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1 Introduction

The fundamental insight of cointegration is that while economic time series may be individ-

ually highly persistent, some linear combinations are much less persistent. Accordingly, a

suite of practical methods have been developed for conducting inference about cointegrat-

ing vectors, the coefficients that lead to this reduction in persistence. In their standard

form, these methods assume that the persistence is the result of common I(1) stochastic

trends,1 and their statistical properties crucially depend on particular characteristics of I(1)

processes. But in many applications there is uncertainty about the correct model for the per-

sistence which cannot be resolved by examination of the data, rendering standard inference

potentially fragile. This paper studies efficient inference methods for cointegrating vectors

that is robust to this fragility.

We do this using a transformation of the data that focuses on low-frequency variability

and covariability. This transformation has two distinct advantages. First, as we have ar-

gued elsewhere (Müller and Watson (2008)), persistence (“trending behavior”) and lack of

persistence (“non-trending, I(0) behavior”) are low-frequency characteristics, and attempts

to utilize high-frequency variability to learn about low-frequency variability are fraught with

their own fragilities.2 Low-frequency transformations eliminate these fragilities by focusing

attention on the features of the data that are of direct interest for questions relating to

persistence. The second advantage is an important by-product of discarding high frequency

variability. The major technical challenge when conducting robust inference about cointe-

grating vectors is to control size over the range of plausible processes characterizing the

model’s stochastic common trends. Restricting attention to low frequencies greatly reduces

the dimensionality of this challenge.

The inference problem studied in this paper has a long history. Elliott (1998) provides

a dramatic demonstration of the fragility of standard cointegration methods by showing

that they fail to control size when the common stochastic trends are not I(1), but rather are

“local-to-unity” in the sense of Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987) and

Phillips (1987).3 In a bivariate model, Cavanagh, Elliott, and Stock (1995) propose several

1See, for instance, Johansen (1988), Phillips and Hansen (1990), Saikkonen (1991), Park (1992) and Stock
and Watson (1993).

2Perhaps the most well-known example of this fragility involves estimation of HAC standard errors, see
Newey and West (1987), Andrews (1991), den Haan and Levin (1997), Kiefer, Vogelsang, and Bunzel (2000),
Kiefer and Vogelsang (2005), Müller (2007) and Sun, Phillips, and Jin (2008).

3Also see Elliott and Stock (1994) and Jeganathan (1997).
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procedures to adjust critical values from standard tests to control size over a range of values

of the local-to-unity parameter, and their general approach has been used by several other

researchers; Campbell and Yogo (2006) provides a recent example. Stock and Watson (1996)

and Jansson and Moreira (2006) go further and develop inference procedures with specific

optimality properties in the local-to-unity model. In the fractional cointegration literature,

the common stochastic trends are modelled as fractionally integrated, although the problem

is different from the local-to-unity case as the fractional parameter can be consistently es-

timated under standard asymptotics. Yet, Müller and Watson (2008) demonstrate that, at

least based on below business cycle variation, it is a hopeless endeavor to try to consistently

discriminate between, say, local-to-unity and fractionally integrated stochastic data spanning

50 years.4 While local-to-unity and fractional processes generalize the assumption of I(1)

trends, they do so in a very specific way, leading to worries about the potential fragility of

these methods to alternative specifications of the stochastic trend.

As demonstrated by Wright (2000), it is nevertheless possible to conduct inference about

a cointegrating vector without knowledge about the precise nature of the common stochastic

trends. Wright’s idea is to use the I(0) property of the error correction term as the identifying

property of the true cointegrating vector, so that a stationarity test of the model’s putative

error correction term is used to conduct inference about the value of the cointegrating vec-

tors. Because the common stochastic trends drop out under the null hypothesis, Wright’s

procedure is robust in the sense that it controls size under any model for the common sto-

chastic trend. But the procedure ignores the data beyond the putative error correction term,

and is thus potentially quite inefficient.

Section 2 of this paper provides a formulation of the cointegrated model in which the

common stochastic trends follow a flexible limiting Gaussian process that includes the I(1),

local-to-unity, and fractional/long-memory models as special cases. Section 3 discusses the

low-frequency transformation of the cointegrated model. Throughout the paper, inference

procedures are studied in the context of this general formulation of the cointegrated model.

The price to pay for this generality is that it introduces a potentially large number of nuisance

parameters that characterize the properties of the stochastic trends and the relationship

between the stochastic trends and the model’s I(0) components, and cannot be estimated

consistently in our framework. The main challenge of this paper is to study efficient tests

4Granger’s Frank Paish Lecture (1993) discusses a wide range of possible data generating processes beyond
the I(1) model and argues, sensibly in our opinion, that it is fruitless to attempt to identify the exact nature
of the persistence using the limited information in typical macro time series.
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in the presence of nuisance parameters under the null hypothesis, and Sections 4—6 address

this issue.

By definition, a valid test must control size for any possible value of the nuisance parame-

ter. In our application, the nuisance parameter is often highly dimensional, to the order of

200×1 even in a bivariate system. This makes it extremely hard to directly construct good,
let alone efficient tests. Our strategy is thus rather to indirectly learn about the quality of

potential tests by deriving bounds on their performance. In particular, Section 4 presents

two general results for hypothesis tests in the presence of nuisance parameters under the

null. The first is an upper bound for the power of any test that controls size.5 The sec-

ond result provides a lower bound on size under a more general, "auxiliary" null hypothesis

of any test that satisfies a lower bound on power and controls size under the original null

hypothesis. These bounds provide limits on the performance characteristics of tests, and

they can be computed without ever determining a test that is known to control size. Sec-

tion 5 implements these bounds for tests concerning the value of cointegrating vectors in

our low-frequency framework, and discusses numerical techniques to obtain low upper power

bounds (approximate “least upper power bounds”) and high lower bounds on size under

the auxiliary null hypothesis. The power bounds provide a benchmark for the efficiency

of any valid test, and differences in the power bounds (interpreted as differences in least

upper bounds) associated with restrictions on the trend process (for example, restricting

the general stochastic trend process to be I(1)) quantify the restriction’s information about

the value of the cointegrating vector. We find that restrictions can be very informative in

the sense of allowing for more powerful tests, but whenever this is the case, any test that

were to successfully exploit this information would suffer from large size distortions under a

less restrictive trend process. Our analysis using bounds thus quantifies the intuitive notion

that extracting information from the assumption of a particular trend process (e.g., I(1) or

local-to-unity) makes inference fragile relative to this assumption.

Section 6 builds on Wright’s (2000) suggestion and derives a low-frequency test for the

value of the cointegration vectors based on an I(0) test for the putative error correction

term. Specifically, we derive a low-frequency version of a multivariate point-optimal scale and

rotation invariant test against the alternative in which the common trends are I(1). Similar

to Wright’s (2000) original suggestion, while simple, this low-frequency test for inference

about cointegrating vectors is potentially quite inefficient, as it ignores the data beyond the

5The same insight about upper bounds on power was noted independently by Andrews, Moreira, and
Stock (2008) and used for inference in IV models with potentially weak instruments.
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putative error correction term. But the null rejection probability of this test is unaffected by

the properties of the common stochastic trend, so its power constitutes an easily achievable

lower bound on the power of efficient tests. As it turns out, when attention is focused on a

single cointegrating vector, and regardless of the number of common trends, the power of this

test essentially coincides with the upper bound for an unrestricted version of the common

trend process under the null hypothesis, and is close to the bound for several restricted,

but still flexible common trend processes. Thus in this case, the low-frequency version of

Wright’s test–that is, ignoring the data beyond the putative error correction term–yields

an essentially efficient test in the absence of strong a priori knowledge about the nature of

the persistence.

The implication for applied work is that, at least in the model with a single cointegrating

vector, approximately efficient and robust inference may be carried out using the simple test

described in Section 6.2. The test is robust in two ways. First, it is robust to arbitrary

autocorrelation properties in the error correction term above the pre-specified low-frequency

band. Second, it is robust to the precise nature of persistence, as its rejection probability

under the null hypothesis does not depend on the nature of the stochastic trend. As inWright

(2000), confidence sets for the cointegrating vector can easily be obtained be inverting the

test. We present a brief empirical illustration in Section 7.

2 Model

Let pt, t = 1, ..., T denote the n× 1 vector of variables under study. This section outlines a
time domain representation of the cointegrated model for pt in terms of canonical variables

representing a set of common trends and I(0) error correction terms. The common trends are

allowed to follow a flexible process that includes I(1), local-to-unity, and fractional models

as special cases, but aside from this generalization, the cointegrated model for pt is standard.

To begin, pt is transformed into two components, where one component is I(0) under the

null hypothesis and the other component contains elements that are not cointegrated. Let β

denote an n×r matrix whose linearly independent columns are the cointegrating vectors, let

β0 denote the value of β under the null, and yt = β00pt. The elements in yt are the model’s

error correction terms under the null hypothesis. Let xt = δ0pt where δ is n×k with k = n−r,
and where the linearly independent columns of δ are linearly independent of the columns of

β0, so that the elements of xt are not cointegrated under the null. Because the cointegrated

model only determines the column space of the matrix of cointegrating vectors, the variables
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yt and xt are determined up to transformations (yt, xt)→ (Ayyyt, Axxxt+Axyyt), where Ayy

and Axx are non-singular. Most extant inference procedures are invariant (or asymptotically

invariant) to these transformations, and, as discussed in detail below, our analysis will also

focus on invariant tests.

2.1 Canonical Variable Representation of yt and xt

We will represent yt and xt in terms of a common stochastic trend vector vt and an I(0)

vector zt

yt = Γyzzt + Γyvvt (1)

xt = Γxzzt + Γxvvt,

where zt is r × 1, vt is k × 1, and Γyz and Γxv have full rank. In this representation, the

restriction that yt is I(0) corresponds to the restriction Γyv = 0. All of the test statistics

discussed in this paper are invariant to adding constants to the observations, so that constant

terms are suppressed in (1). As a technical matter, we think of {zt, vt}Tt=1 (and thus also
{xt, yt}Tt=1) as being generated from a triangular array; we omit the additional dependence

on T to ease notation. Also, we write bxc for the integer part of x ∈ R, ||A|| =
√
trA0A for

any real matrix A, x ∨ y for the maximum of x, y ∈ R, ’⊗’ for the usual Kronecker product
and ’⇒’ to indicate weak convergence.
LetW (·) denote a n×1 standard Wiener process. The vector zt is a canonical I(0) vector

in the sense that its partial sums converge to a r × 1 Wiener process

T−1/2
bsT cX
t=1

zt ⇒ SzW (s) =Wz(s), where SzS0z = Ir. (2)

The vector vt is a common trend in the sense that scaled versions of its level converge

to a stochastic integral with respect to W (·). For example, in the standard I(1) model,

T−1/2vbsTc ⇒
R s
0
HdW (t), where H is a k×n matrix and (H 0, S0z) has full rank. More general

trend processes, such as the local-to-unity formulation, allow the matrix H to depend on s

and t. The general representation for the common trends used in this paper is

T−1/2vbsT c ⇒
Z s

−∞
H(s, t)dW (t) (3)

where H(s, t) is sufficiently well behaved to ensure that there exists a cadlag version of the

process
R s
−∞H(s, t)dW (t).6

6The common scale T−1/2 for the k × 1 vector vt in (3) is assumed for convenience; with an appropriate
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2.2 Invariance and Reparameterization

As discussed above, because cointegration only identifies the column space of β, attention is

restricted to tests that are invariant to the group of transformations

(yt, xt)→ (Ayyyt, Axxxt +Axyyt) (4)

where Ayy and Axx are non-singular, but (Ayy, Axx, Axy) are otherwise unrestricted real

matrices.

The restriction to invariant tests allows a simplification of notation: because the test

statistics are invariant to the transformations in (4), there is no loss of generality setting

Γyz = Ir, Γxv = Ik, and Γxz = 0. With these values, the model is

yt = zt + Γyvvt (5)

xt = vt.

2.3 Restricted Versions of the Trend Model

We will refer to the general trend specification in (3) as the “unrestricted” stochastic trend

model throughout the remainder of the paper. The existing literature on efficient tests relies

on restricted forms of the trend process (3) such as I(1) or local-to-unity processes, and we

compute the potential power gains associated with these and other a priori restrictions on

H(s, t) below. Here we describe five restricted versions of the stochastic trend.

The first model, which we will refer to as the G-model, restricts H(s, t) to satisfy

H(s, t) = G(s, t)Sv, (6)

where G(s, t) is k × k and Sv is k × n with SvS
0
v = Ik and (S0z, S

0
v) nonsingular. In this

model, the common trend depends onW (·) only through the k× 1 standard Wiener process
Wv(·) = SvW (·), and this restricts the way that vt and zt interact. In this model

T−1/2vbsT c ⇒
Z s

−∞
G(s, t)dWv(t), (7)

and the covariance between the Wiener process characterizing the partial sums of zt,Wz, and

Wv is equal to the r× k matrix R = SzS
0
v. Standard I(1) and local-to-unity formulations of

cointegration satisfy this restriction and impose additional parametric restrictions on G(s, t).

definition of local alternatives, the invariance (4) ensures that one would obtain the same results for any

scaling of vt. For example, for an I(2) stochastic trend scaled by T−3/2, set H(s, t) = 1[t ≥ 0](s− t)H, with
the k × n matrix H as in the I(1) case.
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The second model further restricts (7) so that G(s, t) is diagonal:

G(s, t) = diag(g1(s, t), · · · , gk(s, t)). (8)

An interpretation of this model is that the k common trends evolve independently of one

another (recall thatWv has identity covariance matrix), where each trend is allowed to follow

a different process characterized by the functions gi(s, t).

