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1. Introduction 

 The amount of academic research on bond fund performance is small in comparison to the 

economic importance of bond funds.  Recently the total net assets of U.S. bond funds has been about 

1/6 the amount in equity-style mutual funds and similar to the value of hedge funds.  Large 

amounts of additional fixed-income assets are held in professionally managed portfolios outside of 

mutual funds, for example in pension funds, trusts and insurance company accounts.  The turnover 

of a typical bond mutual fund far exceeds that of a typical equity fund (e.g. Moneta, 2008), 

suggesting active portfolio management.  Thus, it is important to understand the performance of 

bond fund managers.  

 Elton, Gruber and Blake (EGB, 1993, 1995) and Ferson, Henry and Kisgen (2006) study 

US bond mutual fund performance, concentrating on the funds' risk-adjusted returns.  They find 

that the average performance is slightly negative after costs, and largely driven by funds' expenses.  
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This might suggest that investors would be better off selecting low-cost passive funds, and EGB 

draw that conclusion.  However, conceptually at least, performance may be decomposed into 

components, such as timing and selectivity.  If investors place value on timing ability, for example 

a fund that can mitigate losses in down markets, they would be willing to pay for this insurance 

with lower average returns.  This is one of the first papers to comprehensively study the ability of 

US bond funds to time their markets.1  

 Timing ability on the part of a fund manager is the ability to use superior information 

about the future realizations of common factors that affect bond market returns.2  Selectivity refers 

to the use of security-specific information.  If common factors explain a significant part of the 

variance of bond returns, consistent with term structure studies such as Litterman and Sheinkman 

(1991), then a significant fraction of the potential performance of bond funds might be attributed 

to timing.  However, measuring the timing ability of bond funds is a subtle problem.   

 Traditional models of market timing ability rely on convexity in the relation between the 

fund's returns and the common factors.3  This paper looks at timing ability and performance after 

adjusting for four potential biases.  First, there might be a nonlinear relation between economic 

factors and a fund’s benchmark portfolio.  Second, interim trading, where the fund rebalances more 

frequently than the return observation interval, can generate nonlinearity.  Third, stale pricing 

                                                  
    1 Brown and Marshall (2001) develop an active style model and an attribution model for fixed 
income funds, isolating managers' bets on interest rates and spreads.  Comer, Boney and Kelly (2009) 
study timing ability in a sample of 84 high quality corporate bond funds, 1994-2003, using variations 
on Sharpe's (1992) style model.  Aragon (2005) studies the timing ability of balanced funds for bond 
and stock indexes. 

    2 We do not explicitly study "market timing" in the sense recently taken to mean trading by 
investors in a fund to exploit stale prices reflected in the fund's net asset values. But we will see that 
these issues can affect measures of a fund manager's ability. 

    3 The alternative approach is to directly examine managers' portfolio weights and trading decisions 
to see if they can predict returns and factors (e.g. Grinblatt and Titman, 1989).  Comer (2006), Moneta 
(2008) and Wang (2007) are early steps in this direction for bond funds.  Of course, weight-based 
approaches cannot capture market timing that occurs between weight reporting intervals, which can 
be up to six months in length. 
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that is correlated with economic factors – “systematic” stale pricing – can generate nonlinearity.  

Finally, funds’ exposures to the factors may vary due to publicly observed conditioning variables.  

Most of these issues have been treated in studies cited below, but this is the first paper to combine 

them all and the first to consider systematic stale pricing.   

 We study monthly returns for more than 1400 bond funds during 1962-2007 and find that 

controlling for non-timing-related nonlinearity is important.  Funds' returns are typically more 

concave, in relation to a set of nine bond market factors, than are unmanaged benchmarks.  Thus, 

funds would appear to have poor (negative) market timing ability in naive models.  When we 

introduce the controls for non-timing-related nonlinearities the overall distribution of the timing 

coefficients appears neutral to weakly positive.  After adjusting for the nonlinearity in funds' 

returns, the performance of many bond funds is significantly negative on an after-cost basis but 

significantly positive on a before-cost basis.  

 The rest of the paper is organized as follows.  Section 2 describes the models and methods.  

Section 3 describes the data.  Section 4 presents our empirical results and Section 5 offers some 

concluding remarks. 

 

2.  Models and Methods  

 A traditional view of fund performance separates timing ability from security selection 

ability, or selectivity.  Timing is closely related to asset allocation, where funds rebalance the 

portfolio among asset classes and cash.  Selectivity means picking good securities within the asset 

classes.   Like equity funds, bond funds engage in activities that may be viewed as selectivity or 

timing.  Bond funds may attempt to predict issue-specific supply and demand or changes in credit 

risks associated with particular bond issues.  Funds can also attempt to exploit liquidity differences 

across individual bonds.  These trading activities can be classified as security selection.  In 

addition, managers may adjust the interest rate sensitivity (e.g., duration) of the portfolio to time 

changes in interest rates.  They may vary the allocation to asset classes differing in credit risk or 
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liquidity, and tune the portfolio's exposure to other economic factors.   Since these activities relate 

to anticipating market-wide factors, they can be classified as market timing. 

 Classical models of market-timing use convexity in the relation between the fund's return 

and the "market" return to identify timing ability.  In these models the manager observes a private 

signal about the future performance of the market and adjusts the market exposure of the portfolio.  

If the response is assumed to be a linear function of the signal as modelled by Admati, 

Bhattacharya, Ross and Pfleiderer (1986), the portfolio return is a convex quadratic function of 

the market return as in the regression model of Treynor and Mazuy (1966).  If the manager shifts 

the portfolio weights discretely, as modelled by Merton and Henriksson (1981), the convexity may 

be modelled with call options.  We modify the classical setup to control for nonlinearities that are 

unrelated to bond fund managers' timing ability.   

 

2.1 Nonlinearity Unrelated to Timing 

 There are many reasons apart from timing ability that a fund's return could have a 

nonlinear relation to a market factor.  We group these reasons into four general categories.  This 

section explains the intuition for each effect. 

 First, the underlying assets held by a fund may have a nonlinear relation to market factors.  

For example, a fund that holds call options bears a convex relation to the underlying asset 

(Jagannathan and Korajczyk, 1986).  Pseudo-timing caused by this kind of nonlinearity is treated 

by Glosten and Jagannathan (1994) for equity mutual funds and by Fung and Hsieh (2001) and 

Bondarenko (2004) for hedge funds.  Nonlinearity is very likely in bond funds.  Even simple bond 

returns are nonlinearly related to interest rate changes.  Callable and convertible bonds contain 

explicit option components.  As we show in Table 3 below, unmanaged bond benchmark returns are 

convex functions of common factors.  Thus, to measure timing ability it is important to control for 

this nonlinearity. 

 A second, related cause of nonlinearity is "interim trading," studied by Goetzmann, 
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Ingersoll and Ivkovic (2000), Ferson and Khang (2002) and Ferson, Henry and Kisgen (2006).  

This refers to a situation where fund managers trade more frequently than the fund's returns are 

measured.  With mutual funds interim trading definitely occurs.  This could allow the manager to 

generate fake timing by increasing exposure after seeing high returns in the first half of the month.  

This is also related to derivatives holdings, because derivatives may often be replicated by high 

frequency trading.  If we can control for interim trading we also control for these derivatives.4  

 A third potential reason for nonlinearity unrelated to timing ability is stale pricing of a 

fund's assets.  Thin or nonsynchronous trading has long been known to bias downward the 

estimates of beta for a portfolio (e.g., Fisher (1966), Scholes and Williams, 1977).  If the degree of 

stale pricing varies over time in relation to a market factor, such "systematic" stale pricing can 

create spurious concavity or convexity in the measured return.  

 A fourth reason for nonlinearity unrelated to timing ability arises if there is public 

information about future asset returns.  As shown by Ferson and Schadt (1996), even if the 

conditional relation between the fund and a benchmark return is linear, the conditional portfolio 

betas may be correlated with market returns because of their common dependence on the public 

information, and the unconditional relation may therefore be nonlinear.  Examples of public 

information effects on equity fund timing coefficients are provided by Ferson and Warther (1996), 

Becker, et al (1999), Christopherson, Ferson and Turner (1999) and Ferson and Qian (2004).    

 In summary, in order to measure the market timing ability of bond funds we need to control 

for nonlinearity in the benchmark assets and for nonlinearity that may arise from interim trading, 

public information effects and systematic stale pricing.  In the following subsections we modify the 

classical market timing model to allow for nonlinearity in the benchmark returns and we develop 

controls for interim trading, public information effects and systematic stale pricing. 

                                                  
    4 Brown et al. (2004) explore arguments that incentives and behavioral biases can induce managers 
without superior information to engage in option-like trading within performance measurement 
periods. 



 
 6 

2.2  Classical Market Timing Models 

 The classical market-timing regression of Treynor and Mazuy (1966) is:  

 

                                         rpt = ap  +  bp ft +  Λp ft
2 +  ut,                                                           (1) 

 

where rpt is the fund's portfolio return, measured in excess of a short-term Treasury bill.  With 

equity market timing as considered by Treynor and Mazuy, ft is the excess return of the stock 

market index.  Treynor and Mazuy (1966) argue that  Λp>0  indicates market-timing ability.  The 

logic is that when the market is up, the successful market-timing fund will be up by a 

disproportionate amount.  When the market is down, the fund will be down by a lesser amount.  

Therefore, the fund's return bears a convex relation to the market factor.  

 It seems natural to replace the equity market excess return with changes in the systematic 

factors in bond markets, like interest rate levels and spreads.  However, if a factor is not an excess 

return, the appropriate sign for the timing coefficient might not be obvious.  For example, bond 

returns move in the opposite direction as interest rates, so a signal that interest rates are about to 

rise means bond returns are likely to be low.  We show in the Appendix that market timing ability 

still implies a positive coefficient on the squared factor.   

 Stylized market-timing models confine the fund to a single risky-asset portfolio and cash.  

This makes sense from the perspective of the Capital Asset Pricing Model (CAPM, Sharpe, 1964).  

Under that model's assumptions there is two-fund separation and all investors hold the market 

portfolio and cash.  But two-fund separation is generally limited to single-factor term structure 

models, and there is no central role for a "market portfolio" of bonds in most fixed income models.  

In practice, however, bond funds often manage to a "benchmark" portfolio that defines the peer 

group or investment style.  We use style-specific benchmarks to replace the market portfolio, and 

funds are assumed to time the factors by anticipating their impact on the benchmark returns. 
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2.3  Nonlinearity in Benchmark Assets 

 We model nonlinearity in the relation between the benchmark asset returns and the 

common factors with a nonlinear regression: 

 

   rBt = aB  +  bB(ft) +  uBt,                                                                                   (2) 

 

where bB(f) is a nonlinear function of the factor changes.  Appendix A.1 derives the generalization 

of the market-timing regression that incorporates the nonlinear benchmark: 

 

  rpt = ap  +  bp [bB(ft)] +  Λp [bB(ft)
2] +  ut.                                                                    (3) 

 

The intuition of Equation (3) is that with no timing, the nonlinearity of the benchmark return 

determines the nonlinearity of the fund's return.  If Λp=0 the nonlinearity of the fund's return 

simply scales that of the benchmark through the second term of the regression.  A successful timer's 

return is convex relative to the benchmark, and thus Λp>0.  We combine equations (2) and (3), and 

estimate the model by the Generalized Method of Moments (Hansen, 1982). 

