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ABSTRACT
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to variance in a multiplicative frailty index. Our findings bear a variety of implications for modeling
and forecasting mortality. In particular, we examine how the assumption of proportional hazards fails
to account adequately for differences in subgroup variance, and we discuss how several common forecasting
models treat the variance along the temporal dimension.
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Introduction

Length of life is a fundamental dimension of human prosperity. We measure this dimension

either with period life expectancy at birth, e0, the average length of life, or we measure its

inverse either with age-specific mortality rates that underpin the life table, or with the log

odds of death. Correctly modeling mortality is crucial for inference in both observational

and experimental settings, and thus for forecasting. In this paper, we illustrate how patterns

in the variance of length of life, whether measured across subgroups at a point in time or

in human populations over long periods of time, bear strong implications for how we model

mortality and test hypotheses in cross-sectional and longitudinal settings.

In the cross section and over short panels, the Cox (1972) proportional hazards model

and the logit or logistic regression model are standard tools in epidemiological studies and

in medical research. As they are typically specified, these models assume that subgroups

experience proportionally higher or lower hazards relative to a baseline. We show that

cross-sectional patterns in the variance in length of life across subgroups, where variance is

inversely related to average life expectancy, are not at all adequately captured by proportional

hazards. This is because variance in length of life is closely tied to the age slope of mortality;

subgroup differences in the variance in length of life are equivalent to subgroup differences in

the age slope of mortality. Regardless of the precise nature of baseline mortality, which may

be modeled nonparametrically, proportional hazards impose the same age slope and thus the

same variance in length of life on all subgroups.

Violations of the proportional hazards assumption have been extensively remarked and

explored (Hess, 1995; Lee and Go, 1997; Therneau and Grambsch, 2000), and researchers

have suggested various methods to address them. One option is to augment standard models

by injecting individual frailty (Vaupel, Manton and Stallard, 1979; Hougaard, 1995). As we

discuss, frailty models are helpful because they add an additional parameter that directly

impacts variance. But the concept of frailty does not help us intuitively understand cross-

sectional or intertemporal patterns in variance; it simply improves the fit of models without
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increasing our understanding. One class of models designed to account for frailty, accelerated

failure time (AFT) models, posits a proportional scaling of the distribution of survival time

across subgroups, which inappropriately implies a positive rather than negative relationship

between mean and variance. Approaches that relax the assumption of proportional scaling,

such as the use of stratified Cox regression, time-dependent covariates, or the nonparametric

method of Kaplan and Meier (1958) are preferable.

From an aggregate perspective, the expansion of human life in the past century (Pre-

ston, 1975; Caldwell, 1976) and its socioeconomic implications have stimulated efforts to

analyze and forecast mortality trends (Tuljapurkar and Boe, 1998), which are guided by in-

sights gained from mortality models. A natural focus of these efforts is the period expectation

of life at birth, e0. Mortality change is commonly summarized in terms of trends in e0, and

mortality models are evaluated on their ability to match historical trends in life expectancy.

These uses of e0 gained considerable support from two recent findings: that e0 has increased

at a nearly constant rate in many industrial countries since 1955 (White, 2002), and that

since 1840 annual world record female e0 has also increased at a nearly constant rate (Oep-

pen and Vaupel, 2002). Some have argued that such constancy is fundamental in analyzing

mortality change (Bongaarts and Feeney, 2002, 2003), and one researcher (Bongaarts, 2005)

has extended a simple model (Vaupel, 1986) to forecast mortality change. But e0 is only

the mean of the distribution of ages at death, and we show here that the variance of this

distribution provides important additional information. As we reveal, temporal change in

the variance in age at adult death is not necessarily captured by simple models, which may

inappropriately constrain how we should conceptualize and analyze mortality change.

This paper is organized in four main parts. First, we discuss cross-sectional and tem-

poral patterns in distributions of period life-table ages at death. We recount how historical

increases in e0 in the industrialized countries have been accompanied by equally striking

decreases in the variance of the age of adult death (Edwards and Tuljapurkar, 2005). These

trends show clearly that mortality decline over time has compressed the variance between
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individuals at the same time as it has increased average life expectancy. Cross-sectional

patterns reveal the same inverse relationship between subgroup variance and average. While

overall variance has declined over time, very large differences in variance between subgroups

remain. Less advantaged groups experience both lower average length of life and higher

variance.

Second, we show how the variance in age of adult death can be approximately computed

for any reasonable model of mortality rates, and illustrate this with three commonly used

models, the Gompertz (1825), the logistic, and a Gompertz model with multiplicative frailty.

In particular, we reveal the inverse relationship between the Gompertz slope and the variance

in length of adult life. A particular age slope of mortality will reflect a particular variance,

but while it can be consistent with different subgroup average lengths of life, it cannot

accurately capture the large differences in subgroup variances. Adding frailty into the model

can explain variance, but not in a particularly satisfactory way in terms of any intuition.

Third, we explore the implications of these insights for common mortality models. As

concerns forecasting, we show that any generalization of the Bongaarts-Vaupel translation

argument yields an unchanging variance in the age at adult death over time, which may or

may not be a preferable characteristic. Over long periods of time, trends in the variance

have comprised a major qualitative aspect of mortality change in industrialized countries,

and we suspect the same is true for developing countries. We recount world-record trends in

the variance in age of adult death, and discuss their implications for understanding secular

mortality change. In the setting of panel data on individuals, we illustrate how Gompertz

slopes that vary systematically across subgroups violate the assumption of proportionality,

and we discuss how various methods to address this either succeed or fail in modeling variance

correctly.

