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It is a well—known proposition that a firm. producing a storable good

under conditions of increasing marginal cost will tend to smooth the time pro-

file of its production relative to the time profile of its sales. The incen-

tive to smooth production arises from the fact that the cost function is a

convex function of the level of production. For a given average level of pro-

duction, average costs can be reduced by reducing the variation in production.

Of course, if the cost function is linear in the level of production, then

this incentive to smooth production disappears. However, we will demonstrate

in this paper that if the possibility of stock—outs
is explicitly incorporated

into the firm's dynamic optimization problem (i.e, if we impose a non—

negativity constraint on inventories), and if there is a lag in production.

then optimal behavior can be characterized by production smoothing even if the

cost function is linear.

Recently Blinder (1982) has shown that optimal behavior requires that the

firm set its price and its level of production so as to equate the marginal

cost of production (Mc) with the expected marginal revenue (EMR) from increas-

ing (expected) sales by one unit. Blinder's derivation of this result depends

crucially on two assumptions of his model: (1) there are no stock—outs, i.e.,

if demand exceeds available inventory, the firm is allowed to sell short out-

put and to cover the sale in a future period; and (2) demand shocks are addi-

tive. Maintaining assumption (1) but relaxing the assumption of additive

demand shocks, we show that this equality of MC and EMR does not hold in gen-

eral. Indeed we demonstrate that the excess of MC over EMR has the same sign

as the covariance of the marginal valuation of next period's inventory and the

1. Recently, Schutte (1983) has shown that there is a negative level of
inventory in the stationary solution to Blinder's model. Schutte goes on
to argue that accounting for stock—outs introduces substantial

complications which are not readily handled in Blinder's model.
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slope of the demand curve. For additive demand shocks, this covariance is

zero and MC = EMR as in Blinder. We also show that if assumption (1) is

relaxed but assumption (2) is maintained, we once again find that MC is not

equal to EMR.

We present a simple stochastic model of the production and pricing

behavior of a firm in Section I. This model explicitly incorporates stock

outs, but we show in Section l.A how this model can be used to analyze

behavior if the firm is allowed to sell short its output, as in Blinder

(1982). We then derive an expression for the excess of MC over EMR. In Sec-

tion II we return to the model with stock—outs and show that even with addi

tive demand shocks, MC > EMR.

In Sections III and IV we assume that the demand curve is perfectly ine-

lastic and we examine two alternative definitions of production smoothing. In

Section III we show that if beginning—of—period inventory is increased by one

unit, the firm reduces its level of production by less than one unit. This is

our first definition of production smoothing. In Section IV we present a

second definition of production smoothing: the variance of sales is greater

than the variance of production. We then show that if behavior is character-

ized by the first definition of production smoothing, then it is also charac-

terized by the second definition. The concluding remarks in Section V include

a brief discussion of the pitfalls of trying to infer the stock—out history of

a firm from observations on the stock—out experience of an individual customer

of that firm.
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I. The Model

Consider a firm which produces a storable good.2 Let denote the physi-

cal stock of the good held in the firm's inventory at the beginning of period

t. The demand for the firm's product,
is a stochastic function of the

price, Pt,

= h(p, ) (1)

where is an i.i.d. random variable with continuous
density function f(et).

We assume that h_ < 0 and that h > 0.P.— 8

At the beginning of period t, before observing the realization of the

random variable 8t the firm must decide how much output, to produce. This

output, which costs c(y), takes one period to produce and hence is not avail-

able for sale until period t + 1. We suppose that c'(y) ) 0 and c''(y) .�. 0.

The assumption that production does not take place instantaneously is impor—

taut for the results concerning
production smoothing in the presence of a

linear cost function, and the implications of relaxing this assumption will be

discussed in section III.A. The result that, in general, marginal cost is not

equal to expected marginal revenue continues to hold whether or not there is a

production lag. (See footnote 7 for further details.)

In addition to setting
y the firm also sets the price Pt before observ-

ing the realization of c. After the firm chooses values for and Pt' the

realization of
e is observed, and the firm sells goods out of inventory.3 If

2. Gould (1978) analyzes inventories and stock—outs for a firm which produces
a perishable good. In his model, "there are no intertemporal dynamic
links in inventory planning by the firm." However, in this paper we
analyze inventories of a storable good so that the firm faces an
intertemporal optimization problem.