 One of the forms for bB(f) that we consider is a quadratic function, which has an 

interesting interpretation in terms of systematic coskewness.  Asset-pricing models featuring 

systematic coskewness are developed, for example, by Kraus and Litzenberger (1976).  Equation (1) 

is, in fact, equivalent to the quadratic "characteristic line" used by Kraus and Litzenberger.  Under 

their interpretation the coefficient on the squared factor changes does not measure market timing, 

but measures the systematic coskewness risk.  Thus, a fund's return can bear a convex relation to a 

factor because it holds assets with coskewness risk.  Equations (2) and (3) allow the benchmark to 

have coskewness risk.  
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2.4  Interim Trading  

 Interim trading means that fund managers trade more frequently than the fund's returns 

are measured.  This can lead to incorrect inferences about market timing ability, as discussed by 

Bhattacharya and Pfleiderer (1983) and shown empirically by Jiang, Yao and Yu (2007) and also 

to incorrect inferences about total performance, as shown by Ferson and Khang (2002).  Ferson, 

Henry and Kisgen (2006) propose a solution using a continuous-time asset pricing model.  The 

time-aggregated model prices all portfolio strategies that may trade within the period as 

nonanticipating functions of the state variables in the model.  Thus, a manager with no ability will 

not record abnormal performance.  If the manager wastes resources by interim trading that 

generates trading costs, the portfolio return will be low and this should be detected as negative 

performance.  If the continuous-time model can price derivatives by replication with dynamic 

strategies, the use of derivatives is also covered by this approach. 

 Ferson, Henry and Kisgen show that the time-aggregated stochastic discount factor (SDF) 

from a broad class of popular term structure models is approximately:5: 

 

     t-1mt = exp(a - Ar
t + b'Ax

t + c'[x(t) - x(t-1)]).                                                   (4) 

 

In Equation (4) x(t) is the vector of state variables in the model at time t and x(t)-x(t-1)=ft are the 

factor changes.  The terms Ax
t = Σi=1,...1/Δ x(t-1+(i-1)Δ)Δ  approximate the integrated levels of the 

state variables over the period from t-1 to t.  The monthly measurement period is divided into (1/Δ) 

intervals of length Δ=one trading day.  Ar
t is the time-averaged level of the short-term interest rate.  

The empirical "factors" in the SDF thus include the usual discrete monthly changes in the state 

variables ft, and also include their time averaged levels and the time-averaged short term interest 

rate.   
                                                  
    5 A stochastic discount factor is a random variable, t-1mt, that "prices" assets through the equation 
Et-1{t-1mt(1+Rt)}=1. 



 
 9 

 With the approximation ey ≈ 1+y, which is accurate for numerically small y, the SDF is 

linear in the expanded set of empirical factors.  Since a linear SDF is equivalent to a beta pricing 

model, this motivates including the time-averaged variables {Ax
t, A

r
t} as additional term in the 

regression to control for interim trading. 

 

2.5  Public Information  

 Conditional timing models control for public information effects by allowing funds' betas to 

vary over time with public information.  Ferson and Schadt (1996) and Becker, et al. (1999) find 

that conditional timing models for equity funds are better specified than models that do not control 

for public information.  In particular, Ferson and Schadt (1996) propose a conditional version of 

the market timing model of Treynor and Mazuy (1966):6  

 

              rpt = ap  +  bp ft + Cp'(Zt-1 ft) +  Λp ft
2 +  ut.                                                         (5) 

 

The interaction term  Cp'(Zt-1 ft)  controls for nonlinearity due to the public information, Zt-1.  We 

include similar interaction terms in this paper to control for public information effects. 

 

2.6 Stale Prices 

 Thin or nonsynchronous trading in a portfolio biases estimates of the portfolio beta and a 

similar effect occurs when the measured value of a fund reflects stale prices, possibly due to illiquid 

assets (e.g. Getmansky, Lo and Makarov, 2004).  If the extent of stale pricing is related to a common 

factor we call it systematic stale pricing.  To address systematic stale pricing we use a simple model 

generalizing Getmansky, Lo and Makarov.  Let rpt be the true return on a fund's assets.  The true 
                                                  
    6 Ferson and Schadt (1996) also derive a conditional version of the market timing model of Merton 
and Henriksson (1981), which views successful market timing as analogous to producing cheap call 
options.  This model is considerably more complex than the conditional Treynor-Mazuy model, but 
they find that it produces similar results. 
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return would be the observed return if no prices were stale.  We assume rpt is independent over time 

with mean μ.  The measured return on the fund, rpt
*, is given by: 

  

   rpt
* = θtrpt-1 + (1-θt)rpt,                                                                                    (6) 

 

where the coefficient θt ε [0,1] measures the extent of stale pricing at time t.  Getmansky, Lo and 

Makarov allow K>1 lagged returns and K different θ coefficients in Equation (6) to capture 

multiperiod smoothing in hedge fund returns, but they assume that the smoothing coefficients are 

constant over time.  Our model allows time-varying smoothing coefficients in order to capture 

systematic stale pricing, but we restrict to a single lag, K=1.  With K lags, the measured returns 

should have a K-th order moving average structure.  In our bond fund portfolio returns we find 

significant first order autocorrelations, but the second order autocorrelations are insignificant, 

suggesting a first-order moving average structure.   

 Assume that the factor change ft is normal with mean μf and variance σf
2, independent and 

is identically distributed over time and is measured without error.  To model systematic stale pricing 

consider a regression of θt on the absolute factor changes,  gt = |ft| - E(|ft|):    
 
 
   θt = δ0 + δ1 gt + εt,                                                                                                (7) 
 
 

where we assume that εt is independent of the other variables in the model.  A relation between stale 

pricing and absolute factor changes can be motivated from the results of Karpoff (1987), Fleming and 

Remolona (1999), Brandt and Kavajecz (2004) and Xing, Zhang and Zhou (2007).  We are interested 

in moments of the true return like Cov(rp,ft
2), which measures the timing ability.  Using the facts that 

Cov(rp,gt
2) = Cov(rp,f

2) - 2E(|f|)Cov(rp,gt) and Stein's (1973) Lemma, which under normality implies 

Cov(rp,|ft|ft
2) = Cov(rp,[ft

6].5) = 3σf
2 Cov(rp,f), simple calculations relate the moments of the observed 
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variables to the moments of the unobserved variables as follows: 

 
E(rp

*) = μ - δ1 Cov(rp,g)                                                                                                                            (8a) 
 
Cov(rpt

*,ft) = Cov(rp,f)(1- δ0) - δ1 E(rpgf)                                                                                                 (8b) 
 
Cov(rpt

*,ft-1) = Cov(rp,f) δ0                                                                                                                          (8c) 
 
Cov(rpt

*,ft
2)= Cov(rp,f

2)(1- δ0) + δ1 σf
2 Cov(rp,g) - δ1 [3σf

2 Cov(rp,f) - E{|f|}Cov(rp,f
2)]                           (8d) 

 
Cov(rpt

*,ft-1
2)= Cov(rp,f

2) δ0                                                                                                                        (8e) 
 
Cov(rpt

*,gt)= Cov(rp,g)[1- δ0 + 2δ1 E(|f|)] - δ1 Cov(rp,f
2)                                                                           (8f) 

 
Cov(rpt

*,gt-1)= Cov(rp,g) δ0,                                                                                                                         (8g) 
 

Equation (8b) captures the bias in the measured covariance with the factor.  Equation (8d) shows 

the measured covariance with the squared factor return, which is a biased estimator of market 

timing. 

 Equations (8d) and (8e) reveal how to control for a biased timing coefficient due to 

systematically stale prices.  The sum of the covariances of the measured return with the squared 

factor changes and the lagged squared factor changes delivers the correct timing coefficient when 

δ1=0.  This is similar to the bias correction for betas in the model of Scholes and Williams (1977).  

When δ1 is not zero the sum must be adjusted by subtracting a stale pricing adjustment term.  All 

of the expressions in the system (8) are valid if we replace ft by bB(ft) and modify the definition of 

gt accordingly. 

 

2.7  Combining the Effects  

 The general form of the model is a system including Equations (2), (8) and (9): 

  

  rpt
* = a + β'Xt + Λp Sp [bB(ft)

2 + bB(ft-1)
2] + upt,                                                           (9) 
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where the Sp term uses the moments identified in (8) to adjust the timing coefficient for systematic 

stale pricing: 

 
Sp = Cov(rp,bB(f)2)/ {Cov(rp,bB(f)2) + δ1σf

2 Cov(rp,g) - δ1[3σf
2 Cov(rp,bB(f))-E(|f|)Cov(rp,bB(f)2)]}        (10) 

 
 
In this model, Λp is proportional to Cov(rp,bB(f)2) and thus measures the timing ability after adjusting 

for all of the biases.  Xt is a vector of control variables observed at t or before.  The nonlinear 

function bB(ft) is included in Xt to control for nonlinearity in the underlying benchmark assets and 

the lagged bB(ft-1) is also included.  The time-averaged factor and short-term interest rate, {Af, Ar}, 

are included in Xt to control for interim trading.  The products of bB(ft) and the lagged state 

variables (levels of the factor) control for public information effects. 

 The combined model generalizes the classical market timing regression (1) in three 

essential respects.  The first is the additional control variables Xt.  The second is the introduction 

of the nonlinear functions bB(f) and the third is the additional moment conditions and lagged 

terms to control for systematic stale pricing.  We evaluate empirically the impact of these 

generalizations below.7 

3. The Data   

 We first describe our sample of bond funds.  We then describe the interest rate and other 

economic data that we use to construct the factors relative to which we study timing ability.  

Finally, we describe the funds' style-related benchmark returns. 

 

 

                                                  
    7 Adding moments for E(|f|), σf

2, E(f) and E(rpfg) we have ten moments.  The ten parameters are: 
 {μ, δ0, δ1, Cov(rp,f), Cov(rp,f

2), Cov(rp,g), E(rpfg), σf
2, E(f) and E(|f)} and the system is exactly 

identified.  Equation (8e) is not used.  The regression errors in (2) and (9) are orthogonal to a 
constant and the right hand side variables in the regressions. 
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3.1 Bond Funds 

 The mutual fund data are from the Center for Research in Security Prices (CRSP) mutual 

fund data base, and include returns for the period from January of 1962 through March of 2007.  