The third model further restricts the diagonal-G model so that the k stochastic trends

converge weakly to a stationary continuous time process. We thus impose

gi(s, t) = gSi (s− t), i = 1, · · · , k. (9)

The stationary local-to-unity model (with an initial condition drawn from the unconditional

distribution), for instance, satisfies this restriction.

Finally, we consider two parametric restrictions of G:

G(s, t) = 1[t > 0]Ik (10)

which is the I(1) model, and

G(s, t) = 1[t > 0]eC(s−t) (11)

which is the multivariate local-to-unity model, where C is the k × k diffusion matrix of the

limiting Ornstein-Uhlenbeck process (with zero initial condition).7

2.4 Testing Problem and Local Alternatives

The goal of the paper is to derive asymptotically efficient tests for the value of the cointe-

grating vectors with controlled rejection probability under the null hypothesis for a range of

stochastic trend specifications. The different orders of magnitude of zt and vt in (2) and (3)

suggest a local embedding of this null hypothesis against alternatives where Γyv = T−1B for

B a constant r × k matrix, so that in model (5),

T−1/2
bsTcX
t=1

yt ⇒ SzW (s) +B

Z s

0

Z u

−∞
H(u, t)dW (t)du.

7The I(1) specification in (10) is the same as the I(1) specification given below (2) because the invariance
in (4) implies that the trend models are unaffected by premultiplication of H(s, t) (or G(s, t)) by an arbitrary
non-singular k × k matrix.
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In this parametrization, the null hypothesis becomes

H0 : B = 0, H(s, t) ∈ H0 (12)

where H(s, t) is restricted to a set of functions H0, that, in the unrestricted trend model

includes functions sufficiently well behaved to ensure that there exists a cadlag version of

the process
R s
−∞H(s, t)dW (t), or more restricted versions of H(s, t) as in (6), (8), (9), (10),

or (11).

Since our goal is to consider efficient tests of the null hypothesis (12), we also need to

specify the alternative hypothesis. Our results below are general enough to allow for the

derivation of efficient tests against any particular alternative with specified B = B1 and

stochastic trend process H(s, t) = H1(s, t),

H1 : B = B1, H(s, t) = H1(s, t) (13)

or, more generally, for tests that are efficient in the sense of maximizing weighted average

power against a set of values for B1 and stochastic trend models H1(s, t).

Our numerical results, however, focus on alternatives in which the stochastic trend vt is

I(1), so that H1(s, t) satisfies (6) and (10). This is partly out of practical considerations:

while there is a wide range of potentially interesting trend specification, the computations

for any particular specification are involved, and these computational complications limit

the number of alternatives we can usefully consider.8 At the same time, one might consider

the classical I(1) model as an important benchmark against which it is useful to maximize

power–not necessarily because this is the only plausible model under the alternative, but

because a test that performs well against this alternative presumably has reasonable power

properties for a range of empirically relevant models. We stress that despite this focus on

the I(1) stochastic trend model for the alternative hypothesis (13), we restrict attention to

tests that control size for a range of models under the null hypothesis (12). The idea is to

control the frequency of rejections under the null hypothesis for any stochastic trend model

in H0, so that the rejection of a set of cointegrating vectors cannot simply be explained by

the stochastic trends not being exactly I(1). In this sense, our approach is one of “robust”

cointegration testing, with the degree of robustness governed by the size of the set H0.

8If the non-cointegrated components are modelled as I(1) with a deterministic linear time trend, one
could choose H1(s, t) as the sum of (10) and stΣτ to obtain tests that maximize weighted average power
for vt that is I(1) with a linear trend of slope βτ , with a weighting function βτ ∼ N (0,Στ/T 2). We do not
pursue this further, though.
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2.5 Summary

To summarize, this section has introduced the time domain representation of the cointegrated

model with a focus on the problem of inference about the space of cointegrating vectors. In all

respects except one, the representation is the standard one: the data are expressed as a linear

function of a canonical vector or common trends and a vector of I(0) components. Under

the null, certain linear combinations of the data do not involve the common trends. Because

the null only restricts the column space of the matrix of cointegrating vectors, attention is

restricted to invariant tests. The goal is to construct tests with best power for an alternative

value for the matrix of cointegrating vectors under a particular model for the trend (or best

weighted average power for a collection of B1 and H1(s, t)). The formulation differs from the

standard one only in that it allows the model for trend under the null to be less restrictive

than the standard formulation. Said differently, because of potential uncertainty about the

specific form of the trend process, the formulation restricts attention to tests that control

size for a range of different trend processes. This generalization complicates the problem of

constructing efficient tests by introducing a potentially large number of nuisance parameters

(associated with the trend process) under the null hypothesis.

3 Low-Frequency Representation of the Model

Cointegration is a restriction on the low-frequency behavior of time series, and as discussed

in the introduction, we therefore focus on the low-frequency behavior of (yt, xt). This low-

frequency variability is summarized by a small number, q, of weighted averages of the data.

In this section we discuss these weighted averages and derive their limiting behavior under

the null and alternative hypotheses.

3.1 Low-Frequency Weighted Averages

We use weights associated with the cosine transform, where the j’th weight is given

by Ψj(s) =
√
2 cos(jπs). For any sequence {at}Tt=1, the j’th weighted average will be denoted

by

AT (j) =

Z 1

0

Ψj(s)absT c+1ds = ιjTT
−1

TX
t=1

Ψj(
t−1/2
T
)at (14)

where ιjT = (2T/jπ) sin(jπ/2T )→ 1 for all fixed j. As demonstrated by Müller and Watson

(2008), the weighted averages AT (j), j = 0, · · · , q, essentially capture the variability in the
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sequence corresponding to frequencies below qπ/T .

We use the following notation: with at a h×1 vector time series, let Ψ(s) = (Ψ1(s),Ψ2(s),

· · · ,Ψq(s))
0 denote the q × 1 vector of weighting functions, and AT =

R 1
0
Ψ(s)a0bsT c+1ds the

q×h matrix of weighted averages of the elements of at, where Ψ0(s) is excluded to make the

results invariant to adding constants to the data. Using this notation, the q × r matrix YT

and the q× k matrix XT summarize the variability in the data corresponding to frequencies

lower than qπ/T . With q = 12, (YT ,XT ) capture variability lower than the business cycle

(periodicities greater than 8 years) for time series that span 50 years (postwar data) regardless

of the sampling frequency (months, quarters, weeks, etc.). This motivates us to consider the

behavior of these matrices as T →∞, but with q held fixed.

The large-sample behavior of XT and YT follows from the behavior of ZT and VT . Using

the assumed limits (2) and (3), the continuous mapping theorem, and integration by parts

for the terms involves ZT , one obtains"
T 1/2ZT

T−1/2VT

#
⇒
"
Z

V

#
(15)

where "
vecZ

vecV

#
∼ N

Ã
0,

"
Irq ΣZV

ΣV Z ΣV V

#!
(16)

with

ΣV Z =

Z 1

0

µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶
[Sz ⊗Ψ(t)]0dt (17)

ΣV V =

Z 1

−∞

µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶µZ 1

t∨0
[H(s, t)⊗Ψ(s)]ds

¶0
dt.

The relative scarcity of low-frequency information is thus formally captured by considering

the weak limits (2) and (3) as pertinent only for the subspace spanned by the weight function

Ψ(·), yielding (15) as a complete characterization of the relevant properties of the error
correction term zt and the common stochastic trend vt.

Using Γyv = T−1B, equation (5) implies that YT = ZT + T−1VTB
0 and XT = VT . Thus,"

T 1/2YT

T−1/2XT

#
⇒
"
Y

X

#
=

"
Z + V B0

V

#
(18)

where "
vecY

vecX

#
∼ N

¡
0,Σ(Y,X)

¢
(19)
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with

Σ(Y,X) =

"
Ir ⊗ Iq B ⊗ Iq

0 Ik ⊗ Iq

#"
Ir ⊗ Iq ΣZV

ΣV Z ΣV V

#"
Ir ⊗ Iq 0

B0 ⊗ Iq Ik ⊗ Iq

#
. (20)

3.2 “Best” Low-Frequency Hypothesis Tests

We consider invariant tests of H0 against H1 given in (12) and (13) based on the data

{yt, xt}Tt=1. Because we are concerned with the model’s implications for the low-frequency
variability of the data, we restrict attention to tests that control asymptotic size for all

models that satisfy (18)-(20). Our goal is to find an invariant test that maximizes power

subject to this restriction, and for brevity we will refer to such a test as a “best” test.

Müller (2008) considers the general problem of constructing asymptotically most powerful

tests subject to asymptotic size control over a class of models such as ours. In our context,

his results imply that asymptotically best tests correspond to the most powerful invariant

tests associated with the limiting distribution (19).

Thus, the relevant testing problem has a simple form: vec(Y,X) has a normal distribution

with mean zero and covariance matrix that depends on B. Under the null B = 0, while under

the alternative B 6= 0. Tests are restricted to be invariant to the group of transformations

(Y,X)→ (Y A0yy, XA0xx + Y A0xy) (21)

where Ayy and Axx are nonsingular, and Ayy, Axx, and Axy are otherwise unrestricted. Thus,

the hypothesis testing problem becomes the problem of using an invariant procedure to test

a restriction on the covariance matrix of a multivariate normal vector.

4 Bounds on Power and Size

The general version of the hypothesis testing problem we are facing is a familiar one: Let

U denote a single observation of dimension m × 1. (In our problem, U corresponds to the

maximal invariant for (Y,X)). Under the null hypothesis U has probability density fθ(u)

with respect to some measure μ, where θ ∈ Θ is a vector of nuisance parameters. (In our

problem, the vector θ describes the stochastic trend process under the null hypothesis and

determines Σ(Y,X) via (17) and (20)). Under the alternative, U has known density h(u).

(Choices for h(u) for our problem will be discussed in Subsection 5.2.1.) Thus, the null and
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alternative hypothesis are

H0 : The density of U is fθ(u), θ ∈ Θ

H1 : The density of U is h(u),
(22)

and possibly randomized tests are (measurable) functions ϕ : Rm 7→ [0, 1], where ϕ(u) is the

probability of rejecting the null hypothesis when observing U = u, so that size and power

are given by supθ∈Θ
R
ϕfθdμ and

R
ϕhdμ, respectively.

This section presents two results on power and size in this general problem. The first

result is an upper bound on the power of any valid test of H0 versus H1. This bound will be

useful for our specific problem because, as we show below, it can be computed numerically

and we will construct a feasible test that (essentially) achieves the bound when there is a

single cointegrating vector. This shows that the feasible test that we construct is efficient

when r = 1. The second result provides a lower bound on the size under a null hypotheses

other than H0 for any test that is powerful against H1. To see why this is useful in our context

suppose that H0 specifies that the stochastic trend follows an I(1) process, and consider a

test that exploits features of the I(1) process to increase power. Uncertainty about the trend

process means that it is useful know something about the rejection frequency of tests under

null hypotheses that allow for more general trends, such as the unrestricted trend model (3)

or other less restricted versions described above. The second result provides a lower bound

on this rejection frequency, where a large value of this lower bound highlights the fragility

of tests that exploit a particular H0 to obtain more powerful inference.

4.1 An Upper Bound on Power

A standard device for problems such as (22) is to consider a Neyman-Pearson test for a

related problem in which the null hypothesis is replaced with a mixture

HΛ : The density of U is
Z

fθdΛ(θ)

where Λ is a probability distribution for θ with support in Θ. The following lemma shows

that the power of the Neyman-Pearson test of HΛ versus H1 provides an upper power bound

for tests of H0 versus H1.

Lemma 1 Let ϕΛ be the best level α test of HΛ against H1. Then for any level α test ϕ of

H0 against H1,
R
ϕΛhdμ ≥

R
ϕhdμ.
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Proof. Since ϕ is a level α test of H0,
R
ϕfθdμ ≤ α for all θ ∈ Θ. Therefore,R R

ϕfθdμdΛ(θ) =
R R

ϕfθdΛ(θ)dμ ≤ α (where the change in the order of integration is

allowed by Fubini’s Theorem), so that ϕ is also a level α test of HΛ against H1. The result

follows by the definition of a best test.

This result is closely related to Theorem 3.8.1 of Lehmann and Romano (2005) which

provides conditions under which a least upper bound on the power for tests H0 versus H1 is

associated with a “least favorable distribution” for θ, and that using this distribution for Λ

produces the least upper power bound. The least favorable distribution Λ∗ has the charac-

teristic that the resulting ϕΛ∗ is a level α test for testing H0 versus H1. Said differently, if ϕΛ∗

is the best level α test of HΛ∗ against H1 and is also a level α test for testing H0 versus H1,

then ϕ∗ = ϕΛ∗, that is ϕΛ∗ is the most powerful level α test of H0 versus H1. Unfortunately,

while the test associated with the least favorable distribution solves the testing problem (22),

there is no general and constructive method for finding the least favorable distribution Λ∗

(and it does not always exist).

With this in mind, Lemma 1 is stated so that Λ is not necessarily the least favorable

distribution. That is, the bound in Lemma 1 holds for any probability distribution Λ. The

goal of the numerical analysis carried out below is to choose Λ to approximate the least upper

bound. Importantly, even if one cannot identify the least favorable distribution, Lemma 1

shows that the power of ϕΛ provides a valid bound for the power of any test of H0 versus

H1, for any Λ.

