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1 Introduction

Following the crisis that surrounded the downfall of Long-Term Capital Management (LTCM) in

1998, Myron Scholes raised the following problem: how should an investment manager unwind a

portfolio when faced with present and possible future liquidity needs? Describing the situation where

“it is not possible to know the extent of the unfolding crisis,” he noted:

Most market participants respond by liquidating their most liquid investments first to

reduce exposures and reduce leverage. . . . However, after the liquidation, the remaining

portfolio is most likely unhedged and more illiquid. Without new inflows of liquidity,

the portfolio becomes even more costly to unwind and manage.

Scholes, 2000

This problem, which we call the Scholes liquidation problem, is prevalent during unstable financial

periods. In the recent financial crisis, banks incurred large losses during the forced contraction of

their balance sheets as access to short-term financing through repo markets dried up (e.g., Adrian

and Shin, 2009; Brunnermeier, 2009). A systemic deleveraging process propagated through the

banking sector, in which careful liquidation became crucial to preserving wealth and surviving the

crisis.

The key question of interest here is to determine which assets should be sold to meet short-term

obligations, keeping in mind the potential for liquidity needs in the future. This problem is distinct

from a related problem that has been extensively analyzed in the past. Previous work has focused

on the optimal way to liquidate a single asset, either as a monopolist (e.g., Bertsimas and Lo, 1998;

Huberman and Stanzl, 2005) or against selling pressure (e.g., Brunnermeier and Pedersen, 2005;

Carlin, Lobo, and Viswanathan, 2007).1 In these papers, a trader needs to sell a particular asset for

exogenous reasons. In the problem posed by Scholes, the trader needs to generate cash or reduce

leverage, and chooses which assets to sell. We will see that the optimal solution to this problem

has fundamentally different economic implications.

We develop a two-period model where, in each period, the net cost of trading and the price

impact of trading on the market value of the assets is based on a continuous-time market. A single

investor holds a portfolio of assets, each with a market price that depends on how liquid it is. The

1See also Vayanos, 1998; Almgren and Chriss, 1999; Almgren, 2000; Fedyk, 2001; DeMarzo and Uroevic, 2004;

Oehmke, 2008; and Chu, Lehnert, and Passmore, 2009.
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price of each asset is impacted by trading depending on its permanent and temporary components

of liquidity (e.g., Sadka, 2005).2 The investor optimally trades the assets in the portfolio over a

finite amount of time to maximize the market value of the resulting positions. We focus exclusively

on the case of a risk-neutral investor.

We begin by analyzing a single-period problem in which the trader does not have to consider

future needs for liquidity. We first characterize the optimal trading strategy of an investor who is

unencumbered by leverage constraints or liquidity needs. We show that the optimal strategy leads

the trader to accumulate assets that, all else being equal, have low ratio of temporary to permanent

price impact of trading.

We then consider two constrained-trading problems in which the investor either faces a limit on

leverage or experiences an urgent need for liquidity (i.e., need for cash). We call the latter scenario

myopic deleveraging because the investor is not required to consider any future implications of

holding a particular portfolio. These two scenarios both yield a simple but non-obvious result: the

optimal trading policy is, in general, not monotonic in either of an asset’s permanent and temporary

components of liquidity. The intuition is as follows. When the price impact of trading (either the

permanent or the temporary component) for an asset is high, the investor is required to sell more

of it to generate cash. However, when this is the case, the trader will also tend to sell other assets

more. How the investor should trade-off between these effects will depend on the parameters of the

problem.

We further investigate the issue through comparative statics holding constant the shadow price

of the leverage or cash constraint. We find that, for the same severity of the leverage or cash

constraint (as measured by its marginal cost), the amount of an asset that an investor sells during

distress is monotonically decreasing in both measures of illiquidity. That is, in the one-period

problem, the investor optimally sells assets that are more liquid to meet pending obligations.

This result changes, though, when we consider the two-period model for Scholes’ problem. In

period one, the investor is required to unwind part of the portfolio to reduce leverage. Subsequently,

with some probability, the investor may experience another liquidity shock and be required to

further unwind the portfolio in the second period. If no further distress occurs, trading ends.

However, if the investor suffers further distress, the problem faced in the second period is identical

2The permanent component of liquidity is the change in the asset’s price that that depends on the cumulative

amount traded, and is independent of the rate at which the asset is traded. The temporary component of liquidity

measures the instantaneous, reversible price pressure that results from trading. See Carlin, Lobo, and Viswanathan

(2007) for further discussion.
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to the single-period case. The probability of the future need for liquidity is known to the investor,

as is the size of the potential shock.

A central question of interest is what is the option value of holding liquid assets? A tradeoff

arises in the first period of the two-period problem. Selling the more liquid assets first will limit

the immediate loss in value; however, the resulting portfolio will be more vulnerable to a continued

shock in future periods. Selling the less liquid assets first will result in a portfolio that is more

robust to a continued adverse environment; however, this can result in possibly unnecessary loss in

value if there is no subsequent shock.

The solution in the two-period model is qualitatively different from the myopic deleveraging

case in several ways. In the case of myopic deleveraging, the investor will only trade just enough

to meet the margin constraint; since trading is costly, there is no benefit to trading any more than

necessary. This is not the case in the two-period model. When the expected second-period shock

is large enough, the investor will always want to trade away from the margin in the first period. In

doing so, the investor retains cash to protect against a future shock.

Another, more surprising difference, is that the temporary component of liquidity is central to

risk-management behavior in the two-period model. If the expected need for liquidity is small,

the investor behaves in a similar way as in the one-period problem. However, when the expected

need for liquidity is large, the investor holds on to assets with a low temporary impact of trading

and sells relatively illiquid assets. This does not extend, however, to the permanent component of

liquidity. No matter how large the expectation for the second-period shock may be, the investor

always favors selling off more of assets with a low permanent price impact of trading in the first

period.

This sheds light on the nature of the solution to the Scholes liquidation problem. Assets with

concentrated ownership or those with a high degree of asymmetric information (i.e., those with

high permanent price-impact) will not be prioritized for liquidation when an investor experiences

a recurrent need for liquidity. Assets that are heavily traded, where there are many opportunities

to access counterparties, may or may not be liquidated early. If the expected need for liquidity

is small, the investor optimally sells these securities to meet early obligations. However, if the

expected need for liquidity is large, the investor will hold onto these assets, preserving the option

to sell them in the future.

The analysis in this paper adds to a rather large literature on optimal liquidation, which has

focused on the case of a single asset. One exception is Duffie and Ziegler (2003), who numerically

investigate the trade-off between selling off an illiquid asset to keep a “cushion of liquid assets,”
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and selling a liquid asset to maximize short-term portfolio value. Illiquidity is modeled as linear

transaction costs, and permanent price impact of trading is not considered (they note, however,

that this may be a central concern for large investors). Our paper considers both temporary and

permanent price impact and, albeit with a considerably simpler model of uncertainty, provides an

analytical derivation of structural properties of the optimal solution. In this sense, and to our

knowledge, we are the first to consider the problem of unwinding a portfolio where the choice of

assets to be sold is endogenous based on the liquidity characteristics of the assets in the portfolio.

The analysis in this paper also adds to the literature on window dressing (e.g., Carhart, Kaniel,

Musto, and Reed, 2002). Portfolio managers have been shown to trade assets at the end of repeating

periods to make their earnings or holdings look better to others. There is risk in doing this, since

there may be a need to unwind the new positions in subsequent periods. The model proposed in

this paper relates to this question as well, and some of our conclusions may be readily applied to

it.

The remainder of the paper is organized as follows. In Section 2, we present our one-period

trading model, and consider scenarios in which the investor is unconstrained, in which the investor

has a constraint on leverage, and in which the investor needs to generate cash through liquidation.

In Section 3, we explore the Scholes problem by solving a two-period portfolio management problem.

Section 4 concludes. All proofs are in the appendix.

2 One Period: Window-Dressing and Myopic Deleveraging

2.1 Price and Trading Model and Unconstrained Solution

Consider a single risk-neutral investor who trades a portfolio of n assets in continuous-time over a

finite horizon. At any time t ∈ [0, τ ], Yt ∈ R
n is the rate at which the investor trades the assets.

The investor’s holdings are denoted by Xt ∈ R
n, where Xt = x0+

∫ t
0 Ysds. We will generally assume

x0 > 0. We assume that Yt is an L2-function.

The prices of the assets at time t are given by Pt ∈ R
n, which is determined by

Pt = q + ΓXt + ΛYt. (1)

This is a multi-dimensional version of the pricing equation used in Carlin, Lobo, and Viswanathan

(2007).3 The expression has three parts. The first term q ∈ R
n specifies the intercept of the linear

model, that is, the equilibrium prices that arise when the investor does not hold any assets and

3A similar pricing relationship for a single asset, where Γ and Λ are scalars, was previously derived by Gennotte
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is not trading.4 The second and third terms partition the price impact of trading into permanent

and temporary components. The permanent component measures the change in the price that

is independent of the rate at which any of the assets are traded. This impact is likely to be

high when the amount of asymmetric information associated with an asset is high or ownership of

the asset in the market is concentrated. The temporary component measures the instantaneous,

reversible price pressure that results from trading. This component is likely to be high when the

asset is thinly traded or there is a paucity of readily-available counterparties in the market. Both

Γ ∈ R
n×n and Λ ∈ R

n×n are matrices in which each diagonal entry is an asset’s own price impact

and each off-diagonal entry is the cross-price impact between two assets. We assume that Γ and Λ

are symmetric (Γ′ = Γ and Λ′ = Λ), non-negative (Γi,j ≥ 0 and Λi,j ≥ 0 for all i, j), and positive

definite (x′Γx > 0 and x′Λx > 0 for all x ∈ R
n such that x 6= 0).