We select open-end funds whose stated objectives indicate that they are bond funds.8  We exclude 

money market funds and municipal securities funds.  We subject the fund data to a number of 

screens as described in Appendix A.3.  We group the funds into equally-weighted portfolios 

according to eight mutually exclusive investment styles: Index, Global, Short-term, Government, 

Mortgage, Corporate, High Yield and Other.9     

 We also form subgroups according to various fund characteristics, measured at the end of 

the previous year.  Since the characteristics are likely to be associated with fund style, we form 

characteristic groups within each of the style classifications.  The characteristics include fund age, 

total net assets, percentage cash holdings, percentage of holdings in options, reported income yield, 

turnover, load charges, expense ratios, the average maturity of the funds' holdings, and the lagged 

return for the previous year.  The Appendix A.4 provides the details. 

 Summary statistics for the broad style-grouped funds' returns are reported in Panel A of 

                                                  
    8 Prior to 1990 we consider funds whose POLICY code is B&P, Bonds, Flex, GS or I-S or whose 
OBJ codes are I, I-S, I-G-S, I-S-G, S, S-G-I or S-I.  We screen out funds during this period that have 
holdings in bonds plus cash less than 70% at the end of the previous year.  In 1990 and 1991 only the 
three digit OBJ codes are available.  We take funds whose OBJ is CBD, CHY, GOV, MTG or IFL.  If 
the OBJ code is other than GOV, we delete those funds with holdings in bonds plus cash totalling less 
than 70%.  After 1991 we select funds whose OBJ is CBD, CHY, GOV, MTG, or IFL or whose 
ICDI_OBJ is BQ, BY, GM or GS, or whose SI_OBJ is BGG, BGN, BGS, CGN, CHQ, CHY, CIM, 
CMQ, CPR, CSI, CSM, GBS, GGN, GIM, GMA, GMB, GSM or IMX.  From this group we delete fund 
years for which the POLICY code is CS or the OBJ code is I-G. 

    9 Global funds are coded SI_OBJ=BGG or BGN.  Short-term funds are coded SI_OBJ=CSM, CPR, 
BGS, GMA, GBS or GSM.  Government funds are coded OBJ=GOV, POLICY=GS, ICDI_OBJ=GS, 
or SI_OBJ=GIM or GGN.  Mortgage funds are coded ICDI_OBJ=GM, OBJ=MTG or SI_OBJ=GMB.  
Corporate funds are coded as OBJ=CBD, ICDI_OBJ=BQ, POLICY=B&P or SI_OBJ=CHQ, CIM, 
CGN or CMQ.  High Yield funds are coded as ICDI_OBJ=BY, SI_OBJ=CHY or OBJ=CHY or 
OBJ=I-G and Policy=Bonds.  Index funds are identified by searching for the word "index" in the fund 
name.  Other funds are defined as funds that we classify as bond funds (see the previous footnote), but 
which meet none of the above criteria.   



 
 14 

Table 1.  The mean returns are between 0.37% and 0.74% per month.  The standard deviations of 

return range between 0.46% and 1.85% per month.  The first-order autocorrelations range from 14% 

for Index funds to 30% for Short Term funds.  The minimum return across all of the style groups in 

any month is -7.3%, suffered in October of 1979 by the Corporate bond funds.  The maximum return 

is almost 11%, also earned by the Corporate funds, in November of 1981. 

 Table 1 also reports the second order autocorrelations of the fund returns. The stylized stale 

pricing model assumes that all the assets are priced within two months. This implies that the 

measured returns have an MA(1) time-series structure, and the second order autocorrelations 

should be zero. The largest second order autocorrelation in the panel is 14.9%, with an approximate 

standard error of 1/√T = 1/√171 = 7.6%. For the portfolio of all funds, where the number of 

observations is the greatest, the second order autocorrelation is -1%, with an approximate standard 

error of 1/√543 = 4.3%.  Thus, the autocorrelations provide no strong evidence against the single-lag 

structure used in the model for systematic stale pricing.10 

 

3.2  Bond Market Factors 

 We use daily and weekly data to construct monthly empirical factors.  Most of the data are 

from the Federal Reserve (FRED) and the Center for Research in Security Prices (CRSP) 

databases.  The daily interest rates are from the H.15 release.  The factors reflect the term structure 

of interest rates, credit and liquidity spreads, exchange rates, a mortgage spread and two equity 

market factors.  The Appendix A.5 provides the details. 

 Table 2 presents summary statistics for the monthly series starting in January of 1962 or 

later, depending on data availability, and ending in December 2007.  Missing values are excluded 

and the units are percent per year (except for the US dollar index and Equity values, represented as 

                                                  
 10 The relation between the autocorrelations and the lag structure of stale pricing is derived 

assuming that the “true” returns are not serially correlated.  This assumption is likely to be false, 
especially for the short term bond funds where we observe the largest autocorrelation.  We examine 
the sensitivity of our results for the short term bond funds to this issue below. 
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the price/dividend ratio).  Panel A presents the levels of the variables and panel B presents the 

monthly first differences.  The time-averaged values used as controls for interim trading effects 

look similar to the levels in Panel A and are not shown.   

 The average term structure slope was positive, at just over 80 basis points during the sample 

period.  The average credit spread was about one percent, but varied between 32 basis points and 

about 2.8%.  The average mortgage spread over Treasuries was just over 2% and the liquidity spread 

averaged 0.4% for the period starting in 1971. 

 In their levels the variables shown in Table 2 are highly persistent time series, as indicated 

by the first order autocorrelation coefficients.  Five of the nine autocorrelations exceed 95%.  

Moving to first differences, the series look more like innovations.11  We use the first differences of 

these variables to represent the factor changes in our analysis. 

 

3.3 Style Index Returns 

 We form style-related benchmark returns for the mutual funds using two alternative 

methods.  The first method assigns a benchmark based on a fund's most recently-declared style.  

This has the advantage that the benchmark is determined ex ante and nothing has to be estimated.  

It has the disadvantage of relying on the fund's self-declared style.  If a fund strategically 

misrepresents its style or is more accurately represented as a hybrid style, then the benchmark will 

be inaccurate. 

 We select seven benchmarks based on funds' declared styles.  Global funds are paired with 

the Lehman Global Bond Index.  Short-term bond funds are paired with a portfolio of US 

                                                  
    11 Given the relatively high persistence and the fact that some of the factors have been studied before 
exposes us to the risk of spurious regression compounded with data mining, as studied by Ferson, 
Sarkissian and Simin (2003).  However, Ferson, Sarkissian and Simin (2008) find that biases from 
these effects are largely confined to the coefficients on the persistent regressors, while the coefficients 
on variables with low persistence are well behaved.  Thus, the slopes on our persistent control variables 
and thus the regression intercepts may be biased, but the market timing coefficients should be well 
behaved.  
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Treasury bond returns with less than or equal to 48 months to maturity.  This best matches the 

reported maturities of their holdings.  Mortgage funds are paired with the Lehman US Mortgage 

Backed Securities Index.  Corporate bond funds are paired with the Lehman US AAA Credit 

Index, while High-yield funds are paired with the Merrill Lynch High-Yield US Master Index.12  

For two of the styles we use combinations of Lehman bond indexes, weighted in proportion to their 

contributions to the Lehman US Aggregate bond index.  Because Government style funds hold 

significant amounts of mortgage-backed securities in the latter part of the sample period, we pair 

the Government bond funds with a combination of the Lehman mortgage backed index and a long-

term Treasury bond index.13  Finally, we pair the catch-all Other bond funds and the Index funds 

with a combination of the Treasury bond index, the mortgage backed index and the corporate bond 

index.14 

 Our second method for forming benchmark portfolios follows Sharpe (1992).  Historical 

returns are used to estimate a tracking portfolio of passive asset class returns for each of the 160 

fund groups based on style and characteristics.  This has the advantages of not relying solely on the 

fund's self-declared styles and of allowing hybrid styles.  It has the disadvantage that the portfolio 

weights must be estimated, and the estimates will be imprecise in cases with a limited sample of 

                                                  
    12 We splice the Blume, Keim and Patel (1991) low grade bond index returns prior to 1991, with the 
Merrill Lynch High Yield US Master Index returns after that date. 

    13 We splice the Ibbotson Associates 20 year government bond return series for 1962-1971, with the 
CRSP greater than 120 month government bond return after 1971.  

    14 The aggregate weights are from Lehman (2006), in percent: 
 
 Year Government Credit  Mortgage 
 1976 49  42  5 
 1986 56  19  23 
 1996 52  17  30 
 2001 34  27  35. 
 
We use the most recent ex ante weight to form the benchmark in a given year.  Prior to 1977 we pair 
the Government funds with the long-term Treasury return index and we pair the Other and Index 
funds with the Corporate bond index. 
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returns.  If the portfolio weights for a particular period are estimated using any future returns 

data, there may be a look-ahead bias in the analysis for the future period.  The details of this 

approach are discussed in the Appendix A.6. 

 Sharpe’s approach to estimating the style portfolio weights differs from the more 

traditional, regression-based approach to forming mimicking portfolios by imposing that the 

weights cannot be negative.  This is realistic for mutual funds, where we are unlikely to find large 

short positions.  Because the passive asset class returns are correlated, the regression approach 

delivers both extreme and negative weights.  For example, with a regression approach we get 

weights as large as 130% and as small as -130%, and seventeen out of 63 weights are negative. 

 Panel B of Table 1 presents the Sharpe style-index weights for the broad style-based 

portfolios.  The weights present sensible patterns, suggesting that both the style classification and 

Sharpe's procedure are reasonably valid.  The Global funds load most heavily on global bonds.  

Short term funds have most of their weight in bonds with less than 48 months to maturity.  

Mortgage funds have their greatest weights on mortgage backed securities.  Corporate funds have 

more than 70% of their weight in high or low grade corporate bonds.  High yield funds have 77% of 

their weight in low grade corporate bonds.  Government funds do load highly on mortgage-backed 

securities (21%), consistent with the observations of Comer (2006) and Moneta (2008) that their 

mortgage-related holdings are substantial.   

 

4. Empirical Results 

 We first examine the empirical relations between the factors and passive investment 

strategies proxied by the style benchmarks.  We also evaluate the effects of the controls for 

nonlinearities on broad portfolios of the mutual funds.  We then apply the models to individual 

funds.  
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4.1 Factor Model Regressions 

 We begin the empirical analysis with regressions of the style benchmark returns on changes 

and squared changes in the factors, looking for convexity or concavity.  This suggests what would 

happen given a naive application of the timing regression (1) for funds, if funds simply held the 

benchmark portfolios.  If the benchmark returns are nonlinearly related to the factors, it suggests 

that controls for nonlinearities could be important.   

