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1 Introduction

Should the government provide public insurance against idiosyncratic income uncertainty by implementing a

progressive tax system in which households with higher income realizations pay higher average tax rates, thus

making the after-tax labor income process less risky than the pre-tax labor income process? The answer that

economic theory gives to this question depends on the assumptions about the structure of private insurance

markets. If these markets are complete, in that agents can trade a complete set of perfectly enforceable

insurance contracts, then complete risk sharing is achieved via private markets and progressive income taxes

provide no additional insurance. If, on the other hand, private insurance markets do not implement full risk

sharing redistributive taxes might generate welcome additional insurance. As Mirrlees (1974), Varian (1980)

and others have pointed out, this beneficial effect of progressive income taxes has to be traded off against

the adverse effect on incentives to supply labor and to accumulate capital, leading to a nontrivial optimal

taxation problem.2

In this paper we demonstrate that if one models the frictions that lead to incomplete risk sharing in the

first place explicitly, then the public provision of insurance may adversely affect the way private insurance

markets work. Our main substantive contribution is to show that if private risk sharing is limited because

private insurance contracts can only be enforced through exclusion from participating in financial markets

in the future, then the provision of public insurance crowds out the provision of private insurance against

idiosyncratic uncertainty, potentially more than one for one. That is, by attempting to better insure house-

holds against idiosyncratic risk the government achieves exactly the opposite, namely a worse risk allocation

of private consumption.

Our exact modelling approach follows the work by Kehoe and Levine (1993, 2001) and Kocherlakota

(1996) and does not impose a priori restrictions on the set of private insurance contracts that can be traded.

These contracts, however, can not be fully enforced.3 The only enforcement mechanism is the threat of

exclusion from future credit and insurance markets upon default. Tax liabilities, however, are not subject

to this enforcement problem as we assume that the penalty for defaulting on tax payments can be made

prohibitively large by the government. If agents default on their private debt, they are banned from future

credit and insurance markets, but retain their private (labor) endowment which is still subject to income

taxation. A change in the tax system changes the severity of punishment from default by altering the utility

an agent can attain without access to insurance markets and thus changes the extent of enforcement of

private contracts. Since enforcement defines the extent through which private contracts are used, a change
2A second common justification for redistributive taxation is the social desire to attain a more equal income or wealth (and

hence consumption and welfare) distribution. Although we believe that this justification is potentially important we will not
address this point in this paper. See the seminal paper by Mirrlees (1971) for an analysis of the trade-off between the equity
and the labor supply incentive effect of redistributive taxation.

3Another fraction of the literature derives market incompleteness from informational frictions underlying the phenomena
of adverse selection and moral hazard (see Cole and Kocherlakota (2001) and their review of the literature). Optimal taxation
is this class of models is the main focus of the recent New Dynamic Public Finance literature, see Kocherlakota (2006) and
Golosov et al., (2007) for overviews. Marcet and Marimon (1992) is an early study that evaluates the importance of both
frictions for economic growth.
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in the tax system changes the use of private contracts. The allocative and welfare consequences of a change

in the tax system then depend on the relative magnitudes of the change in public risk sharing implemented

by the new tax system and the change in risk sharing through private insurance markets.

We evaluate this trade-off in a quantitative example and find that the crowding-out effect from the

progressive income tax system characterized in this paper can be quantitatively important. In this example

households face income risk of a magnitude estimated from US household data, and are subject to a simple

tax system with a constant marginal tax rate and a constant transfer. To quantify the impact of changes in

the tax code on household labor income and consumption risk we construct and compute three measures of

risk sharing for the income and consumption distributions: Private risk sharing, which is the reduction of

consumption risk below after-tax income risk stemming from private financial markets; public risk sharing,

which is the reduction in income risk stemming from the progressivity of income taxes and total risk sharing

which is (essentially) the sum of the two. When comparing steady state consumption allocations arising

under different tax systems we find that making taxes more progressive always increases public risk sharing

(by construction) and always reduces private risk sharing; in some case the reduction of private risk sharing

is bigger than the increase in public risk sharing so that increasing the progressivity of the tax code leads to

less total risk sharing among households. We also show that this more than one-for-one crowding out result

never appears in a standard incomplete markets model in the spirit of Bewley (1986), Huggett (1993) and

Aiyagari (1994) in which explicit risk sharing is limited for reasons exogenous to the model.

It is important to note that our quantitative analysis only focuses on the risk sharing effect of taxes

and therefore abstracts from many elements that are important in the design of optimal taxes such as the

presence of distortions of labor supply and savings decisions or a society’s preference for redistribution. Thus

our findings do not necessarily advocate a particular optimal tax schedule. They simply suggest that, when

studying optimal taxation ignoring the effects that the tax system has on the functioning of private financial

markets could be a first order omission.4

The main methodological contribution of this paper is the characterization of the consumption alloca-

tion and distribution of a general equilibrium limited commitment model with a continuum of agents facing

idiosyncratic income risk. This model allows us to analyze insurance mechanisms involving the entire popula-

tion and not only pairwise relationships. We view this as crucial in our analysis of risk sharing arrangements

such as progressive taxation since gains from insurance are particularly sizable among a large pool of agents

with mostly idiosyncratic (i.e. largely uncorrelated) income risk. We demonstrate this by comparing the

consumption allocations in our continuum economy to those arising in a model with only two agents (as

studied by Kocherlakota (1996), Alvarez and Jermann (2000), Kehoe and Levine (2001), among others) and

show that the allocation of income risk in these two models is qualitatively different.5 In addition our model,
4For example in a recent paper Panousi (2009) finds that in an economy with entrepreneurs which are not fully insured

capital taxation, by reducing their risk, can improve welfare. Our results suggests that these findings will depend crucially on
the reasons why entrepreneurs cannot diversify away their risk.

5In Krueger and Perri (2005, 2006) we use US household data to evaluate the empirical predictions of the limited commitment
model with a continuum of agents for household consumption dynamics and the cross-sectional distribution of consumption.
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in contrast to the previous literature, endogenously delivers a rich cross-sectional consumption distribution

and thus may be of independent interest for the study of other policy reforms where distributional issues are

important. But it is exactly the rich cross-sectional dimension of the model that leads to considerable theo-

retical and computational complications in solving it. To this end we adapt the methodology of Atkeson and

Lucas (1992, 1995) who study efficient allocations in an economy with a continuum of agents and private in-

formation to our environment with limited commitment. We then show, following Kehoe and Levine (1993),

how to decentralize efficient allocations as equilibrium allocations in a standard Arrow Debreu equilibrium

with individual rationality constraints.

In a related paper Attanasio and Rios-Rull (2000) use a limited commitment model to study the effect

of mandatory public insurance programs against aggregate risk on private insurance arrangements against

idiosyncratic risk. Although their economy is populated by a large number of (potentially heterogeneous)

agents, by assumption agents can only enter pairwise insurance arrangements, not involving any other

member of the population. So their underlying insurance problem is equivalent to the ones studied by

Kocherlakota (1996) and Alvarez and Jermann (2000). Similar to our result they show that the extent to

which idiosyncratic shocks can be insured depends negatively on the public provision of insurance against

aggregate uncertainty. A similar qualitative result is obtained by Golosov and Tsyvinski (2007) in their study

of a model with endogenous private insurance markets which are subject to private information (rather than

limited enforcement) frictions. In a model of informal family insurance Di Tella and MacCulloch (2002)

show that government provided unemployment insurance can crowd out informal insurance provided by the

family more than one for one, a result similar to ours. On the empirical side, Cutler and Gruber (1996) and

Brown et al. (2007) measure the degree to which the public provision of health insurance through Medicaid

crowds out the private provision of insurance and estimate it to be substantial.

Ligon, Thomas and Worrall (2000, 2002) set up a model with a finite, but potentially large number of

agents that can engage in mutual insurance schemes. Once they solve for constrained-efficient insurance

contracts numerically, however, they need to restrict attention to economies with either two agents (as in

Ligon, Thomas and Worrall (2000), in a model with capital accumulation), or they need to assume that agents

engage in contracts with the rest of the population, treating the rest of the population as one agent (as in

Ligon, Thomas and Worrall (2002)). This again reduces the problem to a bilateral insurance problem as in

the other papers discussed previously.6 Krueger and Uhlig (2006) study a limited commitment model with

a continuum of agents, but focus on endogenizing the value of default through competition. In their paper

the interest rate is treated as exogenous, while it is endogenously determined, jointly with the consumption

distribution in the current paper. As Krueger and Uhlig (2006), the recent work by Broer (2009) contains an

explicit characterization of the stationary consumption distribution under specific assumptions on preferences

and the idiosyncratic income process, as well as a complete existence proof of a stationary equilibrium.
6The authors have to do this to avoid the curse of dimensionality. In their set-up of the problem the cumulative Lagrange

multipliers on the enforcement constraints for each agent become continuous state variables, in practice ruling out computing
allocations for economies with more than a small number of agents. The method of formulating this class of models recursively
using cumulative Lagrange multipliers was pioneered by Marcet and Marimon (1999).
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The paper is organized as follows. In Section 2 we lay out the model environment and define equilibrium.

In Section 3 we define and characterize efficient allocations. Section 4 discusses the decentralization. Section

5 presents qualitative features of the equilibrium and compares the qualitative features of the consumption

allocation in the continuum economy with that arising in a simple economy with two agents and perfectly

negatively correlated income shocks. Section 6 provides a quantitative thought experiment of changing the

progressivity of the income tax code, both within our model and a standard incomplete markets Bewley (1986)

model. Section 7 concludes; figures and proofs of the main propositions are contained in the appendix.7

2 The Economy

There is a continuum of consumers of measure 1, who have preferences over consumption streams given by

U({ct}∞t=0) = (1− β)E0

[ ∞∑
t=0

βtu(ct)

]
(1)

The period utility function u : <+ → D ⊆ < is assumed to be strictly increasing, strictly concave, twice

differentiable and satisfies the Inada conditions. Its inverse is denoted by C : D → <+. Hence C(u) is the

amount of the consumption good necessary to yield period utility u. Let D̄ = sup(D); note that we do not

assume u to be bounded so that D̄ =∞ is possible.

An individual has stochastic endowment process e ∈ E, a finite set with cardinality N , that follows

a Markov process with transition probabilities π(e′|e). In what follows we use the words endowment and

income synonymously. For each consumer the transition probabilities are assumed to be the same. We

assume a law of large numbers,8 so that the fraction of agents facing shock e′ tomorrow with shock e today

in the population is equal to π(e′|e). We assume that π(e′|e) has unique invariant measure Π(.). Without

loss of generality we normalize average income ē =
∑
e eΠ(e) = 1.