We denote the initial and final positions by x0 = X0 and x1 = Xτ , and the cumulative trade by

y1 = x1 − x0. Prior to trading, the asset prices are p0 = P0− = q + Γx0. After trading is complete,

the price is

p1 = Pτ+ = q + Γx1 = q + Γ(x0 + y1) = p0 + Γy1.

Using the prime to denote the transpose operator, the end-of-period assets are

a1 = p′1x1 = (p0 + Γy1)
′ (x0 + y1) = a0 + (p0 + Γx0)

′ y1 + y′1Γy1,

a quadratic function of y1.

The cash that is generated from trading over [0, τ ] is

κ1 =

∫ τ

0
−P ′

tYtdt =

∫ τ

0
−
(

p0 + Γ

∫ t

0
Ysds + ΛYt

)′

Ytdt.

We assume that cash is counted directly against liabilities for risk-management purposes or for the

satisfaction of margin constraints. Denoting the initial liabilities by l0, the liabilities at time τ can

then be written as l1 = l0 − κ1.

The optimal trading schedule is obtained from the following lemma.

and Kyle (1991), and Vayanos (1998). Empirical support for partitioning the price impact of trading into permanent

and temporary components is found in Kraus and Stoll (1972), Holthausen, Leftwich, and Mayers (1990), Cheng and

Madhavan (1997), and Sadka (2005). See Carlin, Lobo, and Viswanathan (2007) for further discussion.
4We keep the within-period price path deterministic to be able to focus on the consequences of uncertainty about

future liquidity shocks, while keeping the problem analytically tractable. For small τ and when considering the

possibility of a large shock, we believe this to be a reasonable assumption. Further, as will be noted below, our model

is easily extended to consider a uniform relative price movement over all assets.
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Lemma 1. Consider an investor that wishes to maximize some function f(a1, l1), increasing in a1

and decreasing in l1. The optimal execution schedule is a constant trading rate, that is

Y ∗
t =

1

τ
y1, t ∈ [0, τ ].

The intuition for Lemma 1 is that, for any given set of trades y1 and resulting final prices p1

and assets a1, the concavity of the integrand in κ1 leads the trader to smooth trades over time to

minimize the transaction costs due to the temporary price impact of trading. Lemma 1 allows us

to simply focus on how much to liquidate each asset.

Since trading occurs at a constant rate for each asset, the end-of-period liabilities may be

computed as

l1 = l0 +

(

p0 + Λy1 +
1

2
Γy1

)′

y1 = l0 + p′0y1 + y′1

(

Λ +
1

2
Γ

)

y1.

By simple accounting, e1, the investor’s equity at the end of trading, equals a1 − l1. We can use

this to express the equity as:

e1 = a1 − l1 = e0 + x′
0Γy1 − y′1

(

Λ − 1

2
Γ

)

y1. (2)

The end-of-period equity is strictly concave in the trade vector y1 if and only if Λ − 1
2Γ is positive

definite. We assume

Λ ≻ 1

2
Γ, (3)

ensuring that the trader’s problem is well-posed. Note that, without this restriction, the trader

may embark on trades of infinite size and, in doing so, obtain arbitrarily large equity. This suggests

that it is a reasonable condition to ensure economic soundness of the model.

The following immediate result characterizes the solution to the trader’s unconstrained trading

problem, that is, when the trader faces no leverage constraints and may buy and sell assets as he

wishes.

Result 1. The unconstrained optimal trades that maximize the end-of-period equity e1 are

y∗1 =
(

2Γ−1Λ − I
)−1

x0.

For diagonal price impact matrices Γ and Λ with diagonal entries γi and λi, this is

y∗1,i =
x0,i

2λi

γi
− 1

,

in which case the optimal trade of asset i is increasing in the initial position in that asset x0,i in its

permanent price impact γi, and in the ratio γi/λi, and decreasing in its temporary price impact λi.
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If an investor were to repeatedly follow this policy without constraints on leverage, the size

of both assets and liabilities increases at a geometric rate. The composition of the portfolio is

impacted by the initial positions, and is concentrated on assets that are illiquid in terms of their

permanent price impact. In fact, the rate of growth of asset i is

1 +
γi

2λi − γi
=

(

1 − γi

2λi

)−1

,

so that, if the investor is singularly concerned with maximizing equity and unlimited leverage

is allowed, the portfolio will become concentrated in assets with a high ratio of permanent to

temporary price impact. If all assets have the same ratio λi/γi, the portfolio weights remain

constant. This also holds for the non-diagonal case where Γi,j/Λi,j = r for all i and j, in which

case the optimal trades are proportional to the existing positions, y∗1 = r
2−rx0.

For some brief additional insight into the effect of cross-asset price impacts, consider a problem

with two assets. Define

Θ = Λ − 1

2
Γ =





θ1 θc

θc θ2



 , and Γ =





γ1 γc

γc γ2



 .

The optimal trades are then y∗1 = 1
2Θ−1Γx0, which can be written as

y∗1 =
1

2(θ1θ2 − θ2
c)





θ2γ1 − θcγc θ2γc − θcγ2

θ1γc − θcγ1 θ1γ2 − θcγc



x0.

If there is no permanent cross-asset price impact, Γ1,2 = 0, we have

y∗1 =
1

2(θ1θ2 − θ2
c )





θ2γ1x0,1 − θcγ2x0,2

θ1γ2x0,2 − θcγ1x0,1



 ,

and the optimal trades are decreasing in the temporary cross-asset price impact. If θc = 0 (Λ1,2 =

1
2Γ1,2), we have

y∗1 =
1

2







γ1

θ1
x0,1 +

γc

θ1
x0,2

γ2

θ2
x0,2 +

γc

θ2
x0,1






,

and the optimal trades are increasing in the permanent cross-asset price impact. This suggests

that cross-asset temporary price impact leads to a less aggressive build-up of leverage, while the

opposite is true for permanent cross-asset price impact. That is, while they change the optimal

solution, the cross-asset price impact terms have qualitatively similar effects as the same-asset price

impact terms.
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Taking a large position concentrated in assets with a high ratio of permanent to temporary price

impact is essentially a strategy of cornering the market for actively-traded assets with small issues

and subject to asymmetric information. In general, however, this is not a good strategy for a large

player with liquidity constraints, especially in a multi-period setting. We consider these issues in

turn. In the next two subsections, we analyze the investor’s problem with liquidity constraints in

a one-period setting, and then study the two-period problem in Section 3.

2.2 Optimal Trades with Margin Constraint

Due to either margin requirements imposed by lenders or to regulatory or risk-management con-

straints there is, under normal circumstances, a limit on the financial leverage that an investor can

incur. Different ratios quantifying the degree to which an investor is leveraged can be found in the

literature. Three commonly-used ratios are liabilities over assets, assets over equity, and liabilities

over equity. All three ratios are increasing in the degree of financial leverage, and are readily related

to each other by l/a = l/e
l/e+1 and a/e = l/e+ 1. We specify limits on financial leverage via a bound

ρ on the ratio of debt to equity, that is
l1
e1

≤ ρ.

This inequality can be written as a quadratic constraint on y1,

ρe0 − l0 + (ρΓx0 − p0)
′ y1 − y′1

(

ρ

(

Λ − 1

2
Γ

)

+ Λ +
1

2
Γ

)

y1 ≥ 0. (4)

If no leverage is allowed after the trading period (ρ = 0), this constraint is −p′0y1−y′1
(

Λ + 1
2Γ
)

y1 ≥
l0, which states that, after accounting for transaction costs, the trades must generate enough cash

to cover all liabilities. If arbitrarily large leverage is permitted (ρ → +∞), the constraint becomes

the solvency constraint e1 ≥ 0.

The condition for the constraint on leverage to be convex and bounded is that Λ ≻ ρ−1
2(ρ+1)Γ.

(Note that if ρ ≤ 1 the constraint is convex for any Λ and Γ such that Λ ≻ 0 and Γ ≻ 0.) This

condition is implied by (3) and is therefore automatically ensured in our framework. It is a less

restrictive assumption than (3) so that the problem may be bounded for some objective functions

that are not concave.5

5Though maximization of a non-concave function over a convex set is in general an intractable problem, in such a

case we can actually still solve the problem and obtain a solution quite similar to that in Result 2 using a result from

convex analysis known as the S-lemma (see, e.g., Pólik, Terlaky (2007)), a quadratic analog to the Farkas lemma. If

condition (3) is not satisfied, however, an unrestricted trader may still improve equity arbitrarily simply through the

act of trading.
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Result 2. Consider the optimal window-dressing problem where the investor chooses trades to

maximize equity subject to a constraint on leverage,

maximize e1

subject to l1 ≤ ρe1.

There is a z ≥ 0 such that the optimal trades are given by

y∗1 =
1

2

(

(1 + zρ)

(

Λ − 1

2
Γ

)

+ z

(

Λ +
1

2
Γ

))−1

((1 + zρ) Γx0 − zp0) .