Finally, we provide a more general discussion of how our results fit into ongoing research

on aging more generally. Insights into the plasticity of the Gompertz slope and what may be

driving it are particularly relevant for gauging the future of the human aging process. Results
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in the literature on genetic interventions in nonhuman species become particularly intriguing

when combined with the insights we present here. Our results are related to work on the

“rectangularization” of the survivorship schedule (Wilmoth and Horiuchi, 1999; Kannisto,

2000) and on its shape more generally (Cheung et al., 2005). They are also connected to

research on the existence of a maximum age at death (Fries, 1990; Olshansky, Carnes and

Cassel, 1990; Wachter and Finch, 1997). All these topics subsume questions as to the possible

limiting forms of the distribution of age at death. Our analysis makes no assumptions or

deductions about such a limit, but aims to illuminate the nature and significance of trends

in the variability of age at death.

Distributions of Age at Death Over Time, Space, and

Characteristic

The age pattern of life table deaths in any period, which is also the distribution of period

length of life, is found from mortality rates µ(a) by age a in that period. We define cumulative

mortality as

M(a) =

∫ a

0

µ(s) ds, (1)

and survivorship is given by

ℓ(a) = exp

[

−

∫ a

0

µ(s) ds

]

= ℓ(a) = exp[−M(a)]. (2)

The probability density of death at age a is

φ(a) = µ(a) ℓ(a). (3)

Even when it is negligible, such as across industrialized countries during the past half century,

infant mortality produces some nonzero φ(0) at the extreme left end of the distribution. But
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φ(a) falls to zero thereafter and remains low; the majority of deaths occur at much later

ages.

Figure 1 plots φ(a) for racial subgroups within the U.S. in 2004 based on life tables

prepared by Arias (2007). In that year, period life expectancy at birth for African Americans

was 73.1 years, 5.2 fewer years than for whites. Part of this widely-remarked racial inequality

was due to a greater density of deaths in infancy, which approached 0.015% for blacks, more

than twice the level for whites. But there were also racial differences in the much larger

probability of death at older ages. Life expectancy conditional on reaching age 10, e10, was

68.9 for whites but only 64.3 for blacks, a gap that died out gradually above age 25. The

width of the distribution around older ages, which we measure by the standard deviation

above age 10 or S10, introduced by Edwards and Tuljapurkar (2005) and discussed shortly,

is also visibly different across racial groups. For whites in 2004, S10 = 14.9, while among

blacks it was almost 2 years higher. Patterns of inequality in length of life through other

dimensions of socioeconomic status (SES) such as income or education look essentially the

same (Edwards and Tuljapurkar, 2005), as are differences by sex, although they are more

muted.

A very similar picture emerges when we examine distributions of length of life over time

instead of across characteristic. Figure 2 plots deaths for both sexes combined in Sweden in

1900 and 2000 using the same scaling of the vertical axis as in Figure 1. These data from

the Human Mortality Database (2009), which have been smoothed less than those in the

NCHS life tables, reveal that long-term temporal variation in the distribution looks a lot

like cross-sectional variation: higher status or more time is rewarded with less variance in

addition to a higher mean. Dissimilarities include the much higher level of infant mortality in

1900, which is literally off the chart in Figure 2, and a considerable “baseline” probability of

death at practically any age. Both of these characteristics are common to mortality patterns

before the completion of the epidemiological transition, when infectious disease makes death

a significant probability at any age but especially at birth. This is a large part of the reason
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why Swedish S10 was 20.7 that year, compared with 12.9 in 2000.

Comparing Figures 1 and 2 reveals another pattern, namely that there are interesting

differences in the distribution of length of life across geographic boundaries. The standard

deviation in adult length of life among U.S. whites, who are roughly representative of the

nation as a whole, is currently higher by about 2 years than it is in Sweden, where tighter

concentration pushes the mode higher. This is the point made by Wilmoth and Horiuchi

(1999) and Edwards and Tuljapurkar (2005), and recently extended to developing countries

by Edwards (2009c). Cross-national trends conform to the now familiar pattern of higher

status bringing higher average life expectancy and lower variance in the broad cross section of

countries over time, but among industrialized countries the relationship is less clear (Edwards

and Tuljapurkar, 2005).

We have thus far focused on variance in adult ages at death, choosing a cutoff age A

that separates infant and early childhood deaths from later deaths. A suitable value of A lies

in the range of ages at which probabilities of death are near their minimum and are relatively

stable over time, but is otherwise arbitrary. Following Edwards and Tuljapurkar (2005), we

focus on S10, the standard deviation of length of life starting from age 10, but we find results

to be similar across various cutoff ages. Still, there is controversy over whether specifying

any cutoff age at all is appropriate. Although infant and child deaths contribute strongly

to total variation in length of life, we find that they do so in a relatively uninformative way

that masks other important trends.

How do young deaths (at ages ≤ A years) and adult deaths (at ages > A) contribute

to mortality? Consider first the average age at death in the period life table, also known

as period life expectancy at birth. Write T for the random age of death of an individual in

a hypothetical cohort following a period life table. Let p−, p+ be the probabilities of young

death (T ≤ A) and adult death (T > A) respectively. Then period life expectancy at birth

can be decomposed as

e0 = p− M− + p+ M+, (4)
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where M− and M+ are (conditional) average ages of death for those who die young or die

as adults, respectively. In the industrialized countries in the last five or six decades, M− is

much below 1 year for all subgroups, and p− is well under 10%, so the main determinant of

e0 is the timing of adult death. Of course, declines in young deaths still matter to e0, but

their effect is proportional to the value of M+. Consistent with this observation, Wilmoth

and Horiuchi (1999) used different methods to show that mortality change at adult ages has

been the main contributor to changing e0 in recent decades.

