hand side of (125) is Donsker.

Proof: First observe that (τ, k) ∈ B implies (τ, τ + akp(x)) ∈ S for all x ∈ X , and that with probability

tending to one (τ, τ + akp̃(x)) ∈ S for all (τ, k) ∈ B. In addition, also note that

p̃(x)− p(x) =
1

nP (X = x)

n∑
i=1

R(Xi,Wi, x) + op(n
− 1

2 ) (126)

by an application of the Delta method and infx∈X P (X = x) > 0 due to X having finite support. Moreover,
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by the mean value theorem and (118) we obtain for some b̄(τ, k) between τ + akp̃(x) and τ + akp(x)

s0(τ, τ + akp̃(x), x)− s0(τ, τ + akp(x), x) = − (1− p(x))ka

fy|1,x(s0(τ, b̄(τ, k), x))
(p̃(x)− p(x))

= − (1− p(x))ka

fy|1,x(s0(τ, τ + akp(x), x))
(p̃(x)− p(x)) + op(n

− 1
2 ) (127)

where the second equality follows from (τ, b̄(τ, k)) ∈ S for all (τ, k) with probability approaching one by

convexity of S, inf(τ,b,x)∈S×X fy|1,x(s0(τ, b, x))p(x) > 0 and sup(τ,k)∈B |ak(p̃(x) − p(x))| = op(1) uniformly

in X . The first claim of the Lemma then follows by combining (126) and (127).

Finally, observe that the right hand side of (125) is trivially Donsker since R(Xi,Wi, x) does not depend

on (k, τ) and the function (1− p(x))ka/(fy|1,x(s0(τ, τ + akp(x), x))P (X = x)) is uniformly continuous on

(τ, k) ∈ B due to inf(τ,b,x)∈S×X fy|1,x(s0(τ, b, x))p(x) > 0.

Proof of Theorem 4.1: Throughout the proof we exploit Lemmas 6.6 and 6.7 applied with Wi = 1

with probability one, so that Q̃x,n(c|τ, b) = Qx,n(c|τ, b) for all (τ, b) in S, where

S ≡ {(τ, b) ∈ [0, 1]2 : b{1− p(x)}+ ε ≤ τ ≤ p(x) + b{1− p(x)} − ε ∀x ∈ X} . (128)

Also notice that for every (τ, k) ∈ B and all x ∈ X , the points (τ, τ + kp(x)), (τ, τ − kp(x)) ∈ S, while with

probability approaching one (τ, τ +kp̂(x)) and (τ, τ −kp̂(x)) also belong to S. Therefore for s0(τ, b, x) and

ŝ0(τ, b, x) as defined in (107) we obtain from Lemmas 6.6 and 6.7, applied with Wi = 1 a.s., that:

|(ŝ0(τ, τ +akp(x), x)− s0(τ, τ +akp(x), x))− (ŝ0(τ, τ +akp̂(x), x)− s0(τ, τ +akp̂(x), x))| = op(n
− 1

2 ) (129)

uniformly in (τ, k, x) ∈ B × X and a ∈ {−1, 1}. Moreover, by Lemma 6.8 applied with Wi = 1 a.s.

s0(τ, τ + akp̂(x), x)− s0(τ, τ + akp(x), x)

= − (1− p(x))ka

fy|1,x(s0(τ, τ + akp(x), x))P (X = x)
× 1

n

n∑
i=1

R(Xi, x) + op(n
− 1

2 ) , (130)

where R(Xi, x) = p(x){P (X = x)− 1{Xi = x}}+ 1{Di = 1, Xi = x} − P (D = 1, X = x) again uniformly

in (τ, k, x) ∈ B ×X . Also observe that since (τ, τ + kp̂(x)) and (τ, τ − kp̂(x)) belong to S with probability

approaching one, we obtain uniformly in (τ, k, x) ∈ B × X that:

qL(τ, k|x) = s0(τ, τ + kp(x), x) qU (τ, k|x) = s0(τ, τ − kp(x), x)

q̂L(τ, k|x) = ŝ0(τ, τ + kp̂(x), x) + op(n
− 1

2 ) q̂U (τ, k|x) = ŝ0(τ, τ − kp̂(x), x) + op(n
− 1

2 ) .