 Table 3 summarizes the t-ratios for the regression coefficients on the squared factors.  Only 

t-ratios that exceed 1.6 in absolute value are shown.  Panel A of Table 3 shows that out of 72 cases 

(8 style benchmarks times 9 factors) there are 25 heteroskedasticity-consistent t-ratios with absolute 

values larger than 1.6.  Nine of the absolute t-ratios are above 2.0.  Thus, there is significant 

evidence of nonlinearity in the benchmark returns.  Most of the large coefficients are positive, 

indicating convexity.  Using the Sharpe style benchmarks (not shown in the table) the evidence for 

convexity is even stronger.  This implies that we would measure positive timing ability, based on 

regression (1), if funds simply held the benchmarks.  Thus, controlling for nonlinearity is likely to 

be important for measuring the timing ability of bond funds.  

 Comparing the funds with the benchmarks, we see the effects of active management.  The 

coefficients for the mutual funds are summarized in Panel B of Table 3.  Here we find 11 absolute 

t-ratios larger than two and 19 in excess of 1.6.  This is more than expected by chance; thus, the 

mutual fund returns are also significantly nonlinearity related to the factors.15  The coefficients on 

the squared factors are negative in about half of the cases.  Thus, the fund returns appear more 

concave in relation to the factors than do the benchmark returns.  This might suggest poor market 

timing ability on the part of the mutual funds, but it could also reflect derivatives, interim trading, 

public information or stale pricing effects that are not found in the benchmarks.  Note that 

marginally significant t-ratios are found for the index funds on three of the nine factors, as shown 

                                                  
    15 Using a simple binomial model assuming independence, the t-ratio associated with finding 11 
"rejections," when the probability of observing a rejection is 5%, is (11/72 - .05)/(.05(.95)/72)0.5 = 4.00. 
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in the first row of Panel B.  As index funds are unlikely to be actively timing, this suggests that 

much of the nonlinearity is unrelated to timing. 

 We also examine regressions like Table 3 where the fund style returns net of the benchmark 

returns are the dependent variables.  The evidence of concavity is much stronger in these 

regressions, as would be expected.  We find 27 or 28 absolute t-ratios larger than 1.6 and all but one 

or two are negative, depending on the type of style benchmark.  Thus, simply measuring fund 

returns net of a benchmark will not control for the nonlinearities.  If we naively ran the regression 

(1) using fund returns net of benchmark returns on the left hand side, we would find strong 

evidence of negative timing ability. 

 

4.2  Evaluating the Controls 

 To control for benchmark nonlinearity the function bB(ft) is used in Equations (2), (8) and 

(9).  We consider three specifications for bB(f): Quadratic, exponential and piecewise linear.  As 

described earlier, a quadratic function can be motivated by coskewness.  An exponential function 

can be motivated by a continuous-time model.  However, since ef≈1+f when f is numerically small, 

the linear function well approximates the exponential for small factor changes, and we find no 

empirically measurable impact of an exponential function, compared with a linear function.    

 The piecewise linear specification is bB(f) = bf + c f*I(f>0), where I(f>0) is an indicator 

function for a positive change in the factor.  A piecewise linear function can be motivated as 

approximating an option payoff.  We use zero as the breakpoint in the piecewise linear function for 

simplicity and to avoid estimating a breakpoint parameter.  This will be useful when we apply the 

model at the level of the individual funds, where short time series often limit the degrees of 

freedom. 

 Our comparisons face a number of challenges related to degrees of freedom.  One has to do 

with multiple factors.  In principle funds may try to time multiple factors.  A market-timing model 

with multiple factors would include the cross products as well.  In our case with nine factors we 
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would have 36 cross products plus nine squared factors, and thus timing coefficients on 45 

variables.  The controls for non-timing-related nonlinearities would proliferate as well, leading to 

serious problems with overfitting.  We would only be able to study a small subset of funds with the 

longest return histories, leading to a survivor selection bias.  We therefore limit the analysis 

throughout to models that consider one factor at a time.  We recognize that, because the variables 

in our models may be correlated with “missing” factors, it may affect our results, and we caution the 

reader to interpret our findings accordingly.  

 We revisit the factor model regressions of Table 3 using the piecewise linear function in 

place of the quadratic function to capture nonlinearity.  The results for the benchmark returns are 

similar.  The coefficient c is often positive, indicating convexity in the benchmarks, and the t-ratio 

is large in significant fractions of the cases.  The coefficients for the fund portfolios are again a 

mix of positives and negatives, with large t-ratios in a significant fraction of the cases.  The funds 

are typically more concave in the factor changes than are the benchmarks. 

 Table 4 summarizes the impact of the controls for non-timing-related nonlinearity on the 

funds grouped into the eight broad style categories, a level of aggregation where we do not expect to 

find significant timing ability in a well-specified model.  The models are estimated one factor at a 

time.  The table summarizes the averages of the timing coefficients16 taken across the nine market 

factors and how many of the nine t-ratios are above +2.0 or below -2.0.      

 In Panel A the benchmark is modelled as a piecewise linear function of the factor changes, 

while in Panel B the linear function is used.  The first column of figures shows the results with no 

other controls.  With controls for the nonlinear benchmark only we find that 25 of the 72 t-ratios 

are less than -2.0 and ten are greater than 2.0.  The index funds have five of nine t-ratios below -2.0.  

                                                  
16  We present the averages across the factors for parsimony.  Even with the eight broad fund styles 
and one factor at a time, there are at least 360 comparisons (8 styles x 9 factors x 5 controls) to 
models with no controls.  We have also examined the effects of the controls on the 160 style and 
characteristics based fund portfolios and we have cut the data in various ways.  These averages 
present a reasonable summary of the overall impressions from the more detailed analysis, some of 
which is described below. 



 
 21 

When we use a quadratic bB(f) function (not shown in the table) the results are similar.  In Panel 

B of Table 4 we repeat the analysis without controlling for nonlinear benchmarks.  With no 

controls the results are even more perverse.  34 of the t-ratios for the timing coefficients are below  

-2.0, and the index funds produce seven of nine t-ratios below -2.0.  Thus, controlling for 

nonlinearity in the benchmarks is important, but not adequate to control for non-timing related 

nonlinearity in funds' returns.  

 The columns labeled Public Information, Interim Trading and Stale Pricing introduce 

these controls alone, while the All Controls column uses all of the controls simultaneously.  Under 

the public information controls the results are similar to the model with the nonlinear benchmark 

only.  The interim trading controls have a larger separate impact on the timing coefficients, and 

introducing these controls reduces the frequency of large negative t-ratios by about 2/3.  The funds' 

returns appear less concave with the interim trading controls.  This suggests that on average funds' 

interim trading or derivatives positions have the effect of "selling convexity," or inducing concavity 

in the funds' returns.  Purchasing callable bonds, for example, induces concavity because the fund 

is effectively short the call option.  When we control for interim trading effects we remove this 

concavity from the measure of market timing. 

  The controls for stale pricing also have the effect of reducing the number of large t-ratios 

on the timing coefficients; in fact, only four of the 72 are larger than +2.0 and two are smaller than 

-2.0.  However, a comparison of the average coefficient values suggests that this is partly a result of 

the larger standard errors in the systematic stale pricing model. 

 In the right hand column of Panel A all of the controls are used together.  We find one t-

ratio below -2.0 and seven above +2.0.  Given that 72 t-ratios are estimated these frequencies are 

consistent with a well-specified model.  The average coefficient values are not extreme, compared 

with the model with stale pricing only.  Overall, the model with all of the controls appears to be a 

reasonable specification.    

 The stale pricing model makes the simplifying assumption that the true returns are serially 
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independent, while the measured returns have serial dependence.  The true returns of Short-term 

bond funds in particular are likely to be serially dependent, and we could mistakenly attribute stale 

pricing to short-term bond funds.  As a check we run the analysis in Table 4 making the extreme 

assumption that the Short-term bond funds have no stale pricing.  With all the controls except stale 

pricing, the average coefficient for the Short-term bond funds changes from -7.38 to -6.33, and we 

find no t-ratios for the Short-term bonds above 2.0 and two below -2.0.  For our analysis of 

individual funds below, where Short term bond funds represent about 31% of the cross section, the 

impact of this misspecification should be smaller. 

 We repeat the analysis of Table 4, Panel A using a quadratic function to model benchmark 

nonlinearity in place of the piecewise linear function.  All of the impressions are very similar to 

those in Panel A, so we do not tabulate the results.  Table 4 uses the Sharpe style benchmarks.  We 

check the results using the self-declared benchmarks.  Assuming the benchmarks are linear in the 

factors the results are again perverse, suggesting negative timing as in Panel B of Table 4.  The 

results for Panel A are also similar.  In an earlier version of the paper the stale pricing model 

assumed that staleness was related to the value of the factor changes instead of the absolute 

changes.  That model provided less evidence of systematic stale pricing, and the absolute model used 

here appears to be the better specification. 

 Table 4 focuses on the effects of the controls at the style group level, but we conduct further 

experiments that focus on the effects of the controls in the tails of the cross-sectional distributions 

of the style-and-characteristics-based fund portfolios.  We examine the 180 possible cases for each 

style (9 factors times 20 characteristics-sorted portfolios) and 160 possible cases for each factor.  

When there are no controls for nonlinearity we find many negative timing coefficients.  

Introducing the controls for benchmark nonlinearity typically has a substantial impact on the 

extreme values of the timing coefficients and reduces the incidence of large t-ratios.  The controls 

for interim trading and public information seem to have a smaller impact on the tails. 

 Note that the controls for stale pricing raise a potential concern. Suppose that the sum 
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[bB(ft)
2 + bB(ft-1)

2] is used as the regressor to identify the timing coefficient while the correct 

specification uses only bB(ft)
2.  The lagged term appears as a "measurement error." Measurement 

error is expected to bias the regression coefficient toward zero, which we could misinterpret as an 

appropriate control.  We re-run the analyses of Table 4 replacing the summed term with two 

separate bB(f)2 terms, each with its own coefficient, and we estimate the sum of the two coefficients.  

The results are similar to those recorded in Table 4.     

 We draw several conclusions from this analysis.  First, it is important to control for 

nonlinearity in funds' benchmarks with respect to the factors, but the other controls are also 

needed.  Second, on average it appears that funds' interim trading or derivatives activities have the 

effect of "selling convexity," as would be the case when buying callable bonds.  Finally, a model 

that combines the various controls with nonlinear benchmarks produces an overall distribution of 

the timing coefficients that appears neutral to perhaps slightly positive at the level of fund 

portfolios.  

 

4.3 Fund level Analysis  

 We expect to find little timing when funds are grouped into large portfolios, but there could 

be individual funds with significant timing ability.  We estimate the market timing coefficients for 

each fund with at least 36 monthly returns and study the cross-sectional distributions of the 

individual timing coefficients.  There are at least 1204 eligible funds for each factor.  The results 

using the piecewise linear bB(f) function, the Sharpe style benchmarks and all of the controls are 

summarized in Table 5. 

