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1. Introduction

In 2006 prescription drug expenditures accounted for around 10% of the US health bud-

get. For the elderly this component of healthcare expenditures is even more important,

accounting for expenditures exceeding $120 billion in 2005 and amounting to nearly $2,800

per person (Kaiser Family Foundation, 2005). The expansion of Medicare Part D through

the Medicare Modernization Act of 2003 is expected to increase the growth rate of this

expenditure component even further.

Should policy makers be concerned about the growth of prescription drug expenditures,

or do expenditures on prescription drugs pay for themselves through reduced usage of other,

possibly more expensive, health services? The strength and extent of substitution between

prescription drugs and other medical services is the key aspect of the issue. However,

there are plausible arguments that complementarity between prescribed drug and non-

drug expenditures might be expected. Overall the empirical evidence is mixed. In the U.S.,

while some health policy advocates argue that the use of new prescription drugs reduces

total health care costs, many states are intensifying e¤orts to control rising prescription

drug costs in their Medicaid programs (Cunningham, 2005). Thus it appears that answers

to these questions remain unresolved in both scienti�c and policy arenas. This paper

investigates these issues using a new econometric framework applied to quarterly panel

data on prescribed drug and nondrug expenditures.

Econometric measurement of substitution and complementarity is complex. At the

very least, a bivariate model is required, and one which can accommodate the presence of

a signi�cant proportion of zero-valued outcomes for both categories of expenditures. An

additional complication comes from the heterogeneity of individuals and medical services

that vary in their degree of substitutability, as the relationship between drug therapy and

other medical usage varies across a range of medical services. This motivates disaggregation

by health status and condition. A further complication is that both substitution and

complementarity have a dynamic dimension, but most econometric studies to date have

used static equilibrium frameworks and cross section data. This feature motivates our

formulation of a dynamic panel data version of the bivariate two-part model. A leading

issue is the di¢ culty of separating the pure incentive e¤ects of health insurance from those

due to adverse or advantageous selection, especially when such selection cannot be fully
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controlled through observed characteristics. Thus it is not surprising that econometric

results and inferences tend to vary across di¤erent studies.

This paper presents a new multivariate copula-based modeling approach for analyzing

cost-o¤sets between drug and nondrug expenditures based on panel rather than the more

commonly used cross section data. Such data support a dynamic reduced-form type ap-

proach which does not focus on the details of the mechanism through which cost-o¤sets

may arise. The estimation approach, based on copula functions, can potentially explain

why existing empirical results are varied. The approach allows for nonlinear dynamic de-

pendence between drug and nondrug expenditures as well as asymmetric contemporaneous

dependence. Our richer data set is built up from monthly event �les of individual re-

spondents. The resulting sample also permits disaggregation at the level of speci�c health

conditions, thus allowing us to test the main hypotheses using data that are relatively less

heterogenous than in many cross section settings.

In the remainder of the paper, section 2 elaborates the statement of the cost-o¤set

hypothesis. Sections 3 and 4 deal with the model speci�cation, including that of its dynamic

features. The data and the empirical results are described and discussed in sections 5 and

6. Section 7 concludes.

2. The cost-o¤set hypothesis

The study of cost-o¤sets in structural settings has a sound basis but is challenging for

reasons already noted. Previous analyses of these questions have followed a variety of dif-

ferent approaches. One strand of the literature analyzes the relationship between Medicare

supplemental insurance and the utilization of prescription drugs of the elderly; see, for

example, Poisal and Murray (2001) and Goldman and Philipson (2007). Of greater direct

relevance to this paper is the strand of literature which concentrates on the relationship

between drug expenditures and cost sharing and on the substitution e¤ects resulting from

changes in cost sharing; see Gaynor, Li and Vogt (2007), Goldman et al. (2004), Joyce et

al. (2002). Such an approach is �structural�in the sense that it focuses on the mechanism

though which prescription drug usage impacts other types of health care. For example,

Gaynor et al. (2007) use individual level data on health insurance claims and bene�ts; they

report evidence of substitution between outpatient care and prescription drug expenditures,
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with 35 percent of reductions in prescription drug expenditures being o¤set by increases in

other medical expenditures. Another example of a structural approach is Shang and Gold-

man (2007) who use Medicare Current Bene�ciary Survey (MCBS) panel data to examine

spending of Medicare bene�ciaries with and without supplemental drug coverage. They

report that � ... a $1 increase in prescription drug spending is associated with a $2.06

reduction in Medicare spending. Furthermore, the substitution e¤ect decreases as income

rises, and thus provides support for the low-income assistance program of Medicare Part

D.� Stuart and Grana (1995) and a series of coauthored articles by Stuart (2004, 2005,

2007) are other examples of studies that investigate cost-o¤sets of prescription drugs.