We denote by et the current period endowment and by et = (e0, .., et) the history of realizations of

endowment shocks; also π(et|e0) = π(et|et−1) · · ·π(e1|e0). We use the notation es|et to mean that es is a

possible continuation of endowment shock history et. We also assume that at date 0 (and hence at every

date), the cross-sectional measure over current endowment is given by Π(.), so that the aggregate endowment

is constant over time. At date 0 agents are distinguished by their initial asset holdings, a0 (claims to period

zero consumption) and by their initial shock e0. Let Θ0 be the joint measure of initial assets and shocks.

The government provides implements income insurance through a tax policy τ(et) that is constant over

time. Since we want to focus on the public and private allocation of risk in this paper we focus on the case

in which net revenues generated from the tax system are equal to zero.9 We take the tax policy τ(.) as

7A separate theoretical appendix contains details of some of the more involved technical arguments that are adaptations of
the analysis by Atkeson and Lucas (1995). It is available at http://www.econ.upenn.edu/˜dkrueger/research/theoreticalapp.pdf

8Note that we do not require independence of endowment processes across individuals; the assumption of a law of large
numbers can then be justified with Feldman and Gilles (1985), proposition 2.

9Our theoretical analysis fully extends to the case of constant positive government spending that needs to be financed
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exogenously given (but vary its implied progressivity in our quantitative work). For an individual we let

yt = et(1− τ(et)) be the after-tax income. Since the function τ(.) does not depend on time, for a given tax

function τ(.) there is a one-to-one mapping between pre-tax and after-tax endowments. From now on we

let y ∈ Y ⊆ <++ denote an individual’s generic after-tax endowment, following the Markov process π with

invariant distribution Π and denote by yt = (y0, . . . yt) a history of after-tax endowment shocks. Taxes τ(.)

satisfy a period-by-period budget constraint

∑
et

etτ(et)Π(et) = 0 (2)

With this assumption resource feasibility for this economy states that the sum of all agents’ consumption

has to be less or equal than the sum over all individuals’ after-tax endowment, which equals 1 in every

period.10 Therefore, τ(.) is fixed and hence the after-tax endowment process is specified, we can carry out

the subsequent analysis without explicit consideration of the government.

Consumers can trade a full set of state-contingent commodities. A consumption allocation c = {ct(a0, y
t)}

specifies how much an agent of type (a0, y0) consumes who experienced a history of endowment shocks yt.

Individuals, at any point in time, have the option to renege on existing contracts. The only punishment

for doing so, and hence the only enforcement mechanism for contracts, is that agents that default on their

contracts are banned from future insurance markets. They are, however, allowed to self-insure by saving (but

not borrowing) at an exogenous constant interest rate r.11 The expected continuation utility for an agent

who defaults after history yt is given by UAut(yt; r) = U(0, yt), where U is the solution to the functional

equation

U(a, y) = max
0≤a′≤y+(1+r)a

(1− β)u(y + (1 + r)a− a′) + β
∑
y′

π(y′|y)U(a′, y′) (3)

with a0 = 0 given. It is obvious that UAut(yt; r) is strictly increasing in yt, as long as the income shocks are

uncorrelated or positively correlated over time.

Individuals have no incentive to default on a consumption allocation c, at any point in time and any

contingency, if and only if an allocation satisfies following continuing participation or debt constraints

Ut(a0, y
t, c) ≡ (1− β)

u (c(a0, y
t)
)

+
∑
s>t

∑
ys|yt

βs−tπ(ys|yt)u (c(a0, y
s))

 ≥ UAut(yt; r) ∀yt (4)

through taxes.
10This immediately follows from ē = 1 and equation (2).
11This assumption is motivated by current US bankruptcy laws. Agents filing for bankruptcy under Chapter 7 must surrender

all their assets above certain exemption levels; the receipts from selling these assets are used to repay the consumer’s debt.
Remaining debt is discharged. In most cases of Chapter 7 bankruptcy debtors have no non-exempt assets (see White (1998)), so
the consequences of filing for bankruptcy only entail restrictions on future credit. Individuals that declared personal bankruptcy
are usually denied credit for seven years from major banks and credit card agencies. We view our assumption of being banned
forever as a first (and easily tractable) approximation, keeping in mind that it may overstate the punishment from default.

For explicit model of bankruptcy within the context of the standard incomplete markets Bewley (1986) mode see Chatterjee
et al. (2007). The attractive feature of their model and the large literature it has spawned is that default occurs with positive
probability in equilibrium.
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i.e. if the continuation utility from c is at least as big as the continuation utility from defaulting on c, for

all histories yt. Since there is no private information and markets are complete, exclusion will not happen

in equilibrium as nobody would offer a contract to an individual for a contingency at which this individual

would later default with certainty.

Notice that our specification of the debt constraint is more general than the one introduced by Kehoe

and Levine (1993) in which agents who default are not allowed to save. If r = −1, our model is equivalent

to theirs and the right hand side of the debt constraint reduces to

UAut(yt;−1) = (1− β)

u(yt) +
∑
s>t

∑
ys|yt

βs−tπ(ys|yt)u(ys)

 (5)

¿From now on, whenever there is no danger of ambiguity, we omit the dependence of UAutt on r.

2.1 Equilibrium

We now define a competitive equilibrium for the economy described above. We will follow the approach of

Kehoe and Levine (1993). Consider an agent with period zero endowment of y0 and initial wealth of a0.

Wealth is measured as entitlement to the period 0 consumption good. Let Θ0 be the joint distribution over

(a0, y0) and denote by pt(yt) the date zero price12 of a contract that specifies delivery of one unit of the

consumption good at period t to/from a person who has experienced endowment shock history yt. For each

contingency ct(a0, y
t)− yt is the net trade of individual (a0, y0) for that contingency. In period 0 there is no

uncertainty, so normalize the price of the consumption good at period 0 to 1.

A household of type (a0, y0) chooses an allocation {ct(a0, y
t)} to solve

maxU0(a0, y0, c) (6)

s.t. c0(a0, y0) +
∞∑
t=1

∑
yt|y0

pt(yt)ct(a0, y
t) ≤ a0 + y0 +

∞∑
t=1

∑
yt|y0

pt(yt)yt (7)

Ut(a0, y
t, c) ≥ UAut(yt) (8)

Note that, as in Kehoe and Levine (1993), the continuing participation constraints enter the individual

consumption sets directly.

Definition 1 An equilibrium consists of prices {pt(yt)}
∞
t=0 and allocations {ct(a0, y

t)}∞t=0 such that

• given prices, the allocation solves household’s problem for almost all (a0, y0)

12Note that in standard Arrow Debreu equilibrium theory with finitely many consumers, a complete description of the state
of the economy would be everybody’s endowment shock history, and all prices would be contingent on this complete state. With
atomistic individuals, the assumed law of large number and no aggregate uncertainty, attention can be restricted to equilibria
in which prices (and quantities) depend only on own personal histories.
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• markets clear, i.e. for all t,∫ ∑
yt

ct(a0, y
t)π(yt|y0)dΘ0 =

∫ ∑
yt

ytπ(yt|y0)dΘ0. (9)

As is clear from the equilibrium definition our economy does not include physical capital accumulation or

government debt, so assets are in zero net supply and the aggregate asset to income ratio is identically equal

to zero. While this may seem unrealistic, we deliberately chose to abstract from both types of assets. In a

closed economy with incomplete markets and precautionary savings motives an increase in income uncertainty

leads to higher precautionary saving, hence higher investment, a higher steady state capital stock and thus

higher steady state production (see Aiyagari (1994)). In our economy relaxed borrowing constraints drive

the interest rate up and thus, in a version of the model with capital, the aggregate capital stock down.

Since in this paper we want to focus on the risk sharing properties of different taxation schemes rather than

the effects of taxation and income uncertainty on capital accumulation, we compromise on realism to more

clearly isolate the potential importance of the crowding-out mechanism introduced in this paper.

With respect to government debt, the government budget constraint would mandate that, for the same

amount of outstanding government debt, the amount of taxes levied to finance the interest payments on the

debt would vary across steady states, due to changes in the interest rate. Since the comparison of private

households’ welfare across economies with different tax burdens seems problematic, we also abstract from

government debt in this paper.

3 Efficient Allocations

The next step in our analysis is to characterize and compute equilibrium allocations. Unfortunately this is

hard to do by tackling the equilibrium directly. In particular, the presence of the infinite number of dynamic

constraints (8) restricting the choice of state contingent claims does not allow to solve the household’s

problem as a standard dynamic programming problem. Therefore in this section we will follow Atkeson and

Lucas (1992, 1995) to first characterize efficient allocations and then argue in the next section that they can

be decentralized as competitive equilibrium allocations. As shown by Atkeson and Lucas solving for efficient

allocations does reduce to solving a standard dynamic programming problem which makes their approach

so useful for our problem. As they, however, we also have to restrict our analysis to stationary allocations,

i.e. to allocations for which the cross-sectional consumption and wealth distribution is constant over time.

The key insight of Atkeson and Lucas is to analyze the problem of finding efficient allocations in terms

of state contingent utility promises rather than state contingent consumption. Instead of being indexed

by initial assets and endowment shock, now individuals are indexed by initial entitlements to expected

discounted utility at period 0, w0 and initial endowment shocks, y0. We will discuss the connection between

initial asset positions and initial utility promises in Section 4. Let Φ0 be the period 0 joint measure over
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(w0, y0). An allocation is then a sequence {ht(w0, y
t)}∞t=0 that maps initial entitlements w0 and sequences of

shocks yt into levels of current utility in period t. Here ht(w0, y
t) is the current period utility that an agent of

type (w0, y0) receives if she experienced a history of endowment shocks yt. Note that ct(a0, y
t) = C(ht(w0, y

t))

for an agent whose utility entitlement w0 corresponds to initial asset holdings a0, where C is the inverse of

the period utility function as defined in Section 2. For any allocation h = {ht(w0, y
t)}∞t=0 define

Ut(w0, y
t, h) = (1− β)

ht(w0, y
t) +

∞∑
s>t

∑
ys|yt

βs−tπ(ys|yt)ht(w0, y
s)

 (10)

Equation (10) defines the continuation utility from an allocation h of agent of type (w0, y0) from date t and

shock history yt onwards.

