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1. Introduction

A classic question in macroeconomics is: what is the size of the government-

spending multiplier? There is a large empirical literature that grapples with this

question. Authors such as Barro (1981) argue that the multiplier is around 0.8

while authors such as Ramey (2008) estimate the multiplier to be closer to 1.2.1

There is also a large literature that uses general-equilibrium models to study the

size of the government-spending multiplier. In standard new-Keynesian models

the government-spending multiplier can be somewhat above or below one depend-

ing on the exact specification of agent’s preferences (see Gali, López-Salido, and

Vallés (2007) and Monacelli and Perotti (2008)). In frictionless real-business-cycle

models this multiplier is typically less than one (see e.g. Aiyagari, Christiano, and

Eichenbaum (1992), Baxter and King (1993), Burnside, Eichenbaum and Fisher

(2004), Ramey and Shapiro (1998), and Ramey (2011)). Viewed overall it is

hard to argue, based on the literature, that the government-spending multiplier

is substantially larger than one.

In this paper we argue that the government-spending multiplier can be much

larger than one when the nominal interest rate does not respond to an increase in

government spending. We develop this argument in a model where the multiplier is

quite modest if the nominal interest rate is governed by a Taylor rule. When such

a rule is operative the nominal interest rate rises in response to an expansionary

fiscal policy shock that puts upward pressure on output and inflation.

There is a natural scenario in which the nominal interest rate does not respond

to an increase in government spending: when the zero lower bound on the nominal

interest rate binds. We find that the multiplier is very large in economies where

1For recent contributions to the VAR-based empirical literature on the size of the government-
spending multiplier see Fisher and Peters (2010) and Ilzetzki, Mendoza, and Vegh (2009). Hall
(2009) provides an analysis and review of the empirical literature.
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the output cost of being in the zero-bound state is also large. In such economies

it can be socially optimal to substantially raise government spending in response

to shocks that make the zero lower bound on the nominal interest rate binding.

We begin by considering an economy with Calvo-style price frictions, no cap-

ital and a monetary authority that follows a standard Taylor rule. Building on

Eggertsson andWoodford (2003) we study the eect of a temporary, unanticipated

rise in agents’ discount factor. Other things equal, the shock to the discount fac-

tor increases desired saving. Since investment is zero in this economy, aggregate

saving must be zero in equilibrium. When the shock is small enough, the real

interest rate falls and there is a modest decline in output. However, when the

shock is large enough, the zero bound becomes binding before the real interest

rate falls by enough to make aggregate saving zero. In this model, the only force

that can induce the fall in saving required to re-establish equilibrium is a large,

transitory fall in output.

Why is the fall in output so large when the economy hits the zero bound?

For a given fall in output, marginal cost falls and prices decline. With staggered

pricing, the drop in prices leads agents to expect future deflation. With the

nominal interest rate stuck at zero, the real interest rate rises. This perverse

rise in the real interest rate leads to an increase in desired saving which partially

undoes the eect of a given fall in output. So, the total fall in output required to

reduce desired saving to zero is very large.

This scenario resembles the paradox of thrift originally emphasized by Keynes

(1936) and recently analyzed by Krugman (1998), Eggertsson and Woodford

(2003), and Christiano (2004). In the textbook version of this paradox, prices

are constant and an increase in desired saving lowers equilibrium output. But, in

contrast to the textbook scenario, the zero-bound scenario studied in the modern

literature involves a deflationary spiral which contributes to and accompanies the
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large fall in output.

Consider now the eect of an increase in government spending when the zero

bound is strictly binding. This increase leads to a rise in output, marginal cost

and expected inflation. With the nominal interest rate stuck at zero, the rise

in expected inflation drives down the real interest rate, which drives up private

spending. This rise in spending leads to a further rise in output, marginal cost, and

expected inflation and a further decline in the real interest rate. The net result is a

large rise in output and a large fall in the rate of deflation. In eect, the increase

in government consumption counteracts the deflationary spiral associated with

the zero-bound state.

The exact value of the government-spending multiplier depends on a variety

of factors. However, we show that this multiplier is large in economies in which

the output cost associated with the zero-bound problem is more severe. We argue

this point in two ways. First, we show that the value of the government-spending

multiplier can depend sensitively on the model’s parameter values. But, parameter

values which are associated with large declines in output when the zero bound

binds are also associated with large values of the government-spending multiplier.

Second, we show that the value of the government-spending multiplier is positively

related to how long the zero bound is expected to bind.

An important practical objection to using fiscal policy to counteract a contrac-

tion associated with the zero-bound state is that there are long lags in implement-

ing increases in government spending. Motivated by this consideration, we study

the size of the government-spending multiplier in the presence of implementation

lags. We find that a key determinant of the size of the multiplier is the state of

the world in which new government spending comes on line. If it comes on line in

future periods when the nominal interest rate is zero then there is a large eect

on current output. If it comes on line in future periods where the nominal interest
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rate is positive, then the current eect on government spending is smaller. So

our analysis supports the view that, for fiscal policy to be eective, government

spending must come online in a timely manner.

In the second step of our analysis we incorporate capital accumulation into

the model. For computational reasons we consider temporary shocks that make

the zero bound binding for a deterministic number of periods. Again, we find

that the government-spending multiplier is larger when the zero bound binds.

Allowing for capital accumulation has two eects. First, for a given size shock it

reduces the likelihood that the zero bound becomes binding. Second, when the

zero bound binds, the presence of capital accumulation tends to increase the size

of the government-spending multiplier. The intuition for this result is that, in our

model, investment is a decreasing function of the real interest rate. When the

zero bound binds, the real interest rate generally rises. So, other things equal,

saving and investment diverge as the real interest rate rises, thus exacerbating the

meltdown associated with the zero bound. As a result, the fall in output necessary

to bring saving and investment into alignment is larger than in the model without

capital.

The simple models discussed above suggest that the multiplier can be large in

the zero-bound state. The obvious next step would be to use reduced form meth-

ods, such as identified VARs, to estimate the government-spending multiplier

when the zero bound binds. Unfortunately, this task is fraught with diculties.

First, we cannot mix evidence from states where the zero bound binds with evi-

dence from other states because the multipliers are very dierent in the two states.

Second, we have to identify exogenous movements in government spending when

the zero bound binds.2 This task seems daunting at best. Almost surely gov-

2To see how critical this step is, suppose that the government chooses spending to keep
output exactly constant in the face of shocks that make the zero bound bind. A naive econo-
metrician who simply regressed output on government spending would falsely conclude that the
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ernment spending would rise in response to large output losses in the zero-bound

state. To know the government spending multiplier we need to know what output

would have been had government spending not risen. For example, the simple

observation that output did not grow quickly in Japan in the zero-bound state,

even though there were large increases in government spending, tells us nothing

about the question of interest.

Given these diculties, we investigate the size of the multiplier in the zero-

bound state using the empirically plausible DSGEmodel proposed by Altig, Chris-

tiano, Eichenbaum and Lindé (2011) (henceforth ACEL). This model incorporates

price and wage setting frictions, habit formation in consumption, variable capital

utilization and investment adjustment costs of the sort proposed by Christiano,

Eichenbaum and Evans (2005) (henceforth CEE). ACEL estimate the parameters

of their model to match the impulse response function of ten macro variables to a

monetary shock, a neutral technology shock, and a capital-embodied technology

shock.

Our key findings based on the ACEL model can be summarized as follows.

First, when the central bank follows a Taylor rule, the value of the government-

spending multiplier is generally less than one. Second, the multiplier is much larger

if the nominal interest rate does not respond to the rise in government spending.

For example, suppose that government spending goes up for 12 quarters and the

nominal interest rate remains constant. In this case the impact multiplier is

roughly 1.6 and has a peak value of about 2.3. Third, the value of the multi-

plier depends critically on how much government spending occurs in the period

during which the nominal interest rate is constant. The larger is the fraction of

government spending that occurs while the nominal interest rate is constant, the

government spending multiplier is zero. This example is, of course, just an application of Tobin’s
(1970) post hoc ergo propter hoc argument.
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smaller is the value of the multiplier. Consistent with the theoretical analysis

above, this result implies that for government spending to be a powerful weapon

in combating output losses associated with the zero-bound state, it is critical that

the bulk of the spending come on line when the lower bound is actually binding.

Fourth, we find that the model generates sensible predictions for the current crisis

under the assumption that the zero bound binds. In particular the model does

well at accounting for the behavior of output, consumption, investment, inflation,

and short-term nominal interest rates.

As emphasized by Eggertsson and Woodford (2003), an alternative way to

escape the negative consequences of a shock that makes the zero bound binding

is for the central bank to commit to future inflation. We abstract from this

possibility in this paper. We do so for a number of reasons. First, this theoretical

possibility is well understood. Second, we do not think that it is easy in practice

for the central bank to credibly commit to future high inflation. Third, the optimal

trade-o between higher government purchases and anticipated inflation depends

sensitively on how agents value government purchases and the costs of anticipated

inflation. Studying this issue is an important topic for future research.

Our analysis builds on Christiano (2004) and Eggertsson (2004) who argue

that increasing government spending is very eective when the zero bound binds.

Eggertsson (2011) analyzes both the eects of increases in government spending

and transitory tax cuts when the zero bound binds. The key contributions of this

paper are to analyze the size of the multiplier in a medium-size DSGE model,

study the model’s performance in the financial crisis that began in 2008, and

quantify the importance of the timing of government spending relative to the

timing of the zero bound.

Our analysis is related to several recent papers on the zero bound. Bodenstein,

Erceg, and Guerrieri (2009) analyze the eects of shocks to open economies when
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the zero bound binds. Braun and Waki (2006) use a model in which the zero

bound binds to account for Japan’s experience in the 1990s. Their results for

fiscal policy are broadly consistent with our results. Braun and Waki (2006) and

Coenen and Wieland (2003) investigate whether alternative monetary policy rules

could have avoided the zero bound state in Japan.

Our paper is organized as follows. In section 2 we analyze the size of the

government-spending multiplier when the interest follows a Taylor rule in a stan-

dard new-Keynesian model without capital. In section 3 we modify the analysis to

assume that the nominal interest rate does not respond to an increase in govern-

ment spending, say because the lower bound on the nominal interest rate binds.