—4—

demand exceeds available inventory the firm sells its entire inventory.

Unsatisfied demand is not backlogged; it simply disappears.4 Letting 5 denote

the quantity of goods sold in period t, we have

= min(q, x)
(2)

The inventory accumulation equation is

't+l = Xt + t

Substituting (1) into (2) and the result into (3), we have

xt+1 = + max(O, — h(p Ct))
(4)

Thus, if there is a stock—out in period t (i.e. h(pi e) > the inventory

carried into period t+1 is simply '• In the absence of a stock-out in period

t, the inventory carried into period t+1 is + — h(p, Ct).

It will be convenient to let represent the maximum value of the demand

shock which does not lead to a stock—Out in period t. If ' the firm

is able to meet demand; if > there is a stock—out. More formally,

3. This formulation differs from that in Reagan (1982) in which the firm

observes the realization of before making its price and output
decisions. In Reagans model, the firm can raise price during periods of

high demand shocks so that demand does not exceed available inventory at

the market price.

4. Since we have assumed that e is i.i.d., we are ignoring the fact that

customers who are rationed in one period may have a higher demand in the

following period. We might expect such an effect for a durable good. On

the other hand, customers who are rationed might choose to take their

business elsewhere next period. In this paper, we simply ignore these two

opposing effects.
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= "'' s.t. = h(p, Wt) (5)

From the properties of h(.,.), it is clear that ) 0 and 0.

The expected value of sales, s. is a function of both price, and

available inventory, ' Letting H(p, x) denote the expected value of

we have

wt

B(p, = et)f(a)de + xt[l—F(w)] (6)

where F( ) is the cumulative distribution function of Observe that

Wt

E(P, = !"Pt' et)f(ct)det .1 0

so that the expected value of s is a non—increasing function of the price Pt.

Now that we have described the economic environment in which the firm

operates, we will discuss the firm's optimization problem. We assume that the

firm is risk—neutral and maximizes the expected present value of its cash

flow. Let be the one—period discount factor where 0 < < 1. The value of

the firm can be written as a function of its inventory level and satisfies the

Bellman equation

V(x) max (ptE(p, — c(y) + /V(xt÷i)f(ct)de) (8)

Pt, yt
—
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Substituting (4) into (8), and suppressing the time subscript, we obtain

w(x, p)

v(x) max(pH(p..x) — c(y) + / V(x+y—h(p,C))f(C)dC
p,y

—

+ [l — F(w(x,p))]V(Y)) (9)

Let and denote the derivatives, with respect to y and p respec-

tively, of the expression in curly brackets on the right hand side of (9).

Optimality requires that and each be set equal to zero. Therefore,

= —c'(y) + jV'(x+y—h(p,e))f(e)dc + [l—F(w)]V'(Y) 0 (10)

D = pE + B — = 0 (11)

According to (10) at the optimal level of productions the marginal cost,

c'(y), is equal to the expected present value of an additional unit of inveir

tory at the beginning of period t+1. According to (11), the price is chosen

so that the extra expected current revenue obtaine.d from reducing the price is

equal to the valuation of the reduction in next period's inventory due to

reducing the price this year. Note that a reduction in the current price will

increase current sales and reduce next period's inventory only if e <

i.e., only if there is not a ;tockout in the current period.

Thus far we have ignored any inventory holding costs other than the

opportunity cost of funds. It turns out that the results of this paper are

not affected if we modify our model to include an inventory holding cost
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function b(xt) with b' 2. 0 and b'' j 0. Taking account of these holding

costs, the Bellman equation in (8) must be rewritten as

V(xt) = max tptH(pt,x) — c(y) — b(x) +

t,yt

However, the optimality conditions in (10) and (11) continue to hold without

modification. More precisely, the value function V(x) is affected by the

introduction of holding costs, but relations involving the value function in

(10) and (ii) continue to hold as written. Henceforth, we will ignore any

holding costs.

Before analyzing further the first—order conditions in (10) and (11), we

digress to a discussion of the case in which stock—outs can be ignored.