 The first column of figures in Table 5 lists selected fractiles for the null distributions of 

estimated timing coefficients.  We estimate the null distributions by setting the timing coefficients 

equal to zero, and simulating funds’ returns as the fitted values of regression (9) with this 

restriction plus the randomly rescrambled regression residuals.  The number of simulated fund 

returns is equal to the number of actual funds and each simulated fund has the same number of 
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returns as an actual fund in the sample.  Estimating the model on a factor-by-factor basis using the 

simulated data, we sort the timing coefficients of the funds and determine the critical values at 

selected fractiles of the null distributions.  The fractions in the remaining columns of Table 5 are 

the fractions of the estimated timing coefficients in the original, unrestricted fund data that exceed 

the critical values for a given factor.  We evaluate the distributions informally.17 

 The mutual funds' timing coefficients are mildly skewed toward positive values in the 

central regions of the distributions.  For example, more than 50% of the funds’ coefficients exceed 

the median of the null distribution for six of the nine factors.  More than 90% of the funds’ 

coefficients exceed the 10% left-tail critical values for eight of the nine factors.  None of these 

differences is large, however, and the tails conform relatively closely to the null distributions.18   

 We repeat the analysis of Table 5 substituting the self-declared style benchmarks and/or the 

quadratic bB(f) function.  The overall impressions about the cross-sectional distributions of the 

timing coefficients are similar to Table 5 when the controls for interim trading, public information 

and systematic stale pricing are in place.  The timing coefficients of the individual funds appear 

slightly more positive than the distribution under the null hypothesis, mainly in the central 

                                                  
    17 To evaluate statistical precision consider a binomial random variable that equals 1.0 with 
probability p, when a timing coefficient is larger than the critical value for the fractile p.  If the 
correlation of the trials is ρ the variance of the fraction of funds above the critical value is [p(1-p){1/n 
-(1-1/n)ρ}].  The correlation ρ depends on the correlation of the funds' returns.  We approximate ρ by 
estimating the pairwise correlations of all the funds' returns using all pairs with at least 36 months in 
common.  The summary statistics in Table 1 suggest that if two funds' return series are separated by 
more than a month in calendar time, their average correlation is statistically zero.  We therefore scale 
each contemporaneous correlation by the fraction of the sample where the two fund return series 
overlap.  Here we make the conservative assumption that the correlations at one lag are equal to the 
contemporaneous correlations, and we set the correlations beyond lag one to zero.  The resulting 
estimate of ρ is 0.083.  This implies that the standard deviations of the fractions in Table 5 are 
approximately 0.14, 0.085, 0.06 and 0.045 respectively, for the 0.50, 0.10, 0.05 and 0.025 fractiles.  Of 
course, the multiple comparisons across factors would further complicate formal statistical inference. 

18 We examine the correlations of the timing coefficients with the ten fund characteristics 
described earlier.  With about 1200 observations, the standard error of these correlations is about 
0.03.  There are only 22 out of 171 correlations larger than 0.06, which is not statistically 
significant.  The correlations display no obvious patterns across the fund styles or characteristics.   
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regions of the distributions. 

 We draw several conclusions about fund-level timing ability.  First, when the controls for 

non-timing-related nonlinearity are in place there is little evidence of significant "negative timing" 

among bond funds.  For some factors more than half of the funds have timing coefficients larger 

than the median under the null hypothesis of no timing ability, but there are not an unusual 

number of funds with coefficients in the extreme tails.  Overall, the timing ability appears neutral 

to weakly positive. 

 

4.4 Nonlinearity-adjusted Performance  

 Most measures of investment performance compare the average return of a managed 

portfolio over some evaluation period to the average return of a benchmark portfolio that is a 

feasible unmanaged alternative.  To evaluate whether the managed portfolio is attractive relative to 

the benchmark, the benchmark should be equivalent to the managed portfolio in all expected-

return-relevant respects, except that it should not reflect the investment ability of the firm or 

manager.  Aragon and Ferson (2007) call such a portfolio an "Otherwise Equivalent" (OE) 

portfolio.  If a fund outperforms its OE portfolio on an after cost basis it may be attractive to 

investors who would otherwise hold the benchmark. 

 In order to operationalize the OE portfolio it is necessary to have a model to determine 

what characteristics of a portfolio should lead to higher or lower expected returns.  For example in 

the CAPM the relevant characteristic is the market beta and the OE portfolio is a combination of 

the market portfolio and the risk-free asset.  The average return in excess of the OE portfolio is 

Jensen’s (1968) alpha.   

 The task in the present setting is to consider nonlinearity when evaluating performance.  

The intercept in the Treynor-Mazuy regression (1) has been naively interpreted in some studies as a 

"timing adjusted" alpha, measuring selectivity.  This is only correct in unlikely special cases of 

stylized "perfect" market timing ability, as discussed by Aragon and Ferson (2007).  In general it is 



 
 26 

not possible, outside of highly stylized models, to isolate timing from selectivity ability.  We use 

stylized models to estimate timing ability and we estimate total performance – that may include 

timing and selectivity ability – relative to an OE portfolio that features nonlinearity.   

 The intercept in Equation (1) does not measure performance relative to an OE portfolio 

(even if ft is an excess return) because ft
2 is not a portfolio's excess return.  However, the model can 

be modified to capture the difference between the return of the fund and that of an OE portfolio, 

provided that the nonlinearity of the fund can be replicated by trading in market assets (e.g. 

Glosten and Jagannathan, 1994). 

 Let rh2 be the excess return of the maximum-squared-correlation portfolio for the squared 

factor changes, ft
2.  This portfolio is estimated by the regression: 

 

    ft
2 = a + H'rt + ut,                                                                               (11) 

 

where the weights that define the mimicking portfolio rh2 are proportional to the regression 

coefficients, H.  The base assets in rt are the seven assets we use to form the Sharpe style 

benchmarks, excluding the short term Treasury rate, and the returns are in excess of the Treasury 

rate.  The expected value of the excess return, E(rh2) is the risk premium associated with the 

squared factor.19  Our goal is to form an OE portfolio for each fund that has the same loadings on 

its style benchmark and rh2 as does the fund.  This makes the simplifying assumption that style 

benchmark exposure and convexity are the return-relevant characteristics.  The OE portfolio is 

formed using the following regression: 

                                                  
    19 An alternative approach is to use cross-sectional regressions of returns on betas to estimate 
mimicking portfolios.  While we have a large cross section of mutual funds, using the funds with this 
approach would contaminate the risk premium estimates with the abnormal returns due to manager 
ability, if any.  We have a small cross section of passive benchmark assets.  We therefore use time-
series as opposed to cross-sectional regressions to estimate the mimicking portfolios.  (See Balduzzi 
and Robotti, 2008 for comparisons of the two methods.) 
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   rpt = ap + bp rBt + cp rBt-1 + dp rh2t + ep rh2t-1 + vt.                                             (12) 

 

The loading on the benchmark, rB, is estimated following Scholes and Williams (1977) as βp = bp + 

cp, and the loading on the hedge portfolio is Ωp = dp + ep.  The OE portfolio return for fund p is βp 

rB + Ωp rh2 and the alpha, measuring the nonlinearity-adjusted performance, is E(rpt) - βp E(rB) - 

Ωp E(rh2).   

 Table 6 presents the analysis of nonlinearity-adjusted performance.  The second and third 

columns of Panel A summarize the mean excess returns over a short term Treasury and the mean 

returns over the style benchmarks at selected fractiles of their distributions across the funds.  The 

average excess returns are stated in percent per month.  The median fund excess return is 0.46% per 

month and the median return net of benchmark is -0.07%, consistent with previous studies that find 

bond funds return less than their benchmarks on average.  The distribution is skewed to the left, 

with 5% of the funds below -0.28% and 5% above 0.10%.   

 Panel A of Table 6 also reports the fractions of funds with alphas larger than the critical 

values at the indicated fractiles from the null distribution in which the true alphas are zero.  These 

critical values are similar in construction to the critical values in Table 5.  We subtract the fitted 

alphas from each fund's fitted return and rescramble the residuals in the simulation.  The third 

column shows the values of the estimated alphas that define the various fractiles of the distribution 

across funds under the null hypothesis that the true alphas are zero (critical alphas).   The critical 

alphas are very similar across the factors.  For simplicity we report here the averaged critical 

values taken across the nine factors, although the analysis in the remaining columns is based on 

the factor-specific critical values. 

 Many funds have negative alphas.  Depending on the factor, 78-86% of the funds have alphas 

below the median value of zero under the null.  Between 10-18% of the funds have alphas below  

-0.156% per month, which is at the left 2.5% tail of the null distribution.  The right tails conform 
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closely to the null distributions.  Thus, the table provides evidence of negative performance on an 

after-cost basis and little evidence that any funds have significant positive performance. 

 Panel B of Table 6 digs more deeply into the total performance.  We first summarize the 

funds' loadings on the style benchmarks.  Funds' loadings vary widely in the cross section, with the 

10% tails spanning values between 0.44 and 1.38.  This shows that the returns net of benchmark are 

crude performance measures.  They assume that all of the loadings equal 1.0.   

 Below the benchmark loadings we report the average excess returns of the rh2 portfolios, 

denoted as "hedge premiums." The average hedge premiums vary from -2.93% per month for equity 

volatility to 3.6% for equity values, but funds' loadings on the two equity-related rh2's are small and 

the range is narrow, with 80% of the funds' loadings between -0.12 and +0.09.  The rest of the hedge 

premiums are an order of magnitude smaller than the equity-related premiums, but the range of 

funds' loadings on the portfolios is typically larger.   

 If market timing or convexity is valuable, we expect negative return premiums for portfolios 

that are positively correlated with squared factor changes.  Maximum R-squared portfolios may 

have negative or positive correlation, so the average hedge premiums multiplied by the sign of the 

correlation of rh2 with the squared factor changes should be negative.  The correlation is shown in 

the last line of Table 6.  The product is negative for each of the nine factors, excepting the interest 

rate curvature factor. 

 An example of the effect of the nonlinearity adjustments on funds' performance is the short 

rate.  A positive loading on the rh2 corresponds to concavity with respect to interest rate changes, for 

which characteristic a higher return is required.  This contributes (0.415)(0.134)= 0.06% per month 

to the required return of a fund in the upper ten percentile of rh2 loadings.  Thus, the alpha of such 

a fund is reduced by 0.06% per month, adjusting for nonlinearity.  For a fund at the lower ten 

percentile of loadings we add (0.415)(-0.224)= -0.09% per month to the required return, increasing 

the alpha by 0.09% per month to reflect the value of convexity.  These figures are of similar in 

magnitudes to the -0.067% per month by which the median fund underperforms its benchmark after 
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costs, but less than half of the 0.2% underperformance at the ten percent left tail of fund returns net 

of benchmark. 

