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1 Introduction

Models of discrete choice between di¤erentiated products play a central role in the modern

empirical literature in industrial organization (IO) and are used in a wide range of other

applied �elds of economics.1 In many applications, the discrete choice demand model

is combined with an oligopoly model of supply. Typically these models are estimated

using econometric speci�cations incorporating functional form restrictions and parametric

distributional assumptions. Such restrictions may be desirable in practice: estimation

in �nite samples always requires approximations and, since the early work of McFadden

(1974), an extensive literature has developed providing �exible discrete-choice models well

suited to estimation and inference. Furthermore, parametric structure is necessary for

the extrapolation involved in many out-of-sample counterfactuals. However, an important

question is whether parametric speci�cations and distributional assumptions play a more

fundamental role in determining what is learned from the data. In particular, are such

assumptions essential for identi�cation?

In this paper we examine the nonparametric identi�ability of di¤erentiated products

models that are in the spirit of Berry, Levinsohn, and Pakes (1995) (henceforth, �BLP�) and

a large applied literature that has followed. We consider identi�cation of demand alone,

identi�cation of marginal costs, and discrimination between di¤erent models of oligopoly

competition.

On the demand side, the models motivating our work incorporate two essential features.

One is rich heterogeneity in preferences, which allows for �exible demand substitution pat-

1Applications include studies of the sources of market power (e.g., Berry, Levinsohn, and Pakes (1995),
Nevo (2001)), welfare gains from new goods or technologies (e.g., Petrin (2002), Eizenberg (2008)), mergers
(e.g., Nevo (2000), Capps, Dranove, and Satterthwaite (2003)), network e¤ects (e.g., Rysman (2004), Nair,
Chintagunta, and Dube (2004)), product promotions (e.g., Chintagunta and Honoré (1996), Allenby and
Rossi (1999)), environmental policy (e.g., Goldberg (1998)), vertical contracting (e.g., Villas-Boas (2007),
Ho (2007)), market structure and product quality (e.g., Fan (2008)), media bias (e.g., Gentzkow and Shapiro
(2009)), asymmetric information and insurance (e.g., Cardon and Hendel (2001), Bundorf, Levin, and Ma-
honey (2008), Lustig (2008)), trade policy (e.g., Goldberg (1995), Berry, Levinsohn, and Pakes (1999),
Goldberg and Verboven (2001)), residential sorting (e.g., Bayer, Ferreira, and McMillan (2007)), and school
choice (e.g., Hastings, Staiger, and Kane (2007)).
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terns (e.g., cross-price elasticities).2 The second is the presence of product/market-level un-

observables.3 These unobservables give rise to the endogeneity of prices, and only by

explicitly modeling them can one account simultaneously for endogeneity and heterogene-

ity in preferences for choice characteristics. Surprisingly, this combination of factors has

not been treated in the prior literature on identi�cation. Indeed, although there is a large

literature on identi�cation of discrete choice models,4 there are no nonparametric or semi-

parametric identi�cation results even for the linear random coe¢ cients random utility model

widely used in the applied literature that motivates us.

On the supply side the applied literature employs empirical models derived from equi-

librium conditions for multi-product oligopolists, building on early insights of Rosse (1970)

and Bresnahan (1981). Following BLP, recent work typically allows for latent cost shocks

and unobserved heterogeneity in cost functions, but employs a parametric speci�cation of

costs.

We consider identi�cation within nonparametric generalizations of the demand-side and

supply-side models used in the applied literature. We focus on the common situation in

which market level data are available, as in BLP. In such a setting, one observes market

shares, market characteristics, product prices and characteristics, and product/market level

cost shifters. Individual choices and �rms�costs are not observed.5

We begin with a nonparametric generalization of standard random coe¢ cients discrete

choice models. Our model incorporates an important index restriction on the way product/market-

2See, e.g., the discussions in Domencich and McFadden (1975), Hausman and Wise (1978) and Berry,
Levinsohn, and Pakes (1995). Early models of discrete choice with heterogeneous tastes for characteristics
include those in Quandt (1966) and Quandt (1968).

3While our work is motivated by IO applications, these models are relevant in in many other discrete-
choice contexts where there are unobservables at the level of a �group�(the analog of our �market�). For
example, employees�choices among o¤ered insurance plans may depend on unobservable characteristics of
the plans. A broad set of examples with �group level unobservables�is discussed in Berry and Haile (2009a)
for the case of binary choice and related models. Although an oligopoly supply side may not be appropriate
for all such examples, several results are obtained here without reference to a supply side, and the overall
approach may be useful in other cases as well.

4Important early work includes Manski (1985), Manski (1988), Matzkin (1992), and Matzkin (1993),
which examine semiparametric models with exogenous regressors.

5We consider the case of �micro�(consumer-level) choice data in Berry and Haile (2009b).
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speci�c unobservables enter preferences, but is otherwise �exible. It allows for market/choice-

speci�c unobservables, endogenous choice characteristics, unknown heteroskedasticity, and

taste shocks with arbitrary dimension and correlation. We consider identi�cation of de-

mand as well as full identi�cation of the joint distribution of consumers�conditional indirect

utilities, the latter enabling characterization of standard aggregate welfare measures. Iden-

ti�cation of demand naturally requires instruments for prices (or other endogenous choice

characteristics), and we show that standard nonparametric instrumental variables conditions

(Newey and Powell (2003)) su¢ ce. This result demonstrates that the essential requirement

for identi�cation of demand in this type of model is identical to that for regression models:

the availability of instruments. Further, this result can be extended to full identi�cation

of the random utility model using standard arguments under additional quasilinearity and

support conditions.

Given identi�cation of demand, we consider nonparametric identi�cation of each �rm�s

marginal cost function and cost shocks, again relying on an index restriction and on nonpara-

metric instrumental variables conditions. These results provide a nonparametric foundation

for a large body of applied work that estimates marginal costs in order to address positive

and normative questions concerning imperfectly competitive markets.

Although these are strong positive results, nonparametric instrumental variables condi-

tions themselves can be di¢ cult to interpret or verify. This is one reason we consider a

second approach to identi�cation, this time making simultaneous use of the demand model

and a partially speci�ed model of oligopoly competition. We show that the resulting system

of �supply and demand�equations can be �inverted,�leading to identi�cation of demand and

of the latent shocks to marginal costs. If we further commit to a particular oligopoly model

(e.g., Nash equilibrium in prices) we also recover each �rm�s marginal costs. This approach

enables us to o¤er constructive identi�cation arguments relying on traditional exclusion and

support conditions, but under somewhat stronger restrictions on the model.

Finally, we show that (using either identi�cation approach) our results lead to testable

restrictions that can distinguish between alternative models of oligopoly competition. This
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result o¤ers the �rst general formalization of Bresnahan�s (1982) intuition for empirically

discriminating between alternative �oligopoly solution concepts.�

Together these results provide a positive message regarding the faith we may have in

a growing body of applied work on di¤erentiated products markets allowing for rich con-

sumer and �rm heterogeneity, choice-speci�c unobservables, and endogeneity. Such models

are identi�ed without parametric or distributional assumptions under the same sorts of con-

ditions that yield identi�cation of simpler and more familiar models. This positive message

is not without quali�cation: in addition to the index restrictions, our results require instru-

ments for price that are excluded from the demand system, as well as demand shifters that

are excluded from �rm costs. Of course, it should not be surprising that identi�cation in an

environment with limited dependent variables and endogeneity requires both some structure

and adequate exogenous variation. Our results shed light on key assumptions and essential

sources of variation one should look for in applications.

To our knowledge, we provide the �rst and only results on the nonparametric identi�-

cation of market-level di¤erentiated products models of the sort found in BLP and other

applications in IO. However, there is large related literature on the identi�cation and esti-

mation of semi- and nonparametric discrete choice models. On the demand side, our work

is related to (and makes use of) much of this literature. Our work is also related to a large

parametric literature on the estimation of �supply and demand�models, to a large literature

on the estimation and testing of oligopoly models, and to work on the nonparametric iden-

ti�cation of simultaneous equations models. In the following section we brie�y place our

work in the context of these and other prior literatures. We then set up the model in section

3 and discuss a key preliminary result in section 4. We provide our two sets of identi�cation

results in sections 5 and 6. Discrimination between alternative oligopoly models is discussed

in 7. We conclude in section 8.

4



2 Related Literature

Our work relates to several literatures, including a large body of work on identi�cation of

discrete choice models. Much of that literature considers models allowing for heterogeneous

preferences through a random coe¢ cients random utility speci�cation, but ruling out endo-

geneity. Ichimura and Thompson (1998) studied a linear random coe¢ cients binary choice

model. Briesch, Chintagunta, and Matzkin (2005) consider multinomial choice, allowing

some generalization of a linear random coe¢ cients model. Our work relaxes functional form

and distributional assumptions relied on in this earlier work, incorporates market/choice-

speci�c unobservables, and allows for endogeneity.

A number of papers address the identi�cation of discrete-choice models with endogeneity�

sometimes only in a binary context, sometimes without consumer heterogeneity, and usually

without the kind of endogeneity considered in the applied literature that motivates our work.

Examples include Lewbel (2000), Honoré and Lewbel (2002), Hong and Tamer (2004), Blun-

dell and Powell (2004), Lewbel (2005), and Magnac and Maurin (2007). These all consider

linear semiparametric models, allowing for a single additive scalar shock (analogous to the

extreme value or normal shock in logit and probit models) that may be correlated with some

observables. Among these, Lewbel (2000) and Lewbel (2005) consider multinomial choice.

Extensions to non-additive shocks are considered in Matzkin (2007a) and Matzkin (2007b).

Compared to these papers, we relax functional form restrictions and, more fundamental,

add the important distinction between market/choice-speci�c unobservables and individual

heterogeneity in preferences. This distinction allows the model to de�ne comparative statics

that account for both heteroskedasticity (heterogeneity in tastes for characteristics) and

endogeneity.6 For example, to de�ne a demand elasticity one must quantify the changes in

market shares resulting from an exogenous change in price. Accounting for heterogeneity in

consumers�marginal rates of substitution between income and other characteristics requires

6Matzkin (2004) (section 5.1) makes a distinction between choice-speci�c unobservables and an addi-
tive preference shock, but in a model without random coe¢ cients or other sources of heteroskedastic-
ity/heterogeneous tastes for product characteristics. See also Matzkin (2007a) and Matzkin (2007b).
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allowing the price change to a¤ect the covariance matrix (and other moments) of utilities.

On the other hand, controlling for endogeneity requires holding �xed the market/choice-

speci�c unobservables. Meeting both requirements is impossible in models with a single

composite error for each product.

Blundell and Powell (2004), Matzkin (2004), and Hoderlein (2008) have considered binary

choice with endogeneity in semiparametric triangular models, leading to the applicability of

control function methods or the related idea of �unobserved instruments�(see also Petrin and

Train (2009), Altonji andMatzkin (2005), Gautier and Kitamura (2007), and Fox and Gandhi

(2009)). However, standard models of oligopoly pricing in di¤erentiated products markets

imply that each equilibrium price depends on the entire vector of demand shocks (and

typically the vector of cost shocks as well). This rules out a triangular structure. Nonetheless,

our �change of variables�approach uses a related strategy of inverting a multiproduct supply

and demand system to recover the entire vector of shocks to costs and demand. This can

be interpreted as a generalization of the control function approach.

On the supply side, Rosse (1970) introduced the idea of using �rst-order conditions for

imperfectly competitive �rms to infer their marginal costs from prices and demand parame-

ters.7 Our approach to identi�cation of marginal costs is a nonparametric extension of that

idea.

Our insights regarding discrimination between alternative oligopoly models are closely

related to ideas from the early empirical IO literature on conjectural variations models.

Bresnahan (1982), in particular, provided in�uential intuition for how �rotations of demand�

could distinguish between alternative oligopoly models. While Bresnahan�s intuition was

very general, formal results (Lau (1982)) have been limited to deterministic homogeneous

goods conjectural variations models, and have required shifters of aggregate demand.