A di¤erent reduced form approach to uncovering potential substitution is illustrated by

Lichtenberg (1996, 2001) who analyzes the direct impact of (especially newer) prescription

drug expenditures on other types of expenditures, especially hospital care. His analysis

based on Medical Expenditure Panel Survey (MEPS) data involves direct regression of other

expenditures on measures of prescription drug use. His results indicate that � ... persons

consuming newer drugs had signi�cantly fewer hospital stays than persons consuming older

drugs.�Some health policy advocates argue that, on average, use of new prescription drugs

reduces total health care costs, but Zhang and Soumerai (2007) show that those results are

not robust to changes in speci�cation.

Another strand of literature emphasizes complementarity between drug and nondrug

spending. For example, Stuart et al. (2007) argue,

�Economic theory also posits that when the price of a complementary good

falls, both the demand for the good itself and the complement will rise. This

leads to a second way in which Part D might a¤ect Medicare Part A (hospitals)

and Part B (medical) spending. Because physician services complement to

prescription drug �lls, we expect that people with prescription drug coverage

will be more likely to visit physicians and thereby spend more on Medicare Part

B services. Furthermore, increased physician usage could lead to increased rates

of diagnostic checks, surgeries, and other expensive procedures.�

The extant literature on the direct non-structural approach for testing the cost-o¤set

hypothesis is potentially problematic. Indeed some features of this approach are at odds

3



with the standard static consumer behavior theory. For example, standard static models

of consumer demand do not directly introduce current or past expenditures as explanatory

variables for explaining other expenditure variables, but such dependence can clearly arise

in a dynamic setting. For example, purchases of durable consumer goods at time t will

generally a¤ect consumption of nondurables and durables beyond t: Analogously, the longer

lasting health e¤ects of prescribed medications, if they exist, may impact the use of other

medical services in the future. Thus, it is of interest to test whether expenditures on

prescribed medications have predictive value for other future medical expenditures (after

controlling for the e¤ects socioeconomic factors, as well as insurance and health status).

Currently there is not available a rigorous derivation of a cost-o¤set model from a

dynamic model of health care consumption. While our approach uses somewhat ad hoc

functional forms and distributional assumptions, it provides a starting point for devel-

oping models suitable for empirical study of dependence structures. It addresses several

important econometric and modeling issues that will typically arise in such contexts.

We model the cost-o¤set hypothesis within the statistical framework of the joint bivari-

ate distribution of two types of expenditures, prescribed medications and other nondrug

expenditures, denoted y1 and y2, respectively. We allow for a potentially long term non-

linear dynamic impact of current medical expenditures on health status and on future

health-related expenditures. Within such a framework we attempt to estimate the time

pro�le of the impact of drug expenditures on current and future nondrug expenditures, the

key parameters of interest being @y2;t=@y1;t�� . Identi�cation of these parameters requires

panel data. Within our framework, the cost-o¤set hypothesis implies negative dependence

between the two types of expenditures. We adopt a copula framework which accommodates

a �exible formulation of dependence and marks a departure from the usual assumption of

linear dependence.

3. Model speci�cation

The distributions of quarterly drug and nondrug expenditures have substantial numbers of

zeros, approximately 60-70 percent for drug expenditures and 30-40 percent for nondrug

expenditures. To capture this feature we propose a bivariate hurdle model of expenditures.

In the univariate case, the hurdle or two-part model is ubiquitous in the health economics
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literature (Pohlmeier and Ulrich, 1995). Either logit or probit is the commonly used

functional form for the �rst part, which describes whether spending is positive. For the

second part, which models positive spending, much of the older literature used OLS to

estimate the parameters of the logarithm of expenditures. More recently, models based on

the gamma distribution have been preferred (Manning, Basu, and Mullahy, 2005), in part

because they tend to �t the data better, and also because they have the added advantage

of not requiring, post estimation, a retransformation to the raw scale. We take this basic

setup from the literature on expenditures and extend it in two signi�cant ways. First, it

is adapted to the bivariate case. Second, because the cost-o¤set hypothesis is inherently

dynamic, we specify dynamic relationships within the bivariate hurdle framework.1 We

develop a model of the joint distribution of drug and nondrug expenditures because this

will lead to a number of parameters relevant to the cost-o¤sets hypothesis.