In section 4 we extend the model to incorporate capital. In section 5 we discuss

the properties of the government-spending multiplier in the medium size DSGE

model proposed by ACEL and investigate the performance of the model during

the recent financial crisis. Section 6 investigates the sensitivity of our conclusions

to the presence of distortionary taxes. Section 7 concludes.

2. The standard multiplier in a model without capital

In this section we present a simple new-Keynesian model and analyze its implica-

tions for the size of the “standard multiplier,” by which we mean the size of the

government-spending multiplier when the nominal interest rate is governed by a

Taylor rule.

Households The economy is populated by a representative household, whose

life-time utility, U , is given by:

U = E0



t=0

t


[Ct (1Nt)1 ]

1  1
1 

+ v (Gt)


. (2.1)
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Here E0 is the conditional expectation operator, and Ct, Gt, and Nt denote time-

t consumption, government consumption, and hours worked, respectively. We

assume that  > 0,   (0, 1), and that v(.) is a concave function.

The household budget constraint is given by:

PtCt +Bt+1 = Bt (1 +Rt) +WtNt + Tt, (2.2)

where Tt denotes firms’ profits net of lump-sum taxes paid to the government.

The variable Bt+1 denotes the quantity of one-period bonds purchased by the

household at time t. Also, Pt denotes the price level and Wt denotes the nominal

wage rate. Finally, Rt denotes the one-period nominal rate of interest that pays

o in period t. The household’s problem is to maximize utility given by equation

(2.1) subject to the budget constraint given by equation (2.2) and the condition

E0 limtBt+1/[(1 +R0)(1 +R1)...(1 +Rt)]  0.

Firms The final good is produced by competitive firms using the technology,

Yt =

 1

0

Yt (i)
1
 di

 
1

,  >1, (2.3)

where Yt (i) , i  [0, 1] denotes intermediate good i.

Profit maximization implies the following first-order condition for Yt (i):

Pt (i) = Pt


Yt
Yt (i)

 1


, (2.4)

where Pt(i) denotes the price of intermediate good i and Pt is the price of the

homogeneous final good.

The intermediate good, Yt (i), is produced by a monopolist using the following

technology:

Yt (i) = Nt (i) ,
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where Nt (i) denotes employment by the ith monopolist. We assume there is no

entry or exit into the production of the ith intermediate good. The monopolist

is subject to Calvo-style price-setting frictions and can optimize its price, Pt (i),

with probability 1 . With probability  the firm sets:

Pt (i) = Pt1 (i) .

The discounted profits of the ith intermediate good firm are:

Et



j=0

jt+j [Pt+j (i)Yt+j (i) (1 )Wt+jNt+j (i)] , (2.5)

where  = 1/ denotes an employment subsidy which corrects, in steady state, the

ineciency created by the presence of monopoly power. The variable t+j is the

multiplier on the household budget constraint in the Lagrangian representation of

the household problem. The variable Wt+j denotes the nominal wage rate.

Firm i maximizes its discounted profits, given by equation (2.5), subject to the

Calvo price-setting friction, the production function, and the demand function for

Yt (i), given by equation (2.4).

Monetary policy We assume that monetary policy follows the rule:

Rt+1 = max(Zt+1, 0), (2.6)

where

Zt+1 = (1/)(1 + t)
1(1R)(Yt/Y )

2(1R) [ (1 +Rt)]
R  1.

Throughout the paper a variable without a time subscript denotes its steady state

value, e.g. the variable Y denotes the steady-state level of output. The variable

t denotes the time-t rate of inflation. We assume that 1 > 1 and 2  (0, 1).
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According to equation (2.6) the monetary authority follows a Taylor rule as

long as the implied nominal interest rate is non-negative. Whenever the Taylor

rule implies a negative nominal interest rate, the monetary authority simply sets

the nominal interest rate to zero. For convenience we assume that steady-state in-

flation is zero. This assumption implies that the steady-state net nominal interest

rate is 1/  1.

Fiscal policy As long as the zero bound on the nominal interest rate is not

binding, government spending evolves according to:

Gt+1 = G

t exp(t+1). (2.7)

Here G is the level of government spending in the non-stochastic steady state and

t+1 is an i.i.d. shock with zero mean. To simplify our analysis, we assume that

government spending and the employment subsidy are financed with lump-sum

taxes. The exact timing of these taxes is irrelevant because Ricardian equivalence

holds under our assumptions. We discuss the details of fiscal policy when the zero

bound binds in Section 3.

Equilibrium The economy’s resource constraint is:

Ct +Gt = Yt. (2.8)

A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, Nt,Wt, Pt, Yt, Rt, Pt (i) , Yt (i) , Nt (i) , t, Bt+1, t},

such that for given {Gt} the household and firm problems are satisfied, the mone-

tary and fiscal policy rules are satisfied, markets clear, and the aggregate resource

constraint is satisfied.
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To solve for the equilibrium we use a linear approximation around the non-

stochastic steady state of the economy. Throughout, Ẑt denotes the percentage

deviation of Zt from its non-stochastic steady state value, Z. The equilibrium is

characterized by the following set of equations.

The Phillips curve for this economy is given by:

t = Et


t+1 + MCt


, (2.9)

where  = (1 ) (1 ) /. In addition,MCt denotes real marginal cost which,

under our assumptions, is equal to the real wage rate. Absent labor market

frictions, the percent deviation of real marginal cost from its steady state value is

given by:
MCt = Ĉt +

N

1N
N̂t. (2.10)

The linearized intertemporal Euler equation for consumption is:

[ (1 ) 1] Ĉt  (1 ) (1 )
N

1N
N̂t (2.11)

= Et


 (Rt+1 R) t+1 + [ (1 ) 1] Ĉt+1  (1 ) (1 )

N

1N
N̂t+1



The linearized aggregate resource constraint is:

Ŷt = (1 g) Ĉt + gĜt, (2.12)

where g = G/Y .

Combining equations (2.9) and (2.10) and using the fact that N̂t = Ŷt we

obtain:

t = Et (t+1) + 


1

1 g
+

N

1N


Ŷt 

g

1 g
Ĝt


. (2.13)
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Similarly, combining equations (2.11) and (2.12) and using the fact that N̂t = Ŷt

we obtain:

Ŷt  g [ (  1) + 1] Ĝt = (2.14)

Et


 (1 g) [ (Rt+1 R) t+1] + Ŷt+1  g [ (  1) + 1] Ĝt+1


.

As long as the zero bound on the nominal interest rate does not bind, the

linearized monetary policy rule is given by:

Rt+1 R = R (Rt R) +
1 R



1t + 2Ŷt


.

Whenever the zero bound binds, Rt+1 = 0.

We solve for the equilibrium using the method of undetermined coecients.

For simplicity, we begin by considering the case in which R = 0. Under the

assumption that 1 > 1, there is a unique linear equilibrium in which t and Ŷt

are given by:

t = AĜt, (2.15)

Ŷt = AY Ĝt. (2.16)

The coecients A and AY are given by:

A =


1 


1

1 g
+

N

1N


AY 

g

1 g


, (2.17)

AY = g
( 1) [ (  1) + 1] (1 ) (1 )

(1 ) [ 1 (1 g)2] + (1 g) ( 1)


1
1g +

N
1N

 . (2.18)

The eect of an increase in government spending Using equation (2.12)

we can write the government-spending multiplier as:

dYt
dGt

=
1

g

Ŷt

Ĝt
= 1 +

1 g
g

Ĉt

Ĝt
. (2.19)
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This equation implies that the multiplier is less than one whenever consumption

falls in response to an increase in government spending. Equation (2.16) implies

that the government-spending multiplier is given by:

dYt
dGt

=
AY
g
. (2.20)

To analyze the magnitude of the multiplier outside of the zero bound we con-

sider the following baseline parameter values:

 = 0.85,  = 0.99, 1 = 1.5, 2 = 0,  = 0.29, g = 0.2,  = 2, R = 0,  = 0.8.

(2.21)

These parameter values imply that  = 0.03 andN = 1/3. Our baseline parameter

values imply that the government-spending multiplier is 1.05.

In our model Ricardian equivalence holds. From the perspective of the repre-

sentative household, the increase in the present value of taxes equals the increase

in the present value of government purchases. In a typical version of the standard

neoclassical model we would expect some rise in output driven by the negative

wealth eect on leisure of the tax increase. But in that model the multiplier is

generally less than one because the wealth eect reduces private consumption.

From this perspective it is perhaps surprising that the multiplier in our base-

line model is greater than one. This perspective neglects two key features of

our model: the frictions in price setting and the complementarity between con-

sumption and leisure in preferences. When government purchases increase, total

demand, Ct +Gt, increases. Since prices are sticky, price over marginal cost falls

after a rise in demand. As emphasized in the literature on the role of monopoly

power in business cycles, the fall in the markup induces an outward shift in the

labor demand curve. This shift amplifies the rise in employment following the

rise in demand. Given our specification of preferences,  > 1 implies that the

marginal utility of consumption rises with the increase in employment. As long as
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this increase in marginal utility is large enough, it is possible for private consump-

tion to actually rise in response to an increase in government purchases. Indeed,

consumption does rise in our benchmark scenario which is why the multiplier is

larger than one.

To assess the importance of our preference specification we redid our calcula-

tions using the basic specification for the momentary utility function commonly

used in the new-Keynesian DSGE literature:

u =

C1t  1


/ (1 ) N1+

t / (1 + ) , (2.22)

where, , , and  are positive. The key feature of this specification is that the

marginal utility of consumption is independent of hours worked. Consistent with

the intuition discussed above, we found that, across a wide set of parameter values,

dY/dG is always less than one with this preference specification.3

To provide additional intuition for the determinants of the multiplier, we cal-

culate dY/dG for various parameter configurations. In each case we perturb one

parameter at a time relative to the benchmark parameter values. Our results

can be summarized as follows. First, we find that the multiplier is an increasing

function of . This result is consistent with the intuition above which builds on

the observation that the marginal utility of consumption is increasing in hours

worked. This dependence is stronger the higher is .