Now consider the variance in period length of life. We can decompose total variance

starting from birth as

Var(T ) = p− V− + p+ V+ + p− (M− − e0)
2 + p+ (M+ − e0)

2, (5)

where V− and V+ are (conditional) variances of age at death for those who die young or die

as adults, respectively. For all subgroups in the industrialized countries, only the second

and third of these four terms matter. The first term is small because both its components

are small, and the last term is small because e0 has become almost arbitrarily close to M+.

While the third term contributes substantially to Var(T ), it does so only because M− is very

small relative to e0. This difference is not at all informative about substantive variation in

the adult ages at which most deaths occur.

To illustrate, we show in Figure 3 the four components in equation (5) in Swedish data

over the period 1900 to 2003, setting our cutoff age A to 10 as usual. Since about 1940, the

element that matters most to understanding total variability in age at death is the second

term in equation (5), p+ V+, which is shown at upper-right. Today, variance in length of life

above age 10 accounts for over 85% of total variability in Sweden, while variance below age

10 such as attributable to infant mortality is responsible for less than 15%. Consistent with

this analyis, Edwards and Tuljapurkar (2005) show that differences between industrialized

countries in the distribution of age at death are increasingly determined by differences in V+
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rather than in e0.

While we have not performed a formal analysis, we believe a similar bottom line ought

to emerge were we to examine distributions of length of life among subgroups defined by SES

or race, which is difficult owing to data constraints. We know it to be true for either sex,

and we also find that sex differences in variance today are driven primarily by sex differences

in adult variance rather than in infant mortality, a result that mirrors work by Glei and

Horiuchi (2007) on the sex differential in life expectancy. Given that trends in variance are

important and interesting, a vital question is whether we are capturing them correctly when

we model mortality.

Theoretical Models of Adult Mortality

How is the variance in age at adult death described by mortality models? The most cele-

brated and influential model of adult age-specific mortality is that of Gompertz (1825), in

which the force of mortality rises exponentially with age. But recent work by Vaupel et al.

(1998), Thatcher, Kannisto and Vaupel (1998) and others suggests that a logistic model with

an asymptote describes old-age mortality more accurately. The logistic can also be seen as a

result of a model in which Gompertz mortality is modified by a multiplicative frailty (Vaupel,

Manton and Stallard, 1979). Frailty, if it occurs in this form, should clearly contribute to

the variability in age at death. While it can, we do not find this channel to be an entirely

compelling account of historical or cross-sectional patterns in S10. Overall, we will show

that traditional models are not well-equipped to deal with or provide understanding about

variance, and we find that disturbing in light of its clear importance.

We now present analytical results showing how the variance in age at adult death

depends on the parameters of mortality models. We consider in order a general mortal-

ity model, the Gompertz, the logistic, a general model with multiplicative frailty, and the

Gompertz with multiplicative frailty. We close this section with a summary of our findings
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before proceeding in the following section to examine the implications of trends in variance

for specific mortality models in use today.

General Mortality Model

Suppose that adult mortality µ(a) is an increasing positive function of age a. Survivorship

falls to zero as age a increases because cumulative mortality M(a) is increasing. The prob-

ability distribution of age at death for adults, φ(a), increases at young adult ages and falls

to zero at very high ages. Using an apostrophe to indicate a derivative with respect to age,

we differentiate equation (3) to reveal

dφ

da
= φ′ = µ′ ℓ + µ ℓ′.

The change in the value of φ between age a1 and a slightly larger age a1 +x is the sum of two

terms. The first, xµ′(a) ℓ(a), represents an increase in the probability due to the increase

with age of the death rate µ; the second, xµ(a) ℓ′(a) = −xµ2(a), represents a decrease in

the probability due to the decrease with age of survivorship ℓ(a). At the modal age at death,

which we will denote a0, density is maximized. Because φ′ = 0, the two components must

be perfectly balanced:

µ′(a0) =
dµ

da
= µ2(a0). (6)

If the mortality curve µ(a) were to steepen so that µ′ were higher at every age a, the mode

would have to shift to a younger age in order to maintain equality.

Near the mode a0, the age-at-death distribution φ(a) can be approximated via Taylor

expansion by a quadratic function,

φ(a) ≈ φ(a0)

(

1 −
(a − a0)

2

2 σ2

)

, (7)
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where

σ2 =
φ(a0)

|φ′′(a0)|
=

µ(a0)

|µ′′(a0) − 2 µ3(a0)|
. (8)

Here φ′′(a0) is the (negative) second derivative of φ(a) evaluated at the mode a0 and µ′′(a0)

is second derivative of µ(a) at the mode a0. When the distribution φ(a) is reasonably sharply

peaked around the mode a0, we can approximate it by a normal distribution,

φ(a) ≈ φ(a0) exp

(

−
(a − a0)

2

2 σ2

)

. (9)

This approximation provides a useful and often accurate estimate of the moments of φ(a) –

we use it here and also check its accuracy by numerical computation (***REF*** asymptotic

expansions). In particular, the variance in age at adult death is approximately given by the

σ2 appearing in equation (8). This variance depends on the curvature of the mortality

function, i.e., whether the slope of mortality steepens or shallows around the modal age. If

the curve steepens, then µ′′(a0) > 0 and the variance is smaller than for a curve that shallows

at the mode.