Definition 2 An allocation {ht(w0, y
t)}∞t=0 is constrained feasible with respect to a joint distribution over

utility entitlements and initial endowments, Φ0, if for almost all (w0, y0) ∈supp(Φ0)

w0 = U0(w0, y0, h) (11)

Ut(w0, y
t, h) ≥ UAut(yt) ∀yt (12)

lim
t→∞

βt sup
yt
Ut(w0, y

t, h) = 0 (13)

∑
yt

∫ (
C(ht(w0, y

t))− yt
)
π(yt|y0)dΦ0 ≤ 0. ∀t (14)

An allocation {ht(w0, y
t)}∞t=0 is efficient with respect to Φ0 if it is constrained feasible with respect to Φ0

and there does not exist another allocation {ĥt(w0, y
t)}∞t=0 that is constrained-feasible with respect to Φ0 and

such that ∑
yt

∫
C(ĥt(w0, y

t))π(yt|y0)dΦ0 <
∑
yt

∫
C(ht(w0, y

t))π(yt|y0)dΦ0 for some t (15)

We call equation (11) the promise keeping constraint: the allocation delivers utility w0 to agents entitled to

w0. Equations (12) are the continuing participation constraints.13 Equation (13) is a boundedness condition

that assures that continuation utility goes to zero in the time limit. Equation (14) is the resource feasibility

condition, requiring aggregate consumption in every period to be less or equal than aggregate endowment in

that period. The definition basically says that a utility allocation is efficient if it attains the utility promises

made by Φ0 in an individually rational and resource feasible way and there is no other allocation that

does so with less resources. In order to use recursive techniques, however, we have to restrict ourselves to

stationary allocations. Define Φt to be the joint measure over endowment shocks yt and continuation utilities

Ut(w0, y
t, h) for a given allocation. An allocation is stationary if Φt = Φ0 = Φ. In the next subsections we

will show that such an allocation exists, characterize it and demonstrate how to compute it.
13Note that a Φ0 that puts positive mass on (w0, y0) and satisfies w0 < UAut(y0) does not permit a constraint feasible

allocation as promise keeping and debt constraints are mutually exclusive. We restrict attention to Φ0 with the property that
only initial utility entitlements at least as big as the utility from autarky have positive mass.
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3.1 Recursive Formulation

In order to solve for stationary efficient allocations we consider the problem of a planner that is responsible

of allocating resources to a given individual and who can trade resources at a fixed intertemporal price 1
R .

In this subsection we discuss such a planners’ recursive problem and in the next subsection its solution.

We then show that the planners’ policy functions induce a Markov process over utility promises and income

shocks which has a unique invariant distribution, and finally we demonstrate that there exists an R∗ at which

the resources needed to deliver utility promises dictated by the stationary distribution equal the aggregate

endowment in the economy.

For constant R ∈ (1, 1
β ], consider the following functional equation (FE) problem. Individual state

variables are the promise to expected discounted utility that an agent enters the period with, w, and the

current income shock y. The planner chooses how much current period utility to give to the individual, h,

and how much to promise her for the future, gy′ , conditional on her next periods endowment realization y′.

We now make the following assumptions on the individual endowment process14

Assumption 1: π(y′|y) = π(y′) for every y′, y ∈ Y
Assumption 2: π(y) > 0, for all y ∈ Y

The operator TR defining the functional equation of the planner’s problem is:

TRV (w) = min
h,{gy′}y′∈Y ∈D


(

1− 1
R

)
C(h) +

1
R

∑
y′∈Y

π(y′)V (gy′)

 (16)

s.t. w = (1− β)h+ β
∑
y′∈Y

π(y′)gy′ (17)

gy′ ≥ UAut(y′) ∀y′ ∈ Y (18)

where V (w) is the resource cost for the planner to provide an individual with expected utility w when the

intertemporal shadow price of resources for the planner is 1
R . The cost consists of the cost for utility delivered

today, (1 − 1
R )C(h), and expected cost from tomorrow on,

∑
y′ π(y′)V (gy′), discounted to today. Atkeson

and Lucas (1992, 1995) show that a stationary allocation {ht(w0, y
t)}∞t=0 is efficient if it is induced by an

optimal policy from the functional equation above with R > 1 and satisfies the resource constraint with

equality.15

Equation (17) is the promise-keeping constraint: an individual that is entitled to w in fact receives utility

w through the allocation rules {h(.), gy′(.)}y′∈Y . The continuing participation constraints in equation (18)

state that the social planner for each state tomorrow has to guarantee individuals an expected utility promise
14For the quantitative analysis we will relax these assumptions. However, we were unable to prove some of our key theoretical

results without these assumptions.
15A policy (h, {gy′}) induces an allocation, for all (w0, y0), in the following way: h0(w0, y0) = h(w0, y0), w1(w0, y1) =

gy1 (w0, y0) and recursively wt(w0, yt) = gyt (wt−1(w0, yt−1), yt) and ht(w0, yt) = h(wt(w0, yt), yt). Adapta-
tions of their proofs to our environment are contained in a separate theoretical appendix, available at
http://www.econ.upenn.edu/˜dkrueger/research/theoreticalapp.pdf
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at least as high as obtained with the autarkic allocation. The utility in autarky is given as the solution to

the functional equation in (3).

3.2 Existence and Characterization of Policy Functions for Fixed R

We first prove the existence of optimal allocation rules in the problem with the additional constraints gy′ ≤ w̄
in (18), where w̄ is an upper bound on future utility promises. We then characterize the solution of this

problem and show that the additional constraints are not binding so that the solution to the problem with

additional constraints is also solution to the original problem.16 The modified Bellman equation is defined on

C(W ), that is, the space of continuous and bounded functions on W, where W = {w ∈ <|w ≤ w ≤ w̄} ⊆ D
is a compact subset of < and w := miny UAut(y). This gives us a standard bounded dynamic programming

problem. From now on we will denote by TR the operator defined above, but including the additional

constraints.

Note that with the additional constraints on future utility promises, (17) and (18) imply that for every

w in W possible choices h for current utility satisfy

h(w) :=
w − βw̄
(1− β)

≤ h ≤ w − β
∑
π(y′)UAut(y′)

(1− β)
=: h̄(w) (19)

Accordingly define h := h(w) and h̄ := h̄(w̄). We will show below that we can choose w̄ = maxy UAut(y) + ε,

for ε > 0 arbitrarily small, without the constraints gy′(w) ≤ w̄ binding at the optimal solution, for all w ∈W .

In order to assure that the constraint set of our dynamic programming problem is compact, for all w ∈ W
we need (since D need not be compact)

Assumption 3: [h, h̄] ⊆ D.

Assumption 3 is an assumption purely on the fundamentals (u, π, Y, r) of the economy and hence straight-

forward to check. In particular, for r = −1 (the case studied by Kehoe and Levine (1993)) we have

h̄(w̄) = u(ymax) ∈ D and h(w) = u(ymin) − β[u(ymax) − Eu(y)] ∈ D as long as ymax
ymin

is sufficiently small

and/or β is sufficiently small.17

Using standard theory of dynamic programming with bounded returns it is easy to show that the operator

TR has a unique fixed point VR ∈ C(W ) and that for all v0 ∈ C(W ), ||TnRv0−VR|| ≤ 1
Rn ||v0−VR||, with the

norm being the sup-norm. Also VR is strictly increasing, strictly convex and continuously differentiable and

the optimal policies h(w), gy′(w) are continuous, single-valued functions.18

16Note that if we had assumed that u and hence C are bounded functions this complication is avoided as the upper bound
on u serves as upper bound w̄. The results to follow do not require boundedness of u.

17For CRRA utility with coefficient of relative risk aversion σ ≥ 1 and r = −1 assumption 3 is always satisfied.
18The proofs of these results are again adaptations of proofs by Atkeson and Lucas (1995).
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We will now use the first order conditions to characterize optimal policies.

C ′(h) ≤ 1− β
β(R− 1)

V ′(gy′)

=
1− β

β(R− 1)
V ′(gy′) if gy′ > UAut(y′) (20)

w = (1− β)h+ β
∑
y′∈Y

π(y′)gy′

The envelope condition is:

V ′(w) =
(R− 1)
R(1− β)

C ′(h) (21)

First we characterize the behavior of h and gy′ with respect to w. The planner reacts to a higher utility

promise w today by increasing current and expected future utility, i.e. by smoothing the cost over time

and across states. The continuing participation constraints, though, prevent complete cost smoothing across

different states: some agents have to be promised more than otherwise optimal in certain states to be

prevented from defaulting in that state. This is exactly the reason why complete risk sharing may not be

constrained feasible.

Lemma 3 Let assumptions 1-3 be satisfied. The optimal policy h, associated with the minimization problem

in (16) is strictly increasing in w. The optimal policies gy′ , are constant in w and equal to UAut(y′) or strictly

increasing in w, for all y′ ∈ Y. Furthermore

gy′(w) > UAut(y′) and gȳ′(w) > UAut(ȳ′) imply gy′(w) = gȳ′(w)

gy′(w) > UAut(y′) and gȳ′(w) = UAut(ȳ′) imply gy′(w) ≤ gȳ′(w) and y′ < ȳ′

Proof. See Appendix

The last part of the lemma states that future promises are equalized across states whenever the continuing

participation constraints permit it. Promises are increased in those states in which the constraints bind.

Now we state a result that is central for the existence of an upper bound w̄ of utility promises. For

promises that are sufficiently high it is optimal to deliver most of it in terms of current period utility, and

promise less for the future than the current promises. This puts an upper bound on optimal promises in the

long run, the main result in this section, stated in Theorem 5

Lemma 4 Let assumptions 1-3 be satisfied. For every (w, y′) ∈W ×Y, if gy′(w) > UAut(y′), then gy′(w) <

w. Furthermore, for each y′, there exists a unique wy′ such that gy′(wy′) = wy′ = UAut(y′).

Proof. See Appendix

Theorem 5 Let assumptions 1-3 be satisfied. There exists a w̄ such that gy′(w) < w for every w ≥ w̄ and

every y′ ∈ Y.

11



Proof. See Appendix

Note that the preceding theorem implies that whenever w ∈ [w, w̄] = W, then for all y′ ∈ Y, the constraint

gy′(w) ≤ w̄ is never binding; since the constraint set in the original dynamic programming problem without

the additional constraints is convex, the policy functions characterized in this section are also the optimal

policies for the original problem for all w ∈W. For any (w0, y0) ∈W × Y these policies then induce efficient

sequential allocations as described in Section 3.1.

The policy functions gy′ together with the transition matrix π induce a Markov process on W ×Y. In the

next subsection we will show that this Markov process has a unique invariant measure, the long-run cross

sectional distribution of utility promises (and hence welfare) and income, for any given fixed R ∈ (1, 1
β ).

3.3 Existence and Uniqueness of an Invariant Probability Measure

Let B(W ) and P(Y ) the set of Borel sets of W and the power set of Y. The function gy′(w), together with

the transition function π for the endowment process, defines a Markov transition function on income shock

realizations and utility promises Q : (W × Y )× (B(W )× P(Y ))→ [0, 1] as follows:

Q(w, y,W,Y) =
∑
y′∈Y

 π(y′)

0

if gy′(w) ∈ W
else

(22)

Given this transition function, we define the operator T ∗ on the space of probability measures Λ((W ×
Y ), (B(W )× P(Y )) as

(T ∗λ)(W,Y) =
∫
Q(w, y,W,Y)dλ =

∑
y′∈Y

π(y′)
∫
{w∈W |gy′ (w)∈W}

dλ (23)

for all (W,Y) ∈ B(W ) × P(Y ). Note that T ∗ maps Λ into itself (see Stokey et. al. (1989), Theorem 8.2).

An invariant probability measure associated with Q is defined to be a fixed point of T ∗. We now show that

such a probability measure exists and is unique.