Second, the multiplier is a decreasing function of . In other words, the mul-

tiplier is larger the higher is the degree of price stickiness. This result reflects the

fall in the markup when aggregate demand and marginal cost rise. This eect is

stronger the stickier are prices. The multiplier exceeds one for all  < 0.13. In

the limiting case when prices are perfectly sticky ( = 0) the multiplier is given

3See Monacelli and Perotti (2008) for a discussion of the impact of preferences on the size of
the government spending multiplier in models with Calvo-style frictions when the zero bound is
not binding.
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by:
dYt
dGt

=
[ (  1) + 1] (1 )
1 + (1 g)2

> 0.

Note that when 2 = 0 the multiplier is greater than one as long as  is greater

than one.

When prices are perfectly flexible ( = ) the markup is constant. In this

case the multiplier is less than one:

dYt
dGt

=
1

1 + (1 g) N
1N

< 1.

This result reflects the fact that with flexible prices an increase in government

spending has no impact on the markup. As a result, the demand for labor does

not rise as much as in the case in which prices are sticky.

Third, the multiplier is a decreasing function of 1. The intuition for this eect

is that the expansion in output increases marginal cost which in turn induces a

rise in inflation. According to equation (2.6) the monetary authority increases

the interest rate in response to a rise in inflation. The rise in the interest rate is

an increasing function of 1. Higher values of 1 lead to higher values of the real

interest rate which are associated with lower levels of consumption. So, higher

values of 1 lead to lower values of the multiplier.

Fourth, the multiplier is a decreasing function of 2. The intuition underlying

this eect is similar to that associated with 1. When 2 is large there is a

substantial increase in the real interest rate in response to a rise in output. The

contractionary eects of the rise in the real interest rate on consumption reduce

the size of the multiplier.

Fifth, the multiplier is an increasing function of R. The intuition for this

result is as follows. The higher is R the less rapidly the monetary authority

increases the interest rate in response to the rise in marginal cost and inflation

that occur in the wake of an increase in government purchases. This result is

15



consistent with the traditional view that the government-spending multiplier is

greater in the presence of accommodative monetary policy. By accommodative

we mean that the monetary authority raises interest rates slowly in the presence

of a fiscal expansion.

Sixth, the multiplier is a decreasing function of the parameter governing the

persistence of government purchases, . The intuition for this result is that the

present value of taxes associated with a given innovation in government purchases

is an increasing function of . So the negative wealth eect on consumption is an

increasing function of .4

Our numerical results suggest that the multiplier in a simple new-Keynesian

model can be above one for reasonable parameter values. However, it is dicult

to obtain multipliers above 1.2 for plausible parameter values.

3. The constant-interest-rate multiplier in a model without
capital

In this section we analyze the government-spending multiplier in our simple new-

Keynesian model when the nominal interest rate is constant. We focus on the

case in which the nominal interest rate is constant because the zero bound binds.

Our basic analysis of the multiplier builds on the work of Christiano (2004) and

Eggertsson (2004) and Eggertsson and Woodford (2003). As in these papers the

shock that makes the zero bound binding is an increase in the discount factor. We

think of this shock as representing a temporary rise in agents’ propensity to save.

4We redid our calculations using a forward-looking Taylor rule in which the interest rate re-
sponds to the one-period-ahead expected inflation and output gap. The results that we obtained
are very similar to the ones discussed in the main text.
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A discount factor shock We modify agent’s preferences, given by (2.1), to

allow for a stochastic discount factor,

U = E0



t=0

dt


[Ct (1Nt)1 ]

1  1
1 

+ v (Gt)


. (3.1)

The cumulative discount factor, dt, is given by:

dt =


1

1+r1
1

1+r2
· · · 1

1+rt
, t  1,

1 t = 0.
(3.2)

The time-t discount factor, rt, can take on two values: r and rl, where rl < 0.

The stochastic process for rt is given by:

Pr

rt+1 = r

l|rt = rl

= p, Pr


rt+1 = r|rt = rl


= 1p, Pr


rt+1 = r

l|rt = r

= 0.

(3.3)

The value of rt+1 is realized at time t. We define  = 1/(1 + r), where r is the

steady state value of rt+1.

We consider the following experiment. The economy is initially in the steady

state, so rt = r. At time zero r1 takes on the value rl. Thereafter rt follows

the process described by equation (3.3). The discount factor remains high with

probability p and returns permanently to its normal value, r, with probability

1 p. In what follows we assume that rl is suciently high that the zero-bound

constraint on nominal interest rates binds. We assume that Ĝt = Ĝl  0 in the

lower bound and Ĝt = 0 otherwise.

To solve the model we suppose (and then verify) that the equilibrium is char-

acterized by two values for each variable: one value for when the zero bound binds

and one value for when it is not. We denote the values of inflation and output in

the zero bound by l and Ŷ l, respectively. For simplicity we assume that R = 0,

so there is no interest rate smoothing in the Taylor rule, (2.6). Since there are no

state variables and Ĝt = 0 outside of the zero bound state, as soon as the zero

bound is not binding the economy jumps to the steady state.
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We can solve for Ŷ l using equation (2.13) and the following version of equation

(2.14), which takes into account the discount factor shock:

Ŷt  g [(  1) + 1] Ĝt (3.4)

= Et


Ŷt+1  g [(  1) + 1] Ĝt+1  (1 g) (Rt+1  rt+1) + (1 g)t+1



We focus on the case in which the zero bound binds at time t, so Rt+1 = 0.

Equations (2.13) and (3.4) can be re-written as:

Ŷ l = g [ (  1) + 1] Ĝl +
1 g
1 p


rl + pl


, (3.5)

l = pl + 


1

1 g
+

N

1N


Ŷ l 

g

1 g
Ĝl. (3.6)

Equations (3.5) and (3.6) imply that l and Ŷ l are given by:

l =
(1 g)


1
1g +

N
1N


rl


+g(1p)


1
1g +

N
1N


 (  1) + N

1N


Ĝl. (3.7)

Ŷ l =
(1 p) (1 g)rl


+
(1 p) (1 p) [ (  1) + 1] p


gĜl, (3.8)

where:

 = (1 p) (1 p) p

1 +

N

1N
(1 g)


.

Since rl is negative, a necessary condition for the zero bound to bind is that

 > 0. If this condition did not hold inflation would be positive and output would

be above its steady state value. Consequently, the Taylor rule would call for an

increase in the nominal interest rate so that the zero bound would not bind.

Equation (3.8) implies that the drop in output induced by a change in the

discount rate, which we denote by , is given by:

 =
(1 p) (1 g)rl


. (3.9)
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By assumption  > 0, so  < 0. The value of  can be a large negative number

for plausible parameter values. The intuition for this result is as follows. The

basic shock to the economy is an increase in agent’s desire to save. We develop

the intuition for this result in two steps. First, we provide intuition for why the

zero bound binds. We then provide the intuition for why the drop in output can

to be very large when the zero bound binds.

To understand why the zero bound binds, recall that in this economy saving

must be zero in equilibrium. With completely flexible prices the real interest rate

would simply fall to discourage agents from saving. There are two ways in which

such a fall can occur: a large fall in the nominal interest rate and/or a substantial

rise in the expected inflation rate. The extent to which the nominal interest rate

can fall is limited by the zero bound. In our sticky-price economy a rise in the rate

of inflation is associated with a rise in output and marginal cost. But a transitory

increase in output is associated with a further increase in the desire to save, so

that the real interest rate must rise by even more. Given the size of the shock

to the discount factor, there may be no equilibrium in which the nominal interest

rate is zero and inflation is positive. So the real interest rate cannot fall by enough

to reduce desired saving to zero. In this scenario the zero bound binds.

Figure 1 illustrates this point using a stylized version of our model. Saving

(S) is an increasing function of the real interest rate. Since there is no investment

in this economy saving must be zero in equilibrium. The initial equilibrium is

represented by point A. But the increase in the discount factor can be thought of

as inducing a rightward shift in the saving curve from S to S. When this shift is

large, the real interest rate cannot fall enough to re-establish equilibrium because

the lower bound on the nominal interest rate becomes binding prior to reaching

that point. This situation is represented by point B.

To understand why the fall in output can be very large when the zero bound
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binds, recall that equation (3.7) shows how the rate of inflation, l, depends on

the discount rate and on government spending in the zero bound state. In this

state  is positive. Since rl is negative, it follows that l is negative and so too

is expected inflation, pl. Since the nominal interest rate is zero and expected

inflation is negative, the real interest rate (nominal interest rate minus expected

inflation rate) is positive. Both the increase in the discount factor and the rise

in the real interest rate increase agent’s desire to save. There is only one force

remaining to generate zero saving in equilibrium: a large, transitory fall in income.

Other things equal this fall in income reduces desired saving as agents attempt

to smooth the marginal utility of consumption over states of the world. Because

the zero bound is a transitory state of the world this force leads to a decrease

in agents desire to save. This eect has to exactly counterbalance the other two

forces which are leading agents to save more. This reasoning suggest that there

is a very large decline in income when the zero bound binds. In terms of Figure

1 we can think of the temporary fall in output as inducing a shift in the saving

curve to the left.

We now turn to a numerical analysis of the government-spending multiplier,

which is given by:

dY l

dGl
=
(1 p) (1 p) [ (  1) + 1] p


. (3.10)

In what follows we assume that the discount factor shock is suciently large to

make the zero bound binding. Conditional on this bound being binding, the size

of the multiplier does not depend on the size of the shock. In our discussion of

the standard multiplier we assume that the first-order serial correlation of govern-

ment spending shocks is 0.8. To make the experiment in this section comparable

we choose p = 0.8. This choice implies that the first-order serial correlation of

government spending in the zero bound is also 0.8. All other parameter values
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are given by the baseline specification in (2.21).

For our benchmark specification the government-spending multiplier is 3.7,

which is roughly three times larger than the standard multiplier. The intuition

for why the multiplier can be large when the nominal interest rate is constant, say

because the zero bound binds, is as follows. A rise in government spending leads to

a rise in output, marginal cost and expected inflation. With the nominal interest

rate equal to zero, the rise in expected inflation drives down the real interest rate,

leading to a rise is private spending. This rise in spending generates a further rise

in output, marginal cost, and expected inflation and a further decline in the real

interest rate. The net result is a large rise in inflation and output.

The increase in income in states where the zero bound binds raises permanent

income, which raises desired expenditures in zero bound states. This additional

channel reinforces the intertemporal channel stressed above. Since the zero-bound

problem is temporary, we expect that the importance of this channel is relatively

small.