In the case where the price impact matrices Γ and Λ have diagonal structure, with diagonal entries

γi and λi, the optimal trades can be written as

y∗1,i =
1

2
· (1 + zρ) γix0,i − zp0,i

(1 + zρ)
(

λi − 1
2γi

)

+ z
(

λi + 1
2γi

) .

The optimal trade of asset i, y∗1,i, is increasing in ρ and decreasing in l0. The optimal trade of asset

i, y∗1,i is not, in general, monotonic in λi, γi, or the ratio γi/λi.

The optimal trades for the diagonal case can alternatively be presented in the following form,

which makes the effects of the price impact parameters and shadow price more clear:

y∗1,i =
γ̃ix0,i − z̃

(1 + z̃)2λ̃i − (1 − z̃)γ̃i

,

where z̃ = z/(1 + zρ) ∈ [0, 1/ρ] is monotonic in the shadow price, and γ̃i = γi/pi and λ̃i = λi/pi

are the relative price impacts.

According to Result 2, the investor trades more of an asset when the margin constraint is less

restrictive (higher ρ) and when the investor is more leveraged initially (higher l0). Trades are non-

monotonic in the price-impact parameters due to two opposing effects, which can be appreciated

as follows. Consider an asset for which the price impact of trading increases, and how this changes

the optimal trades. On the one hand it will be comparatively more costly to deleverage, requiring

the investor to liquidate a larger share of the portfolio. On the other hand, the investor will prefer

to sell less of this particular asset, and more of others. Which effect dominates as to the amount

that is liquidated of the asset in question is determined by how quickly the optimal trades shift

away from that asset, versus how quickly the fraction of the portfolio that needs to be liquidated

increases.

One can find examples of problems where, over a reasonable range for the price impact pa-

rameters, y∗1,i exhibits non-monotonic behavior. Figure 1 presents two examples where the optimal

9



trades are not monotonic in the price impact parameters. In both cases there are two assets with

x0 = [1 1]′ and p0 = [1 1]′, and the investor is required to deleverage from a ratio of 19 (l0 = 1.9,

e0 = 0.1) to meet ρ = 10. In the first example, γ1 = γ2 = 0, λ2 = 0.05, and λ1 ranges from 0.001

to 0.05. In the second example, λ1 = λ2 = γ2 = 0.026, and γ1 ranges from 0 to 0.05.
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Figure 1: Examples where the optimal trades are not monotonic in the price impact parameters.

In this paper, we only consider constraints on leverage and, as we will see next, constraints on the

size the trade in each asset in the diagonal case. In practice, an investor may want to incorporate

other constraints into the problem. From the point of view of computational tractability, any

modification that preserves the convexity of the problem can be easily handled. This includes

constraints on position size or on trade size, or any number of risk constraints in a mean-variance

framework (see, e.g., Lobo, Fazel and Boyd (2007)). However, in most cases we lose the ability to

provide an analytical description of the optimal policy, or to provide structural insights into it. We

present next an important exception to this, with a formulation that captures the major features

of the problem of deleveraging under distress, and for which we can provide substantial insight into

the solution.

2.3 Forced Deleveraging in the Diagonal Case

We are especially interested in modeling liquidity shocks which force an investor to quickly sell

assets to reduce leverage. These shocks may arise from a number of reasons, such as a decrease

in the value of assets, unexpectedly large investor withdrawals, or margin calls due to a transition

to a more risk-averse environment (which in our model translates to requiring a lower ρ). When

doing a fire sale to mitigate risk, the investor is not allowed to increase positions nor to short-sell,

which corresponds to the box constraints

−x0,i ≤ y1,i ≤ 0.
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We remind the reader that, in everything that follows, we will be considering sales of assets, which

correspond to negative values in the trades vector. Thus, y1,i < y1,j should be interpreted as

meaning we liquidate more of asset i than asset j.

A recurring assumption in our analysis of the diagonal case in both the single-period and two

period models is the assumption that, for all i, ργix0,i ≤ p0,i. If this condition is violated for a

particular asset i, selling any amount of it hurts both net equity and the leverage ratio. Such an

asset can therefore be excluded from the problem without loss of generality.

The case of diagonal structure with box constraints can be analyzed as follows.

Result 3. Consider the single-period deleveraging problem

maximize e1

subject to l1 ≤ ρe1

−x0 ≤ y1 ≤ 0,

where Γ and Λ have diagonal structure, with diagonal entries γi and λi, and deleveraging is required

( l0
e0

> ρ). The optimal solution satisfies l1
e1

= ρ and there exists a z > 0 such that the optimal trades

are given by

y∗1,i = max

(

−x0,i, min

(

0,
1

2
· (1 + zρ) γix0,i − zp0,i

(1 + zρ)
(

λi − 1
2γi

)

+ z
(

λi + 1
2γi

)

))

.

The optimal trade of asset i, y∗1,i, is increasing in ρ and decreasing in l0, but is not, in general,

monotonic in x0,i, in λi, nor in γi.

As in the previous result, we have the alternative formulation

y∗1,i = max

(

−x0,i, min

(

0,
γ̃ix0,i − z̃

(1 + z̃)2λ̃i − (1 − z̃)γ̃i

))

,

for some z̃ ∈ [0, 1/ρ], where γ̃i = γi/pi and λ̃i = λi/pi.

Not surprisingly, the trader will sell-off so that the margin constraint binds. This maximizes

value in the single period case but, as we will see in the next section, may not hold in the multi-

period setting. Consistent with the findings in Section 2.2, trading in any asset i is not, in general,

monotonic in its price impact parameters.

To gain more insight into the relationship between asset sales during distress and the price

impact parameters, we can analyze the problem given a constant shadow price. That is, we can

consider portfolio modifications such that the marginal penalty in equity for increasing the margin
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requirement is constant. This allows us to isolate the effect of shifting sales from one asset to

another from the price impact on the marginal cost of partial liquidation of the portfolio.

The next result characterizes some important relationships, and will allow us to illuminate the

fundamental changes in the structure of the optimal trades in the two-period case.

Result 4. For the single-period problem with diagonal structure, consider directional derivatives

of the problem parameters (p0, γ, λ, x0, l0, ρ) such that the shadow price z is constant. That is,

consider modifications of the portfolio such that the marginal penalty in equity for increasing the

margin requirement is constant. Along such directions, y∗1,i is increasing in γi, in λi, and in x0,i.

From this we derive the two following corollary results:

i) Assets with low price impact are prioritized for liquidation. If two assets i and j are such

that p0,i = p0,j, γi ≤ γj , λi ≤ λj and x0,i = x0,j , then y∗1,i ≤ y∗1,j.

ii) Assets with smaller holdings are prioritized for liquidation. If two assets i and j are such that

p0,i = p0,j, γi = γj , λi = λj, and x0,i < x0,j, then y∗1,i ≤ y∗1,j (unless asset i is fully liquidated,

such that y∗1,i = −x0,i > y∗1,j).

Result 4 allows us to establish an ordering for myopic distressed sales. Over assets that are

otherwise identical and of which the investor has similar holdings, the more liquid assets are sold

first. Likewise, over assets that are equally liquid, assets of which the investor has smaller holdings

are sold first. Note that, while the proofs of the monotonicity with respect to λi and x0,i are trivial

from the partial derivatives of y∗1,i and hold without the distressed-deleveraging box constraints, this

is not the case for γi (for which the monotonicity does not hold without the no-shorting constraint).

The monotonicities in the price impact parameters imply that in distressed sales due to short-

lived shocks, traders should deleverage as described by Scholes. Specifically, traders sell-off their

most liquid holdings to generate cash or decrease their liabilities. The problem changes, however,

when a future further need for liquidity may arise. In some cases, it may still be optimal to prioritize

the selling-off of more liquid securities. However, we will see that in other cases risk management

may lead to different optimal strategies. To investigate this, we turn to a two-period setting next.

12



3 Two Periods: Optimal Deleveraging with Recurring Shock

3.1 Model and Preemptive Deleveraging

Consider now a single investor who trades in n assets over two periods. Each period is a discrete

amount of time [0, τ ], in which trading occurs continuously as before. Prices arise from the process

in (1) and the investor is restricted to satisfy constraints on leverage at the end of each time period

j ∈ {1, 2},
lj
ej

≤ ρ.

Since we wish to study policies regarding deleveraging under distress, we restrict the investor’s

trades to be reductions in positions and disallow shorting.

The key difference now is that there is uncertainty during period one about whether the investor

will face the need for further liquidity during period two. This uncertainty may arise because of

unforseen equity withdrawals, higher cash requirement to fund other areas of the business, less

favorable funding conditions (e.g., tighter margin constraints), or a uniform (i.e., systematic) drop

in asset prices. The uncertainty is resolved between the periods. We model the shock as an early

equity withdrawal, which generalizes to all the situations mentioned. Specifically, the amount

withdrawn is a Bernoulli random variable ∆ such that

∆ =











δ, with probability π

0, with probability 1 − π.
(5)

If there is a second-period shock, liabilities increase by δ, resulting in a more leveraged balance

sheet. If this is the case, the investor is required to liquidate assets in the second trading period to

deleverage to within allowed limits.