4.2 A Lower Bound on Size under an Auxiliary Null

Now consider the "Larger" auxiliary null hypothesis

HL : The density of U is fθ(u), θ ∈ ΘL

with an associated mixture

HΛL : The density of U is
Z

fθdΛL(θ)

where ΛL has support in ΘL:. (In our problem HL will be a null hypothesis that allows for

a less restricted trend process than under H0. Thus if H0 allows only for an I(1) trend, HL

might allow for a local-to-unity trend or one of the more general trends processes discussed

in Section 2.)

Consider any test ϕ of level α0 under H0 with power of at least β. The following lemma

provides a lower bound on the rejection frequency under the auxiliary null HL.

13



Lemma 2 Suppose the test ϕ∗ = 1[
R
ϕhdμ ≥ λ1

R
ϕ
R
fθdΛ0(θ)dμ + λ2

R
ϕ
R
fθdΛL(θ)dμ]

with λ1, λ2 ≥ 0 has rejection probability α0 =
R R

ϕ∗fθdΛ0(θ)dμ under HΛ0, αL =R R
ϕ∗fθdΛL(θ)dμ under HΛL and power β =

R
ϕ∗hdμ. Then for any test ϕ of level α0

under H0 and power of at least β, supθ∈ΘL

R
ϕfθdμ ≥ αL.

Proof. By a variant of the generalized Neyman-Pearson Lemma (Theorem 3.6.1 in

Lehmann and Romano (2005)), the test ϕ∗ solves the program

min
ϕ

Z
ϕ

Z
fθdΛL(θ)dμ

s.t.
Z

ϕ

Z
fθdΛ0(θ)dμ ≤ α0 and

Z
ϕhdμ ≥ β.

Since ϕ is a level α0 test of H0,
R
ϕfθdμ ≤ α for all θ ∈ Θ, and

R R
ϕfθdμdΛ0(θ) =R R

ϕfθdΛ0(θ)dμ ≤ α (where the change in the order of integration is allowed by Fu-

bini’s Theorem). Also, by assumption, the power of the test ϕ is at least β,
R
ϕhdμ ≥ β,

so that ϕ satisfies the two constraints in the program above. Thus, supθ∈ΘL

R
ϕfθdμ ≥R

ϕ
R
fθdΛL(θ)dμ ≥

R
ϕ∗
R
fθdΛL(θ)dμ = αL.

This lemma is particularly useful in conjunction with Lemma 1: Suppose application of

Lemma 1 yields that no 5% level test of a relatively restricted H0 can have power of more

than, say, 70%. This suggests that there could indeed exist a 5% level test ϕ with power,

say, 67%, and one might want to learn about the size properties of such tests under the more

general null hypothesis HL. Lemma 2 provides a way of computing a lower bound on this

size that is valid for any test with power of at least 67%. So if this size distortion is large,

then without having to determine the class of 5% level tests of H0 with power of at least

67%, one can already conclude that all such tests will be fragile. In the numerical section

below, we discuss how to determine a suitable Λ0 and ΛL to obtain a large lower bound αL

(λ1 and λ2 are determined through the two constraints on ϕ∗).

5 Computing Bounds

In this section we compute the power and size bounds from the last section. The analysis

proceeds in four steps. First, we derive the density of the maximal invariant of (Y,X); this

density forms the basis of the likelihood ratio. Second, since the density of the maximal

invariant depends on the covariance matrix of (Y,X), we discuss the parameterization of

Σ(Y,X) under the null and alternative hypotheses. In the third step we describe how the
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mixing distributions Λ, Λ0 and ΛL are chosen to yield tight bounds. Finally, we present

numerical values for the bounds.

5.1 Density of a Maximal Invariant

Recall that we are considering tests that are invariant to the group of transformations

(Y,X) → (Y A0yy,XA0xx + Y A0xy) where Ayy and Axx are nonsingular, and Ayy, Axx, and

Axy are otherwise unrestricted. Any invariant test can be written as a function of a maximal

invariant (Theorem 6.2.1 in Lehmann and Romano (2005)), so that by the Neyman-Pearson

lemma, the most powerful invariant test rejects for large values of the likelihood ratio sta-

tistic of a maximal invariant. The remaining challenge is the computation of the density of

a maximal invariant, and this is addressed in the following theorem.

Theorem 1 If vec(Y,X) ∼ N (0,Σ(Y,X)) with positive definite Σ(Y,X) and q > r + k, the

density of a maximal invariant of (21) has the form

c(detΣ(Y,X))
−1/2(detV 0

0YΣ
−1
(Y,X)V0Y )

−1/2(detΩ)−1/2Eω[| det(ωY )|q−r| det(ωX)|q−r−k]

where c does not depend on Σ(Y,X), ωY and ωX are random r × r and k × k matrices,

respectively, with (vecω0y, vecω
0
x)
0 ∼ N (0,Ω−1),

Ω = D0
Y XΣ

−1
(Y,X)DY X −D0

Y XΣ
−1
(Y,X)V0Y (V

0
0YΣ

−1
(Y,X)V0Y )

−1V 0
0YΣ

−1
(Y,X)DY X,

DY X = diag(Ir⊗Y, Ik⊗X), V0Y = (00rq×rk, Ik⊗Y 0)0, and Eω denotes integration with respect

to ωY and ωX, conditional on (Y,X).

Theorem 1 shows that the density of a maximal invariant can be expressed in terms of

absolute moments of determinants of jointly normally distributed random matrices, whose

covariance matrix depends on (Y,X). We do not know of a useful and general closed-form

solution for this expectation; for r = k = 1, however, Nabeya’s (1951) results for the absolute

moments of a bivariate normal yields an expression in terms of elementary functions, which

we omit for brevity. When r + k > 2, the moments can be computed via Monte Carlo

integration. However, computing accurate approximations is difficult when r and k are

large, and the numerical analysis reported below is therefore limited to small values of r and

k.
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5.2 Parameterization of Σ(Y,X)

Since the density of the maximal invariant of Theorem 1 depends on Σ(Y,X), the derivation

of efficient invariant tests requires specification of Σ(Y,X) under the alternative and null

hypothesis. We discuss each of these in turn.

5.2.1 Specification of Σ(Y,X) under the Alternative Hypothesis

As discussed above, we focus on the alternative where the stochastic trends follow an I(1)

process, so that H(s, t) satisfies (6) and (10). There remains the issue of the value of B

(the coefficients that show how the trends affect Y ) and R (the correlation of the Wiener

processes describing the I(0) variables, zt, and the common trends, vt). For these parameters,

we consider point-valued alternatives with B = B1 and R = R1; the power bounds derived

below then serve as bounds on the asymptotic power envelope over these values of B and R.

Invariance reduces the effective dimension of B and R somewhat, and this will be discussed

in the context of the numerical results presented below.

5.2.2 Parameterization of Σ(Y,X) under the Null Hypothesis

From (20), under the null hypothesis with B = 0, the covariance matrix Σ(Y,X) satisfies

Σ(Y,X) =

"
Irq ΣZV

ΣV Z ΣV V

#
.

The null model’s specification of the stochastic trend determines the rq × kq matrix ΣZV

and the kq × kq matrix ΣV V by the formulae given in (17). Since these matrices contain a

finite number of elements, it is clear that even for nonparametric specifications of H(s, t),

the effective parameter space for low-frequency tests based on (Y,X) is finite dimensional.

We collect these nuisance parameters in a vector θ ∈ Θ.

Section 2 discussed several trend processes, beginning with the general process given in

(3) with an unrestricted version ofH(s, t), and then five restricted models: (i) the “G” model

in (6), (ii) the “Diagonal” model (8), (iii) the “Stationary” model (9), (iv) the local-to-unity

model (11), and (v) the I(1)model (10). The appendix discusses convenient parameterization

for Σ(Y,X) for these five restricted models, and the following lemma provides the basis for

parameterizing Σ(Y,X) when H(s, t) is unrestricted.

16



Lemma 3 (a) For any (r+k)q× (r+k)q positive definite matrix Σ∗ with upper left rq× rq

block equal to Irq, there exists an unrestricted trend model with H(s, t) = 0 for t < 0 such

that Σ∗ = E[vec(Z, V )(vec(Z, V ))0].

(b) If r ≤ k, this H(s, t) can be chosen of the form H(s, t) = G(s, t)Sv, where (S0z, S
0
v)

has full rank.

The lemma shows that when H(s, t) is unrestricted or r ≤ k and H(s, t) = G(s, t)Sv,

the only restriction that the null hypothesis imposes on Σ(Y,X) is that ΣY Y = Irq.9 In other

words, since ΣZV and ΣV V have rkq2 + kq(kq + 1)/2 distinct elements, an appropriately

chosen θ of that dimension determines Σ(Y,X) under the null hypothesis in the unrestricted

model, and in the model where H(s, t) = G(s, t)Sv for r ≤ k.

5.3 Approximating the Least Upper Power and Greatest Lower
Size Bound

We develop two methods to approximate the power bound associated with the least favorable

distribution from Section 4, and use the second method also to determine a large lower size

bound. First, we develop an algorithm that simultaneously determines a low upper bound

on power, and a level α test whose power is close to that bound. This algorithm is entirely

generic in the sense that it does not exploit any specificities of the low-frequency robust

cointegration testing problem; in practice, it only requires that the densities fθ and h can be

quickly evaluated numerically. The computational complexity is such, however, that it can

only be applied when θ is low-dimensional; as such, it is useful for our problem only in the

I(1) and local-to-unity stochastic trend model for r = k = 1. Second, when the dimension of

θ is large we choose Λ (and Λ0 and ΛL for Lemma 2) so the null and alternative distributions

are close in some numerically convenient metric. Two numerical results suggest that this

second method produces a reasonably accurate estimate of the lower bound: the method

produces power bounds only marginally higher than the first method (when the first method

is feasible), and when r = 1 we find that the method produces a power bound that can be

achieved by a feasible test that we present in the next section.

We discuss the two methods in turn.
9Without the invariance restriction (21), this observation would lead to an analytic least favorable distri-

bution result: Factor the density of (Y,X) under the alternative into the product of the density of Y , and
the density of X given Y . By choosing ΣV Z and ΣV V under the null hypothesis appropriately, the latter
term cancels, and the Neyman-Pearson test is a function of Y only.
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5.3.1 Low Dimensional Nuisance Parameter

Suppose that LRΛ = h(U)/
R
fθ(U)dΛ(θ) is a continuous random variable for any Λ, so that

by the Neyman-Pearson Lemma, ϕΛ is of the form ϕΛ = 1[LRΛ > cvΛ], where the critical

value cvΛ is chosen to satisfy the size constraint
R R

ϕΛfθdμdΛ(θ) = α. Then by Lemma

1, the power of ϕΛ, βΛ =
R
ϕΛhdμ, is an upper bound on the power of any test that is

level α under H0. If Λ is not the least favorable distribution, then ϕΛ is not of size α under

H0, i.e. supθ∈Θ
R
ϕΛfθdμ > α. Now consider a version of ϕΛ with a size-corrected critical

value cvcΛ > cvΛ, that is ϕc
Λ = 1[LRΛ > cvcΛ] with cv

c
Λ chosen to satisfy the size constraint

supθ∈Θ
R
ϕc
Λfθdμ = α. Because the size adjusted test ϕc

Λ is of level α under H0, the least

upper power bound must be between βcΛ and βΛ. Thus, if β
c
Λ is close to βΛ, then βcΛ serves

as a good approximation to the least upper bound.

The challenge is to find an appropriate Λ. This is difficult because, in general, no closed

form solutions are available for the size and power of tests, so that these must be approxi-

mated by Monte Carlo integration. Brute force searches for an appropriate Λ are not com-

putationally feasible. We exploit numerical advantages of discrete distributions for Λ, that

have point masses at only N points, and smooth out the Monte Carlo integration estimates

of size and power, so that gradient methods can be employed. The suggested algorithm

is related to, but distinct from those developed in Nelson (1966), Kempthorne (1987) and

Sriananthakumar and King (2006), and is described in detail in the appendix.

5.3.2 High Dimensional Nuisance Parameter

The dimension of θ can be very large in our problem: even when r = k = 1, the model with

unrestricted stochastic trend leads to θ of dimension q2 + q(q + 1)/2 so that θ contains 222

elements when q = 12. Approximating the least upper power bound directly then becomes

numerically intractable. This motivates a computationally practical method for computing

a low (as oppose to least) upper power bound.

The method restricts Λ so that it is degenerate with all mass on a single point, say θ∗,

which is chosen so that the null distribution of the maximal invariant of Theorem 1 is close to

its distribution under the alternative. Intuitively, this should make it difficult to distinguish

the null from the alternative hypothesis, and thus lead to a low power bound. Also, this

choice of θ∗ ensures that draws from the null model look empirically reasonable, as they are

nontrivial to distinguish from draws of the alternative with an I(1) stochastic trend.

Since the density of the maximal invariant is quite involved, θ∗ is usefully approximated
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by a choice that makes the multivariate normal distribution of vec(Y,X) under the null close

to its distribution under the alternative, as measured by a convenient metric. We choose

θ∗ to minimize the Kullback-Leibler divergence (KLIC) between the null and alternative

distributions. Since the bounds from Lemmas 1 and 2 are valid for any mixture, numerical

errors in the KLIC minimization do not invalidate the resulting bound. Details are provided

in the appendix.

5.4 Numerical Bounds

Table 1 shows numerical results for power and size bounds for 5% level tests with q = 12.

Results are shown for r = k = 1 (panel A), r = 1 and k ≥ 2 (panel B), and r = 2 and k = 1

(Panel C).10 Numerical results for larger values of n = r+ k are not reported because of the

large number of calculations required to evaluate the density in large models.