I. A. Short Sales .g.Bg Backloas

In many inventory models, stock—outs are not explicitly modeled. Rather

it is assumed (implicitly) that if demand exceeds available inventory, the

firm in effect sells short and covers the sale in a future period. (See, for

example, Blinder (1982)). Thus sales revenue is simply equal to price multi-

plied by demand. Formally, the first—order conditions derived above can be

applied to this situation simply by setting equal to . In effect, =

means that no values of a lead to a stock—out.5

5. If we allow short sales (by ignoring the
non—negativity constraint on

inventories), then we must introduce some feature into the model which
prevents inventories from being run down to minus infinity. 1pically,
one introduces a convex cost of being away from some "target" level of
inventories, as in Blinder (1982) or in Feldstejn and Anerbach (1976).
Letting g(x) be a strictly convex cost of being away from some (implicitly
defined) target level of inventories, the Bellman equation isV(x) = max(n(p,y,x) + E[V(x+y—h(p,c))) where

p'y



Setting w equal to in (10) and (11) yields the following first-order

conditions for the situation in which stock—outs are ignored

c(y) = E[V'(x+y—h(p,e))] (12)

pH + H E[V'(x+Y—h(Pe))h(Pe)]
(13)

where E( I denotes the expectation over e. Now divide both sides of (13) by

and subtract the resulting equation from (12) to obtain

c'(y) — (p + = (HE[V'(x+y—h(Pe))] —
E(V'(x+Y—h(P1C))h(Pe)]) (14)

Observe that if w = in (7), we obtain H = E[h(e)]. Therefore, the term

in curly brackets on the right—hand side of (14) is equal to

—Cov(V'(x+3r—h(Pae))h(pe)]. Also note that p + is the change in expected

revenue which accompanies a reduction in price which increases expected sales

by one unit. Letting EW denote this expected marginal revenues we now

rewrite (14) as

c'(y) - EMR (15)

p

Suppose that h < 0 for at least some interval of e so that < 0. Then

c'(y) — EMR has the same sign as Cov(V'(x+Yh(Pe))h(Pe)].

n(p,yx) = pEEh(p,e)] — c(y) — g(x). Note that the first—order conditions

are identical to those in (12) and (13). Also, note that if h m 0,

c'' .�. 0 and g'' > 0, then n(p,yx) is concave in p and y and sFictiy

concave in x. Also, the transition equation (x+i = x + — h(p*et))
s linear x , y , and p . Therefore the value function is strictly

concave. (gee Lucas an Prescott (1971)).
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We will consider two special cases of demand analyzed by Zabel (1972) in

order to interpret (15): (1) additive demand shocks, and (2) multiplicative

demand shocks. First suppose that demand shocks are additive, i.e., h(p,e)

can be written as h*(p) + e. In this case h(p,e) is independent of e, and

the covariance in (15) is zero. Thus, if demand shocks are additive and if we

ignore stock—outs, we obtain c'(y) = EMR as in Blinder (1982).

Now suppose that demand shocks are multiplicative so that h(p,e) can be

written as h(p,e) = h(p)e. In this case, h(pe) = h'(p)e < 0 is a decreas-

ing function of e. Note that the inventory carried into next period,

x+y—h(p,c) is a decreasing function of c. Therefore, provided that V( ) is
concave,6 V'(x+y—h(p,c)) is an increasing function of a. Hence, the covari—

ance in (15) is negative and we obtain c'(y) < E}U.

More generally, we find that if < 0 for all a, then c'(y) < EMR; if

> 0 for all a, then c'(y) > EMR. If the demand shock is additive, we

obtain the simple result that EMR = c(y).

II. Comyarison Marginal Revenue j.p,g Marainal Cost j j Presence .21

St oc k—ut s

We have shown in section I that if short sales are allowed, the equality

of c'(y) and EMR holds for additive demand shocks. We will show in this sec-

tion that even with additive demand shocks, the equality of c'(y) and E does

not hold if we take account of stock—outs (i.e., do not implicitly allow short

sales).

6. See footnote 5.
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We proceed by rewriting (10) and (11) in more convenient forms. Equation

(10) is clearly equivalent to

c'(y) E(V'(x+y—s)] = E[V'(x+yh(p1e))IC Iw]F(w) (16)

+ V'(y)(l —

Now assume that demand shocks are additive, (h(p.c) = h*(p) + a) and observe

from (7) that HP = h*'(p)F(w). Dividing both sides of (11) by H and recal-

ling that the expected marginal revenue, EMR, is equal to p + -, we obtain

EMR = E[V'(x+y—h(p,e))lc ( u] (17)

Comparing (16) and (17), we see that the marginal cost, c'(y), is equated with

the discounted unconditional expected marginal valuation of next period's

inventory however, expected marginal revenue, EMit, is equated with the

discounted conditional expected marginal valuation of next period's inventory,

where we condition on not stocking—out this period. The reason for this

difference is that an increase in production will increase next period's

inventory regardless of whether or not there is stockout this period. How

ever, reducing the current price to increase current expected sales by one

unit will increase current sales and reduce next period's inventory only if

there is no stock—out this period. Thus, we equate EMit with the conditional

expected marginal valuation of next period's inventory.