 

4.5  Before-Cost Performance 

 Since the OE portfolio pays no trading costs while the bond funds do, the alphas reflect a 

mixed message.  This is consistent with the approach in much of the performance measurement 

literature.  If investors could replicate the OE portfolios at negligible cost, then negative alphas 

funds are not attractive for investors who would otherwise hold the benchmark.  But the costs to 

replicate the benchmarks may not be negligible.  In this section we repeat the analysis with the 

funds' returns measured on a before-cost basis.  If a fund returns more than the OE portfolio on a 

before cost basis we refer to this, following Aragon and Ferson (2007), as "investment ability."   The 

idea is that investment ability on a before-cost basis may be absorbed by fees and other costs.  To 

obtain the before-cost returns we add back the average expense ratio plus a measure of trading costs.  

The trading costs for each fund are a round-trip trading cost estimate based on the fund's style 

multiplied by the average reported turnover of the fund.20 

 Table 7 presents the results.  The median fund return is about 0.11% higher than in Table 6, 

reflecting a total cost of about 1.3% per year.  The median return net of the style benchmark is 0.03% 

per month, which suggests some investment ability for the median fund.  The left-tailed skewness 

                                                  
    20 The round trip transaction cost figures are as follows.  For Global bond funds we use 31 basis 
points, based on figures in Biais and Declerk (2006).  This is an average of twice the half-spreads from 
their Table 5 plus the information content from their Table 10, weighted in proportion to the numbers 
of Eurobonds and Sterling bonds in their sample.  For corporate bonds we use 48 basis points and for 
high yield bonds we use 75 basis points.  These figures are averages from Edwards, Harris and 
Piwowar (2007), Bessembinder, Maxwell and Venkataraman (2006) and Hotchkiss et al. (2009) for 
intermediate trade sizes.  For Government funds we use 12.5 basis points, following Ferson, Henry and 
Kisgen (2006).  For Mortgage funds and Short-term funds we use 20 basis points.  For Index funds and 
Other bond funds, we use the average of these figures, or 34 basis points.  We checked these figures 
with a trader at Smith-Breeden, John Sprow, who suggested the figures for Mortgage and Short-term 
bond funds and confirmed that the other numbers seemed reasonable for trade sizes typical of mutual 
funds under average market conditions. 
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that we saw in Table 6 is no longer observed, suggesting that was driven by skewness in the costs.   

 The distributions of the before-cost alphas are markedly different from the alphas in Table 

6.  About 75% of the funds generate before-cost alphas above the median of the distribution 

generated under the null hypothesis that the alphas are all zero.  Between 10-15% of the funds have 

alphas above 0.149% per month, which is at the upper 2.5% tail of the null distribution.  The alphas 

in the left tails conform more closely to the null distributions.  This makes sense in that a fund 

with significant "negative ability" presents a potentially valuable signal to a competitor who can 

take the opposite position, while a fund with significantly higher costs presents no such signal.  

 Comparing tables 6 and 7, the story is similar to what the literature finds for equity funds.  

After costs a significant number of funds have poor performance, and there is no significant 

positive performance.  Before costs, just the opposite is true.21  A significant number of funds have 

positive investment ability, and the performance is consistent with the null of no ability in the left 

tails.  Overall, the evidence is consistent with the view that bond fund managers have investment 

ability but investment fees and trading costs absorb the superior returns (and then some), leaving 

no abnormal positive performance for fund investors.   

 

5. Concluding Remarks  

 Models of market timing using returns measure convexity in the relation between the fund's 

return and the common factors.  However, convexity or concavity is likely to arise for reasons 

unrelated to timing ability.  We adapt classical market timing models to bond funds by controlling 

for other sources of nonlinearity, such as the use of dynamic trading strategies or derivatives, 

portfolio strategies that respond to publicly available information, nonlinearity in the benchmark 

assets and systematically stale prices.  These issues should also arise in equity funds and in hedge 

funds, so future research should examine similar controls in the context of other types of funds. 
                                                  
    21 Gutierrez, Maxwell and Xu (2008) recently confirm negative after-cost and positive before-cost 
performance in a sample of Corporate bond funds using different methods. 
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 We find that controlling for non-timing-related nonlinearity matters, and naive 

applications of market timing models without these controls would be misleading.  Simple returns 

net of style benchmarks are not likely to be reliable performance measures because funds' loadings 

on the benchmarks differ substantially from 1.0.  Bond funds' returns are typically more concave, 

in relation to a broad set of bond market factors, than are unmanaged benchmarks.  Thus, without 

controls for non-timing-related nonlinearity, funds would appear to have poor (i.e., negative) 

market timing ability.  When we introduce the controls the distribution of the timing coefficients 

appears neutral at the fund style-group portfolio level and neutral to slightly positive in the cross-

sectional distribution of individual mutual funds.  

 The impact of nonlinearities on bond funds' total performance is typically small.  For 

example, the value of short-rate convexity could account for less than half of the underperformance 

at the 10% tail of fund performance.  Significant fractions of funds' nonlinearity-adjusted alphas 

are negative.  There is no evidence of positive performance after costs.  When we add expense ratios 

and estimates of trading costs based on fund turnover back to the funds' returns, the opposite is 

found.  About 75% of the funds earn positive before-cost alphas, and the distribution of fund 

performance is significantly better than would be expected under the null hypothesis that all the 

alphas are zero.  There is no evidence of significant negative performance before costs, suggesting 

that the left tail skewness in the after cost measures reflects skewness in the costs.    

 

Appendix  

A.1 Market Timing Models 

Assume that the fund manager combines a benchmark portfolio with return RB and a short-term 

Treasury security or "cash" with known return RF.  The portfolio weight on RB is x(s), where s is 

the private timing signal.  The managed portfolio return is Rp = x(s)RB + [1-x(s)]RF.  The signal is 

observed and the weight is set at time t-1, the returns are realized at time t, and we suppress the 

time subscripts when not needed for clarity.  In the simplest example the factor changes and the 
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benchmark's excess returns are related by a linear regression:   

 

    rBt = μB  +  bB ft +  uBt,                                                                    (A.1) 

 

where  rB = RB - RF  is the excess return,  μB=E(rB), the factor changes are normalized to have 

mean zero and  uBt  is independent of ft.  Assume that the signal  s = f + v,  where  v  is an 

independent, mean zero noise term with variance, σv
2.  Assume that the random variables (r,f,s) are 

jointly normal and let σf
2 = Var(f).  The manager is assumed to maximize the expected value of an 

increasing, concave expected utility function, E{U(rp)|s}.  The optimal portfolio weight of the 

market timer is:22 

 

    x(s) = λ E(rB|s)/σB
2,                                                                        (A.2) 

 

where λ > 0 is the Rubinstein (1973) measure of risk tolerance, which is assumed to be a fixed 

parameter, and σB
2 = Var(rB|s), which is a fixed parameter under normality.   

 The implied regression for the managed portfolio's excess return follows from the optimal 

timing weight x(s) and the regression (A.1).  We have rp = x(s) rB, then substituting from (A.1) and 

(A.2) and using E(rB|s) = μB + bB [σf
2/(σf

2 + σv
2)] (f+v), we obtain equation (1), where ap = λμB

2/σB
2,  

bp = (λμBbB/σB
2) [1 + σf

2/(σf
2+σv

2)] and Λp = (λ/σB
2)bB

2 [σf
2/(σf

2+σv
2)].  The error term upt in the 

regression is a linear function of uB, v, vuB, fuB and vf.  The assumptions of the model imply that 

the regression error is well specified, with E(up f) = 0 = E(up) = E(up f
2).     

 The model shows that timing ability implies convexity between the fund's return and the 

systematic factor changes, independent of the direction of the relation between the factor changes 

                                                  
    22 The first order condition for the maximization implies: 
E{U'(.)rB|s} = 0 = E{U'(.)|s} E{rB|s} + Cov(U'(.),rB|s}, where U'(.) is the derivative of the utility function.  
Using Stein's (1973) lemma, write the conditional covariance as: Cov(U'(.),rB|s} = E{U''(.)|s} x(s) 
Var(rB|s).  Solving for x(s) gives the result, with λ =  -E{U'(.)|s}/E{U''(.)|s} > 0. 
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and the benchmark return.  That is, since λ>0 the coefficient Λp ≥ 0, independent of the sign of bB.  

If the manager does not receive an informative signal then Λp=0 because E(rB|s) and x(s) are 

constants. 

 

A.2 Nonlinearity 

 The manager's market-timing signal is now assumed to be s = bB(f) + v, where v is normal 

independent noise with variance, σv
2.  This captures the idea that the manager focuses on the 

benchmark return implications of information about the factor changes. 

 The optimal weight function in (A.2) obtains with: 

E(rB|s) = μB [σv
2/(σf

*2 + σv
2)] + [σf

*2/(σf
*2 + σv

2)][aB + bB(f) + v],  where σf
*2=Var(bB(f)).  

Substituting as before we derive the nonlinear regression for the portfolio return: 

 

   rpt = ap  +  bp [bB(ft)] +  Λp [bB(ft)
2] +  ut,                                                     (A.3) 

with:      ap = λ aB(μB σv
2 + aB σf

*2)/[σB
2(σf

*2+σv
2)], 

   bp = λ(μB σv
2 + 2aB σf

*2)/[σB
2(σf

*2+σv
2)], 

and     Λp = (λ/σB
2)[σf

*2/(σf
*2+σv

2)].   

 

A.3 Screening the Fund Sample 

  There are a total of 40,390 fund-year records in our initial sample.  In order to address 

back-fill bias we remove the first year of returns for new funds, and any returns prior to the year of 

fund organization, a total of 2,625 records.  Data may be reported prior to the year of fund 

organization, for example, if a fund is incubated before it is made publicly available (see Elton, 

Gruber and Blake (2001) and Evans, 2006). We delete 91 fund years for which the POLICY code is 

CS or the OBJ code is I-G. Extremely small funds are more likely to be subject to back-fill bias.  We 

delete cases where the reported total net assets of the fund is less than $5 million.  This removes 

5,698 records.  We delete all cases where the reported equity holdings at the end of the previous year 
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exceeds 10%.  This removes 1,017 records.  We identify cases where funds report multiple share 

classes.  Multiple classes are identified when two or more ICDI codes for the same year have a 

common fund name and a different share class code.  We retain the share class with the largest 

Total Net Assets and delete the other share classes.  This removes another 10,723 records.  After 

these screens we are left with 20,236 fund-years.  The number of funds with some monthly return 

data in a given year is four at the beginning of 1962, rises to 14 at the beginning of 1973, to 564 by 

1993 and is 1,054 at the beginning of 2007.  