Our change of variables approach, which exploits the simultaneous determination of prices

and market shares, has links to the prior literature on nonparametric identi�cation of simul-

7Bresnahan (1989) provides a review of the early literature on oligopoly estimation that followed. BLP
inverted the multiproduct oligopoly �rst-order conditions to solve for unobserved shocks to marginal cost.
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taneous equations models (e.g., Brown (1983), Roehrig (1988), Matzkin (2005), and Matzkin

(2008)). A standard strategy in this literature is to relate the joint density of latent vari-

ables to that of the observables using restrictions from theory and a standard change of

variables. A complication, emphasized in Benkard and Berry (2006), is that the change of

variables involves the Jacobian of the transformation. This introduces substantial challenges

and has limited the set of models for which identi�ability has been shown using the change

of variables approach. However, in our context the same index restriction that enables us

to use the nonparametric instrumental variables strategy permits us to use a new change

of variables argument to obtain a constructive proof of identi�cation. Here our work is

closely related to that of Matzkin (2005, 2008), who has explored identi�cation in a variety

of nonparametric simultaneous equations models. Although she does not explicitly address

discrete choice models, for our change of variable argument we transform our model to a

form equivalent to one she considers. This transformation maps our index restriction to a

separability condition whose advantages she emphasizes in a variety of other contexts. Even

starting from the transformed model, however, our assumptions and proof di¤er from hers

in important ways.8 Our strategy and results may therefore complement those in Matzkin

(2008) for other applications of simultaneous equations models.

For an important preliminary result, we rely heavily on insights in Gandhi (2008), which

recently showed how to extend a key invertibility result of Berry (1994) and Berry and

Pakes (2007) to a more general class of discrete choice demand models. We reinterpret

Gandhi�s key assumption graphically as our �connected substitutes� condition, requiring

that for every pair of products fj; kg there be some path of local substitution linking j to

k. Although Gandhi (2008) focused on invertibility of demand, we show that the same

connected substitutes condition plays an important role in ensuring the invertibility of the

oligopoly supply side.

Turning to other recent unpublished papers, Berry and Haile (2009b) explores the iden-

8For example, we use the same independence and support assumptions she uses in discussing supply and
demand, but we do not require any conditions on (even existence of) derivatives of densities.

7



ti�cation of discrete choice models in the case of �micro data� relying in part on ideas

similar to those used here. The distinction between �market data�and �micro data�has

been emphasized in the recent industrial organization literature (e.g., Berry, Levinsohn, and

Pakes (2004)), but not the econometrics literature on identi�cation. A key insight in Berry

and Haile (2009b) is that within a market all market/choice-speci�c unobservables are held

�xed. One can therefore learn a great deal about the distribution of utilities from �vari-

ation in choice sets� created by within-market heterogeneity in consumer/choice-speci�c

covariates� variation that is not confounded by variation in the market/choice-speci�c un-

observables. That strategy is exploited throughout Berry and Haile (2009b), but cannot be

applied to market level data.9 In Berry and Haile (2009a) we have explored related ideas in

the context of a �generalized regression model�(Han (1987)), which nests the binary choice

model. For that class of models, the index restriction we require throughout the present

paper can be dropped. Unfortunately, many applications fall outside the binary choice

setting.

Concurrent work by Fox and Gandhi (2009) explores identi�ability of several related

models, including a �exible model of polychotomous choice in which consumer types are

themselves multinomial and the conditional indirect utility functions are analytic. They do

not consider our case with market-level data and endogenous prices set in a (non-triangular)

system of equations.10 A recent working paper by Chiappori and Komunjer (2009) considers

a related change of variables approach in a �micro data�context.

9Berry and Haile (2009b) includes an example in which what appears to be a �market data�environment
is actually isomorphic to the �micro data�environment. In that example one has a continuum of observations
for which choice-speci�c unobservables are held �xed while observables vary. In general this is not the case.
10A recent paper by Bajari, Fox, Kim, and Ryan (2009) considers identi�cation in a linear random coef-

�cients model without endogeneity, assuming that the distribution of an additive i.i.d. preference shock is
known.
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3 Demand Model

3.1 Consumers, Products and Markets

Each consumer i in market t chooses a single good from a set Jt. We will use the terms

�good,��product,�and �choice�interchangeably. The term �market�is synonymous with

the choice set. In practice, markets will typically be de�ned geographically and/or tem-

porally. The choice set always includes the option not to purchase, i.e., to choose the

�outside good,�which we index as choice j = 0. We denote the number of �inside goods�by

Jt = jJtj � 1.11

Each inside good/market has observable (to us) characteristics xjt 2 RKx and price pjt 2

R. We treat xjt and pjt di¤erently because we will allow pjt to be endogenous. The restriction

to a single endogenous characteristic re�ects the usual practice, but is not essential.12 We

allow xjt to include components that vary only with the market t, only with the product j

(these could be product dummies), or both. Unobservables at the level of the product and

market are represented by an index �jt 2 R. In applications this is typically motivated

by the presence of unobserved product characteristics and/or unobserved variation in tastes

across markets. A market (choice set) t is thus characterized by
�
Jt;
�
xjt; pjt; �jt

	
j2Jt

�
.

We let � = supp
�
xjt; pjt; �jt

�
and �Jt =supp

�
xjt; pjt; �jt

	
j2Jt

.

3.2 Preferences

We consider preferences represented by a random utility model. Each consumer i in market t

has conditional indirect utilities vijt for each product j determined by a function uit : �! R.

Consumers have heterogeneous tastes, even conditional on all observables. This is modeled

by specifying each consumer i�s utility function uit as a random draw from a set U . We

11In applications with no �outside choice�our approach can be adapted by normalizing preferences relative
to those for a given choice. The same adjustment applies when characteristics of the outside good vary across
markets in observable ways.
12The modi�cations required to allow higher dimensional pjt are straightforward, although the usual

challenge of �nding adequate instruments for more than one endogenous product characteristic would remain.
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discuss restrictions on U below.

More formally, let (
;F ;P) denote a probability space. Given any
�
xjt; pjt; �jt

�
2 �,

consumer i�s conditional indirect utility from good j is given by

vijt = uit
�
xjt; pjt; �jt

�
= u

�
xjt; pjt; �jt; !it

�
(1)

where u is measurable in !it; and u (�; �; �; !) 2 U for all ! 2 
. Thus, conditional indirect

utilities are represented with a random function u : �� 
! R.13

This formulation super�cially resembles models in which randomness in utilities is cap-

tured by a scalar random variable (e.g., Lewbel (2000), Matzkin (2007a), Matzkin (2007b));

however, here !it is not a random variable but an elementary event in 
 that can determine

an arbitrary number of random variables. The following example illustrates by mapping

our model to a much more restrictive but more familiar special case.

Example 1. A special case of the class of preferences we consider is generated by the linear

random coe¢ cients random utility model

u
�
xjt; pjt; �jt; !it

�
= xjt�it � �itpjt + �jt + �ijt (2)

where (�it; �it; �i1t; : : : ; �iJt) are de�ned on the probability space (
;F ;P) as

�
� (!it) ; �

(1) (!it) ; : : : ; �
(Kx) (!it) ; �1 (!it) ; : : : ; �J (!it)

�
:14

This structure permits (�it; �it; �i1t; : : : ; �iJt) to have an arbitrary joint distribution but is more

restrictive than necessary. For example, specifying �ijt = �j (xjt; pjt; !it) would allow richer

preference heterogeneity/heteroskedasticity. If we relax the model further by specifying

13See, e.g., Gikhman and Skorokhod (1980).
14The fact that we allow product dummies as components of xjt enables us to write choice-speci�c functions

like �j here. Note also that this structure permits variation in Jt across markets. The realization of !it
should be thought of as generating values of �ijt = �j (!it) for all possible choices j, not just those in the
current choice set. Thus, the utility function de�nes preferences even over products not available.
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�ijt = �j
�
xjt; pjt; �jt; !it

�
, the terms xjt�it � �itpjt + �jt in (2) become redundant and we

obtain our original model u
�
xjt; pjt; �jt; !it

�
= �

�
xjt; pjt; �jt; !it

�
:

Note that there is no market subscript t on the probability measure P. This re�ects

our assumption that �jt captures all unobserved heterogeneity at the market and/or product

level. This is standard in the literature but is an important restriction.15 Aside from this

restriction, however, our representation of preferences is so far fully general. For example, it

allows arbitrary correlation of consumer-speci�c tastes for di¤erent goods or characteristics.

Because xjt can include product dummies, it allows marginal utilities of characteristics to

di¤er arbitrarily across products. It also allows arbitrary heteroskedasticity in utilities across

di¤erent products, or in utilities for a given product j as its characteristics
�
xjt; �jt

�
vary.

However, we will rely on two restrictions on preferences throughout the paper. First,

for simplicity we will assume that for all functions ~uit 2 U , any Jt , any distinct k; ` 2 Jt,

and any
�
xjt; pjt; �jt

	
j2fk;`g, the random di¤erences ~uit (xkt; pkt; �kt) � ~uit (x`t; p;`t; �`t) are

continuously distributed with convex support. This simpli�es the analysis by enabling us

to ignore ties and choice probabilities that are invariant to a strict (stochastic) increase in

vijt for some j. The second restriction is more signi�cant, imposing an index restriction on

the way market/choice-speci�c unobservables enter the random utility function. To state

this condition, partition xjt as
�
x
(1)
jt ; x

(2)
jt

�
, with x(1)jt 2 R, and de�ne the index

�jt = x
(1)
jt + �jt:

Assumption 1a. For all ~uit 2 U , ~uit
�
xjt; pjt; �jt

�
= �it

�
�jt; x

(2)
jt ; pjt

�
for some function �it

that is strictly increasing in its �rst argument.

This assumption limits attention to random utility functions admitting representations

15An exception is Athey and Imbens (2007), although they do not address identi�ability of their model.
Athey and Imbens (2007) point out testable restrictions in �micro data� settings if one assumes that the
same scalar product/market-level unobservable applies to all subpopulations of consumers. A similar testable
restriction exists in the model of Berry and Haile (2009b), which allows the unobservable to vary with some
(but not all) consumer observables. The model of binary choice nested in the generalized regression model
of Berry and Haile (2009a) permits a di¤erent unobservable for every vector of consumer-level observables.
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of the form

vijt = u
�
�jt; x

(2)
jt ; pjt; !it

�
(3)

with u monotonic in �jt. There are two parts to this restriction. The �rst is a restriction

to a �vertical�unobservable �jt; i.e., all else equal, an increase in �jt makes product j more

attractive to all consumers. This is standard in the applied literature and is a property we rely

on to allow recovery of each �jt.
16 The second is a linear index restriction requiring perfect

substitutability between �jt and x
(1)
jt inside the function u.

17 As already mentioned, this

index restriction plays an important role in both of our identi�cation approaches. However,

we show in Appendix B that strengthening the instrumental variables requirements used for

our nonparametric IV approach would allow us to replace the linear indices x(1)jt + �jt with

nonlinear indices �j
�
x
(1)
jt ; �jt

�
that are strictly monotonic in �jt.

With this structure on preferences we will show identi�cation of demand, identi�cation

of marginal costs, and the falsi�ability of a given oligopoly model. To obtain results that

also allow characterization of standard welfare measures, we will strengthen Assumption 1a

to require quasilinearity in price.18

Assumption 1b. For all ~uit 2 U there is a monotonic function �it such that �it
�
~uit
�
xjt; pjt; �jt

��
=

�it

�
�jt; x

(2)
jt

�
� pjt for some function �it that is strictly increasing in its �rst argument.

Assumption 1b di¤ers from Assumption 1a in requiring conditional indirect utilities with

16Athey and Imbens (2007) and Berry and Haile (2009b) discuss testable implications in the case of micro
data.
17In the linear random coe¢ cients model of Example 1, Assumption 1a holds if either (a) one covariate

enters with a �xed coe¢ cient (common in practice) or (b) uijt = x
(1)
jt �

(1)
it + �jt�

(1)
it + x

(2)
jt �

(2)
it ��itpjt+ �ijt,

with �(1)it > 0. Of course, we do not require the linear random coe¢ cients structure.
18We assume quasilinearity in price because this is the natural unit for measuring compensating variation.