To compare expected marginal revenue and marginal cost, we subtract (17)

from (16) to obtain
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c'(y) — EMR = (1 — F(w))(V'(y) — E[V'(x+y—h(p,e))Ie .� (18)

Provided that the value function is concave, V'(y) > EtV'(x+y—h(p.e))tc .�. w]

(since y < x+y—h(p,e) if a C w) so that marginal cost exceeds marginal reve-

nue. The intuition for this result is that there are two ways to increase the

expected value of next period's inventory by one unit: (1) increase production

by one unit, or (2) raise price by —H'. Increasing production by a unit

raises current costs by c'(y) and increases next period's inventory for all

realizations of the demand shock. Raising the price by —fl1 imposes a current

cost of EJ and raises next period's inventory only if the demand shock is

small enough not to cause a stock—out. However, these are precisely the

situations in which the extra unit of inventory has the least value. There-

fore, the marginal benefit of increasing production by one unit exceeds the

marginal benefit of raising price by —R. Therefore, equating marginal bene-

fits and marginal costs of each action requires that c'(y) be greater than

EMR.7

7. Recall that we have assumed that production in period t is not available
for sale until period t+1. Alternatively, if we assume that production in
period t is available for sale in period t, then a stock—out will occur in
period t if c > where = w*(x+y,p) is defined so that

+ ' h(ptw*). In this case, the Bellman equation is

(U.

V(x) maxfpH(p,x+y) — c(y) + fV(x+y—h(p,e))f(c)de (F7.l)
p,y

+ — F(e)JV(O))

(U.
where H(px+y) = I h(p,e)f(c)dc + (x+y)[1 — F(wt)J. Observing that

U = 1 — F(w), the first—order conditions are

c'(y) = p(l — F(w)1 + E[V'(x+y—h(p,e))Je . w]F(e) (F7.2)

pH + H = E[V'(x+yh(p,))h (p,e)Ic < w]F(w) (F7.3)
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III. Production Smoothina with Perfectly Inelastic Demand

In this section we present the first of two alternative definitions of

production smoothing and show that if the demand curve is perfectly inelastic,

then optimal behavior is characterized by production smoothing. Our first

definition of production smoothing is that the optimal production rule as a

function of initial inventory is such that —1 < < 0. That is, an increase

in initial inventory leads to a reduction in production. However, this

decrease in production is smaller than the increase in initial inventory.

We assume that the demand curve is perfectly inelastic, h 0, and that

the price of the good. p. is constant over time. The firm's only decision

variable is the level of production. and the optimal level of production

satisfies the first—order condition (10). Totally differentiating (10) with

respect to x and y we obtain

= .— (19)
dx D

yy

where

w
fV"(x+y-h(p,e))f(c)de (19a)

If we assume that demand aiocks are additive, then B = h F(w).
Recalling that EMR = p + , we can rewrite as (F7.3

p

EMR = E[V'(x+y—h(p.e))IB ( e] (F7.4)

Substituting (F7.4) into (F7.2) yields

c'(y) — EMR = (1 — F(w*))(p — EMIt) (F7.5)

This, if there is a positive probability of a stock (1 — F(u)). we see

that c'(y) also exceeds EMR under the alternative assumption that

production is immediately available for sale.
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and

= —c''(y) + fV''(x+y-h(p,e))f(e)de + [1—F(w)]V''(y) (19b)

Since, as shown in the next paragraph, the value function is concave, implying

that V'' < 0, we see that D < 0 and < 0. Therefore, from (19), < 0.