(131)

Therefore, combining results (129)-(131) and exploiting Lemmas 6.6, 6.7 and 6.8 and the sum of Donsker

classes being Donsker we conclude that for J a Gaussian process on L∞(B × X )× L∞(B × X ):

√
nCn

L→ J Cn(τ, k, x) ≡
( q̂L(τ, k|x)− qL(τ, k|x)

q̂U (τ, k|x)− qU (τ, k|x)

)
. (132)

Next, observe that since X has finite support, we may denote X = {x1, . . . , x|X |} and define the matrix
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B = (P (Xi = x1)x1, . . . , P (Xi = x|X |)x|X |) as well as the vector of weights:

w ≡ λ′ (ES [XiX
′
i])
−1B . (133)

Since w is also a function on X , we refer to its coordinates by w(x). Solving the linear programming

problems in (10) and (11), it is then possible to obtain the closed form solution:

πL(τ, k) =
∑
x∈X
{1{w(x) ≥ 0}w(x)qL(τ, k|x) + 1{w(x) ≤ 0}w(x)qU (τ, k|x)}

πU (τ, k) =
∑
x∈X
{1{w(x) ≥ 0}w(x)qU (τ, k|x) + 1{w(x) ≤ 0}w(x)qL(τ, k|x)} (134)

with a similar representation holding for (π̂L(τ, k), π̂U (τ, k)) but with (q̂L(τ, k|x), q̂U (τ, k|x)) in place of

(qL(τ, k|x), qU (τ, k|x)). We hence define the linear map K : L∞(B ×X )×L∞(B ×X )→ L∞(B)×L∞(B),

to be given by:

K(θ)(τ, k) ≡
( ∑

x∈X {1{w(x) ≥ 0}w(x)θ(1)(τ, k, x) + 1{w(x) ≤ 0}w(x)θ(2)(τ, k, x)}∑
x∈X {1{w(x) ≥ 0}w(x)θ(2)(τ, k, x) + 1{w(x) ≤ 0}w(x)θ(1)(τ, k, x)}

)
(135)

where for any θ ∈ L∞(X ×B)×L∞(B ×X ), θ(i)(τ, k, x) denotes the ith coordinate of the two dimensional

vector θ(τ, k, x). It then follows from (132), (134) and (135) that:

√
n
( π̂L − πL

π̂U − πU

)
=
√
nK(Cn) . (136)

Moreover, employing the norm ‖ · ‖∞ + ‖ · ‖∞ on the product spaces L∞(B × X ) × L∞(B × X ) and

L∞(B)× L∞(B), we can then obtain by direct calculation that for any θ ∈ L∞(B × X )× L∞(B × X ):

‖K(θ)‖∞ ≤ 2
∑
x∈X
|w(x)| × sup

x∈X
sup

(τ,b)∈S
|θ(τ, b, x)| = 2

∑
x∈X
|w(x)| × ‖θ‖∞ , (137)

which implies the linear map K is continuous. Therefore, the theorem is established by (132), (136), the

linearity of K and the continuous mapping theorem.

Proof of Theorem 4.2: For a metric space D, let BLc(D) denote the set of real valued bounded Lipschitz

functions with supremum norm and Lipschitz constant less than or equal to c. We first aim to show that:

sup
h∈BL1(R)

|E[h(L(G̃ω))|Zn]− E[h(L(Gω))]| = op(1) , (138)

where Zn = {Yi, Xi, Di}ni=1 and E[h(Z̃)|Zn] denotes outer expectation over {Wi}ni=1 with Zn fixed. Let

ŝ0(τ, b, x) ∈ arg min
c∈R

Qx,n(c|τ, b) s̃0(τ, b, x) ∈ arg min
c∈R

Q̃x,n(c|τ, b) s0(τ, b, x) ∈ arg min
c∈R

Qx(c|τ, b) .
(139)

Also note that with probability approaching one the points (τ, τ + akp̃(x)) ∈ S for all (τ, k, x) ∈ B × X
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and a ∈ {−1, 1} for S as in (128). Hence, arguing as in (129) and (130) we obtain:

q̃L(τ, k|x)− q̂L(τ, k|x) =s̃0(τ, τ + kp(x), x)− ŝ0(τ, τ + kp(x), x)

− (1− p(x))k

fy|1,x(s0(τ, τ + kp(x), x))P (X = x)
× 1

n

n∑
i=1

∆R(Xi,Wi, x) + op(n
− 1

2 ) (140)

q̃U (τ, k|x)− q̂U (τ, k|x) =s̃0(τ, τ − kp(x), x)− ŝ0(τ, τ − kp(x), x)

+
(1− p(x))k

fy|1,x(s0(τ, τ − kp(x), x))P (X = x)
× 1

n

n∑
i=1

∆R(Xi,Wi, x) + op(n
− 1

2 ) (141)

where ∆R(Xi,Wi, x) = (1−Wi)(1{Xi = x}p(x)− 1{Di = 1, Xi = x}) and both statements hold uniformly

in (τ, k, x) ∈ B × X . Also note that for the operator K as defined in (135), we have:

√
n
( π̃L − π̂L

π̃U − π̂U

)
=
√
nK(C̃n) C̃n(τ, k, x) ≡

( q̃L(τ, k|x)− q̂L(τ, k|x)

q̃U (τ, k|x)− q̂U (τ, k|x)

)
. (142)

By Lemmas 6.6, 6.7 and 6.8, results (140) and (141) and Theorem 2.9.2 in van der Vaart and Wellner

(1996), the process
√
nC̃n converges unconditionally to a tight Gaussian process on L∞(B × X ). Hence,

by the continuous mapping theorem,
√
nK(C̃n) is asymptotically tight. Define,

Ḡω ≡
√
n
( (π̃L − π̂L)/ωL

(π̃U − π̂U )/ωU

)
, (143)

and notice that ωL(τ, k) and ωU (τ, k) being bounded away from zero, ω̂L(τ, k) and ω̂U (τ, k) being uniformly

consistent by Assumption 4.2(ii) and
√
nK(C̃n) being asymptotically tight imply that:

|L(G̃ω)− L(Ḡω)| ≤ sup
(τ,k)∈B

M0

∣∣∣√n(π̂L(τ, k)− π̃L(τ, k))

ω̂L(τ, k)
−
√
n(π̂L(τ, k)− π̃L(τ, k))

ωL(τ, k)

∣∣∣
+ sup

(τ,k)∈B
M0

∣∣∣√n(π̂U (τ, k)− π̃U (τ, k))

ω̂U (τ, k)
−
√
n(π̂U (τ, k)− π̃U (τ, k))

ωU (τ, k)

∣∣∣ = op(1) , (144)

for some constant M0 due to L being Lipschitz. By definition of BL1, all h ∈ BL1 have Lipschitz constant

less than or equal to 1 and are also bounded by 1. Hence, for any η > 0 Markov’s inequality implies:

P
(

sup
h∈BL1(R)

|E[h(L(G̃ω))|Zn]− E[h(L(Ḡω))|Zn]| > η
)

≤ P
(

2P (|L(G̃ω)− L(Ḡω)| > η

2
|Zn) +

η

2
P (|L(G̃ω)− L(Ḡω)| ≤ η

2
|Zn) > η

)
≤ 4

η
E
[
E
[
1
{
|L(G̃ω)− L(Ḡω)| > η

2

}
|Zn
]]
. (145)

Therefore, by (144), (145) and Lemma 1.2.6 in van der Vaart and Wellner (1996), we obtain:

P
(

sup
h∈BL1(R)

|E[h(L(G̃ω))|Zn]− E[h(L(Ḡω))|Zn]| > η
)
≤ 4

η
P
(
|L(G̃ω)− L(Ḡω)| > η

2

)
= o(1) . (146)

Next, let
L
= stands for “equal in law” and notice that for J the Gaussian process in (132):

L(Gω)
L
= T ◦K(J) L(Ḡω) =

√
nL ◦K(C̃n) , (147)

38



due to the continuous mapping theorem and (142). For w(x) as defined in (130) and C0 ≡ 2
∑

x∈X |w(x)|,
it follows from linearity of K and (135), that K is Lipschitz with Lipschitz constant C0. Therefore, for any

h ∈ BL1(R), result (147) implies that h ◦ L ◦K ∈ BLC0M0(L∞(B × X )) for some M0 > 0 and hence

sup
h∈BL1(R)

|E[h(L(Ḡω))|Zn]− E[h(L(Gω))]| ≤ sup
h∈BLC0M0

(L∞(B×X ))
|E[h(Ḡω)|Zn]− E[h(J)]| = op(1) , (148)

where the final equality follows from (140), (141), (147), arguing as in (145)-(146) and Lemmas 6.7, 6.8

and Theorem 2.9.6 in van der Vaart and Wellner (1996). Hence, (146) and (148) establish (138).