Power depends on the values of B and R under the alternative, and results are presented

for various values of these parameters. Because of invariance, when r = 1 (as in panels A and

B), or k = 1 (as in panel C), the distribution of the maximal invariant depends on B and R

only through ||B||, ||R||, and, if ||R|| > 0, on tr(R0B)/(||B|| · ||R||). Thus, in panel A, where
r = k = 1, results are shown for two values of |B|, three values of |R| and for R ·B < 0 and

R · B > 0, while panels B and C show results for three values of ω = tr(R0B)/(||B|| · ||R||)
when ||R|| > 0. All of the results in Table 1 use the KLIC minimized values of θ as described
in the last subsection. Table 2 compares this KLIC-based bounds to to the numerical least

upper power bounds when the parameter space is sufficiently small to allow calculation of

the numerical least upper bounds.

To understand the formatting of Table 1, look at panel A. The panel contains italicized

and non-italicized numerical entries. The non-italicized numbers are power bounds, and the

italicized numbers are size bounds. The first column in the table shows the trend speci-

fication allowed under H0. The first entry, labelled “unr” corresponds to the unrestricted

trend specification in (3) and the other entries correspond to the restricted trend processes

discussed in Section 2. Because r = k = 1, there are no restrictions imposed by the as-

sumption that H(s, t) = G(s, t)Sv or that G is diagonal, so these models are not listed in

panel A. Stationarity (G(s, t) = G(s − t)) is a restriction, and this is the second entry in

the first column. The final two entries correspond to the local-to-unity (“LTU”) and I(1)

10The results shown in panel B were computed using the KLIC minimized value of θ for the model with
r = 1 and k = 2. The appendix shows the resulting bounds are valid for k ≥ 2.
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restrictions. The numerical entries shown in the rows corresponding to these trend models

are the power bounds. For example, the non-italicized entries in the first numerical column

show power bounds for |R| = 0 and |B| = 7, which are 0.36 for the unrestricted null, 0.41
when the trend is restricted to be stationary, 0.50 when the trend is restricted to follow a

local-to-unity process, and 0.50 when the trend is further restricted to follow an I(1) process.

The second column of panel A shows the auxiliary null hypotheses HL, corresponding

to the null hypothesis H0, shown in the first column. The entries under HL represent less

restrictive models than H0. For example, when H0 restricts the null to be stationary, an

unrestricted trend process (“unr”) is shown for HL, while when H0 restricts the trend to be

I(1), the less restrictive local-to-unity, stationary, and unrestricted nulls are listed under HL.

The numerical entries for these rows (shown in italics in the table) are the lower size bounds

for HL for 5% level tests under H0 and with power that is 3 percentage points less than

the corresponding power bound shown in the table. For example, from the first numerical

column of panel A, the power bound for the I(1) version of H0 is 0.50. For any test with

size no larger than 5% under this null and with power of at least 0.47 (= 0.50 − 0.03), the
size under a null that allows an unrestricted trend (“unr” under HL) is at least 12%, the

size under a null that restricts the trend to be stationary is at least 8%, and the size under

a null that restricts the trend to follow a local-to-unity process is at least 4%.

Looking at the entries in Panel A, two results stand out. First, and not surprisingly,

restricting tests so that they control size for the unrestricted trend process leads to a non-

negligible reduction in power. For example, when |B| = 7, and R = 0, the power bound is

0.36, for tests that control size for unrestricted trends, the bound increases to 0.41 for tests

that control size for stationary trends, and increases to 0.50 for tests that control size for

local-to-unity or I(1) trend processes. Second, whenever there is a substantial increase in

power associated with restricting the trend process, there are large size distortions under

the null hypothesis without this restriction. For example, Elliott’s (1998) observation that

efficient tests under the I(1) trend have large size distortions under a local-to-unity process

is evident in the table. From the table, when |B| = 7, |R| = 0.9, and R · B > 0, the power

bound for the null with an I(1) trend is 0.95, but any test that controls size for this null and

has power of at least 0.92 will have size that is greater than 0.50 when the trend is allowed to

follow a local-to-unity process. However, addressing Elliott’s (1998) concern by controlling

for size in the local-to-unity model, as in the analysis of Stock and Watson (1996) or Jansson

and Moreira (2006) does not eliminate the fragility of the test. For example, with the same

values of B and R, the power bound for the null that allows for a local-to-unity trend is
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0.67, but any test that controls size for this null and has a size of at least 0.64 will have a

size greater than 0.32 when the trend is unrestricted.

Panels B (r = 1 and k = 2) and C (r = 2 and k = 1) show qualitatively similar results.

Indeed these panels show even more fragility of tests that do not allow for general trends.

For example, the lower size bound for the unrestricted trend null exceeds 0.50 in several

cases for tests that restrict trends to be I(1), local-to-unity, or stationary.

When r = k = 1, it is feasible to approximate the least upper power bound for the

I(1) and local-to-unity trend restrictions using the method described in subsection 5.3.1.

As described in the appendix, the approximate least upper bounds (LUB) in Table 2 are

no more than 2.5 percentage points above the actual least upper bound, apart from Monte

Carlo error. The differences with the KLIC minimized power bounds are small, suggesting

that the bounds in Table 1 are reasonably tight.

6 Efficient Y -Only Tests

The primary obstacle for constructing efficient tests of the null hypothesis that B = 0 is the

large number of nuisance parameters associated with the stochastic trend (the parameters

that determine H(s, t)). These parameters govern the values of ΣZV and ΣV V , which in turn

determine ΣY X and ΣXX . Any valid test must control size over all values of these nuisance

parameters. Wright (2000) notes that this obstacle can be avoided by ignoring the xt data

and basing inference only on yt, since under the null hypothesis, yt = zt. This section takes

up Wright’s suggestion and discusses efficient low-frequency “Y -only” tests.11

We have two related goals. The first is to study the power properties of these tests

relative to the power bounds computed in the last section. As it turns out, when r = 1 (so

there is only a single cointegrating vector), this Y -only test essentially achieves the power

bound, so the test efficiently uses all of the information in Y and X. Given the efficiency

property of the Y -only test, the second goal is to develop simple formulae for implementing

the test. We discuss these in reverse order, first deriving a convenient formulae for the test

11Wright (2000) implements this idea using a “stationarity” test of the I(0) null proposed by Saikkonen and
Luukonen (1993), using a robust covariance matrix as in Kwiatkowski, Phillips, Schmidt, and Shin (1992) for
the test proposed in Nyblom (1989). This test relies on a consistent estimator of the spectral density matrix
of zt at frequency zero. But consistent estimation requires a lot of pertinent low frequency information,
and lack thereof leads to well-known size control problems (see for example, Kwiatkowski, Phillips, Schmidt,
and Shin (1992), Caner and Kilian (2001), and Müller (2005)). These problems are avoided by using the

low-frequency components of yt only; see Müller and Watson (2008) for further discussion.
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statistic and then studying the power of the resulting test.

6.1 Efficient Tests against General Alternatives

The distribution of vecY ∼ N (0,ΣY Y ) follows from the derivations in Section 3: Under the

null hypothesis, ΣY Y = Irq, and under the alternative, ΣY Y depends on the local alternative

B, the properties of the stochastic trend and its relationship with the error correction term

Z. For a particular choice of alternative, the testing problem thus becomes H0 : ΣY Y = I

against H1 : ΣY Y = ΣY Y 1, and the invariance requirement (21) becomes

Y → Y A0yy for arbitrary nonsingular r × r matrices Ayy. (23)

The density of the maximal invariant is given in the following theorem.

Theorem 2 (a) If vecY ∼ N (0,ΣY Y ) with positive definite ΣY Y and q > r, the density of

a maximal invariant to (23) has the form

c1(detΣY Y )
−1/2(detΩY )

−1/2EωY [|det(ωY )|q−r]

where c1 does not depend on ΣY Y , ωY is an r × r random matrix with vecωY ∼ N (0,Ω−1Y ),
ΩY = (Ir ⊗ Y )0Σ−1Y Y (Ir ⊗ Y ), and EωY denotes integration with respect to the distribution of

ωY (conditional on Y ).

(b) If in addition, ΣY Y = ṼY Y ⊗ Σ̃Y Y , then the density simplifies to

c2(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−q/2

where c2 does not depend on ΣY Y .

As in Theorem 1, part (a) of this theorem provides a formula for the density of a maximal

invariant in terms of absolute moments of the determinant of a multivariate normal matrix

with a covariance matrix that depends on the data. Part (b) provides an explicit and simple

formula when the covariance matrix is of a specific Kronecker form. This form arises under

the null hypothesis with ΣY Y = Irk, and under alternatives where each of the r putative

error correction terms in yt have the same low-frequency covariance matrix. For a simple

alternative hypothesis with ΣY Y 1 = ṼY Y 1 ⊗ Σ̃Y Y 1, the best test then rejects for large values

of det(Y 0Y )/det(Y 0Σ̃−1Y Y 1Y ). The form of weighted average power maximizing tests over a

set of alternative covariance matrices ΣY Y 1 are also easily deduced from Theorem 2 parts

(a) and (b).
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6.2 Efficient Tests against I(1) Alternative

As discussed above, the numerical results in this paper focus on the benchmark alternative

where the stochastic trend follows an I(1). Under this alternative, yt follows a multivariate

“local level model” (cf. Harvey (1989)), which is the alternative underlying well-known

“stationarity” tests such as Nyblom and Mäkeläinen (1983), Nyblom (1989), Kwiatkowski,

Phillips, Schmidt, and Shin (1992), Nyblom and Harvey (2000), Jansson (2004), and others.

Thus, suppose that the stochastic trend satisfies (6) and (10), so that

T−1/2
bsT cX
t=1

yt ⇒Wz(s) +B

Z s

0

Wv(t)dt. (24)

The optimal test depends on the value of B under the alternative, and it is convenient to

assume

B = bS, (25)

where b is a scalar and S is the r × k selection matrix equal to S = [Ir, 0k−r] when r ≤ k

and S = [Ik, 0k−r]
0 when r > k. The invariance requirement (4) implies that (25) is without

loss of generality whenever there exist orthonormal r × r and k × k matrices Py and Px

such that PyBPx = ||B||S, which is always the case when min(r, k) = 1. In the formulation
(25), when r ≤ k (so that the number of linearly independent cointegrating vectors does not

exceed the number of common trends), each element of yt is the sum of an I(0) component

and an I(1) component, where the common relative magnitude of the two components is

determined by b. When r > k, there are fewer trends than cointegrating vectors, so that yt
can be rotated such that the trends load on only a subset of the variables in yt. This is the

“reduced rank” formulation used, for example, in the multivariate stationarity test proposed

in Eliasz, Stock, and Watson (2004).

In this parameterization, the covariance matrix of Y depends on b and R = SzS
0
v =

E[Wz(1)Wv(1)
0], the correlation between the Wiener processes describing zt and vt. A

straightforward calculation shows that ΣY Y can be written as

ΣY Y = (Ir ⊗ Iq) + b2(SS0 ⊗D) + b(SR0 ⊗ F ) + b(RS0 ⊗ F 0) (26)

where F and D are q× q matrices, where D is a diagonal matrix with i’th diagonal element

equal to (πi)−2 and F = [fij], with fij = 0 if i and j are both even or odd, and fij =

4/[π2(i2 − j2)] otherwise. (The simple diagonal form of D is due to the particular choice of

the weighting functions Ψ in (14); see Section 2.3 in Müller and Watson (2008)).
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Examination of (26) suggests three simplifications of the testing problem. First, because

F = −F 0, the final two terms cancel when SR0 is symmetric. (When r ≤ k, SR0 is symmetric

if Rij = Rji for i, j ≤ r, and when r > k, symmetry requires Rij = Rji for i, j ≤ k and

Rij = 0 for i > k and all j.) Thus, when SR0 is symmetric, ΣY Y does not depend on R,

which implies that the efficient test constructed using R = 0 is uniformly most powerful for

all values of R with SR0 symmetric. Second, when r ≤ k, SS0 = Ir, so in this case when SR0

is symmetric, ΣY Y = Ir⊗(Iq+b2D), and from part (b) of Theorem 2, the optimal test rejects
for large values of det(Y 0Y )/det(Y 0(Iq + b2D)−1Y ). (This statistic with r = 1 was labeled

“LFST” in Müller and Watson (2008) and we continue to use that label here.) Finally, when

SR0 is symmetric, but r > k, a calculation based on Theorem 2 (a) produces an expression

for the best test. These simplifications are summarized in the following corollary.

Corollary 1 For the alternative (24) and (25), the Neyman-Pearson test constructed with
R = 0 is uniformly most powerful over all values of R with SR0 symmetric, and rejects for

large values of

LFST (b) = det(Y 0Y )/det(Y 0(Iq + b2D)−1Y )

when r ≤ k, and for large values of

ξ(b) = det(Y 0Y )(q+k−r)/2 det(Y 0(Iq + b2D)−1Y )−k/2EωY [| det(ωY )|q−r]

when r > k, where vecωY ∼ N (0,Ω−1Y ) and ΩY = diag(Ik ⊗ Y 0(Iq + b2D)−1Y, Ir−k ⊗ Y 0Y ).

The corollary shows that when r ≤ k the best test is based on LFST , but when r > k,

the optimal test statistic is ξ given in part (b) of the corollary.12

Table 3 presents 10%, 5%, and 1% critical values for the point-optimal LFST (10/
√
r)

test for various values of r and q, where the alternative is chosen so that 5% test has

approximately 50% power for b = 10/
√
r.