Following the notation of the previous section, the equilibrium price after the second period is

p2 = q + Γx2

= p0 + Γ (y1 + y2) ,

and the assets at the end of the second period are

a2 = p′2x2

= (p0 + Γ (y1 + y2))
′ (x0 + y1 + y2)

= a0 +





p0 + Γx0

p0 + Γx0





′ 



y1

y2



+





y1

y2





′ 



Γ Γ

Γ Γ









y1

y2



 .
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Using the same price model as for the single-period problem, the investor trades y2 for an average

price of p1 + Λy2 + 1
2Γy2. After withdrawals ∆, the investor is then left with liabilities

l2 = l1 + ∆ +

(

p1 + Λy2 +
1

2
Γy2

)′

y2

= l0 + ∆ +





p0

p0





′ 



y1

y2



+





y1

y2





′ 



Λ + 1
2Γ 1

2Γ

1
2Γ Λ + 1

2Γ









y1

y2



 ,

and the second-period equity, e2 = a2 − l2, is

e2 = e0 − ∆ +





Γx0

Γx0





′ 



y1

y2



−





y1

y2





′ 



Λ − 1
2Γ −1

2Γ

−1
2Γ Λ − 1

2Γ









y1

y2



 .

The second period leverage constraint
l2
e2

≤ ρ

can be written as a quadratic constraint on the vector of first- and second-period trades,

ρe0 − l0 − (1 + ρ)∆ +





ρΓx0 − p0

ρΓx0 − p0





′ 



y1

y2





−





y1

y2





′ 



ρ(Λ − 1
2Γ) + Λ + 1

2Γ 1
2(1 − ρ)Γ

1
2(1 − ρ)Γ ρ(Λ − 1

2Γ) + Λ + 1
2Γ









y1

y2



 ≥ 0.

(6)

Now, we proceed to characterize optimal trading in this multi-period setting. The first impor-

tant question that we address is whether the leverage constraint

l1
e1

≤ ρ

binds in the first period. That is, we consider whether the investor deleverages preemptively

(i.e., more than is immediately required) in the first period when there is a potential need for

liquidity in the future. The following result addresses this question.

Result 5. Suppose that the investor’s initial holdings are such that l0/e0 > ρ and that the trade

y1 = −x0/2 strictly satisfies the first-period margin constraint. Further, assume that

((1 + ρ)Λ + Γ) x0 ≤ p0. (7)

Then, there exists a threshold shock level δ̂ ≥ 0 such that the optimal two-period solution satisfies

l1/e1 = ρ for all δ ∈ [0, δ̂] and ll/el < ρ for all feasible δ > δ̂.
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Result 5 says that, under mild conditions, the optimal two-period liquidator may in fact delever-

age beyond what is required in the first period. When the potential need for future liquidity is

large, the margin constraint does not bind in the first period. This result arises even though the

investor is risk neutral. Due to the convexity of the penalty incurred in a large fire sale, the investor

manages future liquidity risk by over-liquidating the portfolio early on.

Result 5 also implies that if the future need for liquidity is high enough, the investor substitutes

liquid assets for illiquid ones. If we interpret cash to be the (n + 1)th asset in the portfolio, the

investor overweighs this liquid asset to the detriment of other securities when the future need for

liquidity is sufficiently large.

The conditions in Result 5 are mild and can be appreciated as follows. First, there is a bound on

the first period shock so that a liquidation of exactly one-half the portfolio is sufficient to generate

enough cash to meet the first-period margin constraint. Given that such a trade is very extreme,

this assumption is rather weak. The condition in (7) is simply an upper bound on the temporary

impact costs associated with a complete liquidation of the portfolio. If the temporary impact costs

associated with trading are so high that this condition is violated, then these transaction costs

dominate and risk mitigation behavior as demonstrated in the above result may not occur.

For the remainder of this section, we impose the requirement that the first-period trades be

such that the second-period constraint on leverage can be met under any realization of ∆. The

two-period problem of the expected-equity maximizing investor is then

maximize E∆ e2

subject to l1 ≤ ρe1, l2 ≤ ρe2,∀∆

−x0 ≤ y1 ≤ 0, − x1 ≤ y2 ≤ 0,∀∆,

where the optimization is over y1 and y2, where y1 is in R
n and y2 is {0, δ} 7→ R

n (or, equivalently,

a random variable in R
n measurable in the sigma-algebra generated by ∆).

Note that, with this problem specification, the restrictions on trades that prevent the investor

from increasing positions and from short-selling in the second period are assumed to hold even if

there is no second-period shock. This restriction seems appropriate since, around a crisis event for

the investor, or around a period of heightened market uncertainty, more strict risk management

prevents the investor from hastily increasing risk exposure. (A multi-period extension of this model

might naturally lead to a constraint of this nature.)6

6If we relax this constraint, the problem is less tractable. The expressions become far more complicated due to

the necessity of including the solution to a myopic single-period problem in the second-period objective, weighted by
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This constraint simplifies the problem because, when ∆ = 0, the optimal second-period trade

is then y2 = 0. This is shown by computing the gradient of the objective with respect to y2 at

y2 = 0, which is Γx1. Under assumptions of no shorting and γi,j ≥ 0, all entries of the gradient are

non-negative. This, together with the concavity of the objective in y2 (guaranteed by Λ ≻ 1
2Γ) and

the convexity of the box constraints, ensures that, if the constraint on leverage is not binding, the

optimum is achieved at y2 = 0. The first-period leverage constraint and first-period trades in turn

ensure that, absent a second-period shock, the second-period leverage constraint is not binding.

With a slight abuse of notation, we now use y2 ∈ R
n to denote the second period trades

associated with the realization ∆ = δ. Likewise, we refer to l2 and e2 as the liabilities and equity

when ∆ = δ. Noting that when ∆ = 0, the optimal second-period equity is e2 = e1, we can now

write the investor’s expected-equity-maximization problem as

maximize (1 − π)e1 + πe2

subject to l1 ≤ ρe1, l2 ≤ ρe2

−x0 ≤ y1 ≤ 0, − x1 ≤ y2 ≤ 0.

(8)

The program variables are y1 ∈ R
n and y2 ∈ R

n, and the objective is a quadratic functional in R2n,

E∆ e2 = (1 − π)e1 + πe2

= e0 − πδ +





Γx0

πΓx0





′ 



y1

y2



−





y1

y2





′ 



Λ − 1
2Γ −π 1

2Γ

−π 1
2Γ π(Λ − 1

2Γ)









y1

y2



 .

To assure that the problem is well-posed, we assume that E∆e2 is strictly concave jointly in y1

and y2, and that the second-period constraint on leverage is strictly convex jointly in y1 and y2.

We prove in appendix that this is ensured by the condition

Λ ≻ max

(

1 +
√

π

2
,
ρ − 1

ρ + 1

)

Γ, (9)

which is not much more restrictive that the condition for the single-period case.7

the probability 1 − π. However, the analysis is identical if we restrict δ to be such that the margin constraint binds

in the first period (i.e., δ ≤ δ̂). Further, additional analysis indicates that solutions to this modified problem are

qualitatively similar, in that results regarding both preemptive deleveraging and change in preferred order in which

assets are liquidated apply for large-enough second-period shocks.
7Note, however, that the two-period problem is guaranteed to be bounded using only the weaker assumption that

we introduced for the single-period problem, Λ ≻
ρ−1

2(ρ+1)
Γ. This assumption ensures strict convexity of the first-period

leverage constraint, and therefore boundedness of y1. With y1 bounded by the first-period constraint on leverage,

we only need convexity in y2 of the second-period constraint on leverage to ensure boundedness of y2, which is also

ensured by Λ ≻
ρ−1

2(ρ+1)
Γ. This assumption is therefore sufficient to ensure that the optimal trades are finite. The

same caveats as in the single-period case apply for this weaker constraint.
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Characterizing the solution to problem (8) for the diagonal case is the subject of the next

subsection.

3.2 Diagonal Case and Monotonicity

Consider the two-period problem with the two leverage constraints dualized,

maximize (1 − π)e1 + πe2 + z1 (ρe1 − l1) + z2 (ρe2 − l2)

subject to −x0 ≤ y1 ≤ 0, − x1 ≤ y2 ≤ 0.
(10)

If Λ and Γ have diagonal structure and we fix the values of z1 and z2, the problem can be decoupled

in the assets in that the optimal solution can be obtained by the independent maximization of

(y1,i, y2,i) for each asset i. We can then independently derive the solution for each asset i as a

function of the first- and second-period shadow prices. The objective can be written as a sum of

terms associated with each asset,

E∆ e2 = c +
n
∑

i=1

(

b′iyi − y′iAiyi

)

,

where yi =





y1,i

y2,i



. The constant term c and the linear and quadratic terms bi and Ai depend on

the first- and second-period shadow prices z1 and z2, and are as follows,

c = e0 − πδ + (ρe0 − l0)(z1 + z2) − (1 + ρ)δz2

bi =





ργix0,i + (ργix0,i − p0,i)(z1 + z2)

πργix0,i + (ργix0,i − p0,i)z2





Ai =





ρ(λi − 1
2γi) + ((ρ + 1)λi − 1

2(ρ − 1)γi)(z1 + z2) −1
2πργi − 1

2(ρ − 1)γiz2

−1
2πργi − 1

2(ρ − 1)γiz2 πρ(λi − 1
2γi) + ((ρ + 1)λi − 1

2(ρ − 1)γi)z2



 .

The constraints disallowing position increases and short sales can be equivalently stated as

y1,i ≤ 0, y2,i ≤ 0, and y1,i + y2,i ≥ −x0,i.

This defines a triangular feasible set for the first- and second-period trades in each asset. We graph

these cases in Figure 2 and derive their optimal trades in Table 3.2. Depending on which constraints

are active and inactive, there are seven different cases to consider. Which case occurs depends on
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Figure 2: Enumeration of cases for the linear constraints on each asset.