However, quasilinearity in any element of x(2)jt (or in �jt) would also su¢ ce.
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quasilinear representations19

vijt = �
�
�jt; x

(2)
jt ; !it

�
� pjt: (4)

Quasilinearity plays two roles for us. First, it allows the model to de�ne standard ag-

gregate welfare measures. Second, it provides a mapping between the observable units

of choice probabilities and the latent units of utilities. This is a standard strategy in the

literature on discrete choice. Note, however, that we do not require independence between

pjt and the random variable �
�
�jt; x

(2)
jt ; !it

�
; in fact, this is ruled out by standard models

of supply. However, the restriction that P does not vary across markets does imply that

�
�
�jt; x

(2)
jt ; !it

�
is independent of pjt conditional on

�
�jt; x

(2)
jt

�
.20 To relate this to more

familiar models, observe that in the linear random coe¢ cients model of Example 1, this

conditional independence holds if (�it; �it) are assumed independent of pjt.

Finally, two types of normalizations will be needed to obtain a unique representation of

preferences. Such normalizations are without loss of generality. One is a normalization

of utilities, which have no natural location or units (scale). Throughout the paper we

normalize the location of utilities by setting the utility from the outside good to zero: vi0t =

0. We will require a scale normalization of utilities only for the results using Assumption

1b, which already incorporates such a normalization. The second type of normalization

involves the choice-speci�c unobservables �jt. Linear substitutability between x
(1)
jt and �jt

(Assumption 1a) already de�nes the scale of each �jt, but its location must be normalized. It

will be convenient to use a di¤erent location normalization for each of our two identi�cation

approaches, so we will provide these below.

19As long as vijt is strictly decreasing in pjt with probablity one, (4) is equivalent to a spe�cation allowing
a random coe¢ cient on price: the scale of each consumer�s utility function can be normalized by her price
coe¢ cient without loss.
20Recall that each market is t is de�ned by

�
Jt;
�
xjt; pjt; �jt

	
j2Jt

�
.
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3.3 Market Shares

Given the choice set, each consumer maximizes her utility, choosing product j whenever

u
�
�jt; x

(2)
jt ; pjt; !it

�
> u

�
�kt; x

(2)
jt ; pkt; !it

�
8k 2 Jt � fjg: (5)

We denote consumer i�s choice by

yit = argmax
j2Jt

u
�
�jt; x

(2)
jt ; pjt; !it

�
:

Given Jt; market shares (choice probabilities) are given by

sjt = EP [1 fyit = jg]

= EP

h
1
n
u
�
�jt; x

(2)
jt ; pjt; !it

�
> u

�
�kt; x

(2)
kt ; pkt; !it

�
8k 2 Jt � fjg

oi
� sj (fxkt; pkt; �ktgk2Jt) : (6)

We will assume that all goods observed in equilibrium have positive market shares.

Assumption 2. For all Jt and fxkt; pkt; �ktgk2Jt 2 �Jt, sj (fxkt; pkt; �ktgk2Jt) > 0.

Market shares are positive for all goods at any fxkt; pkt; �ktgk2Jt in models for which the

support of fvijtgk2Jt is always R
Jt. In a parametric context this includes multinomial probit

or logit models, for example. Assumption 2 of course requires only that market shares be

positive at equilibrium values of fxkt; pkt; �ktgk2Jt.21

3.4 Observables and Primitives of Interest

We letMt denote the measure of consumers in market t (the �market size�). Let ~zt denote in-

struments excludable from the utility function (we discuss appropriate excluded instruments

21For example, in the usual price-setting oligopoly model an inside good can have zero market share only
if a good is o¤ered by a �rm even though it cannot be sold at any price above marginal cost. A necessary
condition for the outside good to have zero market share is that the there be no downward distortion in
market output due to imperfect competition. This can arise in some simple oligopoly models like that of
Hotelling (1929) if preferences and locations are such that the market is �covered.�
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below). The observables consist of (t;Mt;Jt; ~zt; fsjt; xjt; pjtgj2Jt). To study identi�cation,

for every (t;Mt;Jt) we treat the population distribution of (~zt; fsjt; xjt; pjtgj2Jt) as known.

On the demand side of the market, we will consider two types of identi�cation results.

One is identi�cation of demand ; i.e., identi�cation of each �jt and the functions sj de�ned

in (6). These primitives fully characterize the demand system: they describe how product

characteristics (observed and unobserved, endogenous and exogenous) determine the market

shares of all goods, including the outside good.

Identi�cation of demand is su¢ cient for many purposes motivating demand estimation.

However, we also consider identi�cation of the joint distribution of indirect utilities con-

ditional on the choice set (Jt; fxkt; pkt; �ktgk2Jt). We refer to this as full identi�cation of

the random utility model. These conditional distributions are the primitives determining

all quantities de�ned by our random utility model. Under the quasilinear structure of

Assumption 1b this includes standard measures of aggregate welfare.22

Henceforth we will condition on Jt = J with jJ j = J . We also condition on a value

of x(2)t =
�
x
(2)
1t ; : : : ; x

(2)
Jt

�
and suppress x(2)t in the notation. For simplicity we then let xjt

represent x(1)jt : Conditioning on x
(2)
t requires that we write

vijt = uj (�jt; pjt; !it) (7)

and

vijt = �j (�jt; !it)� pjt (8)

(with j subscripts on the functions u and �) to represent, respectively, (3) and (4) above,

since the utility functions will generally be evaluated at di¤erent x(2)jt for each j.
23 We will

work with these two representations of preferences in what follows.

22The primitives of our model do not determine individual utilities. Thus, for example, it cannot be
used to characterize Pareto improvements. As usual, assuming quasilinearity will allow us to characterize
potential Pareto improvements. Parametric random utility models allow tracking of individual utilities
(even with market level data!) by associating realizations of random preference parameters with individual
consumers.
23Because x(2)t may include product dummies, the functions uj and �j may vary arbitrarily with j.
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4 Connected Substitutes

Central to our identi�cation arguments is the inversion of equilibrium conditions� of choice

probabilities implied by utility maximization on the demand side and of �rst-order conditions

for oligopoly equilibrium the supply side. A key condition for ensuring invertibility is that

the choice set J be comprised of goods that �belong� (in a sense de�ned below) in the

same choice problem for at least some consumers. To state this �connected substitutes�

assumption, we �rst need a de�nition.

De�nition 1. Product k substitutes to product ` at fxjt; pjt; �jtgj2J if, for any variable wkt

such that vikt is strictly stochastically increasing in wkt; s`
�
fxjt; pjt; �jtgj2J

�
rises when wkt

falls.24

Our initial use of this de�nition involves the case wkt = �kt, although we also consider

wkt = �pkt when we discuss identi�cation of supply. De�nition 1 provides a directional

notion of one product being a substitute for another. For example, if vikt is strictly decreasing

in pkt, we would say that product k substitutes to product ` if a rise in pkt leads (all else

equal) to a larger market share for product `.

Given a value of fxjt; pjt; �jtgj2J , let � (J ) denote the (J + 1)� (J + 1) matrix of zeros

and ones with the (r; c) element equal to one if product (r�1) substitutes to product (c�1).

Assumption 3 (�Connected Substitutes�). At all fxjt; pjt; �jtgj2J 2 �J , the directed

graph of � (J ) is strongly connected.

The directed graph of � (J ) has nodes (vertices) representing each product and an edge

from product k to product ` whenever product k substitutes to product `.25 Formally,

the connected substitutes condition requires that for any distinct products j and j0 there

be a path of substitution, possibly indirect, from j to j0. To describe the key economic

24Because we introduce this assumption after normalizing the utility of the outside good to zero, we de�ne
a fall in w0t to mean equal increases in wjt for all j > 0. Thus product 0 substitutes to product j if the
market share of product j increases whenever wkt increases by an equal amount for all k > 0:
25In standard examples � (J ) is symmetric, so its directed graph can be represented with bi-directional

edges. See the additional discussion in Appendix D.
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Figure 1: Graphs of � (J ) at generic fxjt; pjt; �jtgj2J for standard models. All edges are
bi-directional, so for simplicity we show undirected graphs. Panel a: multinomial logit,
multinomial probit, mixed logit, etc.; Panel b: pure vertical models e.g., (, Mussa and Rosen
(1978), Bresnahan (1981), etc.); Panel c: Salop (1979) with random utility for the outside
good; Panel d: Rochet and Stole (2002); Panel e: independent goods and an outside good.
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implication, interpret wkt in De�nition 1 as the �quality�of product k. Then Assumption

3 implies that, all else equal, if �quality�rises (falls) for every product in some strict subset

I � J but for no product outside I, the total market share of all products outside I falls

(rises).26 This is a very natural property for an environment with unit demands.

It is also easy to verify that the connected substitutes property itself holds in standard

models. In fact, the usual random utility discrete choice models (e.g., multinomial probit,

logit, mixed logit, etc.) imply that every product substitutes directly to every other product,

a strong su¢ cient condition for connected substitutes. Figure 1 illustrates, showing the

graphs of � (J ) for a variety of models. As panel e illustrates, even a market comprised of

independent goods satis�es this condition as long as each product substitutes to and from

the outside good.

5 Identi�cation with Nonparametric IV Conditions

5.1 Identi�cation of Demand

Let xt = (x1t; : : : ; xJt), pt = (p1t; : : : ; pJt), and �t = (�1t; : : : ; �Jt). Under Assumption 1a,

for any vector �t, market shares are given by

sjt = EP [1 fuj (�jt; pjt; !it) � uk (�kt; pjt; !it) 8k 2 J g]

� �j (�t; pt) : (9)

Using the connected substitutes assumption, we can follow the argument in Theorem 2

of Gandhi (2008) to show the following lemma, which generalizes well-known invertibility

results for linear discrete choice models in Berry (1994) and Berry and Pakes (2007).27

26This is demonstrated formally as Lemma 4 in Appendix A. An analogous implication follows if we
interpret �wjt as the price of good j.
27See Corollary 1 in Appendix A for the equivalence between Gandhi�s condition and our connected sub-

stitutes condition. Berry (1994) and Berry and Pakes (2007) show existence and uniqueness of an inverse
choice probability in models with an additively separable �jt. Gandhi (2008) relaxes the separability require-
ment. Our lemma addresses only uniqueness conditional on existence. Under our maintained assumption
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Lemma 1. Consider any price vector p and any market share vector s = (s1; : : : ; sJ)
0 on

the interior of 4J . Under Assumptions 1a, 2, and 3 there is at most one vector � such that

�j (�; p) = sj 8 j.

Proof. See Appendix A.

With this result we can write

�jt = ��1j (st; pt) 8j (10)

or

xjt + �jt = ��1j (st; pt) 8j: (11)

To state the instrumental variables conditions, recall that ~zt represents instruments for

pt excluded from the determinants of fvijtgj2J . Standard excluded instruments include

cost shifters (e.g., input prices) or proxies for cost shifters such as prices of the same good in

other markets (Hausman (1996), Nevo (2001)). With the exogenous conditioning variables

(~zt; xt), we take the following instrumental variables assumptions from Newey and Powell

(2003).

Assumption 4. E[�jtj~zt; xt] = 0 almost surely for all j.

Assumption 5. For all functions B (st; pt) with �nite expectation, if E [B (st; pt) j~zt; xt] = 0

almost surely then B (st; pt) = 0 almost surely.

Assumption 4 is a standard exclusion restriction, requiring mean independence between

the instruments and the structural error �jt. Note that setting E[�jtj~zt; xt] equal to zero

rather than another constant provides the required normalization of the location of �jt. As-

sumption 5 is a �completeness�condition, which is the nonparametric analog of the standard

that the model is correctly speci�ed, given any observed choice probability vector, there must exist a vec-
tor (�1; : : : ; �J) that rationalizes it. Gandhi (2008) provides conditions guaranteeing that an inverse exists
for every choice probability vector in 4J . Our uniqueness result di¤ers from his only slightly, mainly in
recognizing that the argument applies to a somewhat more general model of preferences. For a class of
single-agent dynamic discrete choice models similar to our model with an additive �jt, Hotz and Miller
(1993) prove the uniqueness of the inverse of the share function and sketch a proof of existence of the inverse
that is correct for the binary case.
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rank condition for linear models. This condition requires that the instruments move the en-

dogenous variables (st; pt) su¢ ciently to ensure that any function of these variables can

be distinguished from other functions through the exogenous variation in the instruments.