Consider two non-negative outcomes y1 and y2 each with a signi�cant fraction of zeros.

The bivariate hurdle model speci�es a statistical process for each of the four con�gurations

of outcomes, y1 = 0; y2 = 0 (denoted by (y01; y
0
2) in what follows); y1 > 0; y2 = 0 (y

+
1 ; y

0
2);

y1 = 0; y2 > 0 (y01; y
+
2 ) and y1 > 0; y2 > 0 (y+1 ; y

+
2 ). Each con�guration maps to a data

distribution given by a product of a bivariate hurdle probability and a density for the

positive outcomes,

y01; y
0
2 �! F (y1 = 0; y2 = 0) (1)

y+1 ; y
0
2 �! F (y1 > 0; y2 = 0)� f1(y1jy1 > 0)

y01; y
+
2 �! F (y1 = 0; y2 > 0)� f2(y2jy2 > 0)

y+1 ; y
+
2 �! F (y1 > 0; y2 > 0)� f12(y1; y2jy1 > 0; y2 > 0);

where F is a bivariate distribution de�ned over binary outcomes; f1 and f2 are univariate

densities de�ned over positive, continuously distributed outcomes, and f12 is a bivariate

density de�ned over a pair of positive, continuously distributed outcomes. We �rst de-

scribe the univariate densities fj ; j = 1; 2. Then we describe the joint distribution F and

the joint density f12. Note that, for notational convenience, we �rst describe the setup

without conditioning variables. Conditioning on covariates and lagged dependent variables

is described later.
1There are some similarities in the framework of this paper and that of Bien et al. (2007), who use a

bivariate hurdle for counts with an application to �nancial data.
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3.1. Speci�cation of fj

Positive expenditures are speci�ed according to the gamma density,

fj(yj jyj > 0) =
exp(�yj=�j)y

�j�1
j

�j�(�j)
for j = 1; 2;�j > 0; �j > 0: (2)

Note that E(yj jyj > 0) = �j�j , j = 1; 2 and skewness and kurtosis of the gamma distrib-
utions are positively related to 1=�j : Thus the speci�cation allows the shape parameter to

be di¤erent for drug and nondrug expenditures.

3.2. Speci�cation of F and f12

It is likely that stochastic dependence between drug and nondrug expenditures is asymmet-

ric, with equally plausible arguments in favor of lower or upper tail dependence. Unlike the

typical bivariate probit setup for joint binary outcomes or the seemingly unrelated linear

regression setup, both of which emphasize linear correlations, copula-based dependence

measures allow for more �exible patterns. Dependence in a copula-based model derives

from the functional form of the copula itself, which is speci�ed by the researcher. Some

copulas exhibit dependence that is highly nonlinear and asymmetric. Thus, a copula-based

model has the potential to more accurately capture the complex, nonlinear relationship be-

tween drug and nondrug expenditures. Our statistical framework uses the copula approach

to generate the desired joint distributions, F and f12.

3.2.1. Copula basics

The copula approach to multivariate distributions was pioneered by Sklar (1973) and ex-

tended to conditional distributions by Patton (2006). Within this framework the copula

parameterizes a multivariate distribution in terms of its marginal distributions conditional

on information set It�1. For an m-variate joint distribution function G; the copula satis�es

G(y1t; :::; ymtjIt�1) = C(G1(y1tjIt�1); :::; Gm(ymtjIt�1); �); (3)

where Gj(yjtjIt�1) denotes the marginal distribution function of the jth component and
� is a scalar-valued dependence parameter. Given the marginal distributions, and a cop-

ula function C(�); the above equation generates a joint conditional distribution. A fully
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parametric implementation requires the choice of suitable functional forms of marginal

distributions G1; :::; Gm, and the functional form of the copula.