Theorem 6 Let assumptions 1-3 be satisfied. Then there exists a unique invariant probability measure Φ

associated with the transition function Q defined above. For all Φ0 ∈ Λ((W × Y ), (B(W )× P(Y )), (T ∗Φ0)n

converges to Φ in total variation norm.

Proof. See Appendix

Note that Lemma 4 and Theorem 5 above imply that any ergodic set of the Markov process associated

with Q must lie within [UAut(ymin), UAut(ymax)]×Y and that the support of the unique invariant probability

measure is a subset of this set.

So far we proved that, for a fixed intertemporal price R, policy functions (h, gy′), cost functions V and

invariant probability measures Φ exist and are unique. From now on we will index (h, gy′), V and Φ by R to

make clear that these functions and measures were derived for a fixed R. In the next section we will discuss

12



how to find the intertemporal price R∗ associated with an efficient stationary allocation. Remember from

Subsection A that this requires the allocation to satisfy the aggregate resource constraint with equality, a

constraint that we have not yet imposed and will do so in the next subsection in order to solve for R∗.

3.4 Determination of the “Market Clearing” R

In this section we will analyze how the resource requirements imposed by the cross-sectional distribution

of utility promises ΦR vary with R. We will provide conditions under which an R∗ exists for which these

resource requirements exactly equal the aggregate endowment in the economy.

In the previous section we showed that for a fixed R ∈ (1, 1
β ) there exists a unique stationary joint

distribution ΦR over (w, y). Define the “excess demand function” d :
(

1, 1
β

)
→ < as

d(R) =
∫
VR(w)dΦR −

∫
ydΦR (24)

In this section we discuss the qualitative features of the function d(.). Since by assumption ȳ :=
∫
ydΦR

does not vary with R, the behavior of d depends on how VR and ΦR vary with R. The behavior of ΦR with

respect to R in turn depends on the behavior of gRy′ with respect to R as gRy′ determines the Markov process

to which ΦR is the invariant probability measure. Following Atkeson and Lucas (1995) we can show that

d(R) is continuous and increasing on (1, 1
β ).19

Thus, if one can show that

lim
R↘1

d(R) < 0 (25)

lim
R↗ 1

β

d(R) > 0 (26)

then the existence of a resource-clearing R∗ follows.20

3.4.1 The Case R = 1
β

In this subsection we characterize optimal policies of the planner for R = 1
β and provide a sufficient condition

for (26) to hold. Note that for R = 1
β

gy′(w) =

 w if w ≥ UAut(y′)
UAut(y′) if w < UAut(y′)

(27)

19Again the arguments are adaptations of Atkeson and Lucas’ (1995). For continuity of d(R) one shows that VR is uniformly
continuous in R and that gR

y′ is continuous as a function of R so that ΦR is continuous in R (in the sense of weak convergence).

For monotonicity of d(R) the key results are that gR
y′ is increasing in R so that ΦR(., y) is increasing in R (in the sense of

stochastic dominance), which, together with the fact that VR is increasing in w proves that d(R) is an increasing function.
20Also note that, given our previous theoretical results, it is straightforward to search for R∗ numerically: fix an R0, solve

the planners’ dynamic programming problem (which we proved to have a unique solution), determine the induced invariant
measure over promises (whose existence and uniqueness we proved), and compute d(R0). If d(R0) > 0, reduce the guess for R,
otherwise increase it. We have included details of our computational algorithm in the separate theoretical appendix.
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from the first order conditions of the recursive planners’ problem (which still has a unique solution as all

the results of Section 3.2 go through). Now there is a continuum of invariant measures associated with the

Markov chain induced by the optimal policies. From (27) it is clear that any such measure Φ 1
β

satisfies

w /∈supp
(

Φ 1
β

)
for all w < UAut(ymax) as the probability of leaving such a w is at least π(ymax) and the

probability of coming back (into a small enough neighborhood) is 0. Therefore all w in the support of any

possible invariant measure satisfy gy′(w) = w. From the promise-keeping constraint h(w) = w follows, and

each individuals’ consumption is constant over time: for R = 1
β there is complete risk sharing.

For complete risk sharing to be efficient it has to satisfy the resource constraint. Since the cost function

VR is strictly increasing in w, the one of the continuum of invariant measures with lowest cost is

Φ 1
β

(w, y) =

 π(y) if w = UAut(ymax)

0 if w 6= UAut(ymax)
(28)

All individuals receive utility promises w = UAut(ymax) and hence the same current utility h(UAut(ymax)) =

UAut(ymax). This allocation has per-period resource cost C(UAut(ymax)) and is resource feasible if and only

if C(UAut(ymax)) ≤ ȳ, or applying the strictly increasing period utility function u to both sides, if and only

if UAut(ymax) ≤ u(ȳ). Let the net resource cost of this allocation be denoted by

d

(
1
β

)
= C(UAut(ymax))− ȳ (29)

We summarize the discussion in the following

Lemma 7 Let assumptions 1-3 be satisfied. For R = 1
β any solution to the recursive social planners’ problem

exhibits complete risk sharing. There exists an efficient stationary allocation with complete risk sharing if

and only if UAut(ymax) ≤ u(ȳ).

Intuitively, the lemma states that it is constrained efficient to share resources equally among the pop-

ulation in this economy if the agents with the highest incentive to renege on this sharing rule, namely the

agents with currently high income, find it in their interest to accept constant consumption at c = ȳ and

lifetime utility u(ȳ), rather than to leave and obtain lifetime utility UAut(ymax).

Using arguments similar to showing continuity of d(R) on (1, 1
β ) one can show that limR↗ 1

β
d(R) = d

(
1
β

)
,

where d
(

1
β

)
is defined as in (29). In order to rule out complete risk sharing21 we now make

Assumption 4: UAut(ymax) > u(ȳ)

Note that this assumption is satisfied if the time discount factor β is sufficiently small, agents are not

too risk-averse or the largest endowment shock is sufficiently large. We obtain
21If there is complete risk sharing under a particular tax system (remember that the tax system maps a given pre-tax income

process into a particular after-tax income process), then a small tax reform has no effect on the extent of risk sharing since the
resulting allocation is the complete risk sharing allocation: our crowding-out effect is absent.
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Lemma 8 Let assumptions 1-4 be satisfied. Then limR↗ 1
β
d(R) > 0.

Proof. Applying the strictly increasing cost function C to the inequality of assumption 4 gives

d

(
1
β

)
= C

(
UAut(ymax)

)
− ȳ > 0

3.4.2 The Case of R Approaching 1

In this subsection we provide necessary and sufficient conditions for autarky (all agents consume their

endowment in each period) to be an efficient allocation and characterize policies for R approaching 1 from

above.

If agents are very impatient and/or the risk of future low endowments is low, then it is not efficient for

the planner to persuade currently rich agents to give up resources today in exchange for insurance tomorrow.

For r = −1 (no saving after default, as in Kehoe and Levine (1993) )this result can be stated and proved

formally in the next

Lemma 9 Let r = −1 and let assumptions 1-3 be satisfied. Autarky is efficient if and only if

β
u′(ymin)
u′(ymax)

< 1 (30)

Proof. For the if-part we note that the autarkic allocation satisfies the first order conditions for some

R > 1 if (30) holds. Since autarky is constrained feasible, it is efficient.22 The only-if part is proved in the

appendix.

The previous lemma provides a condition under which d(R) = 0 as R approaches 1, with autarky as the

(efficient) allocation. In order to assure that autarky is not efficient23 we make

Assumption 5:

β
u′(ymin)
u′(ymax)

≥ 1 (31)

With assumption 5, as R approaches 1, the resulting allocation features some, but (as long as assumption

4 holds) not complete risk sharing. We state the following conjecture, which we were able to prove for CRRA

utility, r = −1 and Y = {yl, yh} but not for the general case considered here.24

Conjecture 10 Let assumptions 1-5 be satisfied. Then there exists R > 1 such that d(R) < 0.

22This is in fact true for arbitrary r ≥ −1.
23If the efficient allocation is autarkic a small change in the tax system changes the allocation on a one to one basis with

after tax incomes. No private insurance is crowded out since no private insurance takes place.
24Given our other theoretical results, we can check whether d(R) < 0 for R sufficiently close to 1 numerically. In all our

quantitative experiments this was the case.
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We then can conclude our theoretical analysis of stationary efficient allocations with the following theo-

rem, whose proof follows directly from the previous lemmas and conjecture.25

Theorem 11 Let assumptions 1-5 be satisfied. There exists R∗ ∈ (1, 1
β ) such that d(R∗) = 0. The allocation

induced by (hR
∗
, gR

∗

y′ ) is efficient and has some, but not complete risk sharing.

As indicated above, some of our results and proof strategies resemble Atkeson and Lucas (1995). The

basic strategy to prove existence of a stationary general equilibrium (as we will show in the next section

stationary efficient allocations induce stationary equilibrium allocations) also exhibits similarities to existence

proofs for standard incomplete markets models as in Bewley (1986), Huggett (1993) and Aiyagari (1994).26

The main difference is that the authors, due to the simple asset structure in their models, can tackle the

equilibrium directly. As we do, they first, for a fixed and constant interest rate, solve a simple dynamic

programming problem27 (they for the single household, with assets as state variable, we for the planners,

with utility promises as state variables). Then they let the optimal policies induce a Markov process to which

a unique invariant distribution is shown to exist.28 Finally the market clearing interest rate is determined

from the goods or asset market clearing condition.29 These similarities in the theoretical analysis also suggest

similar computational algorithms when solving both models numerically.

4 Decentralization

In this section we describe how we decentralize a stationary efficient allocation h = {ht(w0, y
t)}∞t=0 induced by

the optimal policies from the recursive planners’ problem as a competitive equilibrium as defined in Section

3. Let βtπ(yt|y0)µ(a0, y
t) ≥ 0 be the Lagrange multiplier associated with the continuing participation

constraint at history yt and P (yt) = {yτ |π(yt|yτ ) > 0} be the set of all endowment shock histories that

can have yt as its continuation. Using the first order necessary conditions of the household’s maximization

problem (6) one obtains

β
u′
(
ct(a0, y

t+1)
)
π(yt+1|y0)

u′ (ct(a0, yt))π(yt|y0)
=
pt+1(yt+1)
pt(yt)

1 +
∑
yτ∈P (yt) µ(a0, y

τ )

1 +
∑
yτ∈P (yt+1) µ(a0, yτ )

(32)

25No claim of uniqueness can be made. In all our numerical exercises d(R) was strictly increasing, however, yielding a unique
R∗ and associated unique stationary efficient allocation.

26We will contrast the quantitative findings from our model with the Bewley (1986) and Huggett (1993) version of the
standard exogenous incomplete markets model in the quantitative secition of the paper.

27As in our model, boundedness of the state space for assets from above has to be assured. Huggett (1993) assumes that
income can only take two values, but doesn’t need the stochastic process to be iid over time nor any assumption on the period
utility function. Aiyagari assumes iid income and u to be bounded and to have bounded relative risk aversion -see his working
paper. We do not require any boundedness assumption on u, but need the iid assumption.