12This test statistic is more difficult to calculate than LFST because ξ depends on the term
EωY [|det(ωY )|q−r], which requires evaluating absolute moments of order q − r from an r2-dimensional
multivariate normal distribution. In an earlier version of this paper we compared the power of ξ(b) and
LFST (b) for (r, k) = (2, 1), (3, 1), and (3, 2) in models with SR0 symmetric for q = 12. When r = 2 and
k = 1, the power of the LFST (b) statistic is within 3% of the power of ξ(b) when the power of ξ(b) is less
than 50%, but the difference increases to nearly 10% when the power of ξ(b) exceeds 80%. The differences
are more substantial when r = 3 and k = 1, where the power difference is approximately 7% when power is
50%; the power differences are negligible when r = 3 and k = 2. Eliasz, Stock, and Watson (2004) report
similar power differences in a related testing problem.
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6.3 Power of Efficient Y -only Tests

Table 4 shows the power of the point-optimal LFST test and the corresponding power

envelope of the Y -only test for r = 1 in panel A, and r = 2 and k = 1 in panel B. In panel

A, the power envelope is given by the LFST test evaluated at the value of B under the

alternative, while the point-optimal test LFST is evaluated at B = 10. The power of the

point-optimal test is very close to the Y -only power envelope. A more interesting comparison

involves the power of the point-optimal LFST test with the (Y,X)-power bound computed

in the last section. Because the Y -only tests control size for any trend process, the relevant

comparison is the unrestricted H(s, t) bound shown in panels A and B of Table 1. The

power of the point-optimal LFST test differs from the Table 1 power bound by no more

than 0.01 when |B| = 7 and no more that 0.03 when |B| = 14. Thus, for all practical

purposes, the point-optimal LFST test corresponds to an efficient test in models with a

single cointegrating vector (r = 1).

The results in panel B of Table 4 are somewhat different. Here, because r > k, the

Y -only power envelope is given by the ξ test of Corollary 1 and not by the LFST test. The

numerical results show that the relative power of the LFST test depends on both B and

R, and the loss can be large when B, and R are large and orthogonal (ω = 0). Comparing

results in panel B of Table 4 to the corresponding results in panel C of Table 1, also show

that in this case there are potentially additional power gains associated with using data on

both Y and X. For example, when ||B|| = 20, ||R|| = 0.9, and ω = 0, the Y -only power

envelope is 0.86, while the (Y,X) power bound in 0.94.

7 Wages, Prices, Employment and Output

The long-run relationship between wages (W ), prices (P ), employment (N) and real output

(Y ) has been of long-standing interest to economists. Labor’s share of income is given by

WN/Y P , or (with lower case letters denoting logarithms) w + n − y − p, and is one of

the “Great Ratios of Economics” investigated by Klein and Kosobud (1961). The average

value of this ratio plays a key role for calibrating the aggregate function in macroeconomic

business cycle models (see King, Plosser, and Rebelo (1988) and Cooley and Prescott (1995)).

Differences between prices (p) and unit labor costs (w+n−y) or between real wages (w−p)
and labor productivity (y + n) have been used as “cost-push” or error correction terms in
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wage inflation or price inflation Phillips curve equations.13 All of these suggest that w, p, y,

and n are cointegrated, with cointegrating relationship

w − βpp− βyy − βnn (27)

where βp = 1, βy = 1, and βn = −1.14 In this section we investigate this hypothesis using
post-war data for the United States.

We use data for the non-farm business and non-financial corporate sectors of the U.S.

economy. Restricting attention to the non-farm business sector eliminates measurement

issues associated with the government sector and with rental income from owner-occupied

housing. Restricting attention even further to the non-financial corporate sector eliminates

problems associated with the allocation of proprietors’ income to wages and capital returns

and price index problems in the financial sector.15 Wages are measured by total labor

compensation per hour (which includes employer-paid fringe benefits), prices and output

are measured by the sector-specific price deflator and real output index, and employment is

measured by total employee hours. Data are available quarterly from 1947 for the non-farm

business sector and from 1958 for the non-financial corporate sector.16

In the standard model, (w, p, y, n) are driven by two real common trends representing

labor supply and productivity, and by a nominal common trend that affects prices and wages.

The real common trends are typically modeled as I(1) processes (with drift) and the nominal

common trend is often modeled as an I(2) process. Of course, there is substantial uncertainty

associated with these I(1)/I(2) specifications, and so it is interesting to compare inference

from standard cointegration methods that rely critically on these specifications with methods

that allow for more general common trend processes.

The top panel of Table 5 shows estimates of the cointegrating coefficients and standard

errors computed using a standard I(1)/I(2) estimator (here, Stock and Watson’s (1993)

DOLS estimator). The estimates are somewhat close to their null values of βp = 1, βy = 1,

and βn = −1, but the Wald statistic soundly rejects this null for both data sets. The
13Sargan (1964) is a classic reference (although he used a smooth function of time as a proxy for produc-

tivity). More recent examples include Gordon (1985, 1998), Blanchard and Katz (1997), Brayton, Roberts,
and Williams (1999), Mehra (2000) and Staiger, Stock, and Watson (2001).
14Hall (1986) seems to be the earliest paper to use formal I(1) cointegration methods to investigate this

relationship.
15Gomme and Rupert (2004) discuss how these measurement issues affect inference about labor’s share.
16The data are from the DRI Economics Database. The series used are LBCPU and LCPB (wages for the

non-farm business and non-financial corporate sector), LBGDPU and LGDPB (prices), LBIPU and LIPB
(output), and LBMNU and LMNB (employee hours).
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final row of the table shows results using the LFST statistic of the last section.17 This

test rejects the null for the non-farm business sector (p-value = 0.004) but not for the

non-financial corporate sector (p-value = 0.28). Thus, standard I(1)/I(2) inference and

robust low-frequency inference coincide for the non-farm business sector, but not for the

non-financial corporate sector.

Figure 1 plots the putative error correction term w − p − y + n for each sector. The

data for the non-farm business sector exhibits a negative trend over sample period, which

readily explains the rejection of the null hypothesis for this sector. In contrast, the data

for the non-financial corporate sector do not exhibit an obvious trend and (to our eyes) the

plot appears to be consistent with an I(0) series. Inference based on the LFST statistic is

consistent with this conclusion. The puzzle is then why the null is rejected so dramatically

using standard cointegration methods.

A plausible explanation is that the common stochastic trends are not exactly I(1)/I(2),

as is assumed by the standard method. Uncertainty about the nature of the common trends

is evident in confidence sets for largest autoregressive roots (local-to-unity parameters), long-

memory parameters, or other nesting of the I(1) and I(2) models. This statistical evidence

is reinforced by introspection about low-frequency changes in macroeconomy such as the

productivity slowdown of the 1970s, the productivity rebound in the 1990s, changing demo-

graphics of the labor force, and shifts in monetary policy over the past five decades.. These

phenomena are consistent with a range of common trend processes beyond the standard

I(1)/I(2) model. Yet, standard inference is based on specific characteristics of the I(1)/I(2)

trend model, which sharpens inference when the common trends follow these processes, but

can lead to mistaken rejections otherwise. This can be seen in Figure 2 which plots confidence

sets for LFST and for the I(1)/I(2) model. (The confidence sets impose the constraint that

βy = −βn so that we can show the plot in two dimensions.) The confidence ellipse con-
structed using the I(1)/I(2) model is markedly smaller than the ellipse constructed from

LFST and does not contain the null value (indicated by the symbol "+" in the figure).

In contrast, the LFST confidence set, while larger, approximately efficiently exploits the

available low-frequency information about the cointegrating vector in absence of specific

assumptions about the common trends, and does not reject βp = 1, βy = 1, and βn = −1.
17The LFST statistic was computed using the Ψj transformation in (14) where q was chosen to isolate fre-

quencies associated with periods longer than eight years. The non-farm business data set contains 62 years of
data so that q = 15, while the non-financial corporated data set contains 51 years of data, so that q = 12. Let-

ting YT denote the q× 1 vector of obsevations, the test statistic is LFST =
¡Pq

l=1 Y
2
Tl

¢
/
³Pq

l=1
Y 2
Tl

1+b2/(πl)2

´
,

with b = 10.
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8 Conclusion

This paper studies inference about the cointegrating vector in a framework in which the

common stochastic trends are modelled in a flexible way beyond the standard I(1) framework.

The problem is studied with the low-frequency transformation approach suggested by Müller

and Watson (2008). The paper derives bounds on the power of tests that control size over

flexible stochastic trend specifications, and which maximize power against alternatives with

the usual I(1) trend. We find that a low-frequency version of Wright’s (2000) test (LFST )

essentially achieves the upper power bound in the model with r = 1 cointegrating vectors,

making it an attractive choice for applied work.

The construction of efficient tests for the value of the cointegrating vector that control

size for an unrestricted trend model when r > 1 remains an open question. However, the

power bounds computed here provide a useful check for the efficiency of ad hoc tests that

might be suggested for this problem, and the LFST test remains a practically useful valid

method also if r > 1.

If the stochastic trend model is tightly parametrized, the size control issue becomes

muss less severe, as the dimension of the nuisance parameter is then small. Our algorithm

for computing the approximate least upper bound on power for such models also yields

an approximately power maximizing, feasible test that controls size. The paper thus also

suggests a way to approximately efficiently exploit strong a priori knowledge about the

stochastic trend.

The suggested method is generic in the sense that it computes an approximately efficient

test in the presence of a low dimensional nuisance parameters under the null hypothesis.

This type of problem arises naturally in nonstandard testing problems, so we would expect

the method to be useful also in other contexts. For instance, the recent analysis of Elliott

and Müller (2009) of inference about the pre and post break parameter value builds on this

algorithm.
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A Appendix

A.1 Proof of Theorem 1

Write Y = (Y 01 , Y
0
2 , Y

0
3)
0 and X = (X 0

1,X
0
2,X

0
3)
0, where Y1 and X1 have r rows, and Y2 and X2 have

k rows. Consider the one-to-one mapping h : Rq×n 7→ Rq×n with

h(Y,X) = Q =

⎛⎜⎝ QY 1 QX1

QY 2 QX2

QY 3 QX3

⎞⎟⎠ =

⎛⎜⎝ Y1 Y −11 X1

Y2(Y1)
−1 X2 − Y2Y

−1
1 X1

Y3(Y1)
−1 (X3 − Y3Y

−1
1 X1)(X2 − Y2Y

−1
1 X1)

−1

⎞⎟⎠ .

A straightforward calculation shows that (vecQ0Y 2, vecQ
0
Y 3, vecQ

0
X3) is a maximal invariant to

(21). The inverse of h is given by

h−1(Q) =

⎛⎜⎝ QY 1 QY 1QX1

QY 2QY 1 QX2 +QY 2QY 1QX1

QY 3QY 1 QX3QX2 +QY 3QY 1QX1

⎞⎟⎠ .

Using matrix differentials (cf. Chapter 9 of Magnus and Neudecker (1988.)), a calculation shows

that the Jacobian determinant of h−1 is equal to (detQY 1)
q−r+k(detQX2)

q−k−r. The density of Q

is thus given by

(2π)−qn/2(detΣ(Y,X))
−1/2|detQY 1|q−r+k|detQX2|q−k−r exp[−12(vech

−1(Q))0Σ−1(Y,X)(vech
−1(Q))]

and we are left to integrate out QY 1, QX1 and QX2 to determine the density of the maximal

invariant.

Now consider the change of variables from QY 1, QX1, QX2 to ωY , ωX and ωY X

QY 1 = Y1ωY

QX1 = ω−1Y Y −11 X1ωX − ω−1Y ωY X

QX2 = (X2 − Y2Y
−1
1 X1)ωX

with Jacobian determinant (detY1)r(det(X2 − Y2Y
−1
1 X1))

k det(−ωY )−k. Noting that with this
change, h−1(Q) = (Y ωY ,XωX−Y ωY X), we find that the density of the maximal invariant is equal
to Z

(2π)−qn/2(detΣ(Y,X))
−1/2|detY1|q+k|det(X2 − Y2Y

−1
1 X1)|q−r|detωY |q−r|detωX |q−k−r

· exp[−12 vec(Y ωY ,XωX − Y ωY X)
0Σ−1(Y,X) vec(Y ωY ,XωX − Y ωY X)]d(vecω

0
Y , vecω

0
X , vecω

0
Y X)

0.
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Since vec(Y ωY ,XωX − Y ωY X) = DY X vec(ωY , ωX)− V0Y vec(ωY X), we have

vec(Y ωY ,XωX − Y ωY X)
0Σ−1(Y,X) vec(Y ωY ,XωX − Y ωY X)

= vec(ωY , ωX)
0D0

Y XΣ
−1
(Y,X)

DY X vec(ωY , ωX)

− 2 vec(ωY , ωX)D0
Y XΣ

−1
(Y,X)V0Y vec(ωY X) + vec(ωY X)

0V 00YΣ
−1V0Y vec(ωY X).

The result now follows from integrating out ωY X by ’completing the square’.

A.2 Proof of Theorem 2

The proof to part (a) mimics the proof to Theorem 1 and is omitted. To prove part (b),

note that because of invariance, we can set ṼY Y = Ir without loss of generality, so that

detΣY Y = (det Σ̃Y Y )
r, ΩY = (Ir ⊗ Y 0Σ̃−1Y Y Y ) and (detΩY )

−1/2 = det(Y 0Σ̃−1Y Y Y )
−r/2. Since

(vecωY )
0ΩY (vecωY ) = tr(ω0Y Y

0Σ̃−1Y Y Y ωY ), the density in part (a) of the Theorem becomes pro-

portional to

(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−r/2
Z
|detωY |q−r exp[−12 tr(ω

0
Y Y

0Σ̃−1Y Y Y ωY )]d(vecωY ).