 

A.4 Funds Grouped by Characteristics 

 The fund characteristics include age, total net assets, percentage cash holdings, percentage 

of holdings in options, reported income yield, turnover, load charges, expense ratios, the average 

maturity of the funds' holdings, and the lagged return for the previous year.  Each year we sort the 

funds of a given style with nonmissing characteristic data from high to low on the basis of the 

previous year's value of a characteristic and break them into thirds.  We form equally weighted 

portfolio returns from the funds in the high group and the low group for each month of the next 

year. 

 We examine various summary statistics of the fund characteristics grouped by style.  The 

reported turnover is used when we compute our proxy for before-cost returns, and is interesting as 

an indicator of active management.  Not surprisingly the low-turnover Index funds have the lowest 

turnover, but this increases from 8 to 59% per year over the 1992 to 2006 period.  The high-turnover 

Corporate funds have the highest turnover (increasing from 117 to 202% between 1992 and 2006).  

Turnover increases over the sample period for all styles except the High-yield funds.  If turnover is 

largely driven by the need to replace maturing bonds one might expect to find that the Short term 

funds have high turnover.  However, the highest-turnover third of each fund style reports more 

turnover than the lowest third of the Short-term funds, and there is more cross-sectional variation 

of turnover within a style group than across the fund styles.  Turnover does not seem to be 
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primarily driven by fund style.  Thus, the turnover figures suggest active management of the bond 

funds. 

 

A.5 Bond Market Factor Data 

  Three factors represent the term structure of Treasury yields:  A short-term interest rate, a 

measure of the term slope and a measure of the curvature of the yield curve.  The short-term 

interest rate is the three-month Treasury rate.  The slope of the term structure is the ten-year yield 

less the one-year yield.  The curvature measure is: y3 - (y7 + 2y1)/3, where yj is the j-year fixed-

maturity yield. 

 Since our funds hold corporate bonds subject to default risk and mortgage backed securities 

subject to prepayment risks, we construct associated factors.  Our credit spread series is the yield of 

Baa corporate bonds minus Aaa bonds, from the FRED.  These series are measured as the weekly 

averages of daily yields.  We use the averages of the weeks in the month for our time-averaged 

version of the spread.  For the discrete changes in the spread we use the first differences of the last 

weekly values for the adjacent months.  The first difference series may not be as clean as with daily 

data, but we are limited by the data available to us. Our mortgage spread is the difference between 

the average contract rate on new conventional mortgages, also available weekly from the FRED, 

and the yield on a three-year, fixed maturity Treasury bond. Here we use daily data on the Treasury 

bond and weekly data on the mortgage yield to construct the time averages and discrete changes. 

 For market timing we are interested in market-wide fluctuations in liquidity.  Our measure 

follows Gatev and Strahan (2006), who advocate a spread of commercial paper over Treasury yields 

as a measure of short term liquidity in the corporate credit markets.  (See also, Bernanke (1983) 

who interprets the spread as a monetary policy factor.)  We use the yield difference between three-

month nonfinancial corporate commercial paper rates and the three month Treasury yield.  The 

commercial paper rates are measured weekly, as the averages over business days.  

 Some of the funds in our sample are global bond funds, so we include a factor for currency 
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risks.  Our measure is the value of the US dollar, relative to a trade-weighted average of major 

trading partners, from the FRED.  This index is measured weekly, as the averages of daily figures, 

and we treat it the same way we treat the other weekly data. 

  Corporate bond funds, and high-yield funds in particular, may be exposed to equity-related 

factors.  We therefore include two equity market factors in our analysis.  We measure equity 

volatility with the VIX-OEX index implied volatility.  This series is available starting in January 

of 1986.  We also include an equity market valuation factor, measured as the price/dividend ratio 

for the CRSP value-weighted index.  The dividends are the sum of the dividends over the past 

twelve months, and the value is the cum-dividend value of the index.  The level of this ratio is a 

state variable for valuation levels in the equity market, and its monthly first difference is used as a 

factor. 

 

A.6 Sharpe Style Indexes  

 Following Sharpe (1992) we combine the asset class returns, Ri, using a set of portfolio 

weights, {wi}, to minimize the "tracking error" between the return of the fund group, Rp, and the 

portfolio, ΣiwiRi.  The portfolio weights are required to sum to 1.0 and must be non-negative, which 

rules out short positions: 

 

  Min{wi} Var[Rp - Σi wiRi],                                                                      (A.4) 

  subject to: Σi wi = 1,  wi ≥ 0 for all i, 

 

where Var[.] denotes the variance. We solve the problem numerically.  The asset class returns 

include US Treasury bonds of three maturity ranges from CRSP (less than 12 months, less than 48 

months and greater than 120 months), the Lehman Global bond index, the Lehman US Mortgage 

Backed Securities index, the Merrill Lynch High Yield US Master index and the Lehman US 

Credit Aaa bond index. 
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Table 1 
 

Mutual Fund Monthly Returns: Summary Statistics.  The sample periods for the fund returns are January of the year indicated 
under Begin through March of 2007.  Nobs is the number of nonmissing time series observations, Begno is the number of funds 
at the start of the sample period and Endno is the number in March of 2007.  The returns are percent per month.  Mean is the 
sample mean, std is the sample standard deviation, ρ1 is the first order sample autocorrelation and ρ2 is the second order 
autocorrelation.  Panel B presents the portfolio weights of Sharpe style benchmarks associated with each group of funds.  The 
benchmarks are formed from the returns to US Treasury bonds with less that or equal to 12 (le12) 48 (le48) months to maturity, 
greater than 120 months to maturity (gt120), a high-grade corporate bond index (cb), a low-grade corporate bond index (junk), a 
global bond index (global) and a mortgage-backed securities index (mort).  The weights are estimated using all available months 
from 1976 through 2007.    
                                                                                                                                                                                                              
Panel A: Equally-weighted Portfolios of Mutual Funds 
 
Style      Begin  nobs Begno Endno   Mean   Min   Max    Std   ρ1   ρ2     
                                                                                                                                                                                                              
 
All     1962  543     4 1054   0.617 -5.397   9.770   1.511    0.25   -0.01  
 
Index  1991  195 1 18   0.546  -3.609   3.907   1.122    0.14   -0.07  
 
Global     1994  159     47   54   0.436  -3.483   4.557   1.455    0.16   -0.08    
Short Term     1993  171     126 217   0.369   -0.856   2.267   0.455   0.30    0.15  
Government    1986  255     1 127   0.547  -3.817  4.318   1.248    0.14   -0.12     
Mortgage     1991  195     10  61   0.491   -2.411   3.188    0.854    0.20    0.01  
Corporate    1962  543     4 308   0.627  -7.339   10.97   1.691    0.18   -0.03   
High Yield   1991  195     34 135   0.737  -6.900  7.535   1.835    0.25    0.08   
Other    1964  543     1 134   0.661  -5.103   9.609   1.640   0.22   0.001 
                                                                                                                                                                                                              
Panel B: Sharpe Style Benchmarks  
 
Funds              Weights assigned to asset classes:       Autocorrelations:  
 
       le12  le48  gt120     cb  junk  global  mort    ρ1   ρ2   
                                                                                                                                                                                                             
 
All      0.00   0.12   0.03   0.35   0.25   0.05   0.19   0.19 -0.03 
  
Index      0.07      0.20    0.21    0.26   0.03   0.02   0.20     0.14 -0.04 
  
Global      0.00  0.00   0.00   0.22      0.17      0.61   0.00     0.20 -0.02 
Short Term      0.54      0.19     0.00   0.14    0.02   0.03   0.08     0.21 -0.01 
Government     0.06     0.13     0.21     0.36    0.00     0.03    0.21     0.13 -0.03 
Mortgage      0.09      0.00     0.02   0.21     0.00    0.00    0.67     0.13 -0.05 
Corporate       0.00      0.15     0.07    0.55      0.17      0.02    0.04     0.17 -0.03 
High Yield     0.00    0.10  0.00   0.00    0.77    0.00    0.13     0.21 -0.003 
Other      0.00   0.00    0.00    0.29    0.39   0.06   0.27     0.20 -0.02 
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Table 2 
 

Summary Statistics for the bond market factor data.  The sample periods begin as indicated under Starts (yyyymm), and all 
series end in December of 2007.  Nobs is the number of time series observations, excluding missing values.  The units are percent 
per year, except the US dollar (an index number) and Equity values (a price to dividend ratio).  Mean is the sample mean, std is 
the sample standard deviation and ρ1 is the first order sample autocorrelation of the series.   
                                                                                                                                                                                                                 
Panel A: Levels of the Factors  
 
Factor    Starts   Nobs   mean       min     max       std    ρ1    
                                                                                                                                                                                                                 
 
short rate     196201 540      5.847      0.904   16.38     2.842    0.981 
term slope   196201  539    0.836    -3.160    3.310      1.115    0.955 
curvature    196907  450   0.168   -1.097   0.773     0.286    0.834 
credit spread   196201 551   0.989    0.320     2.820     0.418    0.961 
mortgage spread  197104  393  2.184    -0.410  5.580     0.821    0.839 
liquidity spread  198211 290  0.402   -0.151    2.179     0.345    0.658 
US dollar    197101  443    110.3      84.48    167.7      14.77     0.986 
Equity Values    196201  540   36.54       16.27    71.18      13.24     0.992 
Equity Volatility  198601  252   19.77      10.63    61.41      6.940     0.798 
 
                                                                                                                                                                                                                   
Panel B: First differences of the Factors  
                                                                                                                                                                                                                 
 
short rate   196202  539   0.0041     -4.158     2.611     0.539     0.132 
term slope    196202 537 -0.0016    -1.460     2.800     0.334     0.130 
curvature   196908  449  -0.0004    -0.807    0.770     0.164    -0.292 
credit spread   196202  550   0.0007   -0.550    0.680     0.116    0.063 
mortgage spread  197105  392  0.0049    -2.110     3.240     0.461   -0.097 
liquidity spread  198212  289  0.0004   -1.845     1.718     0.286    -0.399 
US dollar   197102  442  -0.0652    -8.132     8.694      2.318     0.159 
Equity Values  196202 539  0.0233     -6.630     6.508      1.615   -0.035 
Equity Volatility  198602  251 -0.0319    -15.28     39.03      4.388    -0.193 
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Table 3 
 

Regressions of bond funds and benchmark index returns on changes in factors and their squares.  The sample starts in February of 
1962 or later, depending on the factor and fund style, and ends in March of 2007.  The t-ratios for the regression coefficients on the 
squared factor changes are shown when they exceed 1.6 in absolute value; otherwise left blank.  These are based on regressions with a 
single factor and its square.   
                                                                                                                                                                                                                        
            
Style    short  slope  curve   credit  mort.    liquid       US dollar             equity    equity     
group                         values  volatility 
                                                                                                                                                                                                                        