The Gompertz Model

We write the Gompertz mortality function as

µ(a) = µ0 eβ a, (10)

where the parameter β is the familiar age-slope of log mortality, a constant in the Gompertz

model. In the U.S. for both sexes combined, the age-slope is about 0.087 (Edwards, 2009a);

that is, mortality rates increase 8.7% with each year of age. When mortality is Gompertz,

equation (6) shows that the mode satisfies

µ(a0) = β,
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so the modal age at death is

a0 =
1

β
log(β/µ0). (11)

These results and those following are summarized in Table 1. We expect a0 to decrease if β

increases, a property that holds for (11) so long as a0 > 1/β which is true for any plausible

human mortality pattern. The density of age at death for the Gompertz model is

φ(a) = µ(a)e−(µ(a)−µ0)/β.

Because the Gompertz mortality rises exponentially, the density φ falls steeply at very high

ages.

Equation (8) reveals a key result of this paper: the variance in adult age at death for

the Gompertz model is approximately given by

σ2 ≈
1

β2
. (12)

Thus the Gompertz variance in age at death depends only on the slope parameter β and not

on µ0. It is possible to obtain an exact expression for the variance by analytical integration

in terms of special functions, but the results are not especially illuminating. However, we

have computed numerically the exact variance for a range of values of β and µ0 that are

appropriate for twentieth century human mortality. We find that the exact value of σ depends

only weakly on µ0 and that equation (12) is a very accurate approximation.

It follows that a Gompertz model can only describe differences in the variance of

the adult age at death with differences in the Gompertz parameter β, the age-slope of log

mortality. There is a one-to-one inverse relationship between the age-slope of mortality and

the variance in length of life. Were equation (12) an exact relationship, β = 0.087 would be

consistent with σ = 11.5.
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The Logistic Model

When measured by S10, U.S. levels of σ are higher than implied by β = 0.087, more in the

range of 15.0 rather than 11.5. We know there are departures from linearity in log mortality

rates at advanced ages; how does this affect σ as a function of β? We write the logistic

model for mortality as

µ(a) =
eβ a

C + eβ a
,

where C is the asymptote, commonly set to equal unity. Integration shows that the proba-

bility density of deaths is

φ(a) = (C + 1)1/β eβ a

(C + eβ a)(1+1/β)
.

This density falls as a simple exponential e−a for high ages, much more slowly than for the

Gompertz model. For the logistic, the modal age at death is

a0 =
1

β
log (βC), (13)

and the approximate variance from equation (8) is found to be

σ2 =
(1 + β)

β2
. (14)

Thus the logistic also displays the remarkable property that the variance in age at death

depends only on the slope parameter β. It follows that a logistic model can only describe

changes in the variance of the adult age at death if the slope parameter β changes with time.

Note that if we fit a Gompertz model and a logistic model to a particular data set, the

value of β must be similar in both. To see why, compare the two models near a = 0 which

here indicates the start of adult age. With the same β, the logistic model implies only a

slightly larger variance in age at adult death than the Gompertz. We expect this difference
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because the density φ for the logistic model shallows as age increases; see the discussion

after equation (9). For β = 0.087, equation (14) implies σ = 12.0, closer to reality than the

Gompertz but not by much.

Of course, when we measure σ with S10, we are including variance due to traffic ac-

cidents, violence, and other causes that asymmetrically impact the young in a decidedly

non-Gompertz way. For the U.S., this problem may be particularly acute. Edwards and

Tuljapurkar (2005) find that removing external-cause mortality reduces S10 by 1–1.5 years,

leaving still perhaps 1.5 years in extra S10 that cannot be well explained by logistic or decel-

erating log mortality, or by external causes. A natural next step is to examine the connection

between frailty in mortality and variance in length of life, two concepts that are related.

General Mortality, Multiplicative Frailty

Following Vaupel, Manton and Stallard (1979), suppose that every individual has a random

frailty Z and that g(z) dz is the probability that Z takes values between z and z + dz. Then

mortality is determined by frailty Z and a baseline mortality function µ(a) as the product,

Z µ(a). Conditional on frailty, the probability distribution of age at death is

φ(a|Z) = Z µ(a) exp(−Z M(a)),

with cumulative mortality M(a) defined as in equation (1). The usual specification of a

frailty distribution assumes that average frailty is 1, and that the distribution of frailty

has some variance s2 > 0. The population probability distribution of age at death is the

expectation over frailty,

φ(a) = E [φ(a|Z)] =

∫

g(z) φ(a|z) dz. (15)
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It is convenient to define the following averages with respect to frailty:

hj(a) = E [Zj e−Z M(a)], for j = 1, 2, 3. (16)

In the population, the modal age at death must then satisfy

µ′(a) = µ2(a)
h2

h1

. (17)

Note that if every frailty were equal to 1, we would have h2 = h1 and this equation would

reduce to our earlier equation (6). To approximate the variance in age at death, we use

equation (8) and obtain

φ′′(a0) = h1 µ′′ + µ3

{

h3 − 3

(

h2
2

h1

)}

, (18)

where the hi are evaluated at the mode a0, and then set

σ2 =
φ(a0)

|φ′′(a0)|
=

h1(a0)µ(a0)

|φ′′(a0)|
.

In these expressions, if every frailty is set equal to 1, we have h3 = h1 and the variance σ2

reduces to the value in equation (8).