We now consider the sensitivity of the multiplier to parameter values. The

first row of Figure 2 displays the government-spending multiplier and the response

of output to the discount rate shock in the absence of a change in government

spending as a function of the parameter . The ‘’ indicates results for our

benchmark value of . This row is generated assuming a discount factor shock

such that rl is equal to 2 percent on an annualized basis. We graph only values

of  for which the zero bound binds, so we display results for 0.02    0.036.

Three key features of this figure are worth noting. First, the multiplier can be

very large. Second, absent a change in government spending, the decline in output

is increasing in the degree of price flexibility, i.e. it is increasing in , as long as

the zero bound binds. This result reflects that, conditional on the zero bound

binding, the more flexible are prices, the higher is expected deflation and the
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higher is the real interest rate. So, other things equal, higher values of  require

a large transitory fall in output to equate saving and investment when the zero

bound binds.5 Third, the government-spending multiplier is also an increasing

function of .

The second row of Figure 2 displays the government-spending multiplier and

the response of output to the discount rate shock in the absence of a change in

government spending as a function of the parameter p. The ‘’ indicates results

for our benchmark value of p. We graph only values of p for which the zero bound

binds, so we display results for 0.75  p  0.82. Two key results are worth

noting. First, absent a change in government spending the decline in output is

increasing in p. So the longer is the expected duration of the shock the worse are

the output consequences of the zero bound being binding. Second, the value of

the government-spending multiplier is an increasing function of p.

Figure 2 shows that the precise value of the multiplier is sensitive to the

choice of parameter values. But looking across parameter values we see that

the government-spending multiplier is large in economies where the drop in out-

put associated with the zero bound is also large. Put dierently, fiscal policy is

particularly powerful in economies where the zero-bound state entails large output

losses. One more way to see this result is to analyze the impact of changes in N ,

which governs the elasticity of labor supply, on dY l/dGl and . Equations (3.10)

and (3.9) imply that:

dY l

dGl
=
(1 p) (1 p) [ (  1) + 1] p

(1 p) (1 g)rl
. (3.11)

From equation (3.9) we see that changes in N that make  converge to zero imply

that , the impact of discount factor shock on output, converges to minus infinity.

5The basic logic here is consistent with the intuition in De Long and Summers (1986) about
the potentially destabilizing eects of marginal increases in price flexibility.
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It follows directly from equation (3.11) that the same changes in N cause dY l/dGl

to go to infinity. So, again we conclude that the government-spending multiplier is

particularly large in economies where the output costs of being in the zero-bound

state are very large.6

Sensitivity to the timing of government spending In practice there is

likely be a lag between the time at which the zero bound becomes binding and

the time at which additional government purchases begin. A natural question is:

how does the economy respond at time t to the knowledge that the government

will increase spending in the future? Consider the following scenario. At time t

the zero bound binds. Government spending does not change at time t, but it

takes on the value Gl > G from time t + 1 on, as long as the economy is in the

zero bound. Under these assumptions equations (2.13) and (3.4) can be written

as:

t = p
l + 


1

1 g
+

N

1N


Ŷt, (3.12)

Ŷt = (1 g) rl + pŶ l  g [ (  1) + 1] pĜl + (1 g)pl. (3.13)

Here we use the fact that Ĝt = 0, Et (t+1) = pl, Et(Ĝt+1) = pĜl, and Et(Ŷt+1) =

pŶ l. The values of l and Ŷ l are given by equations (3.7) and (3.8), respectively.

Using equation (3.8) to replace Ŷ l in equation (3.13) we obtain:

dYt,1
dGl

=
1 g
g

p

1 p
dl

dĜl
. (3.14)

Here the subscript 1 denotes the presence of a one period delay in implementing an

increase in government spending. So, dYt,1/dGl represents the impact on output

at time t of an increase in government spending at time t + 1. One can show

that the multiplier is increasing in the probability, p, that the economy remains in

6An exception pertains to the parameter . The value of dY l/dGl is monotonically increasing
in , but dŶ l/drl is independent of .
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the zero bound. The multiplier operates through the eect of a future increase in

government spending on expected inflation. If the economy is in the zero bound

in the future, an increase in government purchases increases future output and

therefore future inflation. From the perspective of time t, this eect leads to

higher expected inflation and a lower real interest rate. This lower real interest

rate reduces desired saving and increases consumption and output at time t.

Evaluating equation (3.14) at the benchmark values we obtain a multiplier

equal to 1.5. While this multiplier is much lower than the benchmark multiplier

of 3.7, it is still large. Moreover, this multiplier pertains to an increase in today’s

output in response to an increase in future government spending that only occurs

if the economy is in the zero-bound state in the future.

Suppose that it takes two periods for government purchases to increase in the

event that the zero bound binds. It is straightforward to show that the impact

on current output of a potential increase in government spending that takes two

periods to implement is given by:

dYt,2
dGl

= p
1 g
g


dt,1

dĜl
+

1

1 p
dl

dĜl


.

Here the subscript 2 denotes the presence of a two period delay. Using our bench-

mark parameters the value of this multiplier is 1.44, so the rate at which the

multiplier declines as we increase the implementation lag is relatively low.

Consider now the case in which the increase in government spending occurs

only after the zero bound ends. Suppose, for example, that at time t the govern-

ment promises to implement a persistent increase in government spending at time

t+ 1, if the economy emerges from the zero bound at time t+ 1. This increase in

government purchases is governed by: Ĝt+j = 0.8j1Ĝt+1, for j  2. In this case

the value of the multiplier, dYt/dGt+1, is only 0.46 for our benchmark values.

The usual objection to using fiscal policy as a tool for fighting recessions is
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that there are long lags in gearing up increases in spending. Our analysis indicates

that the key question is: in which state of the world does additional government

spending come on line? If it comes on line in future periods when the zero bound

binds there is a large eect on current output. If it comes on line in future periods

where the zero bound is not binding the current eect on government spending is

smaller.

Optimal government spending The fact that the government-spending mul-

tiplier is so large in the zero bound raises the following question: taking as given

the monetary policy rule described by equation (2.6) what is the optimal level

of government spending when the representative agent’s discount rate is higher

than its steady state level? In what follows we use the superscript L to denote

the value of variables in states of the world where the discount rate is rl. In these

states of the world the zero bound may or may not be binding, depending on the

level of government spending. From equation (3.7) we anticipate that the higher

is government spending, the higher is expected inflation, and the less likely the

zero bound is to bind.

We choose GL to maximize the expected utility of the consumer in states of

the world in which the discount factor is high and the zero bound binds. For

now we assume that in other states of the world Ĝ is zero. So, we choose GL to

maximize:

UL =



t=0


p

1 + rl

t CL

(1NL)1

1  1
1 

+ v

GL


, (3.15)

=
1 + rr

1 + rl  p


CL

(1NL)1

1  1
1 

+ v

GL


.

To ensure that UL is finite we assume that p < (1 + rl).
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Note that:

Y L = NL = Y

Ŷ L + 1


,

CL = Y

Ŷ L + 1


G


ĜL + 1


.

Substituting these expressions into equation (3.15) we obtain:

UL =
1 + rr

1 + rl  p






N

Ŷ L + 1


Ng


ĜL + 1


(1N


Ŷ L + 1


)1

1
 1

1 





+
1 + rr

1 + rl  p
v

Ng


ĜL + 1


.

We choose the value of ĜL that maximizes UL subject to the intertemporal

Euler equation (equation (2.14)), the Phillips curve (equation (2.13)), and Ŷt =

Ŷ L, Ĝt = GL, Et(Ĝt+1) = pGL, t+1 = L, Et(t+1) = pL, and Rt+1 = RL,

where

RL = max

ZL, 0


,

and

ZL =
1


 1 +

1




1

L + 2Ŷ
L

.

The last constraint takes into account that the zero bound on interest rates may

not be binding even though the discount rate is high.

Finally, for simplicity we assume that v(G) is given by:

v (G) = g
G1

1 
.

We choose g so that g = G/Y is equal to 0.2.

Since government purchases are financed with lump sum taxes, the optimal

level of G has the property that the marginal utility of G is equal to the marginal

utility of consumption:
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gG
 = C(1)1N (1)(1).

This relation implies:

g =  ([N (1 g)])
(1)1N (1)(1) (Ng) .

Using our benchmark parameter values we obtain a value of g equal to 0.015.

Figure 3 displays the values of UL, Ŷ L, ZL, ĈL, RL, and L as a function

of ĜL. The ‘*’ indicates the level of a variable corresponding to the optimal

value of ĜL. The ‘o’ indicates the level of a variable corresponding to the highest

value of ĜL that satisfies Z l  0. A number of features of Figure 3 are worth

noting. First, the optimal value of ĜL is very large: roughly 30 percent (recall

that in steady state government purchases are 20 percent of output). Second, for

this particular parameterization the increase in government spending more than

undoes the eect of the shock which made the zero-bound constraint bind. Here,

government purchases rise to the point where the zero bound is marginally non-

binding and output is actually above its steady state level. These last two results

depend on the parameter values that we chose and on our assumed functional

form for v(Gt). What is robust across dierent assumptions is that it is optimal

to substantially increase government purchases and that the government-spending

multiplier is large when the zero-bound constraint binds.7

The zero bound and interest rate targeting Up to now we have emphasized

the economy being in the zero-bound state as the reason why the nominal interest

rate might not change after an increase in government spending. Here we discuss

7We derive the optimal fiscal policy taking monetary policy as given. Nakata (2009) argues
that it is also optimal to raise government purchases when monetary policy is chosen optimally.
He does so using a second-order Taylor approximation to the utility function in a model with
separable preferences where the natural rate of interest follows an exogenous stochastic process.
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an alternative interpretation of the constant interest rate assumption. Suppose

that there are no shocks to the economy but that, starting from the non-stochastic

steady state, government spending increases by a constant amount and the mon-

etary authority deviates from the Taylor rule, keeping the nominal interest rate

equal to its steady-state value. This policy shock persists with probability p. It is

easy to show that the government-spending multiplier is given by equation (3.10).