See Newey and Powell (2003) (and references therein) and Severini and Tripathi (2006) for

helpful discussion and examples.28

Newey and Powell (2003) used analogs of Assumptions 4 and 5 to show the identi�ability

of a separable nonparametric regression model. The following result shows that the same

argument can be applied to show identi�cation of demand in our discrete choice setting.

Theorem 1. Under Assumptions 1a and 2�5, for all j (i) �jt is identi�ed for all t, and (ii)

the function sj (fxkt; pkt; �ktgk2J ) is identi�ed on �J .

Proof. For any j, rewriting (11) and taking expectations conditional on ~zt; xt, we obtain

E
�
�jtj~zt; xt

�
= E

�
��1j (st; pt)

�� ~zt; xt�� xjt

so that by Assumption 4,

E
�
��1j (st; pt)

�� ~zt; xt�� xjt = 0 a:s:

Suppose there is another function ~��1j satisfying

E
�
~��1j (st; pt)

�� ~zt; xt�� xjt = 0 a:s:

Letting B (st; pt) = ��1j (st; pt)� ~��1j (st; pt), this implies

E [B (st; pt) j~zt; xt] = 0 a:s:

But by Assumption 5 this requires ~��1j = ��1j almost surely, implying that ��1j is iden-

28If we assumed bounded support for �jt and xjt we could replace the completeness condition with bounded
completeness.
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ti�ed. Repeating for all j, each �jt is then uniquely determined by (11), proving part

(i). Because choice probabilities are observed and all arguments of the demand functions

sj (J ; fxkt; pkt; �ktgk2J ) are now known, part (ii) follows immediately. �

The proof is very similar to that given by Newey and Powell (2003) in the context of

nonparametric regression. A di¤erence is that we have, in addition to the nonparametric

function ��1j (st; pt), the additive xjt, which drops out of the proof and becomes available as

as one of the 2J instruments for the 2J endogenous variables (st; pt).

If we strengthen the instrumental variables assumptions 4 and 5 as in Chernozhukov and

Hansen (2005), we can relax the linear index structure, allowing

�jt = �j
�
xjt; �jt

�
where each �j is any function that is strictly increasing in its second argument. We discuss

this extension in Appendix B.

5.2 Full Identi�cation of the Random Utility Model

We consider full identi�cation of the random utility model under the quasilinear speci�cation

of preferences in Assumption 1b. We will also make a large support assumption:29

Assumption 6. supp ptj
�
xjt; �jt

	
j2J � supp (�1 (�1t; !it) ; : : : ; �J (�Jt; !it))t j

�
xjt; �jt

	
j2J :

This type of support condition is strong but also standard in the literature because it

provides a natural benchmark for evaluating identi�cation under ideal conditions on observ-

ables.30 It is intuitive that in order to trace out the full CDF of the random part of a random

29This assumption on the support of pt is combined below with the restriction to quasilinearity in price
(Assumption 1b). An analogous assumption would be substituted if instead the quasilinearity were in �jt
or and element of x(2)jt .

30To our knowledge, all results showing semiparametric or nonparametric identi�cation of a full random
utility model rely on a similar condition (e.g., Matzkin (1992), Matzkin (1993), Ichimura and Thompson
(1998), Lewbel (2000), Fox and Gandhi (2009)).
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utility model, extreme values of observables will be needed.31 As the proof of the following

result makes clear, we use the large support condition only for this role; in particular, we do

not use the common �identi�cation at in�nity�argument that takes observables for all but

one choice to extreme values in order to reduce a multinomial choice problem to a binary

choice problem. The argument here makes clear that if the support condition fails (the

support of pt excludes tail values), the implication will be that the joint distributions of

(vi1t; : : : ; viJt) will be unknown at its tail values.

Theorem 2. Under Assumptions 1b and 2�6, the joint distribution of (vi1t; : : : ; viJt) condi-

tional on any fxkt; pkt; �ktgk2J 2 �J is identi�ed.

Proof. The market share of the outside good, conditional on pt, xt, and (�1t; : : : ; �Jt) ; is

Pr (�1 (�1t; !it) � p1t; : : : ; �J (�Jt; !it) � pJt) :

By Theorem 1 each �jt is identi�ed, so each �jt can be treated as known. Then, since pjt is

independent of � (�jt; !it) conditional on �jt, Assumption 6 ensures identi�cation of the joint

distribution of

(�1 (�1t; !it) ; : : : ; �J (�Jt; !it))

for any (�1t; : : : ; �Jt). Since vijt = �j (�jt; !it)� pjt, the result follows. �

5.3 Adding A Supply Side

If we are willing to add a speci�cation of the supply model, we can obtain identi�cation

of �rms�marginal costs as well. Here we can return to the less restrictive speci�cation of

31Given our normalization of utility from the outside good, Assumption 6 requires that there be some price
pjt at which all consumers would prefer good j to the outside good, at least weakly; i.e., letting pminj = inf

supp pjt, we require �j (�jt; !it) � pminj . Note, however, that a model in which �j (�jt; !it) < pminj with
positive probability is equivalent to (same implications for demand on �J and for welfare) a model in which
all probability mass on �j (�jt; !it) < pminj is moved to �j (�jt; !it) = pminj . Thus, as usual with welfare
analysis, the critical assumption is that there be su¢ ciently high prices to pin down the willingness to pay
of high value consumers.
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preferences in Assumption 1a. Our approach generalizes arguments from the parametric

literature on the estimation of static oligopoly models, which utilize �rst-order conditions for

�rms to solve for marginal costs in terms of demand parameters. Using �rst-order conditions

requires that the market share function �j (�t; pt) be di¤erentiable with respect to prices, and

we will assume this directly.

Assumption 7. �j (�t; pt) is continuously di¤erentiable with respect to pk 8j; k 2 J .

We consider a nonparametric speci�cation of costs, but require su¢ cient structure to

ensure that behavior is characterized by �rst-order conditions that can be inverted to solve

for the unobserved cost shocks. As with the demand model, the most restrictive assumption

we require is an index restriction on how these shocks enter. In particular, we assume the

marginal cost associated with product j depends on its output quantity qjt = Mt�j (pt; �t),

a �cost index,�and other cost shifters:

mcj

�
qjt; z

(1)
jt + �jt; z

(2)
jt

�
: (12)

Here �jt is an unobserved cost shock and
�
z
(1)
jt ; z

(2)
jt

�
are observed cost shifters, with z(1)jt 2 R.

We permit z(2)jt to include components of x
(2)
jt , although x

(1)
jt is excluded. We will be explicit

below about the independent variation required of z(1)1t ; : : : ; z
(1)
Jt .

Parallel to our model of demand, (12) imposes perfect substitution between the unob-

served cost shock �jt and the cost shifter z
(1)
jt inside the nonparametric function mcj. This

is an important restriction, but one that is satis�ed in many standard models.32 We denote

the cost index by �jt � z
(1)
jt + �jt. As with the parallel assumption on the demand side, the

linearity of the index can be relaxed under additional assumptions discussed in Appendix B.

We continue to condition on (and suppress) x(2)t . We now also condition on a value of

z
(2)
t =

�
z
(2)
1t ; : : : ; z

(2)
Jt

�
, likewise suppressing it in the notation and letting zjt denote z

(1)
jt for

simplicity. We will show invertibility of the supply model under the following conditions.

32Note that z(1)jt and �jt could be any known transformations of some other observed and unobserved cost
shifters.
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Assumption 8. For all j

(i) mcj(qjt; �jt) is strictly monotonic in �jt;

(ii) uj (�jt; pjt; !it) is strictly decreasing in pjt;

(iii) there exists a function  j (possibly unknown) such that for any equilibrium value of

(st; pt)

mcj(Mtsjt; �jt) =  j (st;Mt; Dt (st; pt) ; pt)

where Dt (st; pt) is the J � J matrix of partial derivatives
�
@�k(pt;��11 (st;pt);:::;�

�1
J (st;pt))

@p`

�
k;`

.

Given the index restriction, part (i) of Assumption 8 is fairly weak: weak monotonicity

in an unobservable could be assumed without loss, since that would merely de�ne an order

on the unobservable. Part (ii) requires strictly downward sloping demand. Part (iii) is a

high-level condition requiring that it be possible to rewrite �rst-order conditions to express

marginal cost for each product as a function of equilibrium quantities (market shares), prices,

and derivatives of demand at these prices and quantities. Our ability to express this matrix

in terms of (st; pt) exploits the invertibility result of Lemma 1. We show in Appendix C that,

under assumptions already made, part (iii) holds for a variety of standard oligopoly models,

including the multi-product price-setting oligopoly model most often used in empirical work.

By referring to the high-level condition in part (iii) of Assumption 8 we will be able to

provide results for a class of models rather than just one. This will be particularly useful

when we discuss discrimination between alternative models.

The following lemma shows that under Assumption 8, �rms��rst-order conditions imply

a unique vector of cost indices �t for any vector of equilibrium prices and market shares.

Lemma 2. For any market sizeMt and any given (st; pt), there is exactly one (�1t; : : : ; �Jt) 2

RJ consistent with Assumption 8.

Proof. By part (i) of Assumption 8, the function mcj in part (iii) can be inverted, yielding

�jt = mc�1j
�
 j(st;Mt; Dt (st; pt)t ; pt);Mtsjt

�
: (13)
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Given Mt, the right-hand side is an unknown function of st; pt. �

Henceforth we will �x a value ofMt and suppress it in the notation. We can then re-write

(13) as33

zjt + �jt = ��1j (st; pt) 8j: (14)

This provides a key set of equations for what follows.

Note that equation (14) takes the same form as (11). We will use this relation in the

same way. Let ~zt include the exogenous cost shifters (z1t; : : : ; zJt) : We can then show the

following result.

Theorem 3. Suppose that Assumptions 1a, 2�5, 7 and 8 hold. Then for all j (i) �jt is

identi�ed for all t; and (ii) if  j is known, the function mcj(qjt; �jt) is identi�ed on the

support of
�
qjt; �jt

�
.

Proof. Part (i) follows by observing that the argument used in the proof of Theorem 1 can

be repeated with trivial modi�cation to recover the inverse pricing relations ��1j and the cost

shocks �jt using the instrumental variables (xt; ~zt) : Now recall that

mcj(qjt; �jt) =  j (st; Dt (st; pt) ; pt) . (15)

Theorem 1 ensures that Dt (st; pt) is known. Thus all arguments of  j are known and, if  j

is itself known, the right side of (15) is known. Since qjt =Mtsjt, by part (i) both arguments

of the left side of (15) are known. Part (ii) then follows. �

6 A Change of Variables Approach

The preceding analysis yields encouraging results. A �exible model of demand (and sup-

ply) for di¤erentiated products is identi�ed under the same kind of instrumental variables

33The function ��1j involves the composition of mc�1j and  j . Although we do not de�ne a function
�j ; we use the notation �

�1
j as a reminder that this represents an �inversion� of supply side equilibrium

conditions.
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conditions required for identi�cation of regression models. Full identi�cation holds as well

if we add the kind of separability and support conditions used to show identi�cation of even

the simplest semiparametric models of multinomial choice. However, a limitation of the

results above is the abstract nature of the completeness condition, which can be di¢ cult

to interpret or verify. Here we consider an alternative approach that treats the demand

and supply models as a system. This enables us to pursue a change of variables argument

often useful for simultaneous equations models (e.g., Brown (1983), Roehrig (1988), Matzkin

(2005), and Matzkin (2008)).

This approach has advantages and disadvantages relative to the previous approach. The

main disadvantages are the need to place some structure on the supply side even to identify

demand, and the need for additional conditions ensuring that we can relate a joint density

of the latent structural errors to a joint density of observables. These involve regularity

conditions as well as a high level assumption to avoid problems that can be created by

multiple equilibria. We will also require full independence of the instruments. An advantage

is that we will be able to replace the abstract completeness condition with a transparent

support condition on demand and cost shifters. This leads to constructive arguments with

close connections to classical identi�cation arguments for models of demand and supply.