Now substitute (19a,b) into (19) to obtain

= + V'(V)(1—F(W))) (20)
yy

The term in curly brackets in (20) is less than one if C" > 0 or if there is a

positive probability of a stock—out, 1—F(). Therefore, provided that 1—F(o)

is positive, we have

—i < < 0 (21)

even if c'' 0. That is, even with a linear cost function, production

smoothing will occur if we take account of stock—outs.8 On the otherhand, if

short sales are permitted as in section I.A, then linearity of c(y) implies

—1 (Formally, this result is obtained by setting w equal to in (20),

as explained in section I).

We have used the fact that the value function is strictly concave, i.e.,

if 0< a <land if A# 1B then

y(1A + (1—a)z!) > aV(xA) + (l_a)V(XB) (22)

To show that (22) holds, consider a firm with inventory 1A + (1_a)1B and sup-

pose that it operates two stores, A and B. Store A has an initial inventory

8. See Earlin and Scarf (1958) for a different derivation and presentation of
this result.
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of czXA and store B has an initial inventory of (1—a)x. In period t. the firm

produces ay + (1—a)y where y is the production in period t of a firm with

initial inventory i', i = A,B. If, in each periods the firm ships ay to

store A and (l—a)y to store B and if it directs a fraction a of its customers

to store A and fraction 1—a to store B, then the present value of net revenues

from the two stores is greater than or equal to aV(xA) + (1_a)V(xB), with

strict inequality if c'' > 0. To establish the strict inequality in (22) in

the case in which c'' 0, we note that if one store (say A) stocks out and

the other store (B) does not stock out, the firm can increase the present

value of its cash flow by transferring a unit of inventory from store B and

selling it at store A. Thus, the value function is strictly concave.

This production smoothing result can be easily understood with the aid of

Figure I. The upper panel of Figure I displays next period's inventory 't+l

as a function of the current demand shock e, given the current value of

inventory and the value of current production. For example, if the current

inventory is x and the optimal value of current production is y, then the

solid line shows next period's inventory as a function of c. The bottom

panel in Figure I shows the marginal valuation of next period's inventory as a

function of e1. This relation is based on the fact that the marginal valua-

tion of next period's inventory is a decreasing function of next period's

inventory.

Now consider an increase in current inventory to x' + &. If there is no

production smoothing (i.e., = —1), then current production falls to y* — &

and the relation between and is given by the piecewise linear function

through points ABCD. The marginal valuation of next period's inventory is

shown in the lower panel of Figure I as the curve through points A'B'C'D'.
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Since for any given c, the marginal valuation of next period's inventory

along A'B'C'D' is greater than or equal to the marginal valuation along the

solid line, the expected marginal valuation of inventory is greater along

A'B'C'D' than along the solid line. However, if the cost function is linear,

optimality requires that the new level of production be such that the expected

marginal valuation of inventories remains unchanged (equal to the fixed value

of c'(y)) when x changes. Therefore, 4 —1 cannot characterize optimal

behavior.

Now suppose that when inventory rises to x* + 6, the level of production

falls to y, y* — 6 < < This situation is illustrated by the

piecewise linear function through points JL in the upper panel. For low

realizations of next period's inventory is higher along JL than along the

solid line for high realizations of e, next period's inventory is lower

along JL than along the solid line. For some appropriate value of

between y* — & and '' the expected marginal valuation of inventory is the

same along J'K'L' as along the solid line in the bottom panel of Figure I.

For such a y**, the required equality of c'(y) and expected marginal valua-

tion of next period's inventory will be satisfied. Therefore, we obtain pro-

duction smoothing even though the cost function is linear.

III.A The Imulications of Production Laas

We have shown above that with a linear cost function and a one period

dy
production lag, optimal behavior is characterized —1 < < 0. This finding

of production smoothing in the presence of a linear cost function depends cru-

cially on a lag in production. If production were instantaneous so that



— 16 —

output Y were available for sale in period t, then there would be no smooth-

ing. In this case, optimal behavior would be characterized by an optimal

level of inventory available for sale + This optimal levcl of inven-

tory, say z, will be constant, Thus t= Furthermore since =
z—s

where is sales in period t we obtain = s. That is, with a linear

cost function and instantaneous production, the optimal level of production in

any period is equal to the sales of the previous period. Thus, sales and
pro-

duction have equal variance.

IV. Variance1 of $al.s gn Ptpductio

dyUp to this point we have defined production smoothing as —1 ( < 0 so
xt

that an increase in beginning—of—period
inventory induces the firm to decreaseits production by a smaller amount than the increase in inventory. An alter-

native definition of production smoothing is that the variance of production

is less than the variance of asles. In this section we demonstrate that if

—1 < < 0, then the variance of sales is greater than the variance of pro-
duction.