So the multiplier is exactly the same as in the case in which the nominal inter-

est rate is constant because the zero bound binds. Of course there is no reason

to think that it is sensible for the central bank to pursue a policy that sets the

nominal interest rate equal to a positive constant. For this reason, a binding zero

bound is the most natural interpretation for why the nominal interest rate might

not change after an increase in government spending.

4. A model with capital

In the previous section we use a simple model without capital to argue that the

government-spending multiplier is large whenever the output costs of being in the

zero-bound state are also large. Here we show that this basic result extends to a

generalized version of the previous model in which we allow for capital accumula-

tion. As above we focus on the eect of a discount-rate shock.8

The model The preferences of the representative household are given by equa-

tions (3.1) and (3.2). The household’s budget constraint is given by:

Pt (Ct + It) +Bt+1 = Bt (1 +Rt) +WtNt + Ptr
k
tKt + Tt, (4.1)

8In a previous version of this paper, available upon request, we also analyse the eect of a
neutral and an investment-specific technology shock.
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where It denotes investment, Kt is the stock of capital, and rkt is the real rental

rate of capital. The capital accumulation equation is given by:

Kt+1 = It + (1 )Kt D(It, It1, Kt), (4.2)

where the function D(It, It1, Kt) represents investment adjustment costs. To

assess robustness we consider two specifications for these adjustment costs. The

first specification is the one considered in Lucas and Prescott (1971):

D(It, It1, Kt) =
I
2


It
Kt

 
2
Kt. (4.3)

The parameter I > 0 governs the magnitude of adjustment costs to capital

accumulation. As I , investment and the stock of capital become constant.

The resulting model behaves in a manner very similar to the one described in the

previous section.

The second specification is the one considered in Christiano, Eichenbaum and

Evans (2005) and in Section 5:

D(It, It1, Kt) =


1 S


It
It1


It. (4.4)

Here the function S is increasing, convex and satisfies the following conditions:

S(1) = S (1) = 0.

The household’s problem is to maximize life-time expected utility, given by

equations (3.1) and (3.2), subject to the resource constraints given by equations

(4.1) and (4.2) and the condition E0 limtBt+1/[(1+R0)(1+R1)...(1+Rt)]  0.

It is useful to derive an expression for Tobin’s q, i.e. the value in units of

consumption of an additional unit of capital. We denote this value by qt. For

simplicity we derive this expression using the adjustment costs specification (4.3).

Equation (4.3) implies that increasing investment by one unit raises Kt+1 by
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1  I

It
Kt
 

units. It follows that the optimal level of investment satisfies

the following equation:

1 = qt


1 I


It
Kt

 

. (4.5)

Firms The problem of the final good producers is the same as in the previous

section. The discounted profits of the ith intermediate good firm are given by:

Et



j=0

t+jt+j

Pt+j (i)Yt+j (i) (1 )


Wt+jNt+j (i) + Pt+jr

k
t+jKt+j(i)


.

(4.6)

Output of good i is given by:

Yt (i) = [Kt (i)]
 [Nt (i)]

1 ,

where Nt (i) and Kt (i) denote the labor and capital employed by the ith monop-

olist.

The monopolist is subject to the same Calvo-style price-setting frictions de-

scribed in Section 2. Recall that  = 1/ denotes a subsidy that is proportional to

the costs of production. This subsidy corrects the steady-state ineciency created

by the presence of monopoly power. The variable t+j is the multiplier on the

household budget constraint in the Lagrangian representation of the household

problem. Firm i maximizes its discounted profits, given by equation (4.6), sub-

ject to the Calvo price-setting friction, the production function, and the demand

function for Yt (i), given by equation (2.4).

The monetary policy rule is given by equation (2.6).

Equilibrium The economy’s resource constraint is:

Ct + It +Gt = Yt. (4.7)
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A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, It, Nt, Kt,Wt, Pt, Yt, Rt, Pt (i) , r
k
t , Yt (i) , Nt (i) , t, Bt+1, t},

such that for given {dt, Gt}, the household and firm problems are satisfied, the

monetary policy rule given by equation (2.6) is satisfied, markets clear, and the

aggregate resource constraint holds.

Experiment At time zero the economy is in its non-stochastic steady state. At

time one agents learn that rL diers from its steady state value for T periods and

then returns to its steady state value. We consider a shock that is suciently

large so that the zero bound on the nominal interest rate binds between two time

periods that we denote by t1 and t2, where 1  t1  t2  T .9 We solve the model

using a shooting algorithm. In practice the key determinants of the multiplier are

t1 and t2. To maintain comparability with the previous section we keep the size

of the discount factor shock the same and choose T = 10. In this case t1 equals

one and t2 equals six. Consequently, the length for which the zero bound binds

after a discount rate shock is roughly the same as in the model without capital.

With the exception of I and  all parameters are the same as in the economy

without capital. We set  equal to 0.02. We choose the value of I so that the

elasticity of I/K with respect to q is equal to the value implied by the estimates

in Eberly, Rebelo, and Vincent (2008).10 The resulting value of I is equal to 17.

We compute the government spending multiplier under the assumption thatGt

increases by Ĝ percent for as long as the zero bound binds. In general, the increase

in Gt aects the time period over which the zero bound binds. Consequently we

9The precise timing of when the zero-bound constraint is binding may not be unique.
10Eberly, Rebelo and Vincent (2008) obtain a point estimate of b equal to 0.06 in the regression

I/K = a+b ln(q). This estimate implies a steady state elasticity of It/Kt with respect to Tobin’s
q of 0.06/. Our theoretical model implies that this elasticity is equal to (I)

1. Equating
these two elasticities yields a value of I of 17.
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proceed as follows. Guess a value for t1 and t2. Increase Gt for the period t  [t1,

t2]. Check that the zero bound binds for t  [t1, t2]. If not revise the guess for t1
and t2.

Denote by Ŷt the percentage deviation of output from steady state that results

from a shock that puts the economy into the zero-bound state holding Gt con-

stant. Let Ŷ t denote the percentage deviation of output from steady state that

results from the both the original shock and the increase in government purchases

described above. We compute the government spending multiplier as follows:

dYt
dGt

=
1

g

Ŷ t  Ŷt
Ĝ

.

As a reference point we note that when the zero bound is not binding the

government-spending multiplier is roughly 0.9. This value is lower than the value

of the multiplier in the model without capital. This lower value reflects the fact

that an increase in government spending tends to increase real interest rates and

crowd out private investment. This eect is not present in the model without

capital.

We now consider the eect of an increase in the discount factor from its steady

state value of four percent (APR) to 1 percent (APR). The solid line in Figure

4 displays the dynamic response of the economy to this shock. The zero bound

binds in periods one through six. The higher discount rate leads to substantial

declines in investment, hours worked, output, and consumption. The large fall in

output is associated with a fall in marginal cost and substantial deflation. Since

the nominal interest rate is zero, the real interest rate rises sharply. We now

discuss the intuition for how the presence of investment aects the response of the

economy to a discount rate shock. We begin by analyzing why a rise in the real

interest rate is associated with a sharp decline in investment. Ignoring covariance
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terms, the household’s first-order condition for investment can be written as:

Et


1 +Rt+1
Pt+1/Pt


=
1

qt
EtK

1
t+1 N

1
t+1 st+1 + (4.8)

1

qt
Et


qt+1


(1 )

I
2


It+1
Kt+1

 
2
+ I


It+1
Kt+1

 

It+1
Kt+1


,

where st is the inverse of the markup rate. Equation (4.8) implies that in equi-

librium the household equates the returns to two dierent ways of investing one

unit of consumption. The first strategy is to invest in a bond that yields the real

interest rate defined by the left-hand side of equation (4.8). The second strategy

involves converting the consumption good into 1/qt units of installed capital. The

return to this capital has three components. The first component is the mar-

ginal product of capital (the first term on the right-hand side of equation (4.8)).

The second component is the value of the undepreciated capital in consumption

units, qt+1 (1 ). The third component is the value in consumption units of the

reduction in adjustment costs associated with an increase in installed capital.

To provide intuition it is useful to consider two extreme cases, infinite adjust-

ment costs (I = ) and zero adjustment costs (I = 0). Suppose first that

adjustment costs are infinite. Figure 1 displays a stylized version of this economy.

Investment is fixed and saving is an increasing function of the real interest rate.

The increase in the discount factor can be thought of as inducing a rightward shift

in the saving curve. When this shift is very large, the real interest rate cannot

fall enough to re-establish equilibrium. The intuition for this result and the role

played by the zero bound on nominal interest rates is the same as in the model

without capital. That model also provides intuition for why the equilibrium is

characterized by a large, temporary fall in output, deflation, and a rise in the real

interest rate.

Suppose now that there are no adjustment costs (I = 0). In this case Tobin’s
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q is equal to e and equation (4.8) simplifies to:

Et
1 +Rt+1
Pt+1/Pt

= Et

K1

t+1 N
1
t+1 st+1 + (1 )


.

According to this equation an increase in the real interest rate must be matched

by an increase in the marginal product of capital. In general the latter is accom-

plished, at least in part, by a fall in Kt+1 caused by a large drop in investment.

In Figure 1 the downward sloping curve labeled ‘elastic investment’ depicts the

negative relation between the real interest rate and investment in the absence of

any adjustment costs. As drawn, the shift in the saving curve moves the equilib-

rium to point C and does not cause the zero bound to bind. So, the result of an

increase in the discount rate is a fall in the real interest rate and a rise in saving

and investment.

Now consider a value of I that is between zero and infinity. In this case both

investment and q respond to the shift in the discount factor. For our parameter

values, the higher the adjustment costs the more likely it is that the zero bound

binds. In terms of Figure 1 a higher value of I can be thought of as generating a

steeper slope in the investment curve, thus increasing the likelihood that the zero

bound binds.