General Mortality, Gamma Multiplicative Frailty

The expressions we presented thus far are not as illuminating as one might hope about how

frailty would affect the mode or the variance in age at death . To obtain a qualitative sense

of the effect of frailty, we consider the case when frailty Z follows a gamma distribution

(Vaupel, Manton and Stallard, 1979). In this case, the probability that Z lies between w
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and w + dw is assumed to be g(w) dw with

g(w) =
kk

Γ(k)
wk−1 e−k, (19)

where the average frailty is 1 and the variance of frailty is Var(Z) ≡ s2 = 1/k. This

distribution is convenient, as Vaupel et al. pointed out, because we can use it with any

baseline mortality µ(a) to find an explicit expression for the population average distribution

of age at death, whose general form was given by equation (15):

φ(a) = µ(a)

(

k

(k + M(a))

)k+1

. (20)

We can differentiate to find that the modal age at death is defined by the condition

µ′(a0) =

(

1 + s2

1 + s2M(a0)

)

µ2(a0). (21)

Notice that if all individuals had the same frailty, s2 = 0 and equation (21) would reduce to

the simpler equation (6). Qualitatively, the denominator on the right describes how frailty

alters the rate of change of average mortality and survival depending on how much selection

acts against more frail individuals. The magnitude of selection depends on both the variance

s2 in frailty, and the cumulative mortality hazard M(a). Strong selection will act to decrease

the modal age at death.

We can find the second derivative φ′′ at the modal age and use it in a Taylor approxi-

mation similar to equation (7) in order to obtain the variance in age at death:

σ2 =

(

φ(a0)

|φ′′(a0)|

)

,

=
µ(a0)

|µ′′(a0) − µ3(a0) [(1 + s2)(2 + s2)] / [(1 + s2M(a0)2)] |
. (22)

Note again the selection effect in the denominator in which s2 is multiplied by the cumulative
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mortality M(a0) which has occurred at ages below the mode. Strong selection via a large

M(a0) will combine with variance in frailty s2 to reduce the denominator and thus inflate

the variance σ2 in age at death.

Gompertz Mortality, Gamma Multiplicative Frailty

We can learn more by combining a Gompertz baseline mortality µ(a) = µ0 eβ a with multi-

plicative gamma-distributed frailty. The modal age at death for this model is found using

equation (21) with the Gompertz mortality, and yields the condition

µ(a0) = (β − s2µ0),

which explicitly gives us the mode as

a0 =
1

β
log

(

β/µ0 − s2
)

. (23)

Compared with equation (11) for the standard Gompertz, which is shown in the first column,

third row of Table 1, this equation reveals how frailty acts to reduce the modal age at death.

The variance in age at death is obtained using equations (21) and (22) and a little

algebra, which yields the remarkably simple result that

σ2 =
(1 + s2)

β2
. (24)

Comparing this with equation (12) for the standard Gompertz, both shown along the bottom

row in Table 1, shows that frailty amplifies the variance in age at death. A Gompertz model

with gamma frailty can describe changes in the variance of the adult age at death with

changes either in the Gompertz slope parameter β or in the variance s2 in frailty or in both.
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Summary

We have arrived at a set of important positive results. A key finding is that the Gompertz

slope of log mortality through age is inversely related to the variance in length of life.

Differences across time, space, or SES in the latter can only be captured by differences in

age-slopes of mortality. This insight is not greatly altered if mortality follows a logistic

curve, flattening out at advanced ages. Injecting frailty into standard mortality models

loosens the relationship between variance in life span and the Gompertz slope, often called

the rate of aging. A Gompertz model with Gamma multiplicative frailty allows us to model

heterogeneity in variance as deriving from heterogeneity in either the Gompertz slope, in the

variance in frailty, or in both.

But we view any normative or etiological insights from our exploration of these models

as considerably more elusive. On the one hand, we think the basic result concerning variance

in the Gompertz slope is important. Some have viewed the Gompertz slope as a kind of

species-specific parameter that is eternally fixed while the intercept may fluctuate (Finch,

Pike and Witten, 1990). But we show it can only be constant if we add a free parameter like

frailty and allow it to fluctuate arbitrarily in order to fit the data. A more straightforward

reading of the evidence is that instead, both nature and nurture must affect the Gompertz

slope, at least in human populations and potentially in other species.

The addition of multiplicative frailty to a Gompertz model only addresses changing

variances in age at death if we assume that frailty distributions have been changing quite

rapidly over time. Temporal change in frailty has not been a feature of mortality models,

and it is not clear why the distribution of such frailties would narrow over time. From an

evolutionary perspective, it is not altogether clear why frailty should have persisted into

modern humans at all. It is also unclear why in the cross section African Americans should

have persistently higher frailty than whites, or why Americans in general should endure

higher levels than Europeans or Japanese. Frailty models may allow us to model mortality

better in a strictly mechanical sense, but they do not appreciably improve our understanding.
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Models of Adult Mortality in Practice

These results concerning variance in length of life and the age-slope of mortality bear impli-

cations for modeling and forecasting. In this section we examine how variance is implicitly or

explicitly treated in an array of common frameworks. We first examine forecasting models,

including a recent technique that involves mortality “translation,” which we explain below,

as well as the the popular Lee and Carter (1992) forecasting model, which can be seen as a

generalized Gompertz model. Then we discuss several standard mortality models that are

commonly used in short panels with microdata, where cross-sectional patterns in variance

are more important. We examine the Cox (1972) model, the class of nonparametric models

suggested by the methods of Kaplan and Meier (1958), and accelerated failure time (AFT)

models, which some have associated with frailty models.

Aggregate Forecasting Models

Mortality Translation: Bongaarts-Feeney

The pioneering model of mortality translation due to Bongaarts and Feeney (2003) provides

an appealingly simple description of mortality change, although it is controversial. A recent

edited volume by Barbi, Bongaarts and Vaupel (2008) provides a thorough overview of the

method, which is related to the concept of tempo effects in mortality (Bongaarts and Feeney,

2002).