Let ω̃Y = (Y 0Σ̃−1Y Y Y )
1/2ωY , so that |detωY |q−r = det(Y 0Σ̃−1Y Y Y )−(q−r)/2|det ω̃Y |q−r and vecωY =

(Ir ⊗ (Y 0Σ̃−1Y Y Y )−1/2) vec ω̃Y , and the Jacobian determinant of the transformation from ωY to ω̃Y
is det(Ir ⊗ (Y 0Σ̃−1Y Y Y )−1/2) = (Y 0Σ̃

−1
Y Y Y )

−r/2. Thus, the density is proportional to

(det Σ̃Y Y )
−r/2 det(Y 0Σ̃−1Y Y Y )

−q/2
Z
|det ω̃Y |q−r exp[−12 tr(ω̃

0
Y ω̃Y )]d(vec ω̃Y ),

and the result follows.

A.3 Proof of Lemma 3

We first establish a preliminary result.

Lemma 4 For any t > 0 and integer κ, the functions Ψl : [0, t] 7→ R with Ψl(s) =
√
2 cos(πls),

l = 1, · · · , κ are linearly independent.

Proof. Choose any real constants cj , j = 1, · · · , κ, so that
Pκ

j=1 cjΨj(s) = 0 for all s ∈ [0, t].
Then also

Pκ
j=1 cjΨ

(i)
j (0) = 0 for all i > 0, where Ψ(i)j (0) is the ith (right) derivative of Ψj at

s = 0. A direct calculation shows Ψ(i)j (0) = (−1)i/2
√
2(πj)i for even i. It is not hard to see that

the κ × κ matrix with j,ith element (−1)i/2(πj)i is nonsingular, so that
Pκ

j=1 cjΨ
(i)
j (0) = 0 for

i = 2, 4, · · · , 2κ can only hold for cj = 0, j = 1, · · · , κ.
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For the proof Lemma 3 we construct H(s, t) such vecZ =
R 1
0 (Ir ⊗Ψ(t))SzdW (t) and vecV =R 1

0

R 1
t (H(s, t)⊗Ψ(s))ds dW (t) have the specified covariance matrix. The proof of the slightly more

difficult part (b), where H(s, t) = G(s, t)Sv, is based on the following observations:

(i) Ignoring the restriction on the form of vecV , it is straightforward to construct an appro-

priate multivariate normal vector vecV from a linear combination of vecZ and ζ, where

ζ ∼ N (0, Ikq×kq) independent of Z.

(ii) Suppose that R = S was allowed, where S = (Ir, 0r×(k−r)). Then Sz = SSv, vecZ ∼R 1
0 FZ(t)SvdW (t) for FZ(t) = S ⊗ Ψ(t), and one can also easily construct ζ as in (i) via
ζ =

R 1
0 Fζ(t)SvdW (t) by an appropriate choice of Fζ . Since Ito-Integrals are linear, one

could thus write vecV =
R 1
0 F (t)SvdW (t) with F a linear combination of FZ and Fζ , using

observation (i).

(iii) For any matrix function F : [0, 1] 7→ Rkq×k that is equal to zero on the interval (1− ε, 1] for

some ε > 0, one can set G(s, t) = (Ik ⊗Ψ(s)0J(t)−1)F (t), where J(t) =
R 1
t Ψ(s)Ψ(s)

0ds and

obtain
R 1
0

R 1
t (G(s, t) ⊗ Ψ(s))ds SvdW (t) =

R 1
0 F (t)SvdW (t), since for any matrix A with k

rows and vector v, A⊗ v = (Ik ⊗ v)A.

The following proof follows this outline, but three complications are addressed: R = S is not

allowed; the matrix function F needs to be zero on the interval (1− ε, 1], which does not happen

automatically in the construction in (ii); one must verify that the process
R s
0 G(s, t)SvdW (t) admits

a cadlag version.

Set Sz to be the first r rows of In. Since Ψl(1− s) = (−1)lΨl(s) for all l ≥ 1, Lemma 4 implies
that J(t) =

R 1
t Ψ(s)Ψ(s)

0ds and Iq − J(t) are nonsingular for any t ∈ (0, 1). The rq × 1 random
vector vecZε =

R 1−ε
0 (Sz ⊗ Ψ(s))dW (s) thus has nonsingular covariance matrix Ir ⊗ Σεq, where

Σεq = Iq − J(1− ε). Also, since

Σ∗ =

Ã
Ir ⊗ Iq Σ12

Σ21 Σ22

!
is positive definite, so is Irq − Σ12Σ−122 Σ21, so that we can choose 0 < ε < 1 such that Ir ⊗ Σεq −
Σ12Σ

−1
22 Σ21 is positive definite. With that choice of ε, also Σ22 − Σ21(Ir ⊗ Σεq)−1Σ12 is positive

definite.

For part (a) of the lemma, define the [0, 1] 7→ Rkq×n function Fa(t) = Aa(In ⊗ Ψ(t)), where
Aa = (Aa1, Aa2) with Aa1 = Σ21(Ir⊗Σεq)−1 and Aa2 = (Σ22−Σ21(Ir⊗Σεq)−1Σ12)1/2(Ik⊗(Σεq)−1/2).

For part (b) of the lemma, choose 0 < ρ < 1 so that Σ22 − ρ−2Σ21(Ir ⊗ Σεq)−1Σ12 is positive
definite. Choose Sv to be the first k rows of In multiplied by ρ, so that R = SzS

0
v = ρS. Let Ψ̃1(s) be

scaled residuals of a continuous time projection of 1[s ≤ 1− ε]Ψq+1(s) on {1[s ≤ 1− ε]Ψl(s)}ql=1 on
the unit interval, and let Ψ̃j(s), j = 2, · · · , kq be the scaled residuals of continuous time projection
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of 1[s ≤ 1− ε]Ψq+j(s) on {1[s ≤ 1− ε]Ψl(s)}ql=1 and {1[s ≤ 1− ε]Ψ̃l(s)}j−1l=1 . By Lemma 4, Ψ̃j(s),

j = 1, · · · , kq, are not identically zero, and we can choose their scale to make them orthonormal.

Let Ψ̃(s) = (Ψ̃1(s), · · · , Ψ̃kq(s))
0, the k × 1 vector ιk = (1, 0, · · · , 0)0, and Ab = (Ab1, Ab2) with

Ab1 = ρ−1Σ21(Ir⊗Σεq)−1 and Ab2 = (Σ22−ρ−2Σ21(Ir⊗Σεq)−1Σ12)1/2. Now define the [0, 1] 7→ Rkq×n

function

Fb(t) = Ab

Ã
S ⊗Ψ(t)
ι0k ⊗ Ψ̃(t)

!
Sv.

For both parts, that is for i ∈ {a, b}, set

Hi(s, t) = (Ik ⊗Ψ(s)0J(t)−1)Fi(t) for t ∈ [0, 1− ε]

and Hi(s, t) = 0 otherwise. With this choice

vecVi =

Z 1

0

Z 1

t
(Hi(s, t)⊗Ψ(s))ds dW (t)

=

Z 1−ε

0

Z 1

t
((Ik ⊗Ψ(s)Ψ(s)0J(t)−1)Fi(t))ds dW (t)

=

Z 1−ε

0
Fi(t)dW (t).

Thus

E[(vecVi)(vecVi)
0] =

Z 1−ε

0
Fi(t)Fi(t)

0dt

E[(vecVi)(vecZ)
0] =

Z 1−ε

0
Fi(t)(Sz ⊗Ψ(t))0dt

since vec(Z − Zε) =
R 1
1−ε(Ir ⊗ Ψ(t))SzdW (t) is independent of vecVi. A direct calculation

now shows that
R 1−ε
0 Fa(t)Fa(t)

0dt = Aa(In ⊗ Σεq)A0a,
R 1−ε
0 Fa(t)(Sz ⊗ Ψ(t))0dt = Aa(S

0
z ⊗ Σεq),R 1−ε

0 Fb(t)Fb(t)
0dt = Ab diag(Ir ⊗ Σεq, Ikq)A0b and

R 1−ε
0 Fb(t)(Sz ⊗Ψ(t))0dt = ρAb(S

0
z ⊗ Σεq), so that

from the definitions of Ai, E[(vecVi)(vecVi)0] = Σ22 and E[(vecVi)(vecZ)
0] = Σ21, as required.

It thus remains to show that the processes
R s
0 Hi(s, t)dW (t), i ∈ {a, b}, admit a cadlag version.

Recall that ||A|| is the Frobenius norm of the real matrix A, ||A|| =
√
trA0A, which is submul-

tiplicative. If v ∼ N (0,Σ), then E[||v||4] = E[(v0v)2] = 2 tr(Σ2) + (trΣ)2 ≤ 3(trΣ)2, so that withR t
s Hi(u, λ)dW (λ) ∼ N (0,

R t
s Hi(u, λ)Hi(u, λ)

0dλ), we find

E[||
Z t

s
Hi(u, λ)dW (λ)||4] ≤ 3(tr

Z t

s
Hi(u, λ)Hi(u, λ)

0dλ)2

≤ 3(

Z t

s
||Hi(u, λ)||2dλ)2.
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Thus, for 0 ≤ s < t ≤ 1, we have with ψ(s) = dΨ(s)/ds

E[||
Z t

0
Hi(t, λ)dW (λ)−

Z s

0
Hi(s, λ)dW (λ)||4]

= E[||
Z s

0
(Hi(t, λ)−Hi(s, λ))dW (λ) +

Z t

s
Hi(t, λ)dW (λ)||4]

≤ 3[

Z s

0
||Hi(t, λ)−Hi(s, λ)||2dλ+

Z t

s
||Hi(t, λ)||2dλ]2

≤ 3[k2( sup
0≤λ≤1−ε

||J(λ)−1||2||Fi(λ)||2)(||Ψ(s)−Ψ(t)||2 + (t− s) sup
0≤λ≤1

||Ψ(λ)||2)]2

≤ 3k4( sup
0≤λ≤1−ε

||J(λ)−1||4||Fi(λ)||4)( sup
0≤λ≤1

||ψ(λ)||2 + sup
0≤λ≤1

||Ψ(λ)||2)2(t− s)2

where the last inequality follows from Ψ(t) − Ψ(s) = (t − s)
R 1
0 ψ(s + λ(t − s))dλ, so that by

Kolmogorov’s continuity theorem (p. 14 of Oksendal (2000)), there exist continuous (and thus

cadlag) versions of the stochastic processes
R s
0 Hi(s, t)dW (t), i ∈ {a, b}.

A.4 Parameterization of Σ(Y,X) under H0 in the restricted trend
models

G-model with r > k: Because of invariance, it is without loss of generality to assume that the first

r−k rows of R are equal to zero, so that the first r−k columns of Z are independent of V . The joint
distribution of V and the last k rows of Z are then just as in the model with r = k, so that Lemma

3 implies that in the G-model with r > k, Σ(Y,X) is of the form Σ(Y,X) = diag(Ir−k ⊗ Iq,Σ
∗
k) under

the null hypothesis, where Σ∗k is any positive definite k
2q×k2q matrix with upper left kq×kq block

equal to the identity matrix. The nuisance parameter θ is thus of dimension k2q2 + kq(kq + 1)/2

DiagonalG-model: Let ZV and ζ be q×k random matrices with vec(Z,ZV , ζ) ∼ N (0,Σ(Z,ZV ,ζ)),
where

Σ(Z,ZV ,ζ) = diag

Ã"
Ir R

R0 Ik

#
, Ik

!
⊗ Iq.

A construction as in the proof of Lemma 3 implies that the j’th column of V can be chosen as

an arbitrary linear combination of the j’th column of ZV and the j’th column of ζ, j = 1, · · · , k
(subject to the constraint that the resulting matrix is positive definite). Thus, Σ(Y,X) may be

parametrized as Σ(Y,X) = A(Z,ZV ,ζ)Σ(Z,ZV ,ζ)A
0
(Z,ZV ,ζ)

, where

A(Z,ZV ,ζ) =

Ã
Irq 0 0

0 diag(AV,1, AV,2, · · · , AV,k) diag(Lζ,1, Lζ,2, · · · , Lζ,k)

!
,

AV,j are arbitrary q × q matrices and Lζ,j are arbitrary lower diagonal q × q matrices. Including

R, θ is thus of dimension rk + kq2 + kq(q + 1)/2.
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In the stationary diagonal model where G(s, t) = diag(gS1 (s− t), · · · , gSk (s− t)), we set gSj to be

step functions

gSj (x) =

ngX
i=1

ξj,i1

∙
i− 1
ng + 1

≤ x

1 + x
<

i

ng + 1

¸
(28)

for ng = 40 and some scalar parameters ξj,i, j = 1, · · · , k, i = 1, · · · , ng. The steps occur at the
points i/(ng + 1 − i), so that more flexibility is allowed for small values of x (half of the points

are associated with values of x less than 1, for example). The values of ΣZV and ΣV V then follow

from (17). In this specification θ contains the kng coefficients ξj,i and the rk coefficients in the

correlation matrix R. While the specification (28) only captures a subset of all possible covariance

matrices Σ(Y,X) in the (nonparametric) stationary model, any test that controls size for all functions

H(s, t) of the form H(s, t) = diag(gS1 (s− t), · · · , gSk (s− t))Sv a fortiori has to control size for the

specification (28). The upper bounds on power of tests that control size for all values of θ under

(28) are therefore also upper bounds for tests that control size for the generic stationary stochastic

trend model.