Suppose that the zero bound binds. Other things equal, a higher real interest

rate increases desired saving and decreases desired investment. So the fall in

output required to equate the two must be larger than in an economy without

investment. This larger fall in output is undone by an increase in government

purchases.11 Consistent with this intuition Figure 4 shows that the government-

spending multiplier is very large when the zero bound binds (on impact dY/dG

is roughly equal to four). This multiplier is actually larger than in the model

11As in the model without capital the increase in income in states where the zero bound binds
raises permanent income which raises desired expenditures in zero bound states. This additional
channel reinforces the intertemporal channel stressed in the text.
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without capital.12

A natural question is what happens to the size of the multiplier as we increase

the size of the shock. Recall that in the model without capital, as long as the zero

bound binds, the size of the shock does not aect the size of the multiplier. The

analogue result here, established using numerical methods, is that the size of the

shock does not aect the multiplier as long as it does not aect t1 and t2. For a

given t1 the size of the multiplier is decreasing in t2. For example, suppose that

shock is such that t2 is equal to four instead of the benchmark value of six. In

this case the value of the multiplier falls from 3.9 to 2.3. The latter value is still

much larger than 0.9, the value of the multiplier when the zero bound does not

bind.

We conclude by considering the eect of using the adjustment-cost specifica-

tion given by equation (4.4) rather than equation (4.3). The dashed line in Figure

4 displays the dynamic response of the economy to the discount rate shock. Four

key results emerge. First, the response of investment is smaller with the new

adjustment cost specification which directly penalizes changes in investment. Sec-

ond, while large the multiplier (2.6 on impact) is somewhat smaller with the new

investment cost specification. This result reflects the smaller response of invest-

ment. Third, the dynamic responses of the other variables are similar across the

two adjustment cost specifications. Fourth, the values of t1 and t2, indicating the

period of time over which the zero bound binds are the same. We conclude that

the main results regarding the zero bound are robust across the two.

5. The multiplier in a medium-size DSGE model

In the previous sections we built intuition about the size of the government-

spending multiplier using a series of simple new-Keynesian models. In this section

12This multiplier is computed setting Ĝ to one percent.
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we investigate the determinants of the multiplier in the version of ACEL in which

capital is firm specific. The model includes a variety of frictions that are useful for

explaining aggregate time-series data. These frictions include sticky wages, sticky

prices, variable capital utilization, and the CEE investment adjustment-cost spec-

ification. In what follows all notation is the same as in the previous sections,

unless noted otherwise.

The final good is produced using a continuum of intermediate goods according

to the production function and market structure described in Section 2. Interme-

diate good i  (0, 1) is produced by a monopolist using the technology:

yt(i) = max

K̄t(i)

Nt(i)
1  , 0


, (5.1)

where 0 <  < 1. Here, Nt(i) and K̄t(i) denote time t labor and capital services

used to produce the ith intermediate good. The parameter , represents a fixed

cost of production. The services of capital, K̄t(i), are related to stock of physical

capital, Kt(i), by

K̄t(i) = ut(i)Kt(i).

Here ut(i) is the utilization rate. The cost in investment goods of setting the

utilization rate to ut(i) is given by a(ut(i))Kt(i), where a(ut) is increasing and

convex. We define a = a(1)/a(1)  0 and impose that ut = 1 and a(1) = 0 in

steady state.

Intermediate-good firms own their capital, which they cannot adjust within

the period. They can only change their stock of capital over time by varying

the rate of investment. A firm’s stock of physical capital evolves according to

equations (4.2) and (4.4).

Intermediate good firms purchase labor services in a perfectly competitive

labor market at the wage rate Wt. Firms must borrow the wage bill in advance

from financial intermediaries at the gross interest rate, Rt. Profits are distributed
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to households at the end of each time period.

With one modification, intermediate-good firms set their price subject to the

Calvo (1983) frictions described in Section 2. The modification is that a firm

which cannot re-optimize its price sets Pt(i) according to: Pt(i) = t1Pt1(i).

The ith intermediate good firm’s objective function is given by:

Et



j=0

t+jt+j{Pt+j (i)Yt+j (i)Wt+jRt+jNt+j (i) (5.2)

 [Pt+jIt+j(i) + Pt+ja (ut+j(i))K(i)t+j]}

There is a continuum of households indexed by j  (0, 1). Each household is

a monopoly supplier of a dierentiated labor service, and sets its wage subject to

Calvo-style wage frictions as in Erceg, Henderson, and Levin (2000). Household

j sells its labor at a wage rate Wj,t to a representative competitive firm that

transforms it into an aggregate labor input, Nt, using the technology:

Nt =

 1

0

N
1
w
j,t dj

w
, 1  w <.

This firm sells the composite labor service to intermediate good firms at a price

Wt.

We assume that there exist complete contingent claims markets. So, in equi-

librium all household consume the same amount and have the same asset holdings.

Our notation reflects this result. The preferences of the jth household are given

by:

Ejt



s=0

s

log (Ct+s  bCt+s1)

N2
j,t+s

2


, (5.3)

where Ejt is the time t expectation operator, conditional on household j’s time t

information set. The parameter b > 0 governs the degree of habit formation in
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consumption. The household’s budget constraint is:

Mt+1 = Rt [Mt Qt + (xt  1)Ma
t ] + Aj,t +Qt (5.4)

+Wj,tNj,t +Dt  (1 +  (Vt))PtCt  Tt.

Here Mt, Qt and Wj,t denote the household’s stock of money at the beginning

of period t, cash balances and time t nominal wage rate, respectively. Also, Tt

denotes period-t lump-sum taxes. Each household has a diversified portfolio of

claims on all the intermediate good firms. The variable Dt represents period t firm

profits. The variable Ai,t, denotes the net cash inflow from participating in state-

contingent securities at time t. The variable xt, represents the gross growth rate

of the economy-wide per capita stock of money, Ma
t . The quantity (xt1)Ma

t is a

lump-sum payment made to households by the monetary authority. The household

deposits Mt  Qt + (xt  1)Ma
t with a financial intermediary. The variable Vt,

denotes the time t velocity of the household’s cash balances: Vt = (PtCt) /Qt.

The function (Vt) captures the role of cash balances in facilitating transactions.

This function is increasing and convex. The first-order condition for Qt implies

that the interest semi-elasticity of money demand in steady state is:

 =
1

4


1

R 1


1

2 + V/


,

We parameterize  (·) indirectly by choosing steady state values for , V and .

Financial intermediaries receiveMtQt+(xt  1)Mt from the household. Our

notation reflects the equilibrium condition, Ma
t = Mt. Financial intermediaries

lend all of their money to intermediate good firms, which use the funds to pay the

wage bill. Loan market clearing requires that:

WtHt = xtMt Qt. (5.5)

The aggregate resource constraint is:

[1 + (Vt)]Ct + [It + a(ut)Kt] = Yt. (5.6)
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The monetary policy rule is given by equation (2.6).

Assigning values to model parameters In our analysis, we assume that the

financial crisis began in the third quarter of 2008. For our experiments we require

that the level of the interest rate in the model coincides with that in the data in

the second quarter of 2008. A simple way to do this is to suppose that the model

is in steady state in the second quarter of 2008 with a nominal interest rate of 2

percent. To this end, we set  = 0.9999 and x = 1.0049.

We assume that intermediate-good firms set their prices once a year (P =

0.75). In conjunction with the other model parameters, the firm-specific capital

version of ACEL implies that the coecient on marginal cost in the new-Keynesian

Phillips curve is 0.0026. The low value of this coecient is consistent with the

evidence presented in Figure 4 of ACEL. We set W equal to 0.72, the point

estimate in ACEL, so that households reoptimize wages roughly once a year. We

set the habit formation parameter b to 0.70, a value similar to the point estimates

in ACEL and CEE. The quarterly rate of depreciation rate, , is 0.02. We set

the parameter  to 0.3. In conjunction with the other parameter values, this

value of  generates a steady-state value of It/(Ct + It + Gt) equal to 0.29, the

average value of this ratio in U.S. data over the period from 1960Q1 to 2010Q1.

The precise measures of these variables are discussed below.

We set S (1), , and a to the values estimated in ACEL (3.28, 0.80, and 2.02,

respectively). We set the parameter  to ensure that the steady-state profits of

intermediate-goods firms are zero. We set the steady-state values of V , , f and

w to the values used in ACEL (0.45, 0.036, 1.01, and 1.05, respectively). We

find that our results are robust to perturbations in this last set of parameters.

Finally, we assume that monetary policy is conducted according to the Taylor

rule described in equation (2.6) with 1 = 0.25, 2 = 1.5, and  = 0.
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The multiplier in ACEL Figure 5 reports the value of the multiplier implied

by the model under dierent scenarios. The first row of Figure 5 shows that the

value of the government-spending multiplier when monetary policy is governed

by a Taylor rule and the zero bound is not binding. We consider the case where

government spending increases by a constant amount for eight and twelve quarters,

respectively. The key result here is that during the first eight quarters in which

the experiments are comparable the multiplier is higher in the first case than in

the second case. This result is consistent with the analysis in Section 2 which

argues that, when the Taylor rule is operative, the magnitude of the multiplier is

decreasing in the persistence of the shock to government spending.

The first row of Figure 5 also shows the value of the government spending

multiplier when an increase in government spending coincides with a nominal in-

terest rate that is constant, say because the zero bound binds.13 Interestingly,

when government spending rises for only eight quarters, the government-spending

multiplier is roughly 1.2. When the Taylor rule is operative the multiplier is

smaller. It starts at roughly one and declines to about 0.7. When government

spending rises for twelve quarters there is a much larger dierence between the

Taylor rule case and the zero-bound case. In the latter case the impact multiplier

is roughly 1.6. The multiplier rises in a hump-shaped manner, attaining a peak

value of roughly 2.3 after five periods. The hump-shaped response of the multiplier

reflects the endogenous sources of persistence present in ACEL, e.g. habit forma-

tion in consumption and investment adjustment costs. The zero-bound multiplier

is substantially larger when the zero bound binds for twelve periods rather than

for eight periods. This result is consistent with a central finding of this paper:

the government spending multiplier is larger the more severe is the zero-bound

13Recall that the value of the multiplier does not depend on why the nominal interest rate is
constant. Given this property, we study the size of the multiplier in ACEL without specifying
either the type or the magnitude of the shock that makes the zero bound binding.
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problem.14

The second row of Figure 5 provides information to address the following

question: how sensitive is the multiplier to the proportion of government spend-

ing that occurs while the nominal interest rate is zero? The figure displays the

government-spending multipliers when government spending goes up for 12, 16,

and 24 periods. In all cases the nominal interest rate is zero for 12 periods and

follows a Taylor rule thereafter. So, in the three cases the proportion of govern-

ment spending that comes online while the nominal interest rate is zero is 100,

75, and 50 percent, respectively.