Case y∗1,i y∗2,i

1
Ai,2,2bi,1−Ai,1,2bi,2

2(Ai,1,1Ai,2,2−A2
i,1,2)

−Ai,1,2bi,1+Ai,1,1bi,2

2(Ai,1,1Ai,2,2−A2
i,1,2)

2
bi,1−bi,2+2x0,i(Ai,1,2−Ai,2,2)

2(Ai,1,1+Ai,2,2−2Ai,1,2)
bi,2−bi,1+2x0,i(Ai,1,2−Ai,1,1)

2(Ai,1,1+Ai,2,2−2Ai,1,2)

3
bi,1

2Ai,1,1
0

4 0
bi,2

2Ai,2,2

5 −x0,i 0

6 0 −x0,i

7 0 0

Table 1: Enumeration of cases for the linear constraints on each asset.
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the amount of deleveraging required immediately, the size and likelihood of a potential shock in

the second period, and the liquidity parameters and holdings of a particular asset.

The first two cases are the most interesting, as the remaining five correspond to more extreme

situations. In Case 1, the optimal solution is strictly in the interior of the triangle. If an asset is in

this region, it has favorable enough liquidity properties that is optimal to sell some of it in the first

period, and some of it in the second period if a subsequent need for liquidity arises. However, even

if a shock does occur in the second period, the investor will not fully liquidate the asset. Case 2 is

similar to Case 1, except that if the shock occurs, the investor is forced to liquidate the entire stake

in the asset. The investor would prefer to sell more of the asset, but the no-short-sales constraint

binds and changes the character of the optimal solution.

In Case 3, the investor chooses to liquidate some of the asset in period one but nothing further

in period two if a shock occurs. This may occur, for instance, if a large amount of deleveraging

is required immediately but the subsequent size of ∆ is small. Case 5 is similar except that the

investor liquidates all of the asset immediately. This may occur if the first-period deleveraging is

large and the asset is very liquid.

In Case 4, the investor does not sell the asset in the first period, but does sell some of it in

the second period. This might occur if the asset is relatively illiquid but, due to limitations on

positions of the other assets, the investor has no choice but to sell some of it if a second-period

shock occurs. Case 6 is similar to Case 4 in that the asset is not sold in the first period, but is

completely liquidated in the second period. This might occur if ∆ is very large. Finally, in case 7,

the investor does not liquidate any of the asset. This might happen if the asset is highly illiquid or

if ∆ is very small.

In practice, the solution to the investor’s trading problem can be computed by several ap-

proaches. One alternative is as follows. First, for some given shadow prices (z1, z2) and for each

asset i, compute all seven cases of (y1,i, y2,i) and the associated value of the objective. From these,

exclude the cases that violate the conditions y1,i ≤ 0, y2,i ≤ 0, and y1,i +y1,i ≥ −x0,i, and select the

valid case with the highest objective value. Then, with the optimal (y1, y2) for the dualized prob-

lem, compute the value of the investor’s objective function that is associated with that particular

(z1, z2) and the slack in the leverage constraints. Then, update (z1, z2) and repeat the procedure

to converge to the optimal value that satisfies both leverage constraints. A wide array of updating

rules for (z1, z2) that will ensure convergence to the optimum are available in the mathematical

programming literature. Given that this is a two-dimensional problem, any simple rule will be

effective.
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Figure 3: Optimal first-period trade as a function of λi.

We now characterize the solution to the investor’s two-period problem. Before formally pre-

senting our results regarding monotonicity of the optimal trades in the price impact parameters,

it is instructive to consider the following motivating example. For some asset i, we have x0,i = 1,

p0,i = 1, and γi = 0.01. The probability of a second-period shock is π = 0.2, and the allowed

leverage ratio is ρ = 10. The other assets in the investor’s portfolio, the initial liabilities l0, and

the shock magnitude δ are assumed to be such that the shadow prices are z1 = 0.04 and z2 = 0.2.

Figure 3 plots the optimal first-period trade as a function of λi. If λi is small (less than approxi-

mately 0.03), the asset will be fully liquidated in the case of a second-period shock. In this range,

for a more liquid asset a larger proportion is held over for the second period (as we will see, this

is the consequence of a high second-period shadow price, which arises from the expectation of a

severe second-period shock). On the other hand, if λi is large (more than approximately 0.03), the

asset is not fully liquidated, even in the event that a second-period shock occurs. In this range,

comparatively less is sold in both periods when the asset is less liquid, as this particular asset

becomes costly to dispose of quickly. The kink in y∗1,i(λi) comes from the transition from case 2

to case 1 (the constraint y1,i + y2,i ≥ −x0,i switches from binding to non-binding). We will more

formally explore the structure of the two-period problem, but this motivating example illustrates

an important feature of the solution. The monotonicities that held for the one-period problem (Re-

sult 4) do not always hold for the two-period problem and there are situations where the investor
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optimally sells comparatively more of a less liquid asset than of a more liquid asset.

Result 6. Let i and j be any two assets with equal initial prices and equal initial holdings such

that λi < λj, γi < γj , and γi/λi < γj/λj . Then, for any δ such that the problem is strictly feasible

and any π ∈ [0, 1), y∗1,i < y∗1,j.

According to Result 6, if an asset is a) more liquid than another asset in terms of its temporary

and permanent price impacts, and b) has a lower ratio of permanent to temporary price impact,

then the investor optimally sells more of the liquid asset in the first period, no matter how extreme

the expected second-period shock. The second condition implies that the investor prefers to sell

assets that have a relatively low permanent impact of trading compared to the transaction costs of

trading (i.e., the temporary component).

So far, this result is consistent with the optimal trading behavior derived in Section 2.3. The

next result, however, explores what happens when one asset is more liquid than another, but the

ratio points in the opposite direction.

Result 7. Consider the two-period liquidation problem, and assume that the trade y1 = −1
2x0

strictly satisfies the first-period margin constraint and that ((1 + ρ) λk + γk) x0,k ≤ p0,k for all k.

Let i and j be two assets with equal initial prices and equal initial holdings such that γi/λi < γj/λj .

Then, for any ρ > 0, π ∈ [0, 1), there exists a δ such that y∗1,i < y∗1,j.

According to Result 7, for a large enough expected second-period shock, the ratio of permanent

to temporary price is more important than the price impacts considered individually. In this case,

the investor may favor selling less liquid assets in the first period to hedge against the future need

for liquidity. Selling assets with a low ratio of permanent to temporary price impact is optimal,

and may result in keeping more liquid securities on hand for the eventuality of a second shock.

Result 7 has a non-obvious implication. If the expected second-period shock is sufficiently large,

the investor may wish to retain more of a liquid asset j that has both lower temporary and lower

permanent price impacts of trading than asset i. We can rewrite the ratio condition in Result 7 as

λi

λj
>

γi

γj
,

from which we see that if the option value of keeping the liquid asset is sufficiently high due to

its temporary component, then the investor will prefer to retain the liquid asset and incur the

short-term penalty from selling an asset with a higher permanent price impact. This suggests that

the temporary price impact is the main determinant of policies to manage the risk that a shock

may worsen.
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Our final result follows directly from the previous two results. It directly addresses the problem

posed by Scholes, and presents a striking departure from the results in the one-period problem.

Result 8. Consider a two-period liquidation problem where m assets have equal holdings and equal

initial prices (which we denote by i = 1, . . . ,m, m ≤ n). Then the following hold:

(a) If λ1 = λ2 = · · · = λm and γ1 < γ2 < · · · < γm, then for any δ for which the problem is

strictly feasible, we have y∗1,1 < y∗1,2 < · · · < y∗1,m.

(b) If γ1 = γ2 = · · · = γm and λ1 > λ2 > · · · > λm and, further, ((1 + ρ)λk + γk) x0,k ≤ p0,k for

all k and y1 = −1
2x0 strictly satisfies the first-period margin constraint, then for any ρ > 0,

π ∈ [0, 1) there exists a δ such that y∗1,1 < y∗1,2 < · · · < y∗1,m.

The first statement says that the investor will always want to trade assets that have a low per-

manent price impact, no matter how great the expected need for future liquidity may be. However,

the second statement says that this does not hold for the temporary component of liquidity: if the

future shock is sufficiently large, then the investor optimally holds on to assets that have a small

temporary component of liquidity in the first period in preparation for the possibility of future

distress.

This finding has important consequences and empirical import. Specifically, when we decouple

the two determinants of liquidity, it is the size of the expected shock and the temporary component

that seem most important in determining which assets are liquidated. Differentials in the perma-

nent impact of trading do not change the qualitative solution to the Scholes liquidation problem.

This implies that securities that differ in the amount of asymmetric information, or differ in how

concentrated their ownership is, will be liquidated in amounts that preserve their relative order.

However, the transaction costs that arise due to limited immediate access to counterparties or to

a high-volume market, may affect the order in which assets are liquidated in a multi-period frame-

work. In this sense, our analysis indicates that the magnitude of δ and the matrix Λ drive the

qualitative nature of the solution to the Scholes liquidation problem.