28The theorems invoked for the existence of a unique invariant measure are similar in spirit; in particular they all require a
“mixing condition” that assures that there is a unique ergodic set. In their setting agents with bad income shocks run down
their assets, and good income shocks induce upward jumps in the asset position; in our setting agents with bad shocks move
down in the entitlement distribution towards UAut(ymin), with good shocks inducing jumps towards higher w, due to binding
participation constraints.

29Huggett (1993) provides no theoretical properties of the excess asset demand function, in Aiyagari (1994) the presence
of physical capital, which makes the supply of assets interest-elastic, assures (together with continuity of the asset demand
function) the existence of a market-clearing interest rate.
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Obviously, an agent whose participation constraint does not bind at contingency yt+1, following history yt,

faces the standard complete markets Euler equation (as µ(a0, y
t+1) = 0).

Now consider the efficient allocation of utilities {ht(w0, y
t)} as found in the previous section. Combining

the first order condition and the envelope condition from the planners problem we have for an agent that is

unconstrained30 (see (20) and (21)):

1
R

= β
C ′(ht(w0, y

t))
C ′(ht+1(w0, yt+1))

≡ β u
′(ct+1(w0, y

t+1))
u′(ct(w0, yt))

(33)

This suggests that the equilibrium prices satisfy (with normalization of p0 = 1)

pt(yt) =
π(yt|y0)
Rt

= ptπ(yt|y0). (34)

with pt = R−t. That is, the price for a commodity delivered contingent on personal histories is composed of

two components, an aggregate intertemporal price pt = R−t and an individual specific, history dependent

component, equal to the probability that the personal history occurs.

Given prices, the initial wealth level that makes the efficient consumption allocation affordable for an

agent of type (w0, y0) is given by

a0 = c0(w0, y0)− y0 +
∞∑
t=1

∑
yt|y0

π(yt|y0)
Rt

(
ct(w0, y

t)− yt
)

= a0(w0, y0) <∞ (35)

where the last inequality follows from the fact that the efficient consumption allocation is bounded from

above.31 Finally, the equilibrium consumption allocation corresponding to the efficient allocation is given

by32

ct(a0, y
t) = ct(a−1

0 (w0, y0), yt) = C
(
ht(w0, y

t)
)
. (36)

The preceding discussion can be summarized in the following

Theorem 12 Suppose that {ht(w0, y
t)}∞t=0 is a stationary efficient allocation (with associated shadow in-

terest rate R > 1
β ). Then prices {pt(yt)} and allocations {ct(a0, y

t)} , as defined in (34) and (36) are an

equilibrium for initial wealth distribution Θ0 derived from Φ0 and (35).

Proof. See Appendix

So far we have shown the existence of a stationary equilibrium of our economy and characterized some

of its properties. In the next section we illustrate some of its qualitative features.

30If no agent is unconstrained we are in autarky and can take 1
R

= β
u′(ymin)
u′(ymax)

.
31Therefore, to decentralize a particular stationary efficient consumption allocation we require a very particular initial distri-

bution over initial assets. In this sense one of the primitives of our model, Θ0, can’t be chosen arbitrarily, which is true in all
steady state analyses.

32Given that the optimal recursive policy function h(., y) is a strictly increasing function in w, the ht(., yt) and hence the
ct(., yt) are strictly increasing in w0. Therefore a0(., y0) is strictly increasing and thus invertible. We denote its inverse by a−1

0 .
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5 Qualitative Features of the Efficient Allocation

In this section we illustrate some of the qualitative features of the efficient allocation characterized in the

section above. To do so we consider a simple numerical example of our economy in which the after-tax

income process is iid can take only two values, 0 ≤ yl < yh ≤ 2, which are equally likely. Note that since

the average after-tax endowments are normalized to 1 we have yl = 2− yh.
In order to highlight the qualitative differences of efficient allocations in our model with a continuum

of agents and in the model with a small number of agents (the case typically studied in the literature) we

also present results for a limited commitment model with two agents i = 1, 2, each of which has endowment

yi ∈ {yl, yh}. We assume that in the two agent economy incomes are perfectly negatively correlated33, so

that if agent 1 has income yl, agent 2 has income yh and vice versa.34 Consequently, as in the continuum

economy, average income in the economy is nonstochastic and equal to 1. In accordance with the continuum

economy we also assume that the income process in the two-agent economy is iid over time, with equal

probability of each agent being rich in every period.

For both economies we assume that the outside option is characterized by r = −1, that is, no saving

in autarky is permitted. Then it is straightforward to compute that for both economies the utilities from

autarky are given by

UAut(yl) =
(

1− 1
2
β

)
u(2− yh) +

1
2
βu(yh)

UAut(yh) =
1
2
βu(2− yh) +

(
1− 1

2
β

)
u(yh)

We note that the size of yh is a measure of income risk, with higher yh associated with more income risk. It

is straightforward to show that UAut(yl) is strictly declining in yh, whereas UAut(yh) is strictly increasing

in yh at yh = 1, and strictly concave with unique maximum y∗h ∈ (1, 2) (see Krueger and Perri, 2006). The

maximum satisfies
1
2
βu′(2− yh) =

(
1− 1

2
β

)
u′(yh)

We now want to characterize and compare symmetric (across agents) constrained efficient stationary con-

sumption distributions across the two models. We are particularly interested in the potential qualitative and

quantitative differences of comparative statics results with respect to changes in after-tax income dispersion

yh, that is, changes of the progressivity of the tax code.

To put this example into the context of the tax system we will use in our quantitative examples, suppose

that pre-tax endowment can take two values el < eh with equal probability and recall we have assumed that

mean income equals 1. The tax system is characterized by a constant marginal tax rate τ and a constant
33Similar, although less clean results can be derived for the two-agent economy where shocks are not perfectly negatively

correlated, in which case aggregate (average) income is stochastic.
34This is exactly the model studied by Kehoe and Levine (2001) and Krueger and Perri (2006). Kehoe and Levine (1993),

Alvarez and Jermann (2000, 2001) all analyze limited commitment models with a finite and typically small number of agents.
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transfer d so that

yl = (1− τ)el + d

yh = (1− τ)eh + d

Budget balance of the government implies that τ = d and so the after-tax incomes are given by

yl = (1− τ)el + τ = el + τ(1− el)

yh = (1− τ)eh + τ = eh − τ(eh − 1)

and average taxes (net of transfers) are given by

t(e) =
τe− τ
e

= τ

(
1− 1

e

)
.

Thus as long as τ > 0 the tax system is progressive (t′(e) > 0) and the progressivity of the tax system

increases with τ (sincedt
′(e)
δτ > 0) and yh decreases with τ . Thus a reduction in yh is equivalent to a more

progressive tax system, holding the pre-tax endowment process constant. Thus all comparative statics results

with respect to yh to follow can be interpreted as a change in the progressivity of the tax code; with more

progressivity representing a lower value of yh.

5.1 Three Risk Sharing Regimes

In both economies efficient consumption allocations are either characterized by autarky (everybody consumes

its after-tax income in all states), perfect risk sharing (everybody consumes average income of 1 in all states)

or partial, but not perfect risk sharing. Keeping fixed preferences (u, β), one can define, for both models,

critical income values (i.e. critical levels of tax progression) for yh,

1 ≤ yautj ≤ yfj ≤ 2

1 ≤ yautj ≤ yfj ≤ 2

where j = 2 stands for the two agent economic and j = c for the continuum economy. If yh ∈ [1, yautj ],

the constraint efficient consumption allocation is autarkic, if yh ∈ [yfj , 2], it is characterized by perfect risk

sharing, and if yh ∈ (yaut2 , yf2 ) it is characterized by partial risk sharing.

5.1.1 Full Risk Sharing

Perfect risk sharing entails consuming average income ȳ = 1 for all agents, in each state. For this allocation

to be constrained efficient it must satisfy all enforcement constraints. It is straightforward to show that this
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requires

u(1) ≥ β

2
u(2− yh) +

(
1− β

2

)
u(yh) (37)

in both economies j = 2, c.

The two critical values yf2 = yfc > 1 satisfy the above equations with equality, unless even at yh = 2, the

equations hold with strict inequality. Perfect risk sharing occurs for exactly the same set of yh values (and

thus the same range of tax progressivity) in the continuum economy and the two-agent economy. As long

as there is perfect risk sharing, a marginal change in tax progressivity yh has no effect on the consumption

allocation in either economy: in both economies there is exactly a one-for-one crowding out of private risk

sharing from public risk sharing.

5.1.2 Autarky

Autarky may be the only feasible allocation, and thus the (constrained-) efficient allocation. For the contin-

uum economy autarky is efficient if and only if (see Lemma 5)

u′(yh) ≥ βu′(2− yh)

and for the two agent economy it is efficient if and only if (see Krueger and Perri, 2006).

u′(yh) ≥ β

2− β
u′(2− yh)

Thus we conclude that yautc , yaut2 ∈ (1, 2) and that yautc < yaut2 .Thus the set of values of income (risk) yh for

which the constrained efficient allocation is autarkic is strictly bigger in the two agent economy than in the

continuum economy. In this sense, there is more risk sharing possible in a continuum economy than in the

two-agent economy.35

In this region of the parameter space, a small change in yh (equivalently in the progressivity of tax system)

changes the consumption distribution one-for one with the income distribution. There is no crowding-out

effect induced by a change in the tax system. Again, the absence of a crowding out effect occurs for a wider

set of parameter values (tax rates) in the two agent economy, relative to the continuum economy.

5.1.3 Partial Risk Sharing

For all yh ∈ (yautc , yfc ) (respectively, for all yh ∈ (yaut2 , yf2 ) in the two agent economy) the stationary con-

strained efficient consumption distribution is characterized by partial risk sharing. In the next subsection we

will characterize this distribution further in both economies, with particular focus on how it changes with

the measure of inequality yh,and thus with the degree of tax progressivity.
35Note that yaut

2 = y∗2 (the level of yh that maximizes the value of autarky for the currently rich household).
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Consumption Dynamics with Partial Risk Sharing in the Two Agent Economy: Characteriza-

tion and Comparative Statics In Krueger and Perri (2006), building on results by Kehoe and Levine

(2001) we show that the constrained efficient consumption allocation in the case yh ∈ (yaut2 , yf2 ) is fully

characterized by ch, the consumption level of households with currently high income.36 This number is the

smallest solution of the equation

UAut(yh) =
1
2
βu(2− ch) +

(
1− 1

2
β

)
u(ch)

and satisfies ch ∈ (1, yh). Furthermore Krueger and Perri (2006) show that within the range yh ∈ (yaut2 , yf2 ),

an increase in yh reduces the value of UAut(yh) and reduces ch and increases cl = 2−ch. That is, consumption

dispersion declines with an increase in yh.Put differently, if there is partial insurance to start with, then

an increase in public risk sharing through the tax system (a reduction of yh) unambiguously increases

consumption risk; public insurance crowds out private insurance more than one-for-one.