We begin with results on identi�cation of demand, which we can show without fully

specifying the supply side. We then address identi�cation of marginal costs under a complete

speci�cation of the supply model.

6.1 Identi�cation of Demand and the Random Utility Model

From the analysis above we repeat the two equations (11) and (14):

xjt + �jt = ��1j (st; pt) 8j

zjt + �jt = ��1j (st; pt) 8j:

Here we consider these 2J equations as a system.
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As in the preceding sections, the linear structure of the indices normalizes the scale of the

unobservables �jt and �jt. To normalize locations, instead of setting means to zero, without

loss we take any (x0; z0) and any (s0; p0) in the support of (st; pt) j (x0; z0) and let

��1j
�
s0; p0

�
� x0j = 0 8j (16)

��1j
�
s0; p0

�
� z0j = 0 8j:

Although the invertibility results above ensure that there is a unique (�t; �t) associated

with any (st; pt), the change of variables approach requires that this map be one-to-one.

The market share functions (9) ensure that there is exactly one vector st associated with

any (�t; pt). We will assume directly that there is also only one price vector pt consistent

with any (�t; �t).

Assumption 9. There is a unique vector of equilibrium prices associated with any (�; �).

This assumption is satis�ed if, at the true marginal cost and demand functions, the

equilibrium �rst-order conditions have a unique solution (for prices) given any (�; �). This

is often di¢ cult to verify in models of product di¤erentiation (see, for example, Caplin and

Nalebu¤ (1991)), and it is not hard to construct examples in which multiple equilibria do

exist. If there are multiple equilibria, Assumption 9 requires an equilibrium selection rule

such that the same prices pt arise whenever (�t; �t) is the same. This rules out random

equilibrium selection or equilibrium selection based on xjt or �jt instead of their sum �jt

(and similarly for �jt).

We also require regularity conditions that enable us to relate the joint density of the

structural errors (�1t; : : : ; �Jt; �1t; : : : ; �Jt) to the joint density of the observables (st; pt).

Assumption 10. The random variables (�1; : : : ; �J ; �1; : : : ; �J) have a positive joint density

f
�;�

on R2J :

Assumption 11. The vector function
�
��11 ; : : : ; ��1J ; ��11 ; : : : ; ��1J

�0
has continuous partial

derivatives and nonzero Jacobian determinant.
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Finally, we add assumptions on the excluded demand and cost shifters. Assumption

12 requires full independence from the structural errors, while Assumption 13 ensures that

these instruments have su¢ cient variation to trace out the demand and cost functions.

Assumption 12. (xt; zt) j= (�t; �t):

Assumption 13. supp(xt; zt) = R2J :

With these assumptions, we can now show the identi�ability of demand.

Theorem 4. Suppose Assumptions 1a, 2, 3, and 8�13 hold. Then for all j (i) �jt is identi�ed

for all t; and (ii) the function sj (fxkt; pkt; �ktgk2J ) is identi�ed on �J .

Proof. We observe the joint density of market shares and prices, conditional on the vectors xt

and zt. Under Assumptions 8�12 this joint density is related to that of (�1t; : : : ; �Jt; �1t; : : : ; �Jt)

by

fs;p (st; ptjxt; zt) =

f�;�
�
��11 (st; pt)� x1t; : : : ; �

�1
J (st; pt)� xJt; �

�1
1 (st; pt)� z1t; : : : ; �

�1
J (st; pt)� zJt

�
jJ(st; pt)j

where jJ (st; pt)j is the absolute value of the Jacobian determinant for the vector function�
��11 ; : : : ; ��1J ; ��11 ; : : : ; ��1J

�0
evaluated at the point (st; pt). Therefore, for any observed

(ŝ; p̂; x̂; ẑ; x; z) we can construct the ratio

� (ŝ; p̂; x̂; ẑ; x; z) �
f�;�

�
��11 (ŝ; p̂)� x1; : : : ; �

�1
J (ŝ; p̂)� zJ

�
jJ (ŝ; p̂)j

f�;�
�
��11 (ŝ; p̂)� x̂1; : : : ; �

�1
J (ŝ; p̂)� ẑJ

�
jJ (ŝ; p̂)j

: (17)

The Jacobian determinants cancel.34 Thus, �xing (ŝ; p̂; x̂; ẑ), � (ŝ; p̂; x̂; ẑ; x; z) is equal to the

34This �trick�of using ratios of densities to cancel the Jacobian determinant is a critical step and was used
by Matzkin (2005) (section 6) to sketch a constructive identi�cation argument for a simultaneous equations
model with the same form that we obtain after inverting the market share and pricing equations. Her sketch
uses the trick in a di¤erent way and requires, in addition to our location and scale normalizations, knowledge
of the Jacobian determinant at one point. Completing the sketch would require showing that a particular
system of nonlinear simultaneous equations has a unique solution; this appears to require further conditions
on the density of unobservables. The formal results in Matzkin (2008) and Matzkin (2005) likewise rely on
conditions we do not require.
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joint density f�;�
�
��11 (ŝ; p̂)� x1; : : : ; �

�1
J (ŝ; p̂)� zJ

�
rescaled by the constant denominator

in (17). Since this density must integrate (over (x; z) 2 R2J) to one, the constant is uniquely

determined and the value of

f�;�
�
��11 (ŝ; p̂)� x1; : : : ; �

�1
J (ŝ; p̂)� zJ

�
is identi�ed for any (ŝ; p̂; x; z). Since

Z
~xj�xj ;~x�j ;~z

f�;�
�
��11 (ŝ; p̂)� ~x1; : : : ; ��1J (ŝ; p̂)� ~zJ

�
d~xd~z = F�j

�
��1j (ŝ; p̂)� xj

�
(18)

the value of F�j
�
��1j (ŝ; p̂)� xj

�
is then known for any (ŝ; p̂; xj). By the normalization

(16), F�j
�
��1j (s0; s0)� x0j

�
= F�j (0). For any (st; pt) we can then �nd x� such that

F�j
�
��1j (st; pt)� x�

�
= F�j (0), which reveals �

�1
j (st; pt) = x�. This identi�es the func-

tion ��1j (st; pt). With equation (11) this identi�es �jt for all t. Repeating for all j, all �jt

are identi�ed. Part (ii) then follows (see the proof of Theorem 1). �

This provides a constructive proof of the identi�cation of demand. As with our analysis

using general IV conditions, we can extend the identi�cation of demand to obtain full iden-

ti�cation of the random utility model under the quasilinear speci�cation of preferences in

Assumption 1b. The proof follows that of Theorem 2 and is therefore omitted.

Theorem 5. Suppose Assumptions 1b, 2, 3, 6, and 8�13 hold. Then the joint distribution

of (vi1t; : : : ; viJt) conditional on any fxkt; pkt; �ktgk2J 2 � is identi�ed.

6.2 Identi�cation of Marginal Costs

We obtained identi�cation of demand and of the full random utility model without a complete

speci�cation of the supply side. Without any additional assumption we can use the same

argument to show identi�cation of the cost shocks �jt. If we are willing to assume a particular

model of oligopoly competition, we can also show identi�cation of marginal costs.
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Theorem 6. Suppose that Assumptions 1a, 2, 3, and 8�13 hold. Then, for all j (i) each

�jt is identi�ed and (ii) if each  j is known, the function mcj(qjt; �jt) is identi�ed on the

support of
�
qjt; �jt

�
.

Proof. Part (i) follows by observing that the argument used in the proof of Theorem 4 can

be repeated with trivial modi�cation to recover the inverse pricing relations ��1j and the cost

shocks �jt.
35 Part (ii) then follows from the argument used to prove part (ii) of Theorem 3.

�

Combining this result with those in section 6.1, we have provided conditions for identi-

�cation of costs and demand. The overall argument is analogous to classical identi�cation

arguments for supply and demand models, which involve excluded demand shifters and cost

shifters with su¢ cient support to trace out the supply and demand functions.

7 Discriminating Between Oligopoly Models

A remaining question is whether the correct model of oligopoly competition can be distin-

guished from alternative models. Bresnahan (1982) o¤ered an in�uential insight for how

�rotations of demand� could be used to do this, citing formal results in Lau (1982) (see

also Bresnahan (1989)). While Lau (1982) considered homogeneous goods markets within

the context of deterministic conjectural variations models, Bresnahan�s original intuition

suggested much broader applicability. The following remark shows that a variation of this

insight can indeed be extended to our stochastic di¤erentiated products framework.

Remark 1. Suppose mcj (�) = mcj0 (�) and
�
qjt; �jt

�
=
�
qj0t0 ; �j0t0

�
, with t0 6= t and/or j0 6= j.

Under Assumption 8;  j (st; Dt (st; pt) ; pt) =  j0 (st0 ; Dt0 (st0 ; pt0) ; pt0) :

To see this, recall that under Assumption 8

mcj(qjt; �jt) =  j (st; Dt (st; pt) ; pt) 8j; t: (19)

35Starting with equation (18), integrate instead over f~x; ~z�j ; ~zj � zjg and then use the normalization
��1j

�
s0; p0

�
� z0j = 0:
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The right-hand side of (19) cannot change unless the left-hand side does. Thus, for ex-

ample,
�
qjt; �jt

�
=
�
qjt0 ; �jt0

�
implies  j (st; Dt (st; pt) ; pt) =  j (st0 ; Dt0 (st0 ; pt0) ; pt0). Like-

wise, if we assume that mcj0 (�) = mcj (�) for some j0 6= j, then  j (st; Dt (st; pt) ; pt) =

 j0 (st; Dt (st; pt) ; pt) whenever
�
qj0t; �j0t

�
=
�
qjt; �jt

�
. Thus, Remark 1 provides testable

restrictions that can be used to distinguish between alternative models of supply, as long

as the conditions for part (i) of Theorem 3 or part (i) of Theorem 6 hold for both models,

ensuring identi�cation of the cost shocks �jt and �jt0.

To illustrate, consider �rst the simple case of a market with one single-product �rm.

Consider the null hypothesis that the �rm prices at marginal cost and the alternative that

the �rm is a pro�t-maximizing monopolist. Figure 2 shows the market demand curve Dt.

Under the monopoly hypothesis the function  j in Assumption 8 is the marginal revenue

curve MRt. We label this curve  
1
jt, indicating the alternative hypothesis: Under the null

of marginal cost pricing, however, it is the demand curve that is the function  j. We label

this  0jt. The observed equilibrium outcome Et in market t maps to two possible values of

marginal cost at the quantity qt, depending on the model.

Now hold the cost shocks �xed� remember that these are identi�ed without knowledge

of the true model� and consider a change in market conditions that �rotates�the marginal

revenue curve  1jt around the point (qt;mc
1
t ). This is illustrated in Figure 3 with the curve

 1jt0. Associated with this new marginal revenue curve is a market demand curve  0jt0.

Since the true model is monopoly, the new observed equilibrium outcome is Et0. Under

the alternative, the implied marginal cost at quantity qt is again mc1t , consistent with the

restriction in Remark 1. However, under the null, the implied marginal cost is mc0t0, which

is di¤erent from mc0t . So the restriction is violated and the false null is ruled out.

This is a particularly simple example but describes a general �recipe�for ruling out false

models using Remark 1. Indeed, the heuristic illustration in Figure 3 applies to any null

and alternative oligopoly models. Any false null can be ruled out as long as there exist

changes in the market environment that induce rotations of  j for some product j under the

true model that are not also rotations under the false null. This is easy to see analytically
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Figure 2: Market outcome Et maps to di¤erent marginal costs under the null and alternative.

Figure 3: A rotation of the true  j rules out the false null.
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as well. Consider two markets t and t0with �jt = �jt0 = � and qjt = qjt0 = q. Since

mcj
�
qjt; �jt

�
= mcj

�
qjt0 ; �jt0

�
= mcj (q; �), we can use (15) to rationalize qjt = qjt0 = q under

the null only if  j is the same in both markets under the null, as it is under the true model.