One can describe the Bongaarts-Feeney model in terms of a hypothetical cohort fol-

lowing a period life table. Let T1 be the random age at death of an individual in this cohort

in period t1. In a later period t2 > t1, suppose that the effect of mortality change between

the two periods is completely described by delaying each death by the same amount. We

assume infant mortality is practically zero and thus can also be delayed in this fashion, which

although unrealistic is consistent with our focus on adult mortality. Each random age at

death T1 in the first period is thus replaced in the later period by the random age at death
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T1 + D, where D > 0 is fixed. We see at once that the average age at death increases from

e0(t1) = E [T1] in period t1 to e0(t2) = e0(t1) + D in the later period t2. If we increase the

mean age at death by some fixed annual amount, we have found a model of mortality change

that describes a constant trend in e0. We use the term mortality translation for any such

model.

Notice that translation only affects the mean age at death and not its variance. Shifting

every random age at death from T1 to T2 = T1 +D results in a constant variance, Var(T1) =

Var(T2), so long as D is fixed. In fact, translation leaves unchanged all the central moments

of the random age at death. Put geometrically, translation necessarily implies that the shape

of the distribution of age death does not change.

Mortality translation is appealing because it can be used with any mortality model.

Bongaarts and Feeney (2003) and Bongaarts (2005) used translation for a Gompertz and a

logistic model. Vaupel (1986) used a Gompertz model in essentially the same way, although

he did not explicitly refer to translation. Take any reasonable adult mortality function µ(a).

In period t1 suppose that the corresponding mortality µ1 > 0 for ages greater than some

cutoff age A1. In a later period t2 define adult mortality to be a translation of the original

mortality schedule:

µ2(a) =











0 if A1 ≤ a < (A1 + D)

µ1(a − D) if a ≥ (A1 + D)

It follows automatically that the probability distribution of ages at death is also translated.

If φ1 and φ2 are the distributions in the two periods, then

φ2(a) = φ1(a − D), for a ≥ (A1 + D).

This is simply an alternative statement of the translation of the random age at death T1

distributed as φ1 to T1 + D.
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It is obvious that mortality translation, by construction, cannot describe temporal

changes in the variance in the probability distribution of age at death, or for that matter,

of other central moments of φ related to the shape of the distribution, such as skewness or

kurtosis. As revealed by Wilmoth and Horiuchi (1999), Cheung et al. (2005), and Edwards

and Tuljapurkar (2005), trends in all of these moments have been and remain very interesting

even in industrialized countries. Prior to 1960, S10 was strongly declining in industrialized

countries, a pattern that is repeating itself among many developing countries today (Ed-

wards, 2009c). To be sure, Bongaarts and Feeney (2003) never intended their model to

apply universally across historical periods; their aim was mortality forecasting for the U.S.

and other industrialized countries. But while S10 has remained roughly steady on average

in the U.S. since 1960, it has also fluctuated up and down within a 1.5-year band over time

(Edwards and Tuljapurkar, 2005), or ±5%. Forecasting via translation implicitly makes a

relatively bold statement about long-term trends in the variance as well as the tolerance for

error in estimating it.

Generalized Gompertz: Lee-Carter

Lee and Carter (Lee and Carter, 1992) proposed a parsimonious three-parameter model that

explains temporal trends in mortality well in industrialized countries (Lee and Miller, 2001).

Using the singular value decomposition, they estimate

log µ(a, t) = a(a) + b(a) k(t), (25)

where µ(a, t) is the mortality at age a in period t, a and b are constant age profiles or vectors,

and k(t) is a random walk with negative drift.

The intercept vector a is an average of age-specific log mortality rates over the historical

sample period, so it ends up being approximately Gompertz or logistic in shape. But the

b vector is not necessarily constant with age, as it would have to be in a Gompertz model
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with a fixed age slope over time. Indeed, fits of b typically reveal stark differences in rates of

mortality decline across age in industrialized countries (Tuljapurkar, Li and Boe, 2000). By

consequence, the slope and curvature of mortality in this model are free to evolve over time,

which as our results show can easily lead to changes in the variance of age at death. The

singular value decomposition of equation (25) produces optimal fits of age-specific mortality

rates; the moments of the distribution of ages at death are backed out of the model rather

than hard-wired as in the Bongaarts-Feeney translation model.

Figure 4 depicts historical data since 1959 and probabilistic forecasts of S10 for U.S. out

to 2050 using the Lee-Carter model applied to log mortality rates for both sexes combined

from the Human Mortality Database (2009). The forecast is shown by three dashed lines

that indicate the 2.5, 50, and 97.5 percentiles of the distribution. Several characteristics

are informative. There is clearly an extrapolated trend in S10, which declines in the median

forecast from 15 years around 2000 to just above 14 years by 2050. While this looks like a

bold assumption in the figure, by comparison practically all high-income countries except

for France already enjoy levels of S10 around 14 or below. A second point is that although

the forecast confidence interval is nearly 1 year wide by 2050, it does not appear to allow

for the same kind of volatile fluctuations we see in the time series for S10. Like e0, S10

is a smoothed average of the many age-specific mortality rates that the Lee-Carter model

actually forecasts. It is not surprising that forecasts of S10, like e0, would be considerably

less volatile than historical data.

Implications

Over the last two centuries, the variance in age at adult death as measured by the standard

deviation S10 has declined by almost 50%. Were we to use a Gompertz model to describe

period mortality at ages over 10, then the slope of the Gompertz model would have to

increase by about 40% in order to replicate observed trends in S10. A logistic model for

period mortality would require a larger increase, about 50%, in the slope. Over the past
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50 years, the trend in S10 has been toward much more gradual decline, perhaps 1% in the

U.S., but temporary fluctuations in the variance around its slight downward trend have been

much larger, more like 10%.