Consumption Dynamics with Partial Risk Sharing in the Continuum Economy: Characteriza-

tion and Comparative Statics For the continuum economy, under partial risk sharing (that is, for all

yh ∈ (yautc , yfc )), the consumption dynamics and distribution is more complex. Lemma 1 and 2 show that

the optimal policy function gy′(w), as a function of utility promises w, is constant and equal to the value of

autarky UAut(y′), intersects the 450 line and at some point w > UAut(y′) starts to monotonically increase.

If gyl(w) > UAut(yl) and gyh(w) > UAut(yh), then gyl(w) = gyh(w). Figure 1 plots a typical policy function

for utility promises tomorrow, gy′(w), against utility promises today, w, conditional on tomorrow’s shock

being either y′ = yl or y′ = yh.

Figure 1 can be used to deduce the dynamics of utility promises w (and hence consumption, which is

a strictly monotone function of w), as well as the invariant distribution over utility promises and hence

consumption. First, the support of the stationary distribution of utility w is equal to [UAut(yl), UAut(yh)],

as shown in the theoretical analysis. For all w ∈ [UAut(yl), UAut(yh)] an agent with high income y′ = yh

receives continuation utility w′ = UAut(yh). History is forgotten in this event, as with y′ = yh future

utility does not depend on present utility entitlements w, which summarize the history of past endowment

shocks. For agents with y′ = yl history does matter. An agent starting with w = w3 = UAut(yh) that

receives y′ = yl drops to w2 = gy′(UAut(yh)) < UAut(yh), and, upon a further bad shocks, works herself

downwards through the entitlement distribution. In a finite number of steps (in the figure this number of

steps is 2) an agent with a string of bad shocks arrives at w1 = UAut(yl), with any good shock putting her

immediately back to w3 = UAut(yh). Consumption obeys the same dynamics as utility entitlements since

it is is a strictly monotonic function of utility entitlements. The stationary utility entitlement (and thus

consumption) distribution associated with the policy functions is depicted in figure 2.

36Currently poor households consume cl = 2 − ch. The efficient consumption allocation in the two agent model is history-
independent and only depends on the current state.
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The efficient stationary consumption distribution is formally characterized as follows:37

Proposition 13 For a given interest rate R the constrained efficient stationary consumption allocation is

characterized by a number n > 2, and ordered consumption levels c1, c2, . . . cn,ordered lifetime utility levels

w1,w2, . . . , wn and associated probabilities π1, π2, . . . , πn such that:

1. The stationary consumption and utility distribution is given by

π1 = 0.5n−1

πj = 0.5n−j+1 for j = 2, . . . , n

2. The consumption and utility levels satisfy

w1 = UAut(yl)

wn = UAut(yh)

wj = (1− β)u(cj) + 0.5β
(
wmax{j−1,1} + wn

)
for j = 1, . . . , n (38)

and

u′(cj) = βRu′(cj−1) for j = 3, . . . , n (39)

u′(c2) ≥ βRu′(c1) (40)

3. The interest rate itself if determined from the resource constraint

n∑
j=1

πjcj = 1 (41)

For a given n, equations (38), (39) and (41) form a system of 2n + 1 equations in the unknowns

c1, c2, . . . cn, w1,w2, . . . , wn, R. If for a given n, equation (40) is satisfied an there in no larger n such that

this is true, we have found the optimal step size.38 While it seems impossible to fully analytically derive the

n consumption levels and provide comparative statics with respect to income dispersion yh, the following

result immediately follows from the previous proposition.

Corollary 14 In the continuum economy we have (from the first and third equation of (38)) that c1 = yl

and cn < yh.

37Krueger and Uhlig (2006) prove a similar result, in a model with exogenous interest rates where the consequence of default is
not financial autarky, but the best insurance contract a competing financial intermediary offers. The proof of the characterization
of the efficient consumption and lifetime utility allocation in this paper is identical to the one in Krueger and Uhlig (2006) and
hence omitted.

38This simple algorithm is only applicable in the iid case with two shocks, however. For a more general endowment process
the computational method based on the theory developed above and described in detail in the appendix needs to be used to
compute stationary constrained-efficient allocations.
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In summary, in the case of partial risk sharing the continuum economy insures households against bad

income shock by allowing consumption decline slowly over time, relative to the two agent economy. This

comes at the cost that consumption eventually falls to a lower level than in the two agent economy, albeit

only in the unlikely event of a sequence of bad income shocks. Also, the allocation in the continuum economy

features history dependence in that it depends on the length of the sequence of bad shocks, whereas in the

two-agent economy the consumption allocation in this example only depends on the current shock.

Since changes in income dispersion yh induce changes in the interest rate R it is hard to derive further

clear-cut comparative statics results. Note, however, that the previous corollary immediately implies that, in

stark contrast to the two-agent economy, an increase in yh and thus a decrease in yl reduces the lower end of

the support of the consumption distribution. Thus an increase in in tax progressivity, while leading to more

consumption dispersion and lower minimum consumption in the two-agent model, leads to an increase of

minimum consumption in the continuum model. These results demonstrate that the version of the limited

commitment model with only two (classes of) households has qualitatively different implications for the

efficient distribution of consumption and the impact on this distribution of a change in the progressivity

of the tax code than the continuum model with its richer (and arguably more realistic) consumption and

wealth distribution

In the remainder of the paper we now want to document that the quantitative importance of the crowding-

out effect of private through public insurance is potentially large in a realistically parameterized version of

the continuum economy.

6 A Quantitative Example

In this section it is our goal to study the quantitative impact of changes in the progressivity of the tax system

on the amount of risk sharing in equilibrium. In particular we use the model to measure the extent to which

public risk sharing mechanisms (i.e. progressive taxes) and private risk sharing mechanisms (i.e. financial

markets) interact in insulating private consumption from random income fluctuations. In order to do so we

specify and estimate a simple statistical process for pre-tax labor income risk on US household data, and

then study, for a given set of preference parameters, how a change in the tax system affects risk sharing and

steady state consumption allocations.

We would like to stress that we restrict attention to the long-run consequences of different tax codes

on private financial markets and overall risk sharing, rather than characterizing the entire transition path

induced by a tax reform. Therefore, while in our simple model long-run effects of changes in the tax code

on risk sharing map one-for-one into ex-ante welfare of households, we do not emphasize the normative

implications of the model (nor do we propose to use our model to study optimal policy, as optimal tax policy

is likely to depend on a variety of factors omitted here, including the explicit consideration of transitional

dynamics).39

39Using our methodology to study transitions is not immediate. An unexpected change in government policies alters the
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6.1 Functional Forms and Parameterization

We now describe the estimation of the pre-tax labor income process, the class of tax functions we consider

in our experiments and the parameterization of preferences and the consequences of default.

6.1.1 Labor Income Risk

We specify the process for log pre-tax labor income of household i as a simple AR(1) process

log eit = ρ log eit−1 + εit (42)

This process is meant to capture idiosyncratic labor income shocks (risk) of US households, and is fully

characterized by the two parameters ρ and σε. In order to separately identify the two parameters in (42) we

use micro data with a panel dimension provided the US Consumer Expenditure Survey (CEX). We select

the set all households in the CEX over the period 2000-2007, whose head is between the age of 25 and

60 and which have positive labor income for two consecutive periods.40 Consistently with the model we

measure income as real labor earnings before taxes from all members of the household. Since in the model

all households have the same size we divide real total labor income by the number of adult equivalents

in the household. Then in order to exclude from our data permanent differences across households and

aggregate risk41 the income measures are regressed each year on a set of individual controls (which include

quarter and education dummies, a quartic in age and age-education interactions). The residuals from those

regressions are the data equivalent of log eit in the process (42) . Since for each household we have exactly

two observations we can estimate time varying parameters ρt and σεt for each period using the following

simple cross sectional moment conditions:

ρt =
cov(log eit, log eit−1)

var(log eit−1)
σ2
εt = var(log eit)− ρtvar(log eit−1)

and finally obtain estimates of ρ and σε as the simple time averages of ρt and σεt from the first quarter of

2000 to the first quarter of 2007. We estimate ρ = 0.8014 (with a standard error of 0.03) and σ2
ε = 0.1849

(with a standard error of 0.021). These estimates reveal that labor income risk quite persistent, but also

contains a sizeable transitory component (possibly due to measurement error). These two general findings

set of feasible distributions of lifetime expected discounted utilities this economy can attain with given aggregate resources
(which remain unchanged). Thus, for a particular agent the promised utility w she entered the period with is not necessarily
a valid description of her state after the change in fiscal policy (a probability zero event) anymore. Consequently a method
that employs promised expected utility as a state variable cannot be employed to compute transitional dynamics induced by
unexpected policy innovations. Any transition analysis in this economy has to tackle the (sequential) competitive equilibrium
directly, as we do in Krueger and Perri (2006).

40A significant fraction of households in the CEX sample report their labor income in the past year at two consecutive points
in time, on average 10 month apart. We use CEX as opposed to PSID as CEX has a larger sample size (although the panel
dimension is much smaller). We conjecture that similar estimates would be obtained from PSID data since Heathcote et al.
(2009) document that the CEX and the PSID income data align rather well along a number of cross-sectional dimensions.

41These are not explicitly modeled in our theoretical analysis that focuses on idiosyncratic risk.
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are consistent with a number of studies (see for example MaCurdy, 1982) that estimate statistical processes

for household earnings or income.

In order to map the estimated process into our theory in which pre-tax labor income follows a finite state

Markov chain we discretize the continuous AR(1) process into a finite state Markov chain with 5 states using

the Tauchen procedure. Finally we re-normalize the value of all income states (after translating these states

from logs into levels) such that mean pre-tax labor income equals to 1.

6.1.2 Fiscal Policy

Since the purpose of our quantitative exercise is to document the potential quantitative importance of the

crowding-out mechanism, rather than to argue that the crowding-out effect is larger than one in the actual

US economy we restrict ourselves to the same simple one-parameter family of tax functions as in section

5 for which the degree of public risk sharing can be varied in a transparent way. Therefore, as above we

assume that the tax code is given by a constant marginal tax rate τ and a fixed deduction (or transfer) d,

so that the tax code is given by

τ(e) = τe− d.

Recall that, given our normalization of average pre-tax income in the economy to ē = 1, the government

budget constraint implies d = τ , and after-tax income y is given by

y = e− τ(e) = (1− τ)e+ τ .

The policy parameter τ ∈ ( −emin
1−emin

, 1] here measures the constant marginal tax rate but also, given a balanced

budget, the size of lump sum transfers to households. Since marginal taxes are proportional and transfers are

lump sum, the higher is τ the larger is the degree of redistribution from the lucky to the unlucky households,

i.e. the extent of public risk sharing. Notice that as τ approaches −emin
1−emin

from above, the tax system actually

magnifies income risk faced by households. At the other extreme when τ = 1 the government tax and transfer

system eliminates income risk faced by households altogether: after-tax income y is constant and equal to 1

regardless of a household’s pre-tax income realization e.