In the local-to-unity model, a straightforward (but tedious) calculation determines the value

of Σ(Y,X) as function of the k × k matrix C and the r × k correlation matrix R, so that θ is of

dimension k2+ rk. Finally, the I(1) model is a special case of the local-to-unity model with C = 0.

A.5 Kullback-Leibler Divergence Problem of Section 5.3.2

Let Σ1 denote the covariance matrix of vec(Y,X) under a specific I(1) alternative as described in

Subsection 5.2.1(that is, for specific values of B = B1 and R = R1), let Σ0(θ) with θ ∈ Θ be the
covariance matrix of vec(Y,X) under the null for the relevant restrictions on the stochastic trend,

and define the nq × nq matrix (recall that n = r + k)

A(γ) =

"
γyz ⊗ Iq 0

γxz ⊗ Iq γxv ⊗ Iq

#

where γyz is r×r, γxz is k×r, and γxv is k×k. This yields A(γ) vec(Y,X) ∼ N (0, A(γ)Σ0(θ)A(γ)0).
Denote the Kullback-Leibler divergence between the nq × 1 distributions N (0,Σ1) and N (0,Σ0)
as K(Σ1,Σ0) = 1

2 ln(detΣ1/detΣ0) +
1
2 tr(Σ

−1
0 Σ1) − nq. The value of θ∗ is chosen to numerically

solve

min
γ∈Rr2+k2+kr

K(Σ1, A(γ)Σ0(θ
∗)A(γ)0) = min

θ∈Θ,γ∈Rr2+k2+kr
K(Σ1, A(γ)Σ0(θ)A(γ)

0), (29)

that is, θ∗ numerically minimizes the Kullback-Leibler divergence (or KLIC) between the null and

alternative densities of (Y,X), allowing for transformations as described by A(γ) under the null.

While these transformations do not affect the implied distribution of the maximal invariant, they

do in general lead to a different θ∗, which we found to yield a slightly lower upper bound. The
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minimization problem is over a high dimensional parameter, but the objective function is quickly

computed and well behaved, so that numerical minimization is feasible.

A.6 Algorithm for Approximating the Least Upper Power Bound
and Optimal Test

A computationally more convenient variation of the size adjustment idea described in the main

text is as follows: Starting from the level α test ϕΛ = 1[LRΛ > cvΛ] of HΛ against H1, for some

small ε > 0, let cvεΛ be an adjusted critical value so that the resulting test ϕ
ε
Λ = 1[LRΛ > cvεΛ]

(with cvεΛ > cvΛ) has only slightly lower power than ϕΛ, i.e.
R
ϕεΛhdμ = βΛ − ε. Now if ϕεΛ is of

level α under H0, i.e. supθ∈Θ
R
ϕεΛfθdμ < α, then we have a level α test of H0 against H1 with

power that is only ε below βΛ, and the least upper bound is again sandwiched between βΛ and

βΛ − ε. The advantage of this method over the direct size adjustment discussed in the text is that

the size adjustment is costly to compute, while Λ can often be quickly dismissed by checking its

size control for a small number of values of θ under H0.

Now consider discrete distributions for Λ: Let ΘN = {θ1, · · · , θN} ⊂ Θ for some N > 1 and

consider the restricted null hypothesis HN :The density of U is fθ, θ ∈ ΘN . In this restricted

problem, the least favorable distribution is fully described by the point masses p∗i on θi, i =

1, · · · , N , where
PN

i=1 p
∗
i = 1. The resulting test ϕ

∗
N is thus of the form ϕ∗N = 1[

PN
i=1 p

∗
i fθi/h <

1/ cvN ]. Note that by construction, the test ϕ∗N is of level α on ΘN ⊂ Θ. The central idea of the
algorithm is to identify a (hopefully not too large) set of points ΘN so that corresponding adjusted

test ϕ∗εN is of level α on the whole set Θ.

Introduce the notation ϕ(θ̄, p̄, cv)(u) for the test ϕ = 1[
PN

i=1 pifθi/h < 1/ cv] evaluated at

u, with θ̄ = (θ1, · · · , θN)0 and p̄ = (p1, · · · , pN )0, and
PN

i=1 pi = 1 (but p̄ is not necessarily

the least favorable distribution on ΘN ). The rejection probability of ϕ under the alternative is

Π1(θ̄, p̄, cv) =
R
ϕ(θ̄, p̄, cv)(u)h(u)dμ(u), and it is Π0(θ̄, p̄, cv; θ)(u) =

R
ϕ(θ̄, p̄, cv)fθ(u)dμ(u) under

the null hypothesis with θ ∈ Θ. We numerically approximate Π0(θ̄, p̄, cv; θ) by

Π̂0(θ̄, p̄, cv; θ) =
1

m

mX
j=1

ΥL

ÃPN
i=1 pifθi(uj)

h(uj)
,
1

cv

!
(30)

where for some real L > 0, ΥL : R2 7→ R is defined as ΥL(x, y) = yL/(yL + xL). The pseudo

random variables uj , j = 1, · · · ,m have density fθ and are obtained by suitably transforming some

underlying pseudo random variables ξj , uj = gθ(ξj), j = 1, · · · ,m. The variables ξj are drawn
only once in the evaluation of Π̂0 at different arguments (so the transformation gθ depends on

θ). Define Π̂1(θ̄, p̄, cv) analogously, with uj given by gh(ξj). Note that as L → ∞, ΥL(x, y) →
1[x < y] + 1

21[x = y], so that for L large, Π̂0(θ̄, p̄, cv; θ) approximates the standard Monte Carlo

integration for the rejection probability of ϕ(θ̄, p̄, cv). The advantage of choosing L < ∞ is that
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Π̂0(θ̄, p̄, cv; θ) and Π̂1(θ̄, p̄, cv) become smooth and differentiable functions of their arguments, which

greatly simplifies numerical optimizations. The computations in this paper were performed with

m = 25, 000 and L = 25.

The algorithm consists of three subroutines SR1, SR2 and SR3.

SR1 The routine takes θ̄ = (θ1, · · · , θN ) as given, and returns an estimate of the least favorable
distribution on ΘN , as described by p̄ = (p1, · · · , pN). By Theorem 3.8.1 of Lehmann and

Romano (2005), the least favorable distribution p̄∗ = (p̄∗1, · · · , p̄∗N)0 has the two properties (i)R
ϕ(θ̄, p̄∗, cv)fθldμ ≤ α for l = 1, · · · , N ; and (ii)

R
ϕ(θ̄, p̄∗, cv)fθldμ < α only if pl = 0. This

motivates the joint determination of p̄ and cv as numerical solutions to

Π̂0(θ̄, p̄, cv; θl) ≤ α and pl(Π̂0(θ̄, p̄, cv; θl)− α) = 0 for l = 1, · · · , N. (31)

Specifically, we determine appropriate p̄ and cv by minimizing the objective function

NX
l=1

(a0pl + exp[a1(Π̂0(θ̄, p̄, cv; θl)− α)])(Π̂0(θ̄, p̄, cv; θl)− α)2 (32)

where a0 = 100 and a1 = 2000. As a function of p̄ and cv, (32) is continuous and with

known first derivative, so that a standard quasi-Newton optimizer can be employed. Also,

the N2m numbers fθi(gθl(ξj))/h(gθl(ξj)) for i = 1, · · · , N , l = 1, · · · , N and j = 1, · · · ,m
can be computed and stored once to speed up the the evaluation of Π̂0(θ̄, p̄, cv; θi) and its

partial derivatives.

SR2 The routine takes (θ̄, p̄) as inputs and returns vectors (θ̄1, p̄1) of length N1 ≤ N by eliminating

pairs of values (θj , pj) with pj approximately equal to zero.

SR3 The routine takes (θ̄, p̄) as given and either identifies (θ̄, p̄) as yielding a sufficiently precise

approximation to the least favorable distribution, or it returns a parameter value θ̂ ∈ Θ that
needs to be included in the set of points ΘN . Specifically, the routine consists of three steps:

(a) Solve for the real number cvΛ that satisfies Π̂0(θ̄, p̄, cvΛ; θl) ≤ α for all l = 1, · · · , N ,
so that the test ϕ(θ̄, p̄, cvΛ) is the (approximate) level α likelihood ratio test of HΛ : U

has density
PN

l=1 plfθl against H1.

(b) Compute βΛ = Π̂1(θ̄, p̄, cvΛ), and numerically solve for cvεΛ ≥ cvΛ such that

Π̂1(θ̄, p̄, cvΛ)− Π̂1(θ̄, p̄, cvεΛ) = ε. By Lemma 1, βΛ is (an estimate of) a power bound on

level α tests of H0. As described above, the size adjustment as a function of the power

implies that if ϕ(θ̄, p̄, cvεΛ) is of level α under H0, then we have found a test whose

power is within ε of the bound. The computations in this paper use ε = 2.5%.
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(c) Check on a grid of values ΘG ⊂ Θ whether ϕ(θ̄, p̄, cvεΛ) controls size, i.e. evaluate

Π̂0(θ̄, p̄, cv; θj) for all θ ∈ ΘG in the finite set ΘG. If Π̂0(θ̄, p̄, cv; θj) > α for some

j, return θ̂ = θj . Otherwise, preliminarily accept βΛ as the approximate least upper

bound, and ϕ(θ̄, p̄, cvεΛ) as an approximately efficient test. As a practical matter, it

makes sense to return θ̂j = θj even if Π̂0(θ̄, p̄, cv; θj) is below, but very close to α. We

use a threshold of 4.8% for α = 5%.

Overall the algorithm iterates between the subroutines as follows:

1. Initialize θ̄ with N = 25 values of θj that are spread out over the grid ΘG, and call SR1.

2. Call SR2 to obtain a new N and (θ̄, p̄) pair.

3. While SR3 returns θ̂:

Add θ̂ to θ̄ (so that N is increased by one) and call SR1.

4. Call SR2 to obtain a new N and (θ̄, p̄) pair. Repeat Step 3.

5. Perform a final check on whether ϕ(θ̄, p̄, cvεΛ) is a level α test by evaluating its rejection

probability over a fine grid of values for θj , using a different set of draws of pseudo-random

variables ξj in (30). For the correlation R, we use the grid R = −0.99,−0.96, · · · , 0.99 in
the I(1) model, and in the local-to-unity model, a square grid of the same values of R, and

C = −3,−2.5, · · · ,−.5, 0, e−1, e−0.8, · · · , e6.8, e7.

The advantage of the thinning operation in SR2 is that it accelerates the computation of the

test statistic, and it facilitates the numerical minimization of (32). We do not call SR2 after each

call of SR1, though, because doing so can result in cycles, so that Step 3 above could potentially

result in an infinite loop. Step 4 “cleans” the feasible test and is skipped when only an estimator

of the least upper bound is required.

A.7 Validity of r = 1, k = 2 bounds for r = 1, k > 2

Here we show that the power bounds computed using r = 1 and k = 2 also serve as power bounds

for models with r = 1 and all values of k > 2.

To see why, first consider the alternative I(1) model as described in subsection 5.2.1, Y =

Z+V B0 and X = V . Let P be a k×k orthonormal matrix whose last k−2 rows are orthogonal to
R and B, and whose second row is orthogonal to R. Partition X = (X12,X3k), where X12 contains

the first two columns of X and X3k contains the remaining k − 2 columns. By invariance, there is
no loss in generality in setting X = X̃P = (X̃12, X̃3k)P, so that Y = Z + X̃PB0 = Z + X̃12B

0
12,
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where X̃12 and B12 are the first two columns of X̃ and B, respectively, and the last k− 1 columns
of X̃ (and thus X̃3k) are independent of Z. The group of transformations

(Y, X̃12, X̃3k)→ (Y Ayy, X̃12Ãxx + Y Axy, X̃3k) (33)

for nonsingular Ayy and Ãxx is a subset of the transformations (Y, X̃) → (Y Ayy, X̃Axx + Y Axy),

so the best invariant test to (33) is as least as powerful as the best invariant test to (21). Let

Q̃12 be a maximal invariant to (Y, X̃12) → (Y Ayy, X̃12Ãxx + Y Axy), such that {Q̃12, X̃3k} is a
maximal invariant to (33). Since X̃3k is independent of (Y, X̃12), the density of {Q̃12, X̃3k} under
the alternative factors as fa,Q̃12 · fa,X̃3k

.

For all null models discussed in subsection 5.2.2, it is possible to choose X = (X12,X3k) = V

in a way such that X3k is independent of X12 with marginal distribution f0,X3k
= fa,X̃3k

, (i.e. it

corresponds to the I(1) model) and the possibilities for X12 and its relationship with Z are the

same as in the version of the model with k = 2. Thus, with this choice, the term fa,X̃3k
cancels

in the likelihood ratio test of the maximal invariant to (33), and the testing problem corresponds

precisely to the model with k = 2.18 An upper bound for the model with r = 1 and k = 2 is

therefore also an upper bound for the model with r = 1 and k > 2.