Because mortality translation models do not allow for any change in the variance of

adult death, we doubt they should be used to say anything about the age pattern of deaths,

even if they may describe changes in e0 perfectly well. A striking result about long run

mortality change is the demonstration by Oeppen and Vaupel (2002) that world-record high

e0 has risen at a remarkable linear rate over the past 160 years. Such uniformity suggests

that upper bounds on life span, prognosticated and then consistently broken throughout

this period, are not as clear as some currently believe, and that the pace of human develop-

ment and achievement measured in this way has been rapid and surprisingly steady across

several distinct periods of socioeconomic and epidemiological transitions. But Edwards and

Tuljapurkar (2005) describe how long-term trends in the record-low variance paint a very

different picture regarding the gains in human well-being along the dimension of mortality.

True, progress against the Gompertz slope has indeed been achieved, contrary to the opin-

ions of those who may have viewed it as immutable. But long-term gains have come more in

fits and starts rather than continuously, and this highlights the remaining challenges, as does

the considerable heterogeneity across countries this century in progress against variance. We

do not fully understand the sources of variance in life spans, nor the underlying health in-

equalities they presumably reflect, and this is a problem for policy as well as for modeling

and forecasting mortality. Still, we acknowledge that translation models nonetheless provide

a good statistical fit to mortality patterns in industrialized countries since 1950 (Bongaarts,

2005). But the shape of the age distribution of deaths provides enough important insights

that we should probably not assume it to be fixed over long periods of time.

By contrast, the Lee and Carter (1992) forecasting model can and does predict changes

in the variance in the age at death, but with caveats. Its implicit forecasts of S10 appear to

be smooth extrapolations of average trends over the forecast interval. This is consistent with

23



the spirit and mechanics of the Lee-Carter framework and mirrors patterns in Lee-Carter

forecasts of e0. But since the historical paths of S10 have been considerably more convoluted

than those of e0 in every industrialized country, the simple extrapolation of the long-term

average trend in S10 produced by Lee-Carter seems incongruous. We conclude that while the

flexibility of Lee-Carter makes it a valuable model of mortality, it does not do as good a job

predicting trends in variance as we believe a model probably should.

Short Panel Models

Cox Proportional Hazards

The semiparametric model of Cox (1972) is often said to be the gold standard for modeling

survival in clinical settings and other relatively short panels. The model’s lone assumption is

that hazards are proportional across groups identified by covariates. Meanwhile, the shape

of the underlying mortality mortality is not parameterized.

Although the Cox model does not require background mortality to be Gompertz, the

fact remains it often is, at least approximately, because mortality rates tend to increase

exponentially until very advanced ages. Given this, our theoretical result that ties the

Gompertz slope to the variance in length of life also implies that the Cox proportional hazards

assumption is flatly inconsistent with cross-sectional patterns in variance. In addition to

having lower mean length of life, low-status groups also have higher variance, which means

they must have a smaller Gompertz slope or less steeply increasing mortality with age.

Thus it is clear that hazards are not proportional across individuals of varying ages and

statuses. By incorrectly assuming that they are, the standard Cox model will fail to model

any differences in subgroup variance.

It is by no means a revelation that hazards are often not proportional across groups, of

course. Researchers have developed a variety of tools to test for violations of proportionality

and a set of alternative models when violations are found (Hess, 1995; Lee and Go, 1997;

Therneau and Grambsch, 2000). One solution is to use time-varying coefficients; another is to
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perform stratified Cox regression. In either case, the analyst must judge which characteristics

on which to stratify or to allow to vary over time. Our results suggest that allowing the effect

of race or SES to vary systematically over time should adequately capture the different

subgroup variances and Gompertz slopes. Whether it is sufficient to use just one of these

covariates rather than several to model differences in the age-slope is unknown.

Accelerated Failure Time Models

Another class of tools that researchers use when the proportional hazards assumption is

violated are accelerated failure time (AFT) models (Therneau and Grambsch, 2000). These

are parametric models of survival time rather than of the hazard, which take the form

log T = a + XB + ǫ (26)

where X is a vector of covariates and ǫ is an error term. Interestingly, AFT models have

been discussed in the context of modeling mortality with multiplicative frailty (Hougaard,

1995), as well as in an alternative conceptualization of tempo effects in mortality (Rodŕıguez,

2008).

But a proportional scaling of length of life between racial subgroups or across SES,

such as we find in the AFT model, is even more misspecified than a proportional scaling

of hazards vis-à-vis the variance. While any scaling, additive or proportional, can provide

adequate fit to the mean lengths of life across subgroups, a proportional scaling implies that

the error in the level of length of life, namely the variance, becomes larger with longer mean

length. This is precisely the opposite of what we see in data.

While it is tempting to suggest a linear modeling of survival time as an alternative,

the error term in such a model would clearly be heteroscedastic. Without correction, the

robustness of inference would suffer, and like the standard Cox, a linear AFT model would

fail to model subgroup variances correctly.
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Kaplan-Meier Estimation

Another alternative to the Cox model is the fully nonparametric estimator of the survivorship

function due to Kaplan and Meier (1958). Given the difficulties standard parametric models

seem to face in capturing the variance in length of life, which is reflected in the slope of

survivorship, a nonparametric approach would seem at first to be ideal. One challenge is

that the Kaplan-Meier estimator may sacrifice efficiency when compared with parametric

approaches (Miller, Jr., 1983). Another challenge is that identifying which covariates ought

to matter and how is left entirely up to the researcher.

Implications

Subgroup differences in variance in length of life and the varying age-slopes in mortality

rates they imply are a large problem for short panel models. Without correction, the Cox

proportional hazards model will probably produce biased results if age is correlated with

any of the other covariates, and it will definitely fail to capture subgroup differences in

life-span variance. Modeling time-varying covariates, which are really age-varying and thus

exactly what is needed, is one solution, and stratified Cox regression is another, but both

will reduce power. While AFT models appear if anything to worsen the modeling problem,

the Kaplan-Meier estimator would clearly improve it. The question is whether the efficiency

cost exceeds the costs of misspecification or reduced power, and the exact tradeoff is likely

to be application-specific. We intend this section merely as a renewed warning, with new

theoretical underpinnings, about a known but important issue in micro-level modeling.