6.1.3 Preferences and Consequences of Default

We assume that households have log-utility, u(c) = log(c), are not permitted to save after default, r = −1

and document results for various combinations of time discount factors β ∈ (0, 1). The essential trade-off

determining the extent of private risk sharing in equilibrium involves a comparison between the value of

staying in the risk sharing agreement, relative to the value of being excluded from financial markets. The

impact on both of these values of varying risk aversion σ and saving returns r after default are qualitatively

similar to the impact of varying β. A higher β as well as a higher risk aversion σ and a reduction in r

(which makes consumption smoothing in autarky harder) increases the value of having access to risk sharing
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Figure 3: The effects of public risk sharing

arrangements, relative to autarky, and hence relaxes the debt constraints, resulting in increase in private

risk sharing.

6.2 Three Measures of Risk Sharing

Before we present our numerical results we define different measures of risk sharing which we will use to

quantify the change in after-tax income and consumption risk faced by households induced by changes in

the tax code. We define Total Intermediation (TI) of risk as one minus the ratio between the standard

deviations of consumption to the standard deviation of pre-tax income:

TI = 1− std(c)
std(e)

.

Note that when std(c) = 0, T I = 1, consumption does not vary at all across individuals and the economy

exhibits complete risk sharing. If std(c) = std(e), TI = 0 and consumption varies one for one with pre-tax

endowments For 0 < TI < 1 there is some, but not complete risk sharing, with higher TI indicating higher

risk sharing.

We can decompose TI into two components reflecting risk intermediation enforced by the government

(GI) via the tax system and risk intermediation achieved in addition by private insurance contracts, (PI).

Similar to TI we define as

GI = 1− std(y)
std(e)

PI = 1− std(c)
std(y)

(43)

Note that given our tax function it follows that std(y) = (1 − τ)std(e) so that government intermediation
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equals GI = τ and thus GI measures nothing else but the progressivity of the tax code.

To interpret PI note that if std(c) = 0, P I = 0 and there is complete risk sharing achieved through

private markets. If, on the other hand std(c) = std(y), P I = 0 and private markets do not achieve any risk

sharing over and above that implemented by the tax system. A simple calculation shows that

TI = GI + (1−GI) ∗ PI (44)

Hence total intermediation of risk equals government intermediation of risk plus private intermediation of

that part of risk that is not already removed by the tax system. In particular, under our tax system when

τ = 0 it implies that GI = 0 and hence TI = PI.

6.3 Quantitative Results: Limited Commitment Model

Figure 3 plots the measures TI and PI (panel a) as well as the interest rate (panel b), as a function of τ , for

β = 0.9. Panels (a) and (b) show that both total intermediation TI and the real interest rate are U-shaped

functions of government intermediation τ . When τ is sufficiently close to −emin
1−emin

(which in our example is

around -0.32) the tax system is regressive enough to bring the value of after-tax income in the lowest state

close to 0 so that the value of autarky approaches −∞, and the first best, full risk sharing allocation is

enforceable. In this case total intermediation (and private intermediation as is clear from equation (44)) are

exactly 100% and the gross real interest rate is equal to 1/β. On the other end of the spectrum, if τ = 1

full insurance is achieved through government intermediation alone: total intermediation is again 100% and

the interest rate is 1/β. In the middle range of government intermediation τ perfect risk sharing is not

achievable, total intermediation is less than 100 and the corresponding interest rate falls below its complete

markets level of 1/β. The fact that the first best allocation can be achieved with extremely regressive or

extremely progressive taxes is a strong prediction of this model, but not one that we think is very relevant for

the design of optimal policy, as obviously in real economies there are many factors which we abstract from

in our setup (e.g. disincentive effects on labor supply, equity considerations) that will make such extreme

policies undesirable. The more relevant conclusion from our model is that government tax policy, regardless

of what motivates it, has a potential effect on the incentives that sustain of private risk sharing.

To evaluate the magnitude of this impact in an empirically plausible range of fiscal policy, figure 4 below

reports private risk sharing and total risk sharing (panel a) and interest rates (panel b) for values of τ

ranging from 0 (a flat tax) to 40% (which approximates the degree of public redistribution observed in some

European countries) in three economies, characterized by β = 0.95, 0.9, 0.8. The values for βs are chosen to

show three possible patterns of interaction between public and private risk sharing we discuss now.

First, let us focus on the dashed lines that represent private intermediation (PI) as a function of public

intermediation τ . Note that all three lines are decreasing. Private intermediation declines with τ because

of two effects. The first is rather mechanical: public risk sharing simply displaces private intermediation
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Figure 4: The effects of public risk sharing in three economies

since a reduction of income risk through progressive taxation diminishes the need for private markets to

supply insurance. This “displacement” effect is at work in any model with a complete set of assets in which

private and public risk sharing are perfect substitutes, in the sense that both channels can provide insurance

costlessly and state-contingently. However, the displacement effect can at most explain a 100% crowding-out

of private insurance by public insurance. The second effect is specific to the limited commitment model

studied in this paper, and it stems from the fact that public intermediation, by reducing income risk of

households, increases the value of being excluded from financial markets and hence tightens the enforcement

constraints. This “tightening” effect together with the displacement effect can generate an overall crowding-

out effect that is larger than a 100%, that is, it can imply that when the government increases public

intermediation by raising the progressivity of the income tax code total intermediation falls. Observe from

figure 4 that exactly this happens when the discount factor takes a value of β = 0.95, the top solid line in

panel (a). When β = 0.9 total intermediation is essentially flat (it is in fact very mildly U-shaped) and when

β = 0.8 the crowding-out effect is always less than 100%, i.e. when public intermediation increases so does

total intermediation.

Why does the magnitude of the crowding-out effect crucially depend on the time discount factor? Different

β’s effectively measure the effectiveness of private intermediation: the higher the β, the more households value

future consumption insurance through private markets, and therefore the easier it is to enforce contracts.

This implies that in high β economies private households make large use of private intermediation and hence

there is the potential for a large displacement effect. This, together with the tightening effect can lead to

more than 100% crowding out. When β is low financial markets are less effective in providing insurance (the

enforcement constraints are tighter), there is less potential for a large displacement effect and a crowding-out
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effect in excess of 100% is less likely to materialize. At the extreme, consider the limiting case in which β is

so low that the economy is in autarky (and remains there after a change in tax policy). In this case public

risk sharing has no “displacement” nor “tightening” effect, and any given increase in public risk sharing

causes an equal increase in total intermediation. Finally notice (panel b) that in the range of τ we display

in figure 4 interest rates are always a declining function of public intermediation. This provides further

direct evidence of the tightening effect induced by higher public risk sharing. Since lower income risk (due to

higher τ) tightens borrowing constraints (by raising the value of autarky) it reduces the aggregate demand

for credit, thus lowering the required equilibrium interest rate.

6.4 Quantitative Results: Standard Incomplete Markets Model

In this section we contrast our findings on the effects of changes in public risk sharing (government inter-

mediation) in a limited commitment economy to the effects of the same changes in a standard incomplete

markets model. In this economy agents are only permitted to trade a single uncontingent bond and they

face an exogenously specified constant borrowing limit b.42 By assumption enforcement frictions are absent

in this model. The specific model we consider is most similar to the one studied by Huggett (1993) and

shares the same market structure and the same continuum of households with the models of Bewley (1986)

and Aiyagari (1994). The household problem in recursive formulation reads as

v(a, y) = max
−b≤a′≤y+Ra

(1− β)u(y +Ra− a′) + β
∑
y′

v(a′, y′)π(y′|y)

where a are holdings of the one-period bond at the beginning of the period and R is the gross real interest rate

on these bonds. As with the previous model we compare stationary equilibria under different tax systems.

To enable an exact comparison with the limited commitment economy we also use the same preferences and

multiple discount factors, while we set the maximum amount that can be borrowed by households to an

amount equivalent to five times average income.43 Figure 5 reports how total and private intermediation

(panel a) and interest rates (panel b) respond to changes in government intermediation in the standard

incomplete markets economy.

First note that, similar to the previous model, as government intermediation increases private intermedi-

ation (the dashed lines in figure 5) falls, suggesting the presence of a crowding-out effect under this market

structure as well. The intuition behind this crowding-out effect is quite different here, though. When larger

government intermediation reduces income risk of households, it also reduces the incentive of consumers of

engaging in precautionary saving. With a weaker precautionary motive households behave more like “Perma-

nent Income” consumers, which leads to a more dispersed long-run wealth distribution as τ increases.44 Such
42Since average income is normalized to ȳ = 1, b has the interpretation of the fraction of average income that a household

can borrow.
43We obtain qualitatively similar findings for tighter levels of the household borrowing constraint.
44In this model the desire to engage in precautionary saving is driven both by strictly convex marginal utility as well as

potentially binding borrowing constraints. Note however that the borrowing constraint we employ in this example is rather
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Figure 5: The effects of public risk sharing in standard incomplete markets

a more dispersed wealth distribution in turn is associated with a consumption distribution with larger vari-

ance and thus a lower extent of private intermediation. Notice for example that in figure 5, for the low value

of β = 0.8 and significant public intermediation τ private intermediation PI turns negative: as the definition

of PI in equation (43) makes clear for this constellation of parameters and government policy the dispersion

of the consumption distribution is larger than the dispersion of the after-tax income distribution. This can

only happen if the distribution of capital income displays a large variance, which in turn requires a large

cross-sectional dispersion in asset holdings. Consistent with this argument in experiments with economies

that feature much tighter borrowing constraints we found, not surprisingly, that the crowding-out effect

is significantly smaller. With less generous borrowing constraints the long-run asset distribution is more

narrowly bounded and therefore the corresponding consumption distribution is significantly less dispersed.

We conclude this section by highlighting two additional crucial differences between the responses to

changes in government intermediation in the two models.

First, although the crowding-out effect of private insurance from public insurance can be substantial even

in the standard incomplete markets model we never found it to be larger than a 100% in any of them many

quantitative examples we considered. Therefore in this model in which the structure of financial markets

is unaffected by government policy (both the set of assets that are being traded as well as the borrowing

constraints are policy-invariant) more public intermediation always leads to better overall consumption

insurance (and consequently to higher ex-ante steady state welfare). We conjecture the reason for this

finding to be the following. In the standard incomplete markets model public and private intermediation

are not perfect substitutes since public intermediation provides state contingent insurance while private

loose (although it is not completely absent as in pure versions of the permanent income model).
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intermediation takes the form of uncontingent self -insurance through borrowing and lending. Thus more

public intermediation always improves the long run consumption risk allocation and hence long run welfare.45

Second the effect of government policy on real interest rates is qualitatively different in the limited

commitment and the standard incomplete markets model. In the former more publicly provided risk sharing

cause, in the relevant range of τ , a reduction in the equilibrium interest rate (see again figure 4, panel

b), because larger τ tightens enforcement constraints and hence reduces demand for borrowing. In the

standard incomplete markets economy in contrast the equilibrium interest rate is increasing in government

intermediation (see figure 5, panel b). Higher government intermediation mitigates labor income risk and

thus reduces the precautionary demand for saving which in turn drives down the equilibrium interest rate.