The literature o¤ers a vast array of copula functional forms from which to choose

(Nelsen, 2006). Because we have no a priori expectations regarding the dependence struc-

ture for our data, we have experimented with a variety of copulas: (1) Gaussian; (2)

Clayton; (3) Clayton survival; (4) Frank. By changing the functional form of the cop-

ula, many di¤erent dependence patterns between marginal distributions can be explored,

including both nonlinear and asymmetric tail dependence. Properties of these well estab-

lished functional forms are discussed in the literature (Joe, 1997; Nelsen, 2006; Cherubini

et al., 2004; Trivedi and Zimmer, 2007).2

Anticipating our results, we have found strong evidence that, in general, the best �t to

the data is obtained using the Clayton copula. The bivariate Clayton (1978) copula takes

the form

C(u1; u2; �) = (u
��
1 + u��2 � 1)�1=� , � > 0 (4)

where uj = Gj(yj jIt�1) with the dependence parameter � restricted to the region (0;1).
As � approaches zero, the marginals become independent. As � approaches in�nity, the

copula attains the Fréchet upper bound, but for no value does it attain the Fréchet lower

bound. The Clayton copula exhibits asymmetric dependence in that dependence in the

lower tail is stronger than in the upper tail, but this copula cannot account for negative

dependence. It is not always easy to interpret estimates of � for di¤erent copulas. Thus

it is helpful to transform � to more easily interpreted measures of concordance such as

Kendall�s � (Nelsen, 2006) which is comparable across copulas. For the Clayton copula the

formula for converting � is � = �=(� + 2).

In using the Clayton copula, contemporaneous dependence between drug and nondrug

spending is restricted to be positive, and therefore, we not surprisingly �nd that contempo-

raneous dependence is positive. However, in our formulation the choice of copula does not

restrict the direction of dynamic dependence, which is our principal concern. Preliminary

analysis indicated that other copulas that permit negative contemporaneous dependence

also produced positive contemporaneous dependence. Therefore, our �ndings of positive

2The Gaussian copula does not permit any tail dependence. The Clayton copula supports only positive
dependence and lower tail dependence. The Clayton survival and Gumbel copulas are suitable for modeling
positive upper tail dependence. Frank�s copula captures both positive and negative dependence.
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contemporaneous dependence appear to be robust across di¤erent copula speci�cations.

The main bene�t of the Clayton copula is its ability to capture lower tail dependence,

which, as demonstrated below, is omnipresent in health care expenditures data.

3.2.2. Speci�cation of F

We use the probit formulation for the marginal distributions for the bivariate hurdle part

of the model, i.e., Pr (yj > 0) = �j (�). Let the joint probability distribution of positive
drug and nondrug expenditures be

F (y1 > 0; y2 > 0) = C (�1 (�) ;�2 (�) ; �0) (5)

where C is one of the copula functions described above, and �0 is a dependence parameter.

It is easy to derive the following related probabilities:

F (y1 = 0; y2 = 0) = 1� �1 (�)� �2 (�) + C (�1 (�) ;�2 (�) ; �0) ;

F (y1 > 0; y2 = 0) = �1 (�)� C (�1 (�) �2 (�) ; �0) ;

F (y1 = 0; y2 > 0) = �2 (�)� C (�1 (�) �2 (�) ; �0) :

3.2.3. Speci�cation of f12

We use the gamma density for the marginal distributions for the copula-based joint distri-

bution of positive drug and nondrug expenditures. That is,

f+j (yj jy1 > 0; y2 > 0) = y
�+j �1
j

exp(�yj=�j)

�
�+j
j �(�

+
j )

for j = 1; 2;�j > 0; �
+
j > 0

and

f12(y1; y2jy1 > 0; y2 > 0) = c
�
F+1 (�) ; F

+
2 (�) ; �+

�
� f+1 (�)� f

+
2 (�) (6)

where lower case c(�) represents the copula density, and F+j is the cumulative distribution

function (cdf) version of f+j . Note that, while we have speci�ed �j , which we parameterize

to be the same as in the speci�cations of fj for parsimony, �+j is not necessarily the same

as �j , a proposition we test in our empirical analysis.
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4. Dynamics and estimation

We now introduce the speci�cations for conditioning on covariates, dynamics via lagged

dependent variables and individual-level random e¤ects. We �rst describe how they are

speci�ed for the bivariate hurdle speci�cation and then we describe how they are speci�ed

for the models of positive expenditures.

4.1. Speci�cation of conditional means in F

For the marginal distributions �1 (�jIt�1;xit) ;�2 (�jIt�1;xit) we specify

Pr(y1it > 0) = �
�
h01(fyk;it�jg) + x0it�01 + �01i

�
(7)

Pr(y2it > 0) = �
�
h02(fyk;it�jg) + x0it�02 + �02i

�
; (8)

i = 1; :::; N ; t = 3; :::T ; k = 1; 2; j = 1; 2; :::; J and J < T . The functions h0k are de�ned

over the elements of the set fyk;it�jg which includes lagged outcomes and �0ji are random
intercepts.