This observation falls directly out of our identi�cation analysis but is very closely related

to well known insights from an early literature on identi�cation of �rm �conduct�within the

class of conjectural variations models (e.g., Bresnahan (1982), Lau (1982)).36 Our graphical

illustration, in particular, is intentionally similar to that given by Bresnahan (1982),37 but

makes explicit the key role of the �residual marginal revenue� function,  j (�). While we

generalize and reinterpret these earlier insights, the message is very similar: one can distin-

guish between competing models as long as there are changes in the market environment

that can shift equilibrium quantity and markup independently, at least for some product.

Conditions guaranteeing such variation will depend on the model. However, the changes

in the environment that alter  j form a larger set than the changes in aggregate demand

considered by Lau (1982) or the �rotations of demand�described by Bresnahan (1982, 1989).

For example, even if preferences are identical in markets t and t0 (i.e., there is no change in

demand),  jt and  jt0 can di¤er due to variation in the number of competitors, the charac-

teristics of competitors�products (x(1)�jt and/or ��jt), or the costs of competing �rms (z
(1)
�jt

and/or ��jt). And although we have conditioned on x(2)t , z
(2)
t and Mt, variation in any of

these may also be exploited.

8 Conclusion

We have considered nonparametric identi�cation in a class of di¤erentiated products models

used in a growing body of empirical work in IO and other �elds of economics. We consid-

36In these models products are homogeneous, so the demand side is equivalent to a binary choice model.
Our model can be adapted to a homogeneous goods environment by dropping the product (i.e., �j�) subscripts
on the demand side, interpreting j as a �rm subscript on the supply side, and applying the appropriate
convention for allocating total output among �rms.
37Note that once the demand and cost shocks have been identi�ed and held �xed, we have a non-stochastic

environment, as in Breshnahan�s graphical illustration and the formal results of Lau (1982).
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ered two types of arguments. One links identi�cation of these models to the same kinds

of conditions used to show identi�cation of regression models, while the other has close

connections to classical identi�cation arguments for supply and demand models. We also

pointed to testable implications that can be used to discriminate between alternative models

of oligopoly competition.

Our hope is that our results will be useful to both producers and consumers of empirical

work on di¤erentiated products markets. The results should help practitioners focus on the

essential sources of variation needed to address a wide range of positive and normative ques-

tions. For identi�cation of demand or of marginal costs, the critical issue is the availability

of instruments. It should be no surprise that there is no getting around the need for in-

struments, and it should be comforting that this is essentially all that is needed.38 Likewise

our work should help policy makers, managers, and others who might rely on discrete choice

demand estimates for making decisions. Our results demonstrate that the nonparametric

foundation for empirical work based on these models is really no di¤erent from that for

simpler, more familiar models. We hope this will aid critical readers in focusing on the key

sources of variation in particular applications and ultimately lead to more informed decision

making.

38An important caveat is that commonly used instruments� exogenous characteristics of competiting prod-
ucts (Berry, Levinsohn, and Pakes (1995)) may not be su¢ cient on their own without additional restrictions.
A point emphasized in Berry and Haile (2009b) is that with micro data, natural instruments will often
be more readily available. Combined with the stronger identi�cation results available in the micro data
environment, this provides a powerful motivation for researchers to seek individual-level data to replace or
complement market level data when possible.
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Appendix A. Connected Substitutes

In this appendix we provide some key lemmas related to the connected substitutes assump-

tion, including the proof of Lemma 1 stated in the text. Here we will repeatedly use the

condition �(�; p) 2 �J�as shorthand for �
�
xj; pj; �j

	
j2J 2 �

J with �j � xj + �j 8j:�

We begin by stating a useful elementary result in matrix theory (see, e.g., Horn and

Johnson (1990), section 6.2).

Lemma 3. Consider an n � n matrix A with elements aij. The following conditions are

equivalent:

(i) the directed graph of A is strongly connected;

(ii) for any strict subset K � f1; : : : ; ng, there exists k 2 K and ` =2 K such that a`k 6= 0;

(iii) A is irreducible.39

The following corollary applies part (ii) of Lemma 3 to our model.

Corollary 1. Under Assumptions 1a, 2, and 3, for any (�; p) 2 �J and any strict subset

K � J , there exists k 2 K and ` =2 K such that �` (�; p) is strictly decreasing in �k.

As discussed in the text, the following lemma provides the key implication of the con-

nected substitutes assumption (Assumption 3) for our analysis.

Lemma 4. Suppose (�; p) 2 �J , (�0; p) 2 �J , and �0 6= �. Under Assumptions 1a, 2,

and 3, (i) if I+ �
�
j : �0j > �j

	
is nonempty then

P
j2I+ �j (�

0; p) >
P

j2I+ �j (�; p); (ii) if

I� �
�
j : �0j < �j

	
is nonempty then

P
j2I� �j (�

0; p) <
P

j2I� �j (�; p).

Proof. Consider part (i) and note that because 0 =2 I+, I+ is a strict subset of J . By

Corollary 1, for some k 2 I+ and some ` =2 I+, �` (�; p) is strictly decreasing in �k. Taking

one such pair (k; `), de�ne �� by

��k = �0k

��j = �j j 6= k:

39A matrix is reducible if and only if it can be placed into block upper triangular form by permutations of
rows and columns. A matrix that is not reducible is irreducible.
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By monotonicity of vijt in �jt for all j, �j (�
�; p) � �j (�; p) for all j =2 I+. Further, because

` =2 I+ X
j =2I+

�j (�
�; p) <

X
j =2I+

�j (�; p) :

Since market shares must sum to one, the result follows. Part (ii) follows from a symmetric

argument. �

With these preliminary results, the invertibility of market shares follows easily:

Proof of Lemma 1. Arguing by contradiction, suppose �0 6= � but �j (�
0; p) = �j (�; p) for

all j. If �0j � �j for all j 6= 0 then the set I� =
�
j : �0j < �j

	
must be nonempty to satisfy

�0 6= �. By Lemma 4 we would then have

X
j2I�

�j (�
0; p) <

X
j2I�

�j (�; p)

contradicting the hypothesis that �j (�
0; p) = �j (�; p) for all j. So it must be that the set

I+ �
�
j : �0j > �j

	
is nonempty. But then by Lemma 4 we must have

P
j2I+ �j (�

0; p) >P
j2I+ �j (�; p), which again contradicts the hypothesis. �

Finally, we state a related result that is used when considering relaxation of the linear

index assumption (see Appendix B).

Lemma 5. Suppose Assumptions 1a, 2, and 3 hold. For all j, ��1j (s; p) is strictly increasing

in sj.

Proof. Arguing by contradiction, take j = 1 without loss and suppose

s01 > s1

s0j = sj 8j > 1

but

�01 = ��11 (s0; p) � ��11 (s; p) = �1:
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Because probabilities sum to one, we must have

s00 � �0 (�
0; p) < �0 (�; p) � s0: (20)

If the set I+ �
�
j : �0j > �j

	
is nonempty, by Lemma 4 we have

X
j2I+

�j (�
0; p) >

X
j2I+

�j (�; p) :

Since 1 =2 I+ and 0 =2 I+, this contradicts the hypothesis s0j = sj 8j > 1. Thus, I+ must

be empty, i.e.,

�0j � �j 8j > 0:

But in that case monotonicity of vijt in �j for all j requires

�0 (�
0; p) � �0 (�; p)

which contradicts (20). �

Appendix B. Relaxing the Index Restriction

Here we show that, for our results based on nonparametric instrumental variables arguments,

the linear index restrictions can be relaxed if we are willing to strengthen the instrumental

variables conditions.

For this appendix, suppose �jt = �j

�
x
(1)
jt ; �jt

�
, with �j strictly increasing in its second

argument. This relaxes the linear separability assumed in the text, but retains the key

requirement of monotonicity in �jt. As usual, we will condition on a value of x(2)t , suppress

these arguments in the notation, and let xjt denote x
(1)
jt .

Lemma 1 (whose proof did not require a linear index) now guarantees that for all j and
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t

�j
�
xjt; �jt

�
= ��1j (st; pt)

for some functions ��1j , j = 1; : : : ; J . With �j strictly increasing in �jt we can then write

�jt = ��1j
�
��1j (st; pt) ; xjt

�
� gj (st; pt; xjt)

for some function gj. Moreover, Lemma 5 (see Appendix A) implies that gj must be strictly

increasing in sjt. Thus,

sjt = g�1j
�
�jt; s�jt; pt; xjt

�
� hj

�
s�jt; pt; xjt; �jt

�
(21)

where s�jt denotes fsktgk 6=j and hj is an unknown function that is strictly increasing in �jt.

Note that sjt and s�jt are bounded by de�nition and that we may assume without loss that

pt has been transformed to be bounded as well.

Now consider the identi�cation of the functions hj in (21). Because xjt is exogenous, we

can condition on it and drop it from the notation, rewriting (21) as

sjt = hj
�
s�jt; pt; �jt

�
(22)

We will assume for simplicity that �jt has an atomless marginal distribution. Then, without

loss, we can normalize �jt to have a standard uniform marginal distribution. We will assume

that (st; pt) are continuously distributed conditional on ~zt; xt. We then let fjsp (s�jt; ptj~zt; xt)

denote the conditional (marginal) density of s�jt; pt, and let fjs (sjtjs�jt; pt; ~zt; xt) denote the

conditional density of sjt.

Let �1 and �2 be some small positive constants. Let

�j(s�jt; pt) � fs : fjs (sjs�jt; pt; ~zt; xt) � �1 8 (~zt; xt) with fjsp (sjt; ptj~zt; xt) > 0g :
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For each j and � 2 (0; 1) de�ne Lj (�) as the convex hull of functions mj (�; �) that satisfy

(a) for all (~zt; xt), Pr (sjt � mj (s�jt; pt; �) j~zt; xt) 2 [� � �2; � + �2]; and (b) for all (s�jt; pt),

mj (s�jt; pt; xjt; �) 2 �j(s�jt; pt). Consider the following instrumental variables conditions,

from Chernozhukov and Hansen (2005, Appendix C).

Assumption 14. �jt j= (~zt; xt)8t:

Assumption 15. For all j and � 2 (0; 1),

(i) for any bounded function Bj (s�jt; pt; �) = mj (s�jt; pt; �)�hj (s�jt; pt; �) with mj (�; �) 2

Lj (�) and "jt � sjt�hj (s�jt; pt; �), E [B (s�jt; pt; �) (s�jt; pt; ~zt; xt,�) j~zt; xt] = 0 a.s. only if

Bj (s�jt; pt; �) = 0 a.s. for  (s�jt; pt; ~zt; xt,�) =
R 1
0
f"j (bB (s�jt; pt; �) js�jt; pt; ~zt; xt) db > 0.

(ii) the conditional density f"j (ejs�jt; pt; ~zt; xt) of �jt is continuous and bounded in e over R

a.s.;

(iii) hj (s�jt; pt; �) 2 �j(s�jt; pt) for all (s�jt; pt).

Assumption 14 strengthens the exclusion restriction of Assumption 4 to require full in-

dependence instead of mean independence. Assumption 15 is a type of �bounded com-

pleteness� condition that replaces Assumption 5 in the text. It was used previously by

Chernozhukov and Hansen (2005) to demonstrate nonparametric identi�cation of quantile

treatment e¤ects.

Theorem 7. Suppose Assumptions 1a, 2, 3, 14 and 15 hold. Then for all j, (i) �jt is

identi�ed for all t, and (ii) the function sj (fxkt; pkt; �ktgk2J ) is identi�ed on �J .

Proof. Identi�cation of hj (�; �) for each � 2 (0; 1) follows from Theorem 4 of Chernozhukov

and Hansen (2005) after noting that for each value of �jt 2 (0; 1), the model (22) is equivalent

to the model they consider. Parts (i) and (ii) then follow immediately, as in the proof of

Theorem 1. �

This shows that the analog of Theorem 1 (i.e., identi�cation of demand) can be obtained

with the relaxed index structure. Extension to full identi�cation of the random utility model

under the additional quasilinearity restriction follows exactly as in Theorem 2.
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An analogous argument would apply to allow identi�cation of marginal costs under the

index structure

mcj

�
qjt; �jt; z

(2)
jt

�
with

�jt = �j

�
z
(1)
jt ; �jt

�
and �j strictly monotone in �jt, relaxing the linear structure �jt = z

(1)
jt + �jt in the text.