18This is not strictly true for the stationary G-model, which excludes I(1) stochastic trends. But the low-
frequency transformation of the suitably scaled stationary local-to-unity model converges in mean squared
to the I(1) model as the local-to-unity parameter approaches zero (cf. Section 2.4 of Müller and Watson
(2008)), so that the additional discriminatory power from X3k can be made arbitrarily small, and the
conclusion continues to hold.
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Table 1: Power and Size Bounds for 5% Tests (q = 12) 
 
 

A. r = k = 1 
  |B| = 7 |B| = 14 

H0 HB |R| = 0 |R| = 0.5 |R| = 0.9 |R| = 0 |R| = 0.5 |R| = 0.9 
   RB<0 RB>0 RB<0 RB>0  RB<0 RB>0 RB<0 RB>0
            

unr  0.36 0.36 0.36 0.36 0.36 0.64 0.65 0.65 0.66 0.66 
            

stat   0.41 0.52 0.40 0.89 0.44 0.70 0.80 0.68 0.98 0.72 
 unr 0.06 0.14 0.05 0.65 0.07 0.07 0.17 0.05 0.47 0.06 
            

LTU  0.50 0.65 0.59 0.95 0.67 0.81 0.92 0.81 1.00 0.87 
 unr 0.13 0.28 0.21 0.79 0.32 0.15 0.42 0.17 0.49 0.20 
 stat 0.08 0.09 0.15 0.07 0.20 0.11 0.13 0.13 0.03 0.14 
            

I(1)  0.50 0.65 0.65 0.95 0.95 0.82 0.91 0.91 1.00 1.00 
 unr 0.12 0.28 0.26 0.76 0.80 0.19 0.37 0.34 0.48 0.48 
 stat 0.08 0.09 0.21 0.07 0.71 0.12 0.12 0.31 0.03 0.42 
 LTU 0.04 0.04 0.06 0.04 0.50 0.04 0.03 0.16 0.00 0.25 

 
 

 
B. r = 1 and k ≥ 2 

  ||B|| = 7 ||B|| = 14 
H0 HB ||R||=0 ||R|| = 0.5 ||R|| = 0.9 ||R||=0 ||R|| = 0.5 ||R|| = 0.9 
   ω=-1 ω=0 ω=1 ω=–1 ω=0 ω=1  ω=–

1 
ω=0 ω=1 ω=–

1 
ω=0 ω=1 

unr  0.36 0.37 0.36 0.36 0.36 0.36 0.36 0.63 0.64 0.64 0.65 0.65 0.65 0.66 
                

 diag  0.36 0.37 0.37 0.36 0.36 0.42 0.36 0.63 0.64 0.64 0.65 0.65 0.74 0.66 
 unr 0.04 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 
                

stat  0.40 0.48 0.42 0.39 0.83 0.59 0.44 0.68 0.77 0.71 0.67 0.97 0.84 0.71 
 unr 0.05 0.10 0.07 0.05 0.55 0.19 0.07 0.06 0.12 0.08 0.05 0.45 0.20 0.06 
 diag 0.05 0.10 0.06 0.05 0.55 0.15 0.07 0.06 0.12 0.07 0.05 0.45 0.14 0.06 
                

LTU  0.46 0.57 0.49 0.53 0.92 0.70 0.64 0.74 0.84 0.77 0.76 1.00 0.85 0.85 
 unr 0.09 0.18 0.10 0.15 0.71 0.34 0.27 0.09 0.22 0.12 0.12 0.50 0.20 0.18 
 diag 0.09 0.18 0.09 0.15 0.71 0.31 0.27 0.09 0.22 0.13 0.12 0.50 0.16 0.18 
 stat 0.07 0.07 0.06 0.12 0.08 0.10 0.15 0.06 0.08 0.06 0.10 0.05 0.05 0.12 
                

I(1)  0.46 0.57 0.48 0.57 0.91 0.86 0.91 0.75 0.83 0.78 0.83 0.99 0.98 0.99 
 unr 0.09 0.18 0.11 0.17 0.71 0.70 0.71 0.10 0.23 0.15 0.21 0.50 0.46 0.49 
 diag 0.09 0.18 0.11 0.17 0.71 0.53 0.71 0.10 0.23 0.13 0.21 0.50 0.37 0.49 
 stat 0.07 0.07 0.07 0.17 0.08 0.23 0.67 0.08 0.08 0.08 0.18 0.05 0.20 0.45 
 LTU 0.04 0.04 0.04 0.05 0.04 0.22 0.46 0.04 0.03 0.07 0.10 0.01 0.22 0.28 

 



 
Table 1 (Continuted) 

 
C. r = 2 and k = 1 

  ||B|| = 10 ||B|| = 20 
H0 HB ||R||=0 ||R|| = 0.5 ||R|| = 0.9 ||R||=0 ||R|| = 0.5 ||R|| = 0.9 
   ω=-1 ω=0 ω=1 ω=–1 ω=0 ω=1  ω=–1 ω=0 ω=1 ω=–1 ω=0 ω=1 

unr  0.45 0.47 0.50 0.48 0.50 0.69 0.51 0.69 0.73 0.75 0.73 0.79 0.94 0.79 
                

G  0.45 0.47 0.55 0.48 0.50 0.74 0.51 0.69 0.73 0.76 0.73 0.79 0.97 0.79 
 unr 0.04 0.04 0.06 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 
                

stat  0.50 0.61 0.61 0.51 0.94 0.74 0.57 0.72 0.81 0.78 0.74 0.98 0.97 0.82 
 unr 0.06 0.13 0.11 0.05 0.61 0.06 0.07 0.05 0.10 0.05 0.05 0.29 0.04 0.05 
 G 0.06 0.13 0.07 0.05 0.61 0.04 0.07 0.05 0.10 0.05 0.05 0.29 0.02 0.05 
                

LTU  0.55 0.72 0.63 0.66 0.99 0.74 0.76 0.79 0.92 0.87 0.81 1.00 0.97 0.89 
 unr 0.10 0.25 0.11 0.17 0.70 0.06 0.29 0.12 0.26 0.13 0.09 0.32 0.05 0.12 
 G 0.10 0.25 0.08 0.17 0.70 0.04 0.29 0.12 0.26 0.13 0.09 0.32 0.02 0.12 
 stat 0.06 0.09 0.05 0.15 0.07 0.04 0.19 0.07 0.13 0.10 0.08 0.03 0.03 0.09 
                

I(1)  0.55 0.70 0.63 0.70 0.97 0.74 0.97 0.84 0.91 0.88 0.91 1.00 0.97 1.00 
 unr 0.10 0.22 0.11 0.24 0.69 0.06 0.69 0.16 0.26 0.15 0.29 0.32 0.05 0.32 
 G 0.10 0.22 0.08 0.24 0.69 0.04 0.69 0.16 0.26 0.14 0.29 0.32 0.02 0.32 
 stat 0.06 0.07 0.05 0.19 0.05 0.04 0.65 0.12 0.14 0.11 0.26 0.03 0.03 0.31 
 LTU 0.04 0.04 0.04 0.06 0.02 0.04 0.45 0.10 0.03 0.04 0.18 0.00 0.02 0.21 

 
Notes:   Non-italicized numerical entries are upper bounds on power for 5% tests for the null 
hypothesis restricting the trend process as shown in the first column. The italicized entries are lower 
bounds on size for auxiliary trend processes given in columns for 5% level tests with power greater 
than the power bound less 3 percentage points.  Abbreviations for the trend models in columns 1 and 2 
are: (i) “unr” is the unrestricted model given in (3), (ii) “G” is the G-model in (6), (iii) “diag” is the 
diagonal G-model in (8), (iv) “stat” is  the stationary G model given in (9), (v) “LTU” is the local-to-
unity model given in (11), and (vi) “I(1)” is I(1) model given in (10). In panels B and C, ω  = tr(R′B) / 
(||R||·||B||).  Results are based on 20,000 Monte Carlo replications. 

 
 
 
 
 



 
Table 2: Comparison of KLIC Minimized and Approximate Least Upper Power Bounds  

(r = k = 1, q = 12) 
 
 

  |B| = 7 |B| = 14 
H0 Bound |R| = 0 |R| = 0.5 |R| = 0.9 |R| = 0 |R| = 0.5 |R| = 0.9 
   RB<0 RB>0 RB<0 RB>0  RB<0 RB>0 RB<0 RB>0

LTU KLIC 0.51 0.66 0.59 0.95 0.66 0.81 0.93 0.80 1.00 0.86 
 LUB 0.50 0.66 0.58 0.93 0.65 0.78 0.88 0.78 1.00 0.82 
            

I(1) KLIC 0.51 0.65 0.65 0.95 0.95 0.82 0.92 0.91 1.00 1.00 
 LUB 0.50 0.65 0.65 0.94 0.94 0.81 0.90 0.90 1.00 1.00 

 
Notes:  The entries labeled “KLIC” are computed using the KLIC minimization discussed in Section 
5.3.2. The entries labeled “LUB” are computed using the approximate least upper algorithm discussed 
in Section 5.3.1, and are by construction no more than 2.5 percentage points above the actual least 
upper bound.  Results are based on 20,000 Monte Carlo replications. 
 
 
 
 
 
 

Table 3: 1%, 5%, and 10% Critical Values for the LFST Statistic 
 

r q 
1 2 3 4 5 

6 5.25  3.62  3.08 6.76  5.16  4.39 7.25  6.09  5.43 7.14  6.46  6.02 6.54  6.33  6.16 
7 4.33  3.08  2.68 5.52  4.20  3.63 6.05  4.95  4.37 6.15  5.35  4.92 5.89  5.48  5.20 
8 3.68  2.73  2.39 4.65  3.54  3.08 5.17  4.16  3.68 5.29  4.55  4.12 5.26  4.73  4.42 
9 3.21  2.46  2.18 4.02  3.09  2.73 4.46  3.58  3.19 4.63  3.93  3.56 4.66  4.12  3.83 

10 2.86  2.25  2.02 3.56  2.79  2.48 3.94  3.17  2.84 4.10  3.47  3.15 4.18  3.66  3.38 
11 2.62  2.10  1.90 3.16  2.54  2.29 3.53  2.87  2.59 3.71  3.12  2.84 3.78  3.30  3.03 
12 2.46  1.98  1.81 2.89  2.35  2.13 3.18  2.64  2.39 3.38  2.84  2.60 3.48  3.02  2.78 
13 2.29  1.88  1.73 2.68  2.21  2.01 2.92  2.44  2.23 3.13  2.63  2.42 3.20  2.77  2.57 
14 2.16  1.80  1.67 2.50  2.09  1.92 2.74  2.31  2.11 2.91  2.47  2.27 2.97  2.59  2.40 
15 2.07  1.74  1.61 2.36  1.99  1.84 2.56  2.18  2.01 2.69  2.32  2.15 2.80  2.44  2.27 
16 1.97  1.67  1.56 2.24  1.91  1.77 2.44  2.08  1.92 2.55  2.21  2.05 2.64  2.30  2.15 
17 1.89  1.62  1.52 2.15  1.84  1.71 2.32  1.99  1.85 2.43  2.11  1.96 2.50  2.20  2.05 
18 1.82  1.58  1.49 2.07  1.78  1.66 2.21  1.92  1.79 2.32  2.02  1.89 2.39  2.10  1.98 
 
Notes: The table shows asymptotic critical for the LFST(b)  statistic computed using 10 /b r= , 
where LFST(b) = det(Y´Y)/det(Y´(I + b2D)−1Y), with D = diag(d1,…,dk) and di = (iπ)–2.  Results are 
based on 50,000 Monte Carlo replications. 



 
Table 4: Power of Y-only 5% Tests (q = 12) 

 
 

A. r = 1 
 |B| = 7 |B| = 14 

LFST(10) 0.36 0.63 
Y-Only Power Envelope 0.36 0.64 

 
 

B. r = 2 and k = 1 
||B|| = 10 ||B|| = 20 

Power of LFST(10/ 2 ) 
0.39 0.58 

Y-Only Power Envelope 
||R|| = 0.5 ||R|| = 0.9 ||R|| = 0.5 ||R|| = 0.9 ||R||=0 

ω=-1 ω=0 ω=1 ω=–1 ω=0 ω=1 
||R||=0 

ω=–1 ω=0 ω=1 ω=–1 ω=0 ω=1 
0.41 0.41 0.44 0.41 0.41 0.55 0.41 0.68 0.64 0.68 0.64 0.64 0.86 0.64 

 
Notes: The power envelope is computed using the test statistic LFST(|B|) in panel A and by ξ(B) in 
panel B.  In panel B , ω  = tr(R′B) / (||R||·||B||).  Results are based on 20,000 Monte Carlo replications. 
 
 
 
 
 
 

Table 5: Cointegrating Coefficients and Tests 
wt = β0 + βppt + βyyt + βnnt  

 
 Non-Farm Business Non-Financial Corporations 

a. DOLS Coefficients (SEs) 
P 1.046 (0.020) 1.003 (0.018) 
Y 1.028 (0.037) 0.852 (0.023) 
N −1.227 (0.106) −0.723 (0.057) 

b. Joint Test βp = 1, βy = 1, βn = −1 
DOLS Wald Statistic (p-value) 35.82 (<0.001) 45.41 (<0.001) 
LFST p-value 0.004 0.282 
 
Notes: The top panel shows DOLS estimated coefficients and standard errors. The bottom panel shows 
the DOLS Wald statistic (which is distributed 2

3χ under the null) and associated p-value, and the LFST 

p-value.  The DOLS estimator uses 6 leads and lags of Δ2pt, Δyt, and Δnt, and the DOLS standard 
errors are computed using Newey-West HAC estimators with 6 lags.



 

Figure 1: wt – pt – yt − nt 
Non-Farm Business (thin black) and Non-Financial Corporations (thick blue) 

 
 
 

Figure 2: 95% Confidence Sets for Cointegrating Coefficients, Non-Financial Corporations 
LFST (thin black) and DOLS (thick blue) 

 
 

 