Summary and Discussion

Our primary message is that the Gompertz slope, the rate of increase in mortality through

age, cannot be constant across time, space, or characteristic, because neither is the variance

in length of life. The Gompertz slope, which is often conceptualized as the rate of aging,
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typically increases with higher status, although aggregate patterns across OECD countries

do not neatly fit this simplified view. The result of a steeper Gompertz slope is a reduction

in the variance around length of life, and it always seems to be accompanied by a reduction

in the Gompertz intercept, which raises life expectancy.

Variance in length of life is costly, whether viewed at the population level as aggregate

health inequality or at the individual level as a mean-preserving spread in how long we live

(Edwards, 2009b). When rephrased as a faster rate of aging, a steeper Gompertz slope may

not sound like something good. But the compression of mortality around an ever-increasing

adult mode age at death represents decreases in costly uncertainty and arguably preventable

premature death.

Historical data reveal a massive decrease in the uncertainty around adult length of life

concomitant with revolutions in nutrition, public health, and the prevention of communicable

disease. Although progress against variance in developing countries has continued (Edwards,

2009c), compression has largely stalled in industrialized countries since 1960 (Wilmoth and

Horiuchi, 1999; Edwards and Tuljapurkar, 2005). As we discussed, a critical question for

forecasting models is how future patterns in the variance of age at death will unfold.

Given the long-term nonstationarity of variance, and the rapidity of its decline prior

to 1960, it is questionable how helpful extrapolative forecasts may be. This seems especially

true given the pace of scientific advancement in the genetics of aging, an entirely new field

with the potential to change the way we age. In a recent review, de Magalhães, Cabral and

Magalhães (2005) discuss how a subset of genetic interventions in lab mice appear to have

steepened the Gompertz slope, compressing mortality and “decelerating” aging. At the same

time, other interventions do not. It is an unanswered but provocative question whether such

new knowledge may be able to rectangularize human survivorship even further in a future

gerontological revolution.

This is not to say that gains against the diseases of old age are the only possible source

of gains against variance, which is almost certainly not true. That variance is higher among
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subgroups with lower SES is a fairly clear indication that we can make considerable progress

against variance by addressing the disease of socioeconomic inequality. While there is no

clear link between population S10 and income or educational inequality, it is telling that we

see racial differences in S10, which could in principle be driven by genetic differences, that look

almost identical to SES differences. This is a straightforward extension of the conclusion that

racial differences in mortality seem to be a manifestation of racial differences in SES (Preston

and Taubman, 1994). But reducing inequality in SES is likely to be a function of political

will, which few demographers and health economists would be comfortable forecasting.
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Rodŕıguez, Germán. 2008. Demographic Translation and Tempo Effects: An Accelerated

Failure Time Perspective. In How Long Do We Live?, ed. Elisabetta Barbi, John Bongaarts

and James W. Vaupel. New York: Springer pp. 69–92.
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Table 1: Characteristics of the distribution of adult death in three models

Parameter Gompertz Logistic Gompertz Gamma

Mortality at age a, µ(a) µ0e
βa eβa

C + eβa
Zµ0e

βa

Density of deaths at a, φ(a) µ(a)e−(µ(a)−µ0)/β (C + 1)1/β eβa

(C + eβa)1+1/β
µ(a)

(

k

k + M(a)

)k+1

Mode age at death, a0
1

β
log(β/µ0)

1

β
log(βC)

1

β
log(β/µ0 − s2)

Variance in age at death, σ2 1

β2

1 + β

β2

1 + s2

β2

Notes: In the logistic model, C is the asymptote, commonly set to equal one. The cu-
mulative force of mortality at age a is M(a) =

∫ a

0
ds µ(s). In the Gompertz Gamma

model, the multiplicative frailty index Z is distributed gamma with density equal to
g(w) = kk

Γ(k)
wk−1 e−k, an average E(Z) = 1, and a variance Var(Z) ≡ s2 = 1/k.
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Figure 1: Distributions of age at death by race in the U.S. in 2004
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Figure 2: Distributions of age at death in Sweden in 1900 and 2000
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Figure 3: Decomposing total variance in length of life in Sweden since 1900
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Source: Human Mortality Database (2009) and authors’ calculations. Each panel shows a
component’s proportion of total variance in period length of life, which is the weighted sum
of squared differences between life expectancy at birth, e0, and midpoints of single years of
age up to 110, where the weights are life-table deaths ndx. See equation (5) in the text for
the formulation of each component; V− is the variance of age at death below age 10 weighted
by deaths below age 10, V+ is the variance above age 10 weighted by deaths above 10, M−

is the squared difference between e0 and the mean age at death below age 10 weighted by
deaths below 10, and M+ is the squared difference between e0 and the mean age at death
above 10 weighted by deaths above 10.
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Figure 4: Historical patterns and Lee-Carter forecasts of S10 for both sexes combined in the
U.S.
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Source: Human Mortality Database (2009) and authors’ calculations. S10 is the standard
deviation in ages at death based on the period life table. The authors fit the Lee-Carter
model as shown in equation (25) via singular value decomposition applied to log age-specific
mortality rates for both sexes combined below age 100 from the HMD. Dashed lines represent
the 2.5, 50, and 97.5 percentiles of the probabilistic forecast made assuming k(t) follows a
random walk with drift.
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