Because the argument is parallel that for identi�cation of demand, we omit it.

Appendix C. Oligopoly First-Order Conditions

In the text we provided a high-level condition� part (iii) of Assumption 8� ensuring that

oligopoly �rst-order conditions can be inverted to solve for marginal cost, given the demand

system. Here we show that, under assumptions already maintained in our analysis, this

high-level assumption is satis�ed in standard oligopoly models, including the multi-product

price- or quantity-setting models widely used in applications. As emphasized in the text,

the strategy of solving �rst-order conditions for marginal costs has a long history in the IO

literature (e.g., Rosse (1970), Bresnahan (1981), Bresnahan (1987), and Berry, Levinsohn,

and Pakes (1995)). The innovation in this appendix is the demonstration, under general

nonparametric conditions, of the invertibility of particular substitution matrices. A key

condition used below is the same �connected substitutes�condition we relied on to show the

invertibility of the demand side.

We �rst discuss several standard models, noting the invertibility conditions that will

ensure a solution for marginal cost. We then show that the structure already assumed is suf-

�cient to ensure this invertibility in all the examples. Thus, for any of the models discussed

here, part (iii) of Assumption 8 could be viewed as a lemma (proved in this appendix) rather

than an assumption. Throughout this appendix will �x the market size Mt and suppress it.
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Examples of First-Order Conditions

The simplest case is the perfectly competitive model, where �rms are symmetric and

 j (st; Dt (st; pt) ; pt) = pjt:

This provides a solution for marginal cost (marginal cost equals price) with no assumptions

on demand. Of course, perfect competition is seldom a natural assumption for di¤erentiated

products markets. We therefore turn to a set of standard oligopoly models. We consider

both the case of single-product �rms and the more general case of multi-product �rms, which

also nests the case of monopoly (perfect collusion).

The most common assumption for empirical work on di¤erentiated products markets is

Nash equilibrium in a complete information simultaneous price-setting game. For single-

product �rms, the �rst-order condition is (letting �jt = �j (st; pt) as shorthand)

�jt + (pjt �mcjt)
@�jt
@pjt

= 0

which is easily solved for marginal cost:

mcjt = pjt +
�jt

@�jt=@pjt
:

As long as the demand derivative @�jt=@pjt is non-zero, the right-hand side provides the

required function  j (st; Dt (st; pt) ; pt).

The condition needed for the multi-product price-setting case is slightly more compli-

cated. The �rst-order condition for the price of good j, produced by �rm f , is

�jt +
X
k2Jf

(pkt �mckt)
@�kt
@pjt

= 0

where Jf is the subset of products in J produced by f . As in the empirical work of Bresnahan
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(1981) and Bresnahan (1987), the vector of �rst-order conditions can then be written as

�t +�t (pt �mct) = 0 (23)

where the (k; j) element of the square matrix �t is equal to @�kt=@pjt if products k and j

are produced by the same �rm and equal to zero otherwise. Following BLP, the supply-side

�inversion�for marginal cost is then

mct = pt +�
�1
t st:

In this multi-product price-setting case, to satisfy part (iii) of Assumption 8 the matrix �t

must be invertible.

Turning to quantity-setting models, we �rst require existence of an inverse demand func-

tion

pt = �(st; �t):

Consider �rst the case of single-product �rms. Given inverse demand, the �rst-order condi-

tion for the simultaneous quantity setting game equates marginal cost and marginal revenue:

mcjt = pjt +
@�j
@sjt

sjt:

Thus we require that the derivative
@�j
@sjt

exist. With multi-product �rms (which nests multi-

product monopoly/perfect collusion), a change in the quantity of product j can change the

market-clearing price for the �rm�s other products as well. Thus, rearranging the multi-

product �rm�s �rst-order conditions gives

mcjt = pjt +
X
k2Jf

@�k
@sjt

skt:

This solution requires existence of the derivatives of the inverse demand function.

42



Solutions for Marginal Costs

Price-Setting

For the price-setting models, we need invertibility of the within-�rm substitution matrix �t,

which is a diagonal matrix in the case of single-product �rms. We will show that invertibility

is guaranteed by conditions already assumed in the text.

In the single-product price-setting case, we need existence of a nonzero derivative @�jt=@pjt

for all j. This is guaranteed by Assumption 7 and part (ii) of Assumption 8.

To show invertibility of the matrix �t for the multi-product case, we rely on �Taussky�s

theorem�which shows that an irreducibly diagonally dominant matrix is invertible.40 A

matrix A is diagonally dominant if for all i

jaiij �
X
j 6=i

jaijj:

An irreducibly diagonally dominant matrix is a square matrix that is irreducible (see footnote

39) and diagonally dominant, with at least one of the diagonals being strictly dominant, i.e.,

with at least one row such that

jaiij >
X
j 6=i

jaijj: (24)

Proposition 1. For any strict subset of products K � J , re-index the products in K from 1 to

jKj and let D(K) be the jKj by jKj matrix with (k; j) element @�kt=@pjt. Given Assumptions

1a, 2, 3, 7 and parts (i) and (ii) of Assumption 8, D(K) is invertible.

To show this, we begin with the following lemma:

Lemma 6. Given Assumptions 1a, 2, 3, 7 and parts (i) and (ii) of Assumption 8, for

any strict subset K � J , D(K) is a diagonally dominant matrix, with at least one strictly

dominant diagonal.

40See Horn and Johnson (1990), p. 363. For further background on irreducibility and dominant diagonal
conditions, see chapter 6 in that text.
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Proof. Recall that because
P

k2J �kt = 1,
P

k2J
@�kt
@pjt

= 0. For any product j 2 K, this

implies that the associated diagonal element of D(K) satis�es

����@�jt@pjt

���� = X
k2K�fjg

@�kt
@pjt

+
X
`=2K

@�`t
@pjt

: (25)

By part (ii) of Assumption 8, this implies

����@�jt@pjt

���� � X
k2K�fjg

@�kt
@pjt

: (26)

Furthermore, by the connected substitutes assumption, Lemma 3 (see Appendix A), and the

strict monotonicity of vijt in pjt, the second sum in (25) is strictly positive for at least one

product j 2 K. For that j the inequality in (26) is strict. �

Proof of Proposition 1. We argue that D(K) must be either (i) an irreducibly diagonally

dominant matrix, or (ii) block-diagonal with each block being an irreducibly diagonally

dominant matrix; then, by Taussky�s theorem, D(K) must be invertible. By Lemma 3 (see

Appendix A) D(K) is irreducible if and only if the directed graph of D (K) is strongly

connected. If the directed graph of D (K) is strongly connected then, by Lemma 6, D(K) is

an irreducibly diagonally dominant matrix and is therefore invertible. So now consider the

case in which the directed graph of D (K) is not strongly connected. By Corollary 2 and

Lemma 8 (both in Appendix D) the directed graph of D (K) can be partitioned into isolated

strongly connected subgraphs. The nodes in each isolated subgraph correspond to a subset

of products that do not substitute outside of the subset. We can therefore rearrange the

order of products, with the products in the �rst strongly connected subset coming �rst, the

next subset following and so on. The resulting permutation of D(K) is block diagonal, with

each block being irreducible by Lemma 3. Further, by Lemma 6, each block is diagonally

dominant with at least one strictly dominant diagonal. Therefore, by Taussky�s theorem,

each block is invertible. This implies that the entire D(K) matrix is invertible. �

We can now use Proposition 1 to prove that the matrix of within-�rm derivatives, �t,

44



is invertible. First note that �t is itself block diagonal with each block consisting of the

@�kt=@pjt terms for the product j and k produced by a given �rm. Due to the outside

good, even in the case of monopoly, the set of products produced by one �rm will be a strict

subset of J . Thus, by Proposition 1, each of these blocks is invertible and so the matrix �t

is invertible.

Quantity Setting.

In the quantity setting example, the key condition is the existence of the inverse demand

function and its derivatives. We have assumed (part (ii) of Assumption 8) that vijt is strictly

decreasing in pjt. Thus, the same argument used to prove Lemma 1 (swapping the roles of

pt and �t) implies that, due to the connected substitutes property, for every (st; �t), there

is a unique price vector pt that solves st = �(pt; �t). This implies existence of an inverse

demand function, which we write in vector form as pt = �(st; �t).

Proposition 1 guarantees the invertibility of the matrix of own- and cross-price derivatives

of market shares. So by the inverse function theorem, derivatives of the inverse demand

function exist and are (as usual) equal to the elements of the inverse D(K) matrix, i.e.,

@�k
@sjt

=
�
D(K)�1

�
kj
:

Appendix D

Here we present two results referenced in Appendix C. The �rst provides su¢ cient conditions

for the substitution incidence matrix � (Jt) to be symmetric, so that all edges of its directed

graph are bidirectional. The second concerns a simple property of a strongly connected

graph with bidirectional edges.

Lemma 7. Suppose Assumptions 1a and 2 hold and that for all j 2 J , Pr
�
vijt � vjxjt; pjt; �jt

�
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is strictly decreasing and continuous in wjt.41 Then good k substitutes to good ` at
��
xjt; pjt; �jt

�	
j2J

if and only if good ` substitutes to good k at
��
xjt; pjt; �jt

�	
j2Jt

.

Proof. For good k to substitute to good `, it must be the case that

Pr (vikt � � < vi`t < vikt) > 0 8� > 0

i.e., letting di`kt = vi`t � vikt,

Pr fdi`kt 2 (��; 0)g > 0 8� > 0:

Thus, arguing by contradiction, suppose that for some � > 0 and some  > 0, we have

Pr (di`kt 2 (��; 0)) > 0 but Pr (di`kt 2 (0; )) = 0. For this to hold we must have either (a)

Pr (di`kt > 0) = 0, violating Assumption 2 , or (b) Pr (di`kt > 0) > 0 when supp di`kt excludes

(0; ), violating the maintained assumption that the utility di¤erences (vilt � vikt) have con-

vex support. �

This symmetry of � (Jt) was not required by our results. However, Lemma 7 demon-

strates why in standard models (where vijt is everywhere continuous in wjt) the directed

graph of � (Jt) is bidirectional (recall Figure 1). Further, the following Corollary is utilized

in Appendix C.

Corollary 2. Consider any K � J , re-index the goods in K from 1 to jKj ; and let D(K) be

the jKj by jKj matrix with (k; j) element @�kt=@pjt. Under Assumptions 1a, 2, and 8 part

(ii), the directed graph of D(K) is bidirectional.

Finally, we provide the following result, referenced in Appendix C.

Lemma 8. Let G be a strongly connected directed graph, and let N be a subgraph of G with

at least one vertex. If all edges of G are bidirectional, N can be partitioned into isolated

strongly connected subgraphs.

41As in De�nition 1, wjt may be an element of
�
xjt; pjt; �jt

�
or an index derived from

�
xjt; pjt; �jt

�
. The

relevant cases in the text are wjt = �jt and wjt = �pjt.
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Proof. Let N0 = N , and de�ne C (n0) to be the null graph (no nodes). Consider an iterative

argument, beginning with iteration t = 1: Let Nt be the subgraph of Nt�1 obtained by

excluding the nodes of C (nt�1). Let nt be any node of Nt and let C (nt) be the subgraph

of Nt whose nodes are nt and all nodes from which there is a path in Nt to nt. By

bidirectionality, C (nt) is strongly connected. If C (nt) = Nt, the argument is complete.

Otherwise, add 1 to t and iterate. The argument will be complete in at most jN j iterations.

�

References

Allenby, G. M., and P. E. Rossi (1999): �Marketing Models of Consumer Heterogene-

ity,�Journal of Econometrics, 89, 57�78.

Altonji, J., and R. L. Matzkin (2005): �Cross-Section and Panel Data Estimators for

Nonseparable Models with Endogenous Regressors,�Econometrica, 73, 1053�1102.

Athey, S., and G. W. Imbens (2007): �Discrete Choice Models with Multiple Unobserved

Choice Characteristics,�International Economic Review, 48, 1159�1192.

Bajari, P., J. Fox, K. i. Kim, and S. Ryan (2009): �The Random Coe¢ cients Logit

Model is Identi�ed,�Discussion paper, University of Minnesota.