This effect is largely absent in the limited commitment economy, due to the availability of a full set of

state-contingent assets.46

7 Conclusion

In this paper we presented a model that highlights a new channel through which the provision of public

income insurance through progressive income taxation endogenously impacts the operation of private finan-

cial markets. By changing the incentives to default on private financial contracts government policy alters

the extent to which private financial can provide consumption insurance against after-tax income risk. We

demonstrated that when private labor income insurance markets are active, public risk sharing provided

via taxes crowds out private risk sharing. In order to gain some insights into the potential quantitative

magnitude of this effect we measured the extent of household labor income risk from US household data and

confronted consumers in our model with this risk. In our quantitative example we found that the magnitude

of the crowding-out effect can be very substantial. In fact, for plausible parameterizations of the model an

increase in public risk sharing via the tax system can lead to a more than 100% crowding-out of private

insurance and thus an overall reduction of total consumption risk sharing. By attempting to provide better

consumption insurance the government induces more consumption risk in equilibrium.

In contrast, if private insurance markets are assumed to be missing for model-exogenous reasons (and

thus there is no interaction between the extent of public insurance and the structure of private markets),

as in the standard incomplete markets model developed by Bewley (1986), a tax reform that reduces the

variance of after-tax income serves as am effective partial substitute for private insurance markets and always

increases the amount of consumption risk sharing in the economy. This finding indicates that the assumption

about the exact structure of private capital markets is crucial when analyzing social insurance policies.
45We want to stress that although we experimented with many possible parameters configurations and never have encountered

the crowding-out effect to exceed 100% in the standard incomplete markets model we were not able to obtain a formal theoretical
proof of this result. We therefore think it is conceivable (albeit not very likely, given our numerical results) that, even in the
standard incomplete market model the long-run crowding out of private intermediation from public risk sharing could potentially
exceed 100%.

46Due to the presence of (state-contingent) borrowing constraints in the limited commitment model the precautionary motive
to save is not entirely absent from this model either.
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In order to isolate the effect of the tax system on private insurance markets and on risk sharing as clearly

as possible we focused on comparison of steady state equilibria and abstracted from several features of actual

economies that are potentially important in the analysis of tax policy, most notably its potential distortions of

labor-leisure and capital accumulation decisions as well as its redistributive consequences. A comprehensive

quantitative positive and normative analysis of progressive taxation that incorporate the effects we highlight

in this work into a model featuring these distortions and equity concerns and considers transitional dynamics

is called for, in our view. We defer such analysis to future research.
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Proof of Lemma 3:
We want to show that for all w ≤ w < ŵ ≤ w̄, h(w) < h(ŵ). Suppose not. Then from (20) V ′R(gy′(w)) ≥

V ′R(gy′(ŵ)) for all y′ such that gy′(ŵ) > UAut(y′), and hence UAut(y′) < gy′(ŵ) ≤ gy′(w) for all those y′ by
strict convexity of VR. From promise keeping there must exist ȳ′ such that gȳ′(w) < gȳ′(ŵ) = UAut(ȳ′), a
violation of the debt constraint.

Now, since h is strictly increasing in w, C ′(h(w)) < C ′(h(ŵ)). Suppose that gy′(w) > UAut(y′). Then from
(20) we have V ′R(gy′(w)) < V ′R(gy′(ŵ)) and from the strict convexity of VR it follows that gy′(ŵ) > gy′(w).
Obviously, if gy′(w) = UAut(y′) then gy′(ŵ) ≥ gy′(w).

Thus we conclude that either gy′(ŵ) > gy′(w) or gy′(w) = gy′(ŵ) = UAut(y′)
Proof of Lemma 4:
VR is strictly convex and differentiable. By assumption gy′(w) > UAut(y′). Combining (20) and (21) we

obtain βRV ′R(w) = V ′R(gy′(w)). Since R < 1
β we have V ′R(w) > V ′R(gy′(w)). By strict convexity of VR the

first result follows. Hence gy′(.) are always strictly below the 450 line in its strictly increasing part. But
gy′(w) ≥ UAut(y′) for all w. Hence for w < UAut(y′) it follows that gy′(w) = UAut(y′) > w. By continuity
of gy′(.) we obtain that gy′(UAut(y′)) = UAut(y′), and from the first result it follows that gy′(w) < w for all
w > UAut(y′)

Proof of Theorem 5:
Take w̄ = maxy UAut(y) + ε, for ε > 0. If gy′(w) > UAut(y′), then the previous Lemma yields the result.

If gy′(w) = UAut(y′), then gy′(w) = UAut(y′) ≤ maxy UAut(y) < w̄
Proof of Theorem 6:
We first prove that there exists w∗ ∈ W such that w∗ > UAut(ymax) and gymax(w∗) = UAut(ymax), from

which it follows that gymax(w∗) = UAut(y) for all w ≤ w∗.
Suppose, to obtain a contradiction, that gymax(w) > UAut(ymax) for all w ∈W,w > UAut(ymax). Then by

Lemma 3 we have gy′(w) = gymax(w), for all y′ ∈ Y and all w > UAut(ymax). By continuity of gy′ and Lemma
4 we conclude that gy′(UAut(ymax)) = UAut(ymax), for all y′ ∈ Y. But since UAut(ymax) > UAut(y′) for all
y′ 6= ymax, by Lemma 4 it follows that gy′(UAut(ymax)) < UAut(ymax) for all y′ 6= ymax, a contradiction.

We now can apply Stokey et al., Theorem 11.12. For this it is sufficient to prove there exists an ε > 0
and an N ≥ 1 such that for all (w, y) ∈ (W,Y ) we have QN ((w, y, UAut(ymax), ymax) ≥ ε.

If w∗ ≥ w̄ this is immediate, as then for all (w, y) ∈ (W,Y ), Q((w, y, UAut(ymax), ymax) ≥ π(ymax), since
gymax(w) = UAut(ymax) for all w ∈W. So suppose w∗ < w̄. Define

d = min
w∈[w∗,w̄]

{w − gymax(w)} (45)

Note that d is well-defined as gymax is a continuous function and that d > 0 from Lemma 4 Define

N = min{n ∈ N |w̄ − nd ≤ w∗} (46)

and ε = π(ymax)N . Suppose an individual receives ymax for N times in a row, an event that occurs with
probability ε. For (w, y) such that w ≤ w∗ the result is immediate as for those w, gymax(w) = UAut(ymax) and
gymax(UAut(ymax)) = UAut(ymax). For any w ∈ (w∗, w̄] we have gymax(w) ≤ w− d, gymax(gymax(w)) ≤ w− 2d,
etc. The result then follows by construction of (N, ε)

Proof of Lemma 9: We first show that there is an allocation attaining a distribution of utility that
stochastically dominates the utility distribution in autarky and requires no more resources. It is then
immediate that autarky is not efficient. In autarky the measure over utility entitlements and endowment
shocks is given by

ΦAut({UAut(y), y}) = π(y) (47)
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We show that there exist allocations that attain the joint measure Φ̂ defined as

Φ̂({UAut(y), y}) = π(y) all y 6= ymin

Φ̂({UAut(ymin), ymin}) = π(ymin)(1− π(ymax))
Φ̂({w̃, ymin}) = π(ymin)π(ymax) (48)

where w̃ = UAut(ymin) + ε for small ε > 0. Define δmax and δmin implicitly by

w̃ = (1− β)(u(ymin) + δmin) + β
∑
y

π(y)UAut(y)

UAut(ymax) = (1− β)(u(ymax)− δmax) + β
∑

y 6=ymin

π(y)UAut(y) + βπ(ymin)w̃

(49)

Since w̃ = UAut(ymin) + ε, we have

δmax =
βπ(ymin)
(1− β)

ε

δmin =
ε

(1− β)
(50)

The autarkic allocation exhausts all resources. The new allocation reduces consumption for the π(ymax)
agents with ymax by δmax and increases consumption for π(ymax)π(ymin) agents by δmin. Hence, compared
to the autarkic allocation the change in resource requirements is given by

∆ = −π(ymax)C ′(u(ymax))δmax + π(ymax)π(ymin)C ′(u(ymin))δmin

=
π(ymin)π(ymin)ε

(1− β)

(
−β

u′(ymax)
+

1
u′(ymin)

)
(51)

Therefore ∆ ≤ 0 if and only if

β
u′(ymin)
u′(ymax)

≥ 1 (52)

Under this condition the new allocation is resource feasible, incentive feasible and attains Φ̂, a distribution
that dominates ΦAut. It is straightforward to construct the sequential allocation h induced by the recursive
policies supporting Φ̂. By reducing h0(UAut(ymin), ymin) so that the agents receiving discounted utility ŵ
under Φ̂ receive UAut(ymin) the new allocation attains ΦAut but with less resources, a contradiction to the
assumption that autarky is constrained efficient.

Proof of Theorem 12
The allocation satisfies the resource constraint (9) since the efficient allocation does and Θ0 is derived from

Φ0. Also the allocation satisfies the continuing participation constraints, and, by construction of a0(w0, y0),
the budget constraint. It remains to be shown that {ct(a0, y

t)} is utility maximizing among the allocations
satisfying the budget and the continuing participation constraints. The first order conditions

(1− β)βtπ(yt|y0)u′
(
ct(a0, y

t)
)1 +

∑
yτ∈P (yt)

µ(a0, y
τ )

 = λ(a0, y0)p(yt) (53)

are sufficient for consumer optimality.47 Define Lagrange multipliers µ(a0, y0) = 0, λ(a0, y0) = (1 −
47The consumer maximization problem is a strictly convex programming problem (the constraint set with the debt

constraints remains convex). Note that since the efficient consumption allocation is bounded from above, the ex-
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β)u′ (c0(a0, y0)) and recursively

1 +
∑
yτ |yt

µ(a0, y
τ ) =

u′ (c0(a0, y0))
(βR)t u′ (ct(a0, yt))

(54)

Note that the allocation by construction (see 33) satisfies u′(ct(a0,y0))
βRu′(ct+1(a0,yt+1)) ≥ 1, with equality if the limited

enforcement constraint is not binding. Hence µ(a0, y
t+1) ≥ 0 and µ(a0, y

t+1) = 0 if the constraint is not
binding. By construction the allocation and multipliers satisfy the first order conditions.

pected continuation utility from any history yT onward, discounted at market prices R−T goes to zero as T → ∞
(i.e. the relevant transversality condition is satisfied). For details see the separate theoretical appendix, available at
http://www.econ.upenn.edu/˜dkrueger/research/theoreticalapp.pdf.
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