It will be convenient to define
z x+y. Since production y can be

written as a function of
z, z can be expressed as a function of

9. In footnote 7, we derive the first—order conditions under the assumption
that production is instantaneous. With

a linear cost function, c'(y) is a
constant, say y, so that the first—order condition (F7.2) is

y p(1—F(w*)] + E[V'(x+y—h(p,e))e<w*](*) (F9.l)

Recalling that with instantaneous production, w tu*(x+y,p), it is clear
that x and y enter (P9.1) only as a sum x+y. Thus the optimal value of
x+y is Constant.
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= = It+yf (23a)

where z'(x) > 0 as > —1 (23b)dx
According to (23b), if the optimal production rule exhibits production smooth-

ing (defined as —1 < < 0), then is an increasing function of x.

Observing that =
1t+1

— +i' equation (3) can be rewritten as

— = — (24)

Calculating the unconditional variance of each side of (24) yields

var(z) + var(y) — 2Cov(zt+i,yt+i) = var(z) + var(s) — 2Cov(z,s) (25)

Rearranging (25) we obtain

var(s) = var(y) + 2Cov(zt,s) — 2Cov(ztiy) (26)

dyt
Recall that we have shown that > —1 so that z'(x) > 0. Thus, when is

t

high Z is high, and t is low so that Cov(zay) < 0. Also, when is

high, s is high so that Cov(zis) > 0. Therefore, it follows from (26) that

var(s) > var(y).10 Note that if —1, then z'(x) m 0 and

10. To calculate the covariances in (26), we let g(x) be the steady state

(unconditional) density function of x. Define Jy(x)g(x)dx and
0

i fz(x)g(x)dx to be the unconditional expected values of y and z

respectively. Observe that

Cov(y,z) = f(y(z)—Y)(z(x)--z)g(z)dx (F10.a)

0

where Y is some constant. Let be defined by = z(). Then, replacing
Y by the constant y(x), we can rewrite (F10.a) as

AI
Cov(y,z) = J(y(x)—y())(z(x)z)g(x)dx + f(y(x)—y())(z(x)z)g(x)dx (F1O.b)

0
I
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cov(zt,st) = 0 = Cov(ztyt); thus var(st) = var(y) as explained in section
III.A.

Thus, we have shown that with a
production lag, the variance of sales

exceeds the variance of production even if the cost function c(y) is linear.

V. Couc1udjna Remarks

We have examined the production and pricing behavior of an intertem—

porally optimizing firm. We demonstrated that marginal cost is equated with

y(x)—y() 0 as x
(F1O.c)

0 as x
(F10.d)

From (F1O.b)—(p1O.d), it follows that Cov(yz) < 0.

Now observe that Cov(s,z) E[s(z—j)] so that

Cov(s,z) =
J{fh(PDC)(z(x)_i)fleda+Jx(z(x)_j)f(e)dg(x)dx (F10.e)0

Using the definition of B(p,x) in (6) as expected sales, equation (F10.e)
can be written as

Cov(s,z) = JE(p,z)(z(x)—j)g(i)d1 (F10.f)0

Observe that R(p,) is a constant and that

li(p,x) — ll(p,) 0 as x
(F10.g)

Therefore.

Cov(s,z) f[R(p,x)R(p,)][z(x)..]g(x)dx > 0 (F10.h)0
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expected marginal revenue if stock—outs are ignored and if demand shocks are

additive. If either of these conditions is not met, then marginal cost is not

equal to expected marginal revenue in general. We then showed that if demand

is perfectly inelastic and if there is a production lag, then optimal behavior

will be characterized by production smoothing even if the cost function is

linear.

Casual empiricism or introspection may lead one to think that stock—outs

are rather uncommon. Rowever, we must be careful to distinguish between the

probability that an individual customer will be rationed and the probability

that the firm will stock out. As an extreme example, suppose that the firm

always carries an inventory of 999 and that each of the firm's 1000 customers

always demands one unit. In this case. the probability that any individual

customer will be rationed is only 0.1%. However, the firm will stock—out in

every period. Thus, the fact that an individual is only rarely rationed pro-

vides no evidence that, from the firm's point of view, stock—outs are unusual.
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