Our basic result is that the multipliers are higher the larger is the percentage

of the spending that comes online when the nominal interest rate is zero. This

result holds even in the first 12 periods when the increase in government spending

is the same in all three cases. For example, the peak multiplier falls from roughly

2.3 to 1.06 as we go from the first to the third case. This decline is consistent

with our discussion of the sensitivity of the multiplier to the timing of government

spending in Section 3. A key lesson from this analysis is that if fiscal policy is

to be used to combat a shock that sends the economy into the zero bound, it is

critical that the spending come on line when the economy is actually in the zero

bound. Spending that occurs after that yields very little bang for the buck and

actually dulls the impact of the spending that comes on line when the zero bound

binds.

Using a model similar to ACEL, Cogan, Cwik, Taylor, and Wieland (2010)

study the impact of increases in government spending when the nominal interest

rate is set to zero for one or two years. A common feature of their experiments

is that the bulk of the increase in government spending comes on line when the

14For completeness we also considered the case in which the zero bound binds for only four
quarters. In this case the zero-bound multiplier and the multiplier when the Taylor rule is
operative are very similar.
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nominal interest rate is no longer constant. Consistent with our results, Cogan et

al. (2010) find modest values for the government-spending multiplier.

The model’s performance during the crisis period The ACEL model and

close variants of it do a good job at accounting for the key properties of U.S.

time series data in the period before the financial crisis (see, for example, ACEL

and Smets and Wouters (2007)). One natural question is whether the model

generates sensible predictions for the current crisis under the assumption that the

zero bound binds.

The solid lines in Figure 6 display time-series data for the period 2000Q1-

2010Q1 for real per capita output, private consumption, investment, government

consumption, inflation, and the Federal Funds rate. The data displayed are the

percentage change in a variable from its value in 2000Q1. All per capita variables

are computed using as a measure of the population the civilian noninstitutional

population, 16 years and over. All variables with the exception of inflation and

the interest rate are seasonally adjusted and computed as real chained-weighted

billions of 2005 U.S. dollars.15 Output is the sum of consumption, investment

and government consumption.16 We also discuss results when we use real GDP

15To aggregate real chain-weighted data we proceed as follows. Denote two nominal quantities
by x̃1t and x̃2t and the two associated price indices by p1t and p2t. The real quantities are given
by: xit = x̃it/pit, i = 1, 2. The growth rate of the price of the aggregate, t, is the geometric av-

erage of the Laspeyres and Paasche indices: t =


p1tx1t1+p2tx2t1

p1t1x1t1+p2t1x2t1


p1tx1t+p2tx2t

p1t1x1t+p2t1x2t


,

for t > 1. We obtain a time series on the price of xt, pt, by setting this price in some initial
condition and solving: pt = tpt1, p0 = 1,for t = 1, ..., T. The real quantity of the aggregate
is:x̃t = (x̃1t + x̃2t) /pt, t = 0, ..., T .
16If we construct output using the procedure for chain-weighting discussed above, the equation

Yt = Ct + It +Gt does not hold. Since this equation holds in the model we report an empirical
measure of output for which this equation also holds. This measure is a weighted average of
chain-weighted Ct, It, and Gt where the weights are 56, 29 and 15 percent, respectively. These
weights are the sample averages of the nominal shares of the three series. Since we report the
model’s implications for Ct, It, and Gt separately, the reader can assess the model’s implications
for the individual components of our measure of output.
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as the measure of output. Private consumption is consumption of nondurables

and services. Investment is household purchases of durable goods, federal gov-

ernment investment, and gross private domestic investment. Total government

consumption is federal government consumption and state and local expenditures

on consumption and investment.17 Inflation is the year over year growth rate in

the core consumer price index. The interest rate is the Federal Funds rate.

We date the beginning of the financial crisis as the third quarter of 2008. This

is the quarter during which Lehman Brothers collapsed. We are interested in

computing the eect of the financial crisis on the evolution of the U.S. economy.

To this end we forecast the variables reported in Figure 6 using data up to and

including the second quarter of 2008. With the exception of output, inflation and

the interest rate we compute our forecasts using a four lag scalar autoregression fit

to the level of the data. The output forecast is equal to the weighted sum of the

forecasted values of consumption, investment, and government purchases. The

forecasts for the interest rate and inflation are equal to the level of these variables

in 2008Q2. These forecasts are displayed as the dotted lines in Figure 6.

A rough measure of the impact of the crisis on the variables included in Figure

6 is the dierence between the actual and the forecasted values of these variables.

These dierences, i.e. the impulse response functions to the shocks that precip-

itated the crisis, are displayed as the solid lines in Figure 7. It is evident that

the nominal interest rate fell very quickly and hit the zero bound. There was a

significant drop in consumption and a very large fall in investment. Output fell by

seven percent. Inflation fell by one percent relative to what it would been absent

the crisis. Despite the fiscal stimulus plan enacted in February 2009 (the Ameri-

can Recovery and Reinvestment Act), total government consumption rose by only

17We include state and local government consumption and investment in our measure of
government consumption because data on real state and local government investment is not
available for the period before 1995.
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two percent. Total government purchases, which includes both consumption and

investment, rose by even less. This result reflects two facts. First, a substantial

part of the stimulus plan involved an increase in transfers to households. Second,

there was a large fall in state and local purchases that oset a substantial part of

the increase in federal government purchases.18

To assess the model’s implication for the crisis period we need to specify the

shocks that made the zero bound binding. In our view the crisis was precipitated

by disturbances in financial markets that increased the spread between the return

on savings and the return on investment. The financial crisis and the resulting

uncertainty led to a large rise in the household’s desire to save. Consistent with

this view the personal savings rate rose sharply from roughly two percent in 2007

to a level that stabilized at around 5.5 percent.19 The ACEL model is not su-

ciently rich to provide a detailed account of the financial crisis or the steep rise in

household saving. We mimic the eects of the crisis by introducing the discount

factor shock discussed in the previous sections, as well as a financial friction shock.

The ACEL model assumes that firms finance investment out of retained earn-

ings. We imagine that each dollar passing between households and firms goes

through the financial system. In normal times every dollar transferred between

households and firms uses up  dollars’ worth of final goods. Thus, we replace t+j

in (5.2) with t+j (1 ) . Abstracting from general equilibrium eects on t+j in

(5.2), the value of  does not aect the firm’s decisions, as long as it is constant.20

We assume that  is constant until 2008Q2 and that agents expected it to remain

18See Cogan and Taylor (2010) for a detailed analysis of the impact of the American Recovery
and Reinvestment Act on government spending.
19These observations are based on the saving rate, PSAVERT, obtained from the Federal

Reserve Bank of St. Louis website.
20The general equilibrium eect operates through the impact of  on the aggregate resource

constraint. In our computations, we abstract from this general equilibrium eect on the grounds
that it is presumably small.
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constant forever. At the onset of the financial crisis in 2008Q3, agents learn that

the costs of intermediation rise. Let

1  k 
1  t
1  t1

. (5.7)

We suppose that  k > 0 for t corresponding to the first period of the crisis (i.e.,

2008Q3) until the last period, t = T, of the crisis. We suppose that kt = 0 for

t > T .21

The ith intermediate good firm maximizes the modified version of (5.2) that ac-

commodates  kt . The necessary first-order condition for investment can be written

as follows:

uct = Etuct+1R
k
t+1 (i)


1  kt+1


. (5.8)

Here, uct, which is taken as given by the firm, is the marginal utility of household

consumption:

uct =
1

Ct  bCt1
+ Et


b

Ct+1  bCt


.

Let Rkt+1 denote the cross-section average return on capital, i.e. the average across

i of Rkt+1 (i). One measure of the interest rate spread in the model is the dier-

ence between Rkt+1 and the corresponding average return received by households,

Rkt+1

1  kt+1


. This dierence is equal to  kt+1R

k
t+1.

Our assumption that  kt rose during the crisis is essentially equivalent to the

assumption that our measure of the interest rate spread rose. In reality, interest

rate spreads move for many reasons, e.g., changes in bankruptcy risk, changes in

liquidity and confidence in the banking system. In the wake of the 2008 financial

crisis, virtually all interest rate spreads rose dramatically. Consider, for example,

the behavior of the interest spreads on non-AAA corporate bonds relative to

AAA bonds. In the case of BAA, BB, B and ‘junk’, defined as CCC and lower

21With this formulation, the constant, post-crisis level of  is higher than the pre-crisis level
of  .
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rated bonds, the average value of the spread is 0.88, 1.75, 2.71 and 5.75 percent,

respectively, over the period, 2005-2007. These spreads rose to peak values of

3.38, 8.83, 14.10, and 27.72 at the end of 2008.22 Thereafter, spreads declined to

values of 1.20, 2.36, 3.87, and 7.88, respectively, by 2010Q3.23

With these data as background, we set  k = 3.6/400 and T = 12. This

assumption implies that at the time of the crisis, the interest rate spread on

a three year bond jumps by 3.6 percentage points at an annual rate and then

declines linearly back to zero after three years.24 We focus on the three year

bond because the work of Barclay and Smith (1995) and Stohs and Mauer (1996)

suggests that the average duration of corporate debt is in the range of three to

four years.25

We assume that Gt increases by two percent for as long as the zero bound

binds. As in Section 4 we compute the time interval t  [t1, t2] during which the

zero bound binds. We find that t1 = 2 and t2 = 11, so the zero binds from the

fourth quarter of 2008 until the third quarter of 2011.

The dash-dotted line in Figure 7 corresponds to the model’s predictions for

the economy during the crisis. A number of features are worth noting. First, the

model accounts for the rapid decline of the federal funds rate at the onset of the

crisis. Second, the model is consistent with the observed declines in consumption,

investment and output. Third, and perhaps most importantly, the model also does

22The analysis is based on quarterly averaged data. The peak of the BB and B bond spreads
occurs in 2008Q4 and the peak in the junk bond spreads occurs in 2009Q1.
23All rates are in annual, percent terms.
24At time t, we calculate the interest rate spread on a three-year bond by taking the three

year forward averages of quarterly interest rate spreads.
25See Stohs and Mauer (1996, Table 2). Barclay and Smith do not directly report average

durations. Instead, they report the percent of debt that matures in more than n years, for
n = 1, 2, 3, 4, 5. These percentages are 73, 65.7 58.7, 52.2, 45.9 respectively. These numbers
imply an average duration if one makes an assumption about the mean duration for firms with
n > 5. For example, if this mean duration is 7.5, then mean duration is 4.2 years, where
4.2 = 1.5 0.073 + 2.5 0.070 + 3.5 0.065 + 4.5 0.063 + 7.5 0.459.
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a good job of accounting for the post-crisis behavior of inflation. According to

our estimates inflation fell by roughly one percent as a result of the crisis (see the

solid line in Figure 7). The model’s predictions are consistent with this decline.