4 Conclusion

The question raised by Scholes is central to investors in financial markets during crises, when the

option value of holding liquid assets is poorly understood. We have developed a model of distressed

liquidation in two periods that has allowed us to begin investigating this question.
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We find that when the expected future need for liquidity is high, the option value of liquidity

is larger, leading to a shift in preferences towards holding more liquid assets. In a multi-period

setting where investors need to consider recurring liquidity shocks, the temporary and permanent

components of liquidity do not effect the solution equally. The temporary price impact only has

an immediate effect on the investor’s objective. On the other hand, the permanent price impact

not only has an immediate effect, it also changes the ‘state’ of the system so that its effect extends

into the future. Its effect is magnified relative to the effect of the temporary price impact and,

no matter how high the option value of holding liquid assets, the liquidation order never reverses

simply due to the permanent price impact.

On a more fundamental level there is, in the first period, a trade-off between the immediate value

from liquidation and the option value of holding an asset since, in periods of crisis or instability,

an investor cannot quickly rebuild liquidated positions. As Scholes noted, “since it is not possible

to know the extent of the unfolding crisis, holding and not selling the less liquid instruments is

similar to buying an option to hold a position.” Our analysis indicates that the precise form that

this trade-off in value takes, that is how immediate value and option value are balanced, is tied in

a fundamental way to the ratio between an asset’s permanent and temporary price impacts.
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A Appendix: Proofs

Proof of Lemma 1.

Proof. For any given trading target y1, the final assets a1 does not depend on the execution schedule.

A constant trading rate will then maximize κ1 and minimize the liabilities, a straightforward result

in calculus of variations for which we refer the reader to Carlin, Lobo, and Viswanathan (2007),

Bertsimas and Lo (1998) or Huberman and Stanzl (2005).

Proof of Result 1.

Proof. From the gradient of e1, the first-order conditions are Γx0 − 2
(

Λ − 1
2Γ
)

y1 = 0 which, for

Γ and Λ − 1
2Γ positive definite, has a single solution as stated. From concavity in y1 of e1 and

continuity of its gradient, the first-order conditions are necessary and sufficient. The monotonicities

for the diagonal case follow from differentiation and from the positivity assumptions on x0, Γ and

Λ (Γ ≻ 0 and Λ ≻ 0 imply γi > 0 and λi > 0 for all i).

Proof of Result 2.

Proof. The condition Λ ≻ 1
2Γ that ensures concavity of e1 also implies convexity of the constraint

on leverage, so that the problem is strictly convex and has a unique solution, which must satisfy

the first-order conditions,

Γx0 − 2

(

Λ − 1

2
Γ

)

y∗1 + z

(

(ρΓx0 − p0) − 2

(

ρ

(

Λ − 1

2
Γ

)

+

(

Λ +
1

2
Γ

))

y∗1

)

= 0,

for some z ≥ 0. This is equivalent to

2

(

(1 + zρ)

(

Λ − 1

2
Γ

)

+ z

(

Λ +
1

2
Γ

))

y∗1 = ((1 + zρ) Γx0 − zp0) ,

and the condition on Γ and Λ, combined with z > 0, ensure that these equations are uniquely

invertible. The alternative expression for y∗1,i in the diagonal case presented immediately after

the result follows from algebraic manipulation, with z̃ = z/(1 + zρ). Increasing ρ (or decreasing

l0) relaxes the margin constraint, which implies a smaller shadow price z. The optimal trade is

monotonic in decreasing in z̃, which is increasing in z. The non-monotonicity in λi and γi follows

from any counter-example (see below).

Proof of Result 3.
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Proof. Consider the problem with the leverage constraint dualized,

maximize e1 + z(l1 − ρe1)

subject to −x0 ≤ y1 ≤ 0,

With diagonal structure the assets are decoupled, in that the solution can be obtained by

separately optimizing the trades in each asset. If the box constraint in asset i is not active,

its solution is as stated in Result 2. The monotonicities follow by the same arguments as in

Result 2.

Proof of Result 4.

Proof. The proofs for λi and x0,i are immediate from the partial derivative of y∗1,i. Consider now γi.

Since the proof only looks at asset i (the constancy of z ensures that the assets remain decoupled),

we can without loss of generality normalize p0,i = 1 and x0,i = 1. The numerator of the partial

derivative
∂y∗

1,i

∂γi
can then be seen to simplify to

2λi + (2λi − 1)z + z2.

Therefore, the partial derivative is positive for any z < z0 where

z0 =
1

2

(

1 − 2λi −
√

4λ2
i − 12λi + 1

)

,

if λi ≤ 3/2 −
√

2, and for all z otherwise. From the constraint on short sales y∗1,i ≥ −1, the dual

variable z must satisfy

z ≤ 2λi

1 − 2λi − γi
≤ 2λi

1 − 4λi
.

The proof is completed by showing that this is less than z0 for any λi > 0. The inequality can be

written as

8λ2
i − 10λi + 1 > (1 − 4λi)

√

4λ2
i − 12λi + 1.

From inspection of the roots of the different factors, both sides are positive for λi ≤ 3/2−
√

2, and

we can therefore square both sides. Collecting terms, the inequality then simplifies to 64λ3
i > 0.

The corollaries are then immediate. Note that they can also be proved directly by a swapping

argument: if the monotonicity is violated, the investor can do better equity-wise by swapping y∗1,i

and y∗1,j while will still satisfying the problem constraints, thereby contradicting the optimality of

y∗1. The second part of the corollary follows directly from the expression for y∗1,i.

Proof of Result 5.
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Proof. Notice that for δ = 0, the two-period problem is identical to the myopic deleveraging

problem. Thus, at δ = 0 it must be the case for the optimal solution to satisfy l1/el = ρ. Suppose

not, i.e., suppose at δ = 0, we have l1/e1 < ρ. Then the shadow price of the first-period margin

constraint is zero, and the problem is equivalent to a problem that maximizes the net equity subject

to −x0 ≤ y1 ≤ 0. Since we have y1 ≤ 0, Γ ≥ 0 and x0 ≥ 0, it follows that

e1 = e0 + x′
0Γy1 − y1

(

Λ − 1

2
Γ

)

y1

≤ e0 − y1

(

Λ − 1

2
Γ

)

y1

≤ 0,

with equality strict for any nonzero y1 due to Λ − Γ/2 ≻ 0. This means y1 = 0 must be optimal,

which is a contradiction, as the trader initially satisfied l0/e0 > ρ.

Now consider the maximum possible δ such that the two-period problem is still feasible. We

will consider the problem of finding the maximum such δ and show that at this value, it must be

that ll/el < ρ. Denote this maximum feasible δ by δ̄; one can see that δ̄ is given by

δ̄ =
ρa0 − (ρ + 1)l0 + ρv⋆

ρ + 1
,

where v⋆ is the optimal value of the (convex) problem

maximizey1,y2 −(p0 − ρΓx0)(y1 + y2) − [y′1 y′2]





(ρ + 1)
(

Λ + 1
2Γ
)

− ρΓ 1−ρ
2 Γ

1−ρ
2 Γ (ρ + 1)

(

Λ + 1
2Γ
)

− ρΓ









y1

y2





subject to ρa0 − (ρ + 1)l0 − (p0 − ρΓx0)
′y1 − y′1

(

(ρ + 1)
(

Λ + 1
2Γ
)

− ρΓ
)

y1 ≥ 0

−x0 ≤ y1 ≤ 0

−x0 − y1 ≤ y2 ≤ 0.

We will show that the optimal solution will strictly satisfy the first-period margin constraint, so we

will omit this constraint for now as we consider computation of δ̄. Define the following for ease of

notation:

d , p0 − ρΓx0

D ,





A B

B A



 =





(ρ + 1)
(

Λ + 1
2Γ
)

− ρΓ 1−ρ
2 Γ

1−ρ
2 Γ (ρ + 1)

(

Λ + 1
2Γ
)

− ρΓ



 .

Since d ≥ 0 (by assumption; recall that for any asset i for which di ≤ 0, we can remove it from the

original problem without loss of generality) and D ≻ 0 (strict convexity), it can never be optimal

to have y1 > 0 or y2 > 0 above, and therefore we can ignore the non-positivity constraints.
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We thus focus on finding the optimal value to the problem

maximizey1,y2 −d′(y1 + y2) − [y′1 y′2]D





y1

y2





subject to y1 + y2 + x0 ≥ 0.

Using Lagrange multipliers ν ≥ 0 for the inequality constraints, the Lagrangian to this problem is

given by

L(y1, y2, ν) = x′
0ν + (ν − d)′(y1 + y2) − [y′1 y′2]D





y1

y2



 ,

and the optimal solution for any ν is given by





y1(ν)

y2(ν)



 =
1

2
D−1





ν − d

ν − d



 .

If we can find a ν ≥ 0 such that the corresponding solution is also feasible, then it must be optimal.

Let H = A + B and ν = d − Hx0. We have

ν = d − (A + B)x0

= p0 − ρΓx0 − ((ρ + 1)Λ + (1 − ρ)Γ) x0

≥ p0 − ρΓx0 − (p0 − Γx0 + (1 − ρ)Γx0)

= 0,

where in the inequality we are using the condition that the temporary impact component be suffi-

ciently small, i.e., (ρ + 1)Λx0 ≤ p0 − Γx0. Thus, ν ≥ 0 for this choice. Moreover,





y1(ν)

y2(ν)



 =
1

2
D−1





ν − d

ν − d





= −1

2
D−1





H−1x0

H−1x0





= −1

2





x0

x0



 .

Clearly, splitting up the trade in half over the two periods satisfies the no-short sales constraints.