Bayer, P., F. Ferreira, and R. McMillan (2007): �A Uni�ed Framework for Measuring

Preferences for Schools and Neighborhoods,�Journal of Political Economy, 115(5), 588�

638.

Benkard, L., and S. T. Berry (2006): �On the Nonparametric Identi�cation of Non-

linear Simultaneous Equations Models: Comment on Brown (1983) and Roehrig (1988),�

Econometrica, 74, 1429�1440.

Berry, S. (1994): �Estimating Discrete Choice Models of Product Di¤erentiation,�RAND

Journal of Economics, 23(2), 242�262.

47



Berry, S., J. Levinsohn, and A. Pakes (1995): �Automobile Prices in Market Equilib-

rium,�Econometrica, 60(4), 889�917.

(1999): �Voluntary Export Restraints on Automobiles: Evaluating a Strategic

Trade Policy,�American Economic Review, 89(3), 189�211.

(2004): �Di¤erentiated Products Demand Systems from a Combination of Micro

and Macro Data: The New Vehicle Market,�Journal of Political Economy, 112(1), 68�105.

Berry, S. T., and P. A. Haile (2009a): �Identi�cation of a Nonparametrc Generalized

Regression Model with Group E¤ects,�Discussion paper, Yale University.

(2009b): �Nonparametric Identi�cation of Multinomial Choice Demand Models

with Heterogeneous Consumers,�Discussion paper, Yale University.

Berry, S. T., and A. Pakes (2007): �The Pure Characteristics Demand Model,�Discus-

sion paper, Yale University.

Blundell, R. W., and J. L. Powell (2004): �Endogeneity in Semiparametric Binary

Response Models,�Review of Economic Studies, 71, 655�679.

Bresnahan, T. (1981): �Departures from Marginal Cost Pricing in the Auomobile Indus-

try,�Journal of Econometrics, 17, 457�482.

(1982): �The Oligopoly Solution Concept is Identi�ed,� Economics Letters, 10,

82�97.

(1987): �Competition and Collusion in the American Automobile Oligopoly: The

1955 Price War,�Journal of Industrial Economics, 35, 457�482.

(1989): �Empirical Studies of Industries with Market Power,�in The Handbook of

Industrial Organization, ed. by R. Schamlensee, and R. Willig, no. 10 in Handbooks in

Economics. North-Holland.

48



Briesch, R. A., P. K. Chintagunta, and R. L. Matzkin (2005): �Nonparametric

Discrete Choice Models with Unobserved Heterogeneity,�Discussion paper, Northwestern

University.

Brown, B. (1983): �The Identi�cation Problem in Systems Nonlinear in the Variables,�

Econometrica, 51(1), 175�96.

Bundorf, K., J. Levin, and N. Mahoney (2008): �Pricing and Welfare in Health Plan

Choice,�Discussion paper, Stanford University.

Caplin, A., and B. Nalebuff (1991): �Aggregation and Imperfect Competition: On the

Existence of Equilibrium,�Econometrica, 59(1), 1�23.

Capps, C., D. Dranove, and M. Satterthwaite (2003): �Competition and Market

Power in Option Demand Markets,�RAND Journal of Economics, 34(5), 737�763.

Cardon, J., and I. Hendel (2001): �Asymmetric Information in Health Care and Health

Insurance Markets" Evidence from the National Medical Expenditure Survery,�RAND

Journal of Economics, 32, 408�427.

Chernozhukov, V., and C. Hansen (2005): �An IV Model of Quantile Treatment Ef-

fects,�Econometrica, 73(1), 245�261.

Chiappori, P.-A., and I. Komunjer (2009): �On the Nonparametric Identi�cation of

Multiple Choice Models,�Discussion paper, University of California San Diego.

Chintagunta, P. K., and B. E. Honoré (1996): �Investigating the E¤ects of Marketing

Variables and Unobserved Heterogeneity in a Multinomial Probit Model,� International

Journal of Marketing Research, 13, 1�15.

Domencich, T., and D. McFadden (1975): Urban Travel Demand: A Behavioral Analy-

sis. North Holland, Amsterdam.

49



Eizenberg, A. (2008): �Upstream Innovation and Product Variety in the United States

Home PC Market,�Discussion paper, Yale University.

Fan, Y. (2008): �Market Structure and Product Quality in the U.S. Daily Newspaper

Market,�Discussion paper, Yale University.

Fox, J., and A. Gandhi (2009): �Identifying Heterogeneity in Economic Choice Models,�

Discussion paper, University of Chicago.

Gandhi, A. (2008): �On the Nonparametric Foundations of Discrete Choice Demand Esti-

mation,�Discussion paper, University of Wisconsin-Madison.

Gautier, E., and Y. Kitamura (2007): �Nonparametric Estimation in Random Coe¢ -

cients Binary Choice Models,�Discussion paper, Yale.

Gentzkow, M., and J. Shapiro (2009): �What Drives Media Slant? Evidence from U.S.

Newspapers,�Econometrica.

Gikhman, I. I., and A. V. Skorokhod (1980): The Theory of Stochastic Processes.

Springer-Verlag, Berlin.

Goldberg, P. (1998): �The E¤ects of the Corporate Average Fuel Economy Standards in

the Automobile Industry,�Journal of Industrial Economics, pp. 1�33.

Goldberg, P., and F. Verboven (2001): �The Evolution of Price Dispersion in the

European Car Market,�The Review of Economics Studies, 68(4), 811�848.

Goldberg, P. K. (1995): �Product Di¤erentiation and Oligopoly in International Markets:

The Case of the U.S. Automobile Industry,�Econometrica, 63(4), 891�951.

Han, A. K. (1987): �Nonparametric Analysis of a Generalized Regression Model,�Journal

of Econometrics, 35, 303�316.

Hastings, J., D. Staiger, and T. Kane (2007): �Preferences and Heterogeneous Treat-

ment E¤ects in a Public School Choice Lottery,�Discussion paper, Yale University.

50



Hausman, J., and D. Wise (1978): �A Conditional Probit Model for Qualitative Choice:

Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences,�Econo-

metrica, 46, 403�426.

Hausman, J. A. (1996): �Valuation of New Goods under Perfect and Imperfect Compe-

titioin,� in The Economics of New Goods, ed. by T. F. Bresnahan, and R. J. Gordon,

chap. 5, pp. 209�248. University of Chicago Press, Chicago.

Ho, K. (2007): �Insurer-Provider Networks in the Medical Care Market,�Discussion paper,

Columbia University.

Hoderlein, S. (2008): �Endogeneity in Semiparametric Binary Random Coe¢ cient Mod-

els,�Discussion paper, Brown University.

Hong, H., and E. Tamer (2004): �Endogenous Binary Choice Mode with Median Restric-

tions,�Economics Letters, pp. 219�224.

Honoré, B. E., and A. Lewbel (2002): �Semiparametric Binary Choice Panel Data

Models Without Strictly Exogenous Regressors,�emet, 70(5), 2053�2063.

Horn, R. A., and C. R. Johnson (1990): Matrix Analysis. Cambrige University Press.

Hotelling, H. (1929): �Stability in Competition,�Economic Journal, 39, 41�57.

Hotz, J., and R. A. Miller (1993): �Conditional Choice Probabilites and the Estimation

of Dynamic Models,�Review of Economic Studies, 60, 497�529.

Ichimura, H., and T. S. Thompson (1998): �Maximum Likelihood Estimation of a

Binary Choice Model with Random Coe¢ cients of Unknown Distribution,� Journal of

Econometrics, 86(2), 269�95.

Lau, L. (1982): �On Identifying the Degree of Competitiveness from Industry Price and

Output Data,�Economics Letters, 10, 93�99.

51



Lewbel, A. (2000): �Semiparametric Qualitative Response Model Estimation with Un-

known Heteroscedasticity or Instrumental Variables,�Journal of Econometrics, 97, 145�

177.

(2005): �Simple Endogenous Binary Choice and Selection Panel Model Estimators,�

Discussion paper, Boston College.

Lustig, J. (2008): �The Welfare E¤ects of Adverse Selection in Privatized Medicare,�

Discussion paper, Boston University.

Magnac, T., and E. Maurin (2007): �Identi�cation and Information in Monotone Binary

Models,�Journal of Econometrics, 139, 76�104.

Manski, C. F. (1985): �Semiparametric Analysis of Discrete Response: Asymptotic Prop-

erties of the Maximum Score Estimator,�Journal of Econometrics, 27, 313�333.

(1988): �Identi�cation of Binary Response Models,�Journal of the American Sta-

titical Association, 83(403), 729�738.

Matzkin, R. L. (1992): �Nonparametric and Distribution-Free Estimation of the Binary

Choice and Threshold Crossing Models,�Econometrica, 60(2).

(1993): �Nonparametric Identi�cation and Estimation of Polychotomous Choice

Models,�Journal of Econometrics, 58.

(2004): �Unobservable Instruments,�Discussion paper, Northwestern University.

(2005): �Identi�cation in Nonparametric Simultaneous Equations,�Discussion pa-

per, Northwestern University.

(2007a): �Heterogeneous Choice,� in Advances in Economics and Economet-

rics, Theory and Applications, Ninth World Congress of the Econometric Society, ed.

by R. Blundell, W. Newey, and T. Persson. Cambridge University Press.

52



(2007b): �Nonparametric Identi�cation,�in Handbook of Econometrics, ed. by J. J.

Heckman, and E. Leamer, vol. 6B. Elsevier.

(2008): �Identi�cation in Nonparametric Simultaneous Equations,�Econometrica,

76, 945�978.

McFadden, D. (1974): �Conditional Logit Analysis of Qualitative Choice Behavior,� in

Frontiers of Econometrics, ed. by P. Zarembka. Academic Press, New York.

Mussa, M., and S. Rosen (1978): �Monopoly and Product Quality,�Journal of Economics

Theory, 18, 301�307.

Nair, H., P. Chintagunta, and J.-P. Dube (2004): �Empirical Analysis of Indirect

Network E¤ects in the Market for Personal Digital Assistants,�Quantitative Marketing

and Economics, 2, 23�58.

Nevo, A. (2000): �Mergers with Di¤erentiated Products: The Case of the Ready-to-Eat

Cereal Industry,�RAND Journal ofEconomics, 31(3), 395�421.

(2001): �Measuring Market Power in the Ready-to-Eat Cereal Industry,�Econo-

metrica, 69(2), 307�42.

Newey, W. K., and J. L. Powell (2003): �Instrumental Variable Estimation in Non-

parametric Models,�Econometrica, 71(5), 1565�1578.

Petrin, A. (2002): �Quantifying the Bene�ts of New Products: The Case of the Minivan,�

JPE, 110(4), 705�729.

Petrin, A., and K. Train (2009): �A Control Function Approach to Endogeneity in

Consumer Choice Models,�Journal of Marketing Research, forthcoming.

Quandt, R. E. (1966): �A Probabalistic Abstract Mode Model,� in Studies in Travel

Demand, Volume II, pp. 90�113. Mathematica, Princeton, N.J.

(1968): �Estimation of Modal Splits,�Transportation Research, 2, 41�50.

53



Rochet, J.-C., and L. A. Stole (2002): �Nonlinear Pricing with Random Participation,�

The Review of Economic Studies, 69(1), 277�311.

Roehrig, C. S. (1988): �Conditions for Identi�cation in Nonparametric and Parametic

Models,�Econometrica, 56(2), 433�47.

Rosse, J. N. (1970): �Estimating Cost Function Parameters without using Cost Function

Data: An Illustrated Methodology,�Econometrica, 38(2), 256�275.

Rysman, M. (2004): �Competition Between Networks: A Study of the Market for Yellow

Pages,�Review of Economic Studies, 71.

Salop, S. (1979): �Monopolistic Competition with Outside Goods,� RAND Journal of

Economics, 10, 141�156.

Severini, T. A., and G. Tripathi (2006): �Some Identi�cation Issues in Nonparametric

Models with Endogenous Regressors,�Econometric Theory.

Villas-Boas, S. B. (2007): �Vertical Relationships Between Manufacturers and Retailers:

Inference With Limited Data,�Review of Economic Studies, 74, 625�652.

54