To assess robustness with respect to our output measure Figure 7 reports the

dierence between the log level and the univariate forecast of per capita real GDP.

This dierence is displayed as the dashed line in the subplot labeled ‘Output’. No-

tice that the paths of the two real output measures are very similar. Interestingly,

our measure of output falls by somewhat more than per capita real GDP. For

example, the maximal impact of the crisis is seven percent and 5.8 percent decline

in our measure of output and real GDP, respectively. If we calibrate the model to

match the fall in real GDP we would generate less deflation and smaller declines

in consumption and investment.

We conclude by noting that, consistent with the data, in our simulations gov-

ernment purchases rise by only two percent for 11 periods. Recall from Figure 5

that the peak value of the multiplier in ACEL is 2.3. So the rise in government

purchases accounts for, at most, a 0.7 of one percent rise in annual GDP.26 The

modest contribution of government purchases to the recovery reflects the very

modest increase in government spending, rather than a small multiplier.

6. The Multiplier with Distortionary Taxation

In this section we consider how the presence of distortionary taxation aects the

government spending multiplier when the zero bound binds. Baxter and King

(1993) show that the size of the government spending multiplier implied by the

neoclassical growth model is sensitive to the requirement that spending be financed

with distortionary taxes. For example, when they require that government spend-

26We base this calculation on the fact that dY/Y = (dY/dG)(dG/G)(G/Y ) and the assump-
tion that G/Y = 0.15.
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ing be financed on a period-by-period basis with distortionary taxes on income,

the multiplier actually becomes negative. This result reflects that increases in

distortionary taxes reduce output in the neoclassical growth model.

A natural question is: how sensitive are our conclusions to the presence of

distortionary taxes? Eggertsson (2010, 2011) shows that the eects of distor-

tionary taxes can be very dierent depending on whether the zero lower bound

binds or not. Indeed, some distortionary taxes that lower output when the zero

lower bound does not bind actually raise output when the zero bound does bind.

Of course, if the tax that finances government spending actually increases output

then the government spending multiplier is actually increased.

For example, Eggertsson (2010, 2011) shows that increasing labor income taxes

when the zero bound binds leads to a rise in output. The intuition for this result is

as follows. Suppose that prices are sticky but wages are fully flexible. Other things

equal, an increase in the labor income tax rate, Lt , is equivalent to a reduction

in the supply of labor. The resulting rise in the real wage rate leads to a rise in

marginal cost and a rise in inflation. As long as the zero bound binds, a rise in

inflation leads to a fall in the real interest rate and a rise in consumption and

output. The rise in output generates a further rise in inflation, a further decline

in the real interest rate and an additional rise in output. So, the net eect of an

increase in Lt while the zero bound binds is potentially a large rise in output and

tax revenues. So here an increase in government spending has a bigger impact

on output if it is financed by a rise in labor income taxes rather than lump-sum

taxes.

Now, suppose that both prices and wages are sticky as in ACEL. Christiano

(2011) argues that the quantitative eects associated with an increase in distor-

tionary taxes is still positive but smaller than when wages are flexible. The basic

reason is that, with Calvo-style sticky wages, employment is demand determined.
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Consequently, labor supply eects are less important as they only directly eect

the workers who reset their wages.

Christiano’s (2011) analysis is based on a model with no capital accumulation.

Here we consider the quantitative eects of a labor income tax in the version of

the ACEL model discussed above. Figure 8 depicts the size of the government

spending multiplier when there is a one percent increase in government purchases

that lasts for the 12 periods during which the zero lower bound binds. The solid

line corresponds to the benchmark case in which all taxes are lump sum. The

dashed and dotted lines correspond to the cases in which Lt rises from zero to one

percent in quarters one to 12 and 13 to 24, respectively. The key result is that,

regardless of when Lt is increased, the multiplier is higher than when taxes are

lump sum.

The intuition for why the multiplier goes up when Lt increases in periods one

to 12 is discussed above. To understand why output falls after period 12 recall

that the rise in Lt leads to a fall in the real interest rate during the first 12

periods by raising anticipated inflation. This fall induces households to substitute

consumption from the future to the present. Consequently output falls after period

12 when the rise in Lt is reversed.

Now consider the case where Lt rises in periods 12 to 24. An increase in

future values of Lt raises future marginal cost and inflation. In the presence of

staggered pricing the firms that can change their prices in periods one through

12 raise their prices in anticipation of future inflation. As long as the zero bound

binds, this eect lowers the real interest rate, thus contributing to a rise in output.

Not surprisingly, the eect on the multiplier is smaller than when the rise in Lt
coincides with the increase in government spending.

The previous discussion makes clear that financing government spending with

distortionary labor income taxes would increase, not decrease, the multiplier, at
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least in the first 12 quarters. In this sense the main conclusions stressed in Section

5 are robust to allowing for distortionary taxes.

An alternative to increasing taxes on labor income is to raise taxes on capital

income. As it turns out, the eects of capital taxes are surprisingly subtle. Outside

of the zero bound it does not matter whether firms or households pay the capital

income taxes. But, when the zero bound binds it does matter. Recall that Rkt+1
denotes the average rate of return on capital across firms. Let the tax rate on

capital be kt . Suppose that firms pay the capital tax. Then, for a given level

of Rkt+1, an increase in 
k
t leads to a fall in the demand for investment goods by

firms. In equilibrium this eect leads to a fall in investment, output, marginal

cost, and inflation. So, other things equal, an increase in kt can potentially make

the zero bound binding or exacerbate an existing zero-bound problem. Note that

an increase in the capital tax born by the firms is isomorphic to an increase in the

costs of financial intermediation ( kt ) that we used in our discussion of the recent

financial crisis.27 So, we have already analyzed this type of capital income tax

above. It follows that if an increase in government consumption is financed by a

capital income tax paid by firms, then the multiplier is smaller than if lump sum

taxes are used.

Now suppose that households pay the capital taxes. Then an increase in kt
leads to a reduction in savings and to an increase in consumption, output and

inflation. So, other things equal, an increase in kt makes the zero bound less

binding if it was binding to begin with. This type of capital income tax is the

one considered in Eggertsson (2011). As in the labor income tax case, financing

government spending with an increase in the capital income tax rate that is paid

by households leads to an increase in the multiplier.

27In making this statement, we ignore the fact that a capital tax rate paid by the firm and
resources used in intermediation have dierent eects on the economy’s resource constraint.
Recall that in our analysis of the financial crisis we assume this eect is negligible.
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We conclude by noting that an obvious alternative to increasing government

spending to deal with the zero lower bound problem is to manipulate the demand

for goods by varying the time profile of investment tax credits or consumption

taxes. Here we briefly comment on the latter.28 In the context of the Japanese

zero lower-bound episode, Feldstein (2003) proposes raising the value-added tax

(VAT) by one percent per quarter and simultaneously reducing income tax rates

to keep revenue unchanged, continuing this policy for several years until the VAT

reaches 20 percent. Correia, Fahri, Nicolini, and Teles (2010) argue that if taxes on

consumption, labor, and capital income are state contingent every allocation that

can be implemented with a combination of taxes and monetary policy that does

not necessarily respect the zero lower bound constraint can also be implemented

with a dierent combination of taxes and monetary policy that does respect the

zero lower bound constraint.

It is evident that the policies envisioned by Feldstein (2003) and by Correia et

al (2010) were not pursued in the U.S. Implementing these policies would require

introducing a national consumption tax.29 We are skeptical about introducing

a new source of national taxation to deal with rare events like the zero-lower-

bound problem. Our skepticism stems from the political-economy literature that

tries to explain why modern economies do not rely more heavily on consumption

taxes (e.g. Brennan and Buchanan (1977) and Krusell, Quadrini, and Rios-Rull

(1996)). A key insight from this literature is that if government revenue is used

for redistributive purposes, then consumption taxes may be welfare decreasing by

comparison with income taxes. Income taxes are attractive precisely because they

are more distortionary. Since it is more costly to raise revenues with income taxes,

28See Eggertsson (2011) for a discussion of the eects of investment tax credits.
29There are, of course, sales taxes at the state and local level but, presumably, it would have

been dicult and time consuming to coordinate changes in these tax rates. There were programs
such as cash for clunkers but these were small in scale.

51



there are less transfers in equilibrium. Krusell et al (1996) emphasize that in their

model, switching from an income to a consumption tax system typically does not

make the median voter better o. But changing from income to consumption

taxes can make everybody worse o.

Many countries already have value-added taxes but even here we are skeptical

of the feasibility of the policies proposed by Feldstein (2003) and Correia et al

(2010). This skepticism stems from the need to introduce a complicated state-

dependent tax policy to deal with the rare occasions in which the zero bound

binds. It is possible that a simplified version of the tax policies envisioned by

Correia et al (2010) would be desirable. Understanding the quantitative welfare

properties of simple tax policies versus increases in government spending as a way

of dealing with the zero-bound problem is an important topic that we leave for

future research.

7. Conclusion

In this paper we argue that the government-spending multiplier can be very large

when the nominal interest rates is constant. We focus on a natural case in which

the interest rate is constant, which is when the zero lower bound on nominal

interest rates binds. In these economies the government-spending multiplier is

quite modest when monetary policy is governed by a Taylor rule.

Our analysis abstracts from a host of political economy considerations which

might make an increase in government spending less attractive than our analysis

indicates. We are keenly aware that it is much easier to start new government

programs than to end them. The relative merits of government spending and of

dierent tax policies as a way of dealing with the zero-bound problem remain very

much an open issue in the presence of political economy considerations. What our

analysis does indicate is that measures designed to increase aggregate demand are
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particularly powerful during episodes in which the zero bound binds.
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