Moreover, by assumption, it strictly satisfies the first-period margin constraint. Thus, this solution
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is feasible and therefore optimal to the above problem for finding v⋆, and hence the maximum level

δ̄.

Notice that strict convexity of the objective implies that this is the only optimal solution to this

problem; hence, at δ = δ̄, the trade (y1, y2) = (−x0/2,−x0/2) is the only feasible solution; since it

satisfies the first-period margin constraint strictly, we have found a large enough δ such that the

optimal solution to the two-period problem satisfies l1/el < ρ.

Thus, at δ = 0 we have l1/e1 = ρ and at δ = δ̄ we have l1/e1 < ρ; the shadow price z1 associated

with the first-period margin constraint is a continuous and nonincreasing function of δ. This implies

that at some δ ∈ (0, δ̄), the shadow price goes to zero, proving the threshold property that was

claimed.

Proof of Condition (9).

Proof. Consider two matrices A and B in R
n×n such that A = A′, B = B′, A ≻ 0, and B ≻ 0. We

show that the matrix

M =





A −B

−B A





is positive definite if and only if A ≻ B. Since A ≻ 0, M is positive definite if and only if its

Schur complement is positive definite: A − BA−1B ≻ 0. Since A ≻ 0, by change of coordinates

this is equivalent to I −
(

A−1/2BA−1/2
)2 ≻ 0. Since A−1/2BA−1/2 is symmetrical and therefore

has identical left and right eigenvectors, the condition is true if and only if all the eigenvalues of

A−1/2BA−1/2 satisfy λ2 < 1. Since A−1/2BA−1/2 is positive definite, this is equivalent to λ < 1.

We conclude that we can write the condition on the Schur complement as I − A−1/2BA−1/2 ≻ 0.

By change of coordinates, this is equivalent to A − B ≻ 0.

Applying this result to the matrix in the quadratic form in (6) leads to the condition

Λ ≻ ρ − 1

ρ + 1
Γ.

By change of coordinates, the matrix in the quadratic form in E∆e2 is positive definite if




Λ − 1
2Γ −√

π 1
2Γ

−√
π 1

2Γ Λ − 1
2Γ





is positive definite. Applying the result above to this matrix leads to the condition

Λ ≻ 1 +
√

π

2
Γ.
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Proof of Result 6.

Proof. We prove the result for the interesting Cases in Table 3.2 (Cases 1 and 2); the proof for

Cases 3 to 7 follows in similar fashion.

We will show that y⋆
1,i < y⋆

1,j holds for any such δ and π in the three situations below, which

cover all possibilities at the optimal solution:

1. The no-short sales constraints are not binding for either asset i or asset j (i.e., both are in

case 1).

2. The no-short sales constraint is binding for asset i but not asset j (asset i is in case 2 and

asset j is in case 1; we will argue the intuitive fact that the reverse situation cannot occur).

3. The no-short sales constraints are binding for both assets i and j (both assets are in case 2).

Situation 1: Assume that at the optimal solution, the no-short sales constraints are not binding for

either asset i or asset j, and assume that y⋆
1,i ≥ y⋆

1,j. We will show that such a solution cannot be

optimal. To this end, we will show there exists a feasible direction from (y⋆
1 , y

⋆
2) in which we can

head and strictly improve the objective. This implies that the solution cannot be optimal.

In particular, for some ǫ > 0, let ǫ1 be the vector with zeros everywhere but −ǫ in entry i and

+ǫ in entry j. Notice that, for a sufficiently small ǫ, the solution (y⋆
1 + ǫ1, y

⋆
2) still satisfies the

no-short sales constraints.

Now we examine the gradients of the liability amount and the net equity in each period. For

the first period, we have

∇l1(y1) = p0 + (2Λ + Γ)y1

∇e1(y1) = Γx0 − (2Λ − Γ)y1,

and thus, since we have 0 ≥ y⋆
1,i ≥ y⋆

1,j, λi < λj, and γi < γj :

ǫ′1∇l1(y
⋆
1)/ǫ = −(2λi + γi)y

⋆
1,i + (2λj + γj)y

⋆
1,j ≤ 0,

and (recalling that convexity requires 2λi − γi ≥ 0 for all i):

ǫ′1∇e1(y
⋆
1)/ǫ = (γj − γi)x0 − (2λj − γj)y

⋆
1,j + (2λi − γi)y

⋆
1,i

≥ (γj − γi)x0 − (2(λj − λi) − (γj − γi))y
⋆
1,j

≥











(γj − γi)x0 if 2(λj − λi) − (γj − γi) ≥ 0

2(λj − λi)x0 otherwise,

> 0.
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We also note that

∇l2(y1, y2) =





p0 + (2Λ + Γ)y1 + Γy2

p0 + Γy1 + (2Λ + Γ)y2





∇e2(y1, y2) =





Γx0 − (2Λ − Γ)y1 + Γy2

Γx0 + Γy1 − (2Λ − Γ)y2





We now distinguish several sub-scenarios, and show how we can find an ǫ2 in each case such that

[ǫ′1 ǫ′2]∇l2(y
⋆
1, y

⋆
2) ≤ 0 and [ǫ′1 ǫ′2]∇e2(y

⋆
1 , y

⋆
2) ≥ 0 in each case.

First, if ǫ′1Γ(y⋆
1+y⋆

2) ≤ 0 and ǫ′1Γ(x0+y⋆
1+y⋆

2) ≥ 0, then [ǫ′1 0]∇l2(y
⋆
1 , y

⋆
2) ≤ 0 and [ǫ′1 0]∇e2(y

⋆
1 , y

⋆
2) ≥

0.

Second, if ǫ′1Γ(y⋆
1 + y⋆

2) ≤ 0 but ǫ′1Γ(x0 + y⋆
1 + y⋆

2) < 0, then let ǫ2 = ǫ1. Note that ǫ′1Γ(x0 +

y⋆
1 + y⋆

2) < 0 requires y⋆
1,j + y⋆

2,j < y⋆
1,i + y⋆

2,i, so ǫ′1Λ(y⋆
1 + y⋆

2) ≤ 0 and ǫ′1Γ(y⋆
1 + y⋆

2) ≤ 0, and hence

[ǫ′1 ǫ′2]∇l2(y
⋆
1, y

⋆
2) ≤ 0. In addition, we have

[ǫ′1 ǫ′2]∇e2(y
⋆
1 , y

⋆
2)/ǫ = 2(ǫ′1Γx0 − ǫ′1(2Λ − Γ)(y⋆

1 + y⋆
2))/ǫ

= 2((γj − γi)x0 − (2λj − γj)(y
⋆
1,j + y⋆

2,j) + (2λi − γi)(y
⋆
1,i + y⋆

2,i))

≥ 2((γj − γi)x0 − ((2λj − λi) − (γj − γi))(y
⋆
1,j + y⋆

2,j))

≥











2(γj − γi)x0 if 2(λj − λi) − (γj − γi) ≥ 0

4(λj − λi)x0 otherwise,

> 0.

Finally, consider the case ǫ′1Γ(y⋆
1 + y⋆

2) ≥ 0. Then let ǫ2 = −ǫ1 and note that

[

ǫ′1 ǫ′2

]

∇l2(y
⋆
1 , y

⋆
2)/ǫ = 2ǫ′1Λ(y⋆

1 + y⋆
2)/ǫ

[

ǫ′1 ǫ′2

]

∇e2(y
⋆
1 , y

⋆
2)/ǫ = −2ǫ1Λ(y⋆

1 + y⋆
2)/ǫ,

and we therefore need to show that ǫ′1Λ(y⋆
1 + y⋆

2) ≤ 0. We claim this is always true under the given

conditions. Note that ǫ′1Γ(y⋆
1 + y⋆

2) ≥ 0 requires y⋆
2,i ≤ (γj/γi)y

⋆
2,j. Therefore,

ǫ′1Λ(y⋆
1 + y⋆

2)/ǫ = (λjy
⋆
1,j − λiy

⋆
1,i) + (λjy

⋆
2,j − λiy

⋆
2,i)

≤ λjy
⋆
2,j − λiy

⋆
2,i

≤ λjy
⋆
2,j −

λiγj

γi
y⋆
2,j

< λjy
⋆
2,j − λjy

⋆
2,j

= 0,
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where in the first inequality, we use 0 ≥ y⋆
1,i ≥ y⋆

1,j and λj > λi, in the second inequality we use

y⋆
2,i ≤ (γj/γi)y

⋆
2,j and in the third inequality we use λi/γi > λj/γj .

Therefore, in each circumstance we have constructed a feasible direction for which l1 and l2

are no larger, e2 is no smaller, and e1 is strictly larger. Since π < 1, this means we have found a

direction that still satisfies all the problem constraints (no-short sales and margin constraints) with

strictly larger objective, contradicting the optimality of (y⋆
1, y

⋆
2).

Situation 2: Assume that at the optimal solution, the no-short sales constraints are binding for

asset i but not binding for asset j (using an argument similar to the one above, we can argue that

y⋆
1,i + y⋆

2,i < y⋆
1,j + y⋆

2,j must hold, meaning it can never be the case that the constraints are binding

in the reverse direction). Note that the no-short sales constraint is binding for asset i, so the above

argument no longer applies (as we cannot sell any more of asset i).

For the next two cases, the following will be of use.