We allow for independent e¤ects of lagged binary indicators of expenditures in addition

to lagged continuous expenditure variables. Thus the speci�cations for h0l are given by

h0lfyk;it�jg =
2X
k=1

JX
j=1


lkj1(yk;it�j > 0) +
2X
k=1

JX
j=1

�lkj ln (max(yk;it�j ; 1)) for l = 1; 2: (9)

That is, the lagged expenditures are entered as their logarithms when they are positive,

zero otherwise, along with an indicator for whether the lagged expenditure is greater than

zero or not.3 As we explain in greater detail below, the dynamics of this bivariate model

are characterized by (
ljk; �ljk; j = 1; 2; k = 1; 2; l = 1; 2): The random intercepts are

further speci�ed as

�0ji = x
0
i�0j +

2X
k=1

�k1(yk;i0 > 0) +
2X
k=1

&k ln (max(yk;i0; 1)) + "0ki; k = 1; 2: (10)

This extends the standard random e¤ect panel model along two dimensions. Following

Mundlak (1978) and Chamberlain (1984), we allow for correlation between �0ki and xit

and, following Wooldridge (2005), we allow for the e¤ects of initial conditions by specifying

3There are no positive expenditures less than $1.
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�0ki to be a function of yki0, a vector of initial values of the outcome variables allowing for

separate e¤ects for the binary indicator and continuous expenditure variables. The term

"0ki may be interpreted as unobserved heterogeneity uncorrelated with xit and yki0. To

allow for possible dependence between y1it and y2it induced by unobserved heterogeneity,

("01i "02i) have a joint bivariate distribution whose functional form is not initially explicitly

stated. Given this distribution, the correlated random e¤ects bivariate model integrates

out the random e¤ects ("1; "2): Di¤erent functional forms of the joint distribution arise

from di¤erent parametric assumptions about the joint distribution of the random e¤ects.

Whereas we do not explicitly carry out this integration, we use several di¤erent functional

forms of the bivariate joint distribution (i.e. the hurdle copula). Underlying each functional

form is some form of dependence. We let the data decide which functional form best �ts

the data.

The estimation of the univariate dynamic probit model in the presence of initial con-

ditions has been discussed by Heckman (1981) and more recently by Wooldridge (2005);

Arumapalam and Stewart (2009) compare the two approaches. The estimation of this

model requires a further assumption about initial conditions. We follow Wooldridge�s con-

ditional maximum likelihood approach under the assumption that the initial conditions are

nonrandom.

4.2. Speci�cation of conditional means in f1, f2 and f12

For the marginal distributions fj(yj jyj > 0; It�1;xit) and f+j (yj jy1 > 0; y2 > 0; It�1;xit)
we specify

�1it = exp
�
h+1(fyk;it�jg) + x0it�+1 + �+1i

�
(11)

�2it = exp
�
h+2(fyk;it�jg) + x0it�+2 + �+2i

�
; (12)

i = 1; :::; N ; t = 3; :::T ; k = 1; 2; j = 1; 2; :::; J and J < T ; in parallel to the speci�cations

for the marginal distributions in the hurdle part of the model. Again, the functions h0k

are de�ned over the elements of the set fyk;it�jg which includes lagged outcomes and �0ki
are random intercepts. As in the speci�cation for the binary choices, we allow for indepen-

dent e¤ects of lagged binary indicators of expenditures in addition to lagged continuous
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expenditure variables via

h+l(fyk;it�jg =
2X
k=1

JX
j=1

'+lkj1(yk;it�j > 0) +
2X
k=1

JX
j=1

�+lkj ln (max(yk;it�j ; 1)) for l = 1; 2;

(13)

and

�+ki = x
0
i�+k +

2X
k=1

�+k1(yk;i0 > 0) +
2X
k=1

&+k ln (max(yk;i0; 1)) + "+ki; k = 1; 2: (14)

As is typical in gamma regressions, the parameters �1 and �2 are speci�ed as scalars.

4.3. Estimation and inference

As described in equation (1), in our set-up there are four categories of bivariate realizations:

(1) y1 = y2 = 0; (2) y1 > 0; y2 = 0; (3) y1 = 0; y2 > 0; (4) y1 > 0; y2 > 0: The

joint likelihood is formed using the probability expression for each realization. Using the

marginal and joint expressions described above, the log likelihood function for the bivariate

hurdle model is

lnL =
P
0;0
[ln (F (y1 = 0; y2 = 0