Next, we aim to exploit (138) to show that for all t ∈ R at which the cdf of L(Gω) is continuous:

|P (L(G̃ω) ≤ t|Zn)− P (L(Gω) ≤ t)| = op(1) . (149)

Towards this end, for every λ > 0, and t at which the cdf of L(Gω) is continuous define the functions:

hUλ,t(u) = 1− 1{u > t}min{λ(u− t), 1} hLλ,t(u) = 1{u < t}min{λ(t− u), 1} . (150)

Notice that by construction, hLλ,t(u) ≤ 1{u ≤ t} ≤ hUλ,t(u) for all u ∈ R, the functions hLλ,t(u) and hUλ,t(u)

are both bounded by one and they are both Lipschitz with Lipschitz constant λ. Also by direct calculation:

0 ≤ E[hUλ,t(L(Gω))− hLλ,t(L(Gω))] ≤ P (t− λ−1 ≤ L(Gω) ≤ t+ λ−1) . (151)

Therefore, exploiting that hLλ,t, h
U
λ,t ∈ BLλ(R) and that h ∈ BLλ(R) implies λ−1h ∈ BL1(R), we obtain:

|P (L(G̃ω) ≤t|Zn)− P (L(Gω) ≤ t)|

≤ |E[hLλ,t(L(G̃ω))|Zn]− E[hUλ,t(L(Gω))]|+ |E[hUλ,t(L(G̃ω))|Zn]− E[hLλ,t(L(Gω))]|

≤ 2 sup
h∈BLλ(R)

|E[h(L(G̃ω))|Zn]− E[h(L(Gω))]|+ 2P (t− λ−1 ≤ L(Gω) ≤ t+ λ−1)

= 2λ sup
h∈BL1(R)

|E[h(L(G̃ω))|Zn]− E[h(L(Gω))]|+ 2P (t− λ−1 ≤ L(Gω) ≤ t+ λ−1) . (152)

If t is a continuity point of the cdf of L(Gω), then (149) follows from (138) and (151).

Finally, note that since the cdf of L(Gω) is strictly increasing and continuous at r1−α, we obtain that:

P (L(Gω) ≤ r1−α − ε) < 1− α < P (L(Gω) ≤ r1−α + ε) (153)

∀ε > 0. Define the event An ≡ {P (L(G̃ω) ≤ r1−α − ε|Zn) < 1− α < P (L(G̃ω) ≤ r1−α + ε|Zn)} and notice

P (|r̃1−α − r1−α| ≤ ε) ≥ P (An)→ 1 , (154)

where the inequality follows by definition of r̃1−α and the second result is implied by (149) and (153).
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Table 1: Fraction of Observations in Census Estimation Sample with Missing Weekly Earnings

Census Year Number of Observations Fraction Missing

1980 80,128 19.49%

1990 111,070 23.09%

2000 131,265 27.70%

Overall 322,463 23.66%

Table 2: Logit Estimates of P (D = 0|X = x, Fy|x(Y ) = τ) in 1973 CPS-IRS Sample

Model 1 Model 2 Model 3

b1 -1.30 7.25

(0.42) (15.76)

b2 1.33 -0.72

(0.41) (9.75)

γ1 3.92

(7.25)

γ2 -0.92

(4.50)

Log-Likelihood -3,865.69 -3861.78 -3825.17

Parameters 35 37 99

Number of observations 13,598 13,598 13,598

Demographic Cells 33 33 33

E[
∂P (D=0|X=x,Fy|x(Y )=τ)

∂τ
|τ=0.2] -0.06 -0.06 -0.04

E[
∂P (D=0|X=x,Fy|x(Y )=τ)

∂τ
|τ=0.5] 0.00 0.00 0.00

E[
∂P (D=0|X=x,Fy|x(Y )=τ)

∂τ
|τ=0.8] 0.06 0.06 -0.05

Min KS Distance 0.03 0.02 0.02

Median KS Distance 0.03 0.06 0.11

Max KS Distance (S(F )) 0.03 0.12 0.44

Note: Asymptotic standard errors in parentheses.
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Figure 1: Linear Conditional Quantile Functions (Shaded Region) as a Subset of the Identified Set
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Figure 2: Conditional Quantile and its Pseudo-True Approximation
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Figure 3: Confidence Intervals Under Missing at Random Assumption
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empirical frequency of demographic groups. Shaded regions provide 95% uniform confidence bands.
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Figure 4: Confidence Intervals Under S(F ) ≤ 0.05
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Figure 5: Confidence Intervals Under S(F ) ≤ 0.175 (1980 vs. 1990)
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Figure 6: Intersection of 1980 upper envelope and 1990 lower envelope
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Figure 7: Breakdown Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

tau

k
Breakdown Curve (1980 vs 1990)

 

 

Lower Bound
Point Estimate
Upper Bound

Figure 8: Confidence Intervals for Fitted Values Under S(F ) ≤ 0.05
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Figure 9: Logit Based Estimates of Selection in 1973 CPS-IRS File
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