Lemma 2. Let rz1,z2 : R
2
+ → R be the family of functions

rz1,z2(λ, γ) ,
ρ(1 − π + z1)γ − 2(πρ + (1 + ρ)z2)λ − z1

p0

x0

(ρ(π − 1) + z1(1 − ρ))γ + 2(ρ(1 + π) + (z1 + 2z2)(1 + ρ))λ
,

parameterized by (z1, z2) ∈ R
2
+, and where π ∈ [0, 1), ρ ≥ 0, and the denominator is strictly

positive. If λi < λj, γi < γj, and γi/λi < γj/λj , then for any 0 ≤ z1 < ∞, 0 ≤ z2 < ∞,

rz1,z2(λi, γi) < rz1,z2(λj , γj).

Proof. We will fix a λ and a γ as well as all parameters in the function. The claim holds if and

only if ǫ′∇rz1,z2(λ, γ) > 0 for all vectors ǫ = [ǫλ ǫγ ]′ ∈ R
2
+ with ǫλ ≤ (λ/γ)ǫγ (i.e., moving in any

directions such that λ and γ do not decrease, nor does their ratio γ/λ, must increase rz1,z2(λ, γ)).

After some algebra, we arrive at

∇rz1,z2(λ, γ) ∝





BDγ − A
(

Cγ − z1p0

x0

)

ACλ − D
(

Bλ − z1p0

x0

)



 ,

where

A , ρ(1 + π) + (z1 + 2z2)(1 + ρ)

B , ρπ + (1 + ρ)z2

C , ρ(1 − π + z1)

D , ρ(1 − π) + z1(1 − ρ).
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To verify that the gradient condition holds over all such ǫ, we need only check the extreme rays of

the set, which are given by ǫ1 = [0 1]′ and ǫ2 = [(λ/γ) 1]′. This is clearly true for ǫ1, as A > 0,

C > 0, Aλ ≥ Bλ − z1p0/(x0), and C ≥ D. For ǫ2, we have

ǫ′2∇rz1,z2(λ, γ) =
λ

γ

(

DBγ − A

(

Cγ − z1p0

x0

))

+

(

ACλ − D

(

Bλ − z1p0

x0

))

=
λ

γ
(BD − AC) γ + (AC − BD)λ + (Aλ + Bγ)

z1p0

x0

= (Aλ + Bγ)
z1p0

x0

≥ 0,

where we are using A ≥ 0, B ≥ 0.

Now note that in this case, y⋆
1,i = rz1,z2(λi, γi), with (z1, z2) the optimal Lagrange multipliers,

because at the optimal solution the no-short sales constraint is active for asset i (rz1,z2(λi, γi) is the

form of the optimal solution, as discussed earlier, for asset i in this case). We will argue that for

asset j, which satisfies y⋆
1,j + y⋆

2,j > −x0 by assumption, we have y⋆
1,j > rz1,z2(λj , γj). Since Lemma

2 implies that rz1,z2(λj , γj) > rz1,z2(λi, γi) = y⋆
1,i, this will establish the result.

We can interpret rz1,z2(λj , γj) as the optimal first-period trade for asset j (with the Lagrange

multipliers fixed at (z1, z2)) if we are forcing asset j to satisfy the no-short sales constraint tightly

(i.e., forcing y1,j + y2,j = −x0. Put another way, rz1,z2(λj , γj) is the optimal solution y to the

problem

maximize −





y − y⋆
1,j

−x − y⋆
2,j − y





′ 



fj hj

hj gj









y − y⋆
1,j

−x − y⋆
2,j − y





subject to −x ≤ y ≤ 0,

where fj > gj ≥ hj . Assuming the inequalities are inactive at the optimal solution (it is easy to

verify that y = 0 cannot be optimal, and if −x0 is optimal, then y = rz1,z2(λj , γj) = −x0 < y⋆
1,j, so

we are done), the optimal solution y must satisfy the first-order condition:

(fj − hj)(y − y⋆
1,j) − (gj − hj)(−x − y⋆

2,j − y) = 0

m

(fj + gj − 2hj)y = (fj − hj)y
⋆
1,j + (gj − hj)(−x − y⋆

2,j).

Since y⋆
1,j + y⋆

2,j > −x0 by assumption in this case, we have

(fj + gj − 2hj)y < (fj + gj − 2hj)y
⋆
1,j,
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and since fj > gj ≥ hj , this implies the optimal y must satisfy y < y⋆
1,j, which gives us the result.

Situation 3: Assume that at the optimal solution, the no-short sales constraints are binding for

both assets i and j. In this case, we have y⋆
1,i = rz1,z2(λi, γi) and y⋆

1,j = rz1,z2(λj , γj). The result

now follows by Lemma 2.

Proof of Result 7.

Proof. Throughout the proof, we will use the notation (δ) to denote that a parameter in question

(e.g., optimal solution, shadow price, etc.) is a function of the second-period shock size, δ ≥ 0,

which will be varying. We will show that under the given conditions we can find a δ̂ with z1(δ̂) = 0,

the no-short sales constraints active for both asset i and asset j and z2(δ̂) finite but arbitrarily

large. We start with the following lemma.

Lemma 3. Let rz1,z2 : R
2
+ → R be the family of functions as described in Lemma 2. Then if

γi/λi < γj/λj , then there exists a 0 ≤ z2 < ∞ such that r0,z2(λi, γi) < r0,z2(λj , γj).

Proof. Note that when z1 = 0, we can express the function in question as

r0,z2(λ, γ) =
ρ
(

1 − π − 2π
(

λ
γ

))

− 2(1 + ρ)
(

λ
γ

)

z2

ρ
(

π − 1 + 2(1 + π)
(

λ
γ

))

+ 4(1 + ρ)
(

λ
γ

)

z2

.

Denoting λ/γ by σ, note that we can write the functions as

r0,z2(λi, γi) =
ai − biz2

ci + 2biz2

r0,z2(λj , γj) =
aj − bjz2

cj + 2bjz2
,

where

ai = ρ(1 − π − 2πσi)

bi = 2(1 + ρ)σi

ci = ρ(π − 1 + 2(1 + π)σi),

and analogously for (aj , bj , cj). Since the denominators are both positive, one can verify that there

exists a z2 ≥ 0 such that r0,z2(λi, γi) < r0,z2(λj , γj) if

2(aibj − ajbi) − (bicj − bjci) < 0
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holds. Some simple algebra shows that

2(aibj − ajbi) − (bicj − bjci) = 2ρ(1 + ρ)(1 − π)(σj − σi),

and since ρ > 0, π ∈ [0, 1), σj < σi implies the result.

Now consider the problem of finding the maximum possible δ̄ > 0 such that the two-period

problem is still feasible. Following the proof of Result 5, we find that such a δ̄ corresponds to the

trade y1 = −x0/2, y2 = −x0/2, i.e., splitting up all assets equally across the two periods. Since the

objective function for computing this δ̄ is strictly convex, the solution y1 = −x0/2 and y2 = −x0/2

can be the only solution that satisfies the second-period margin constraint at δ̄, and it must be

that δ̄ > 0 (since the trade y1 = −x0/2, y2 = 0 satisfies the constraints for the problem δ = 0

and the objective function for computing δ̄ is strictly convex). So, the feasible set to the original

problem with δ = δ̄ is a singleton at which the no-short sales constraints are obviously tight. By

assumption, the first-period margin constraint is strictly satisfied, and hence z1(δ̄) = 0. Moreover,

for any δ > δ̄, the problem is infeasible, and therefore we must have z2(δ̄) = +∞.

To complete the proof, we need to argue that we can find a small enough perturbation, ǫ > 0,

such that at δ̄− ǫ, it is still optimal to have both box constraints active, z1(δ̄− ǫ) = 0, and z2(δ̄− ǫ)

is finite but arbitrarily large. If we can do this, we will have found a δ for which the first-period

margin constraint is inactive, assets i and j are both tight on the no-short sales constraint, and

z2(δ) can be made as large as desired; since y⋆
1,i(δ) = r0,z2(δ)(λi, γi) and y⋆

1,j(δ) = r0,z2(δ)(λj, γj),

the result will then follow by Lemma 3.

First, notice that the feasible set at δ = δ̄ is a singleton, as argued above. For any ǫ > 0, we

are enlarging a single ellipsoid, and the feasible set must therefore still be compact (closed and

bounded). The singleton at δ̄ is strictly contained inside the first-period margin ellipsoid. Since the

feasible set shrinks to a singleton strictly contained in the first-period margin ellipsoid as ǫ → 0,

we can find a sufficiently small ǫ1 > 0 such that the feasible set is still strictly contained inside the

first-period margin constraint for all ǫ ∈ [0, ǫ1].

Now consider how z2 varies with δ. z2 is an optimal Lagrange multiplier; it is obtained by

minimizing a rational function and therefore z2(δ) is continuous, and z2(δ̄) = ∞. Since it is a

continuous function, we can find an ǫ2 > 0 such that z2(δ̄ − ǫ2) is finite but arbitrarily large. Since

it can be arbitrarily large, we can make it large enough such that the no-short sales constraints for

both assets i and j must still be active for any ǫ ∈ [0, ǫ2].

Now take ǫ = min(ǫ1, ǫ2) > 0. We have z1(δ̄ − ǫ) = 0, z2(δ̄ − ǫ) < ∞, and both no-short sales

constraints active at δ̄ − ǫ. The proof is complete.
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Proof of Result 8.

Proof. (a) follows directly by Result 6. (b) follows by applying Result 7 to construct such a δ for

each pair of assets in {1, . . . ,m}, then taking the maximum over all such δ.
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