Panel A:  Style Benchmarks 
 
Index      1.93       1.88                   2.20   
 
Global      1.64             1.99            3.29     
 
Short Term    1.69   2.69     2.51       1.66            2.94     
 
Government     1.96     1.88                2.22     
 
Mortgage     2.08     1.88    1.74            2.63     
 
Corporate     1.78    1.86      1.83                 
 
High Yield                    -1.92         
 
Other      1.68       1.71       2.51               
 
 
Panel B:  Funds by Style  
 
Index    -1.81      -1.90            2.40            
   
Global   -2.08            -1.75      2.48          
   
Short Term         -1.97                     
   
Government         -2.23           2.45       2.38    
  
Mortgage         -2.03          1.63          
   
Corporate             1.85               
   
High Yield          3.31          2.44     -2.78  -3.58   
   
Other          1.62     2.49                



 
 44 

Table 4 
 

The effects of controls for non-timing-related nonlinearity on funds groups' timing coefficient are summarized.  For each fund style 
group the averages of the coefficients (divided by 100) across nine factors are shown on the first line, the number of t-ratios larger 
than 2.0 are on the second line and the number of t-ratios less than -2.0, out of the nine ratios, are shown on the third line.  The 
models are estimated one factor at a time on monthly data for 1962-2007, with 543 or fewer observations depending on the fund group 
and factor combination.  The Sharpe Style benchmarks are used.  "Only benchmark" is the baseline model with a possibly nonlinear 
benchmark but no other controls.  Public Information introduces only the controls for public information effects, and similarly for 
the columns labelled Interim Trading and Stale Pricing.  The column labeled All Controls uses all of the controls simultaneously for 
the given factor. 
                                                                                                                                                                                                                       
Fund         Only  Public     Interim   Stale   All   
Style     Benchmark Information Trading   Pricing   Controls 
                                                                                                                                                                                                                       
Panel A:  Piecewise Linear Benchmarks   
 
Index        4.91      -3.44     -2.80     -4.0e+4  -6.48 
     1  1  1  0  1 
     5  5  1  0  0 
   
Global       0.94      5.10   0.75   36.94  -13.45 
     0  1  0  1  1 
     4  4  1  0  1  
 
Short Term        49.4  -11.4   7.57  -2.88  -7.38 
      1  2  0  0  1 
     6  6  2  2  0 
 
Government        3.53       0.67   0.45  64.85  -0.85 
     2    1  2  0  1 
     3  2  2  0  0 
 
Mortgage       2.20      -1.42  1.08  -4.78  1.81 
     2    2  2  0  0 
     4  3  1  0  0 
 
Corporate        0.79      -15.8  6.85  223  -3.70  
     1    1  2  2  1 
     0  0  0  0  0 
 
High Yield        0.44       1.29   0.48  1.7e+5  -37.06 
     1    2  1  0  1 
     3  2  0  0  0 
 
Other      -0.25       0.56  -0.56  1.1e+03  -0.86 
     1  1  2  1  1 
     0  0  0  0  0 
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Table 4, continued. 
                                                                                                                                                                                                                  
Fund         Only  Public     Interim   Stale   All   
Style     Benchmark Information Trading   Pricing   Controls 
                                                                                                                                                                                                                  
 
Panel B:  Linear Benchmarks  
 
Index         -8.52  -48.9  -38.1  -2.48  -7.7e+5 
     0  0  0  0  0 
     7  6  1  0  1 
   
Global         2.23  -8.67  -6.32  -2.1e+4  -7.5e+3 
     0  0  0  1  1 
     6  5  0  1  1 
   
Short Term      8.6e+4  -3.8e+4  -1.36  -2.40  3.17 
     1  0  0  0  2 
     7  6  2  1  0 
 
Government        26.0  -4.6  3.17  61.05  -50.39 
     1  0  1  3  0 
     3  4  2  0  0 
   
Mortgage        266  -313  -159  1.4e+3  -9.96 
     0  0  0  2  0 
     7  7  1  0  0 
 
Corporate       -15.3  -30.8  -10.2  -44.29  -1.59 
     0  0  1  1  0 
     0  0  0  0  0 
   
High Yield       -44.6  -92.0  -73.3  2.2e+3  -7.5e+4 
     0  0  0  1  0 
     4  4  1  0  0  
 
Other      -1.7e+3  -2.6e+3  -1.9e+3  -1.4e+2  1.4e+3 
     0  1  2  2  1 
     0  0  0  0  1 
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 Table 5 
 

Timing coefficients for individual bond funds.  The table summarizes the fractions of funds with timing coefficients larger than the 
critical values for the indicated fractiles from the null distribution in which the true timing coefficients for the indicate factor are 
zero.  The monthly samples start in February of 1962 or later, depending on the factor, and end in March of 2007.  The Sharpe Style 
benchmarks are used and the timing coefficients are adjusted for non-timing-related nonlinearities. 
 
                                                                                                                                                                                                           
 
null  short slope curve credit mortgage     liquidity   exchange  eq. value   eq. vol.  
fractile 
                                                                                                                                                                                                           
The distributions of the timing coefficients 

 
0.975   0.023   0.027   0.011   0.021   0.023         0.024   0.017 0.015        0.024  
0.950   0.032   0.057   0.025  0.033   0.043         0.047   0.035   0.032        0.039  
0.900   0.058    0.109   0.073   0.055   0.074            0.107   0.057   0.071       0.068  
 
0.500    0.536    0.564    0.391    0.515    0.491            0.510    0.528    0.566        0.485  
 
0.100    0.923    0.938    0.891    0.933    0.940            0.964    0.919   0.929        0.925  
0.050    0.945    0.971    0.953    0.969    0.967            0.981    0.960    0.960        0.961  
0.025    0.969    0.986    0.987    0.991    0.985            0.991    0.978    0.974        0.984  
 
# cases   1335    1392     1410    1266     1204          1393       1391     1415         1402  
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Table 6 
 

Nonlinearity-adjusted performance of individual bond funds.  The first three columns of Panel A summarize the mean excess return 
over a short term treasury, the mean return over a style benchmark, and the values of the estimated alphas under the null hypothesis 
that the true alphas are zero, taken at various fractiles of the null distribution across funds (critical alphas).  These are the averages 
across factors.  The remaining columns report the fractions of funds with alphas larger than the factor-specific critical values. The 
average excess returns are percent per month. Panel B presents summary statistics for funds’ loadings on the style benchmarks, the 
average risk premiums (hedge premiums) and the distributions of funds’ loadings on the hedge portfolios for the squared factors.  The 
monthly samples start in February of 1962 or later, depending on the factor and fund, and end by March of 2007.   
 
                                                                                                                                                                                                                        
   mean 
      mean net of critical    short slope curve credit mort.   liq.   dollar equity   equity    
fractile return bench alphas         value vol. 
                                                                                                                                                                                                                        
Panel A:  The distribution of Nonlinearity-Adjusted Alphas 
 
  0.975    0.818  0.171  0.150    0.023 0.031  0.024 0.018  0.020    0.010   0.021   0.023  0.017   
  0.950    0.715  0.104  0.099    0.053   0.051  0.044  0.029  0.036   0.014   0.048   0.046   0.046   
  0.900    0.632  0.036  0.061   0.079  0.071   0.074   0.051  0.066   0.030   0.069   0.071   0.068   
 
  0.500    0.463  -0.067 -0.000   0.217    0.216    0.205    0.192    0.198    0.143  0.214    0.217    0.220  
  
  0.100    0.285  -0.199 -0.064    0.581    0.572    0.616    0.552    0.553    0.468    0.604   0.592   0.597   
  0.050    0.193  -0.282 -0.108     0.732    0.758    0.795    0.752    0.740     0.659     0.768   0.814    0.778   
  0.025    0.100  -0.386 -0.156     0.862    0.870    0.892    0.819    0.847     0.812     0.861    0.891    0.866 
  
# cases           1329   1368    1375    1251    1179    1375    1357   1376  1376 
 
Panel B:  Premiums and loadings 
 
Fund Loadings on Style Benchmarks: 
 
Upper 10%     1.38        
Median     0.91       
Lower 10%     0.44           
 
Average Hedge premiums     0.415  0.231   -0.332  0.107    0.144  -0.029   -0.244   3.59    -2.93 
 
Fund Hedge Portfolio Loadings:   
 
Upper 10%       0.134   0.145   0.054   0.130   0.226   0.103   0.064   0.091  0.093 
Median         0.005  0.012  0.001   0.003    0.006  -0.001  -0.000   -0.006   0.000  
Lower 10%                   -0.224     -0.128  -0.065   -0.163   -0.209  -0.129  -0.078   -0.118   0.072 
 
Correlations of Hedge Portfolios: 
with Squared factor changes       -0.278  -0.383   -0.308  -0.215  -0.456   0.160   0.510  -0.273  0.532 
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Table 7 
 

Nonlinearity-adjusted performance of individual bond funds gross of transactions costs.  Transactions costs are estimated as the 
average expense ratio of each fund plus an assumed round trip trading cost associated with the fund style, multiplied by the average 
reported turnover.  These costs are added back to the fund return.  The first three columns of Panel A summarize the mean excess 
return over a short term Treasury, the mean return over a style benchmark, and the values of the estimated alphas under the null 
hypothesis that the true alphas are zero, taken at various fractiles of the null distribution across funds (critical alphas).  These are 
the averages across factors.  The remaining columns report the fractions of funds with alphas larger than the factor-specific critical 
values.  The average excess returns are percent per month.  The monthly samples start in February of 1962 or later, depending on the 
factor and fund, and end by March of 2007.   
 
                                                                                                                                                                                                                         
   mean 
      mean net of critical    short slope curve credit mort.   liq.   dollar equity   equity    
fractile return bench alphas         value vol. 
                                                                                                                                                                                                                        
The distribution of before cost Nonlinearity-Adjusted Alphas 

 
  0.975    0.952    0.318    0.149     0.158 0.113    0.144    0.101    0.110     0.141  0.161    0.132  0.155   
  0.950     0.855    0.239    0.104     0.257 0.198    0.239    0.184    0.197     0.228  0.258    0.251    0.256   
  0.900     0.768    0.176   0.063     0.430  0.390   0.377   0.360   0.335    0.412 0.409   0.407   0.425   
  
  0.500    0.572   0.032  -0.000   0.767 0.754    0.763    0.746    0.730     0.761  0.742    0.753    0.768   
  
  0.100    0.389  -0.081  -0.067    0.909 0.909  0.912   0.907   0.907   0.910   0.900   0.906  0.907   
  0.050     0.303   -0.145   -0.114    0.954   0.941   0.944   0.934   0.940   0.948   0.939   0.945   0.942   
  0.025    0.241   -0.225   -0.169    0.969   0.958   0.972   0.957   0.956    0.967   0.960   0.966   0.963   
   
# cases             1329    1367      1374     1251      1178  1375   1357     1375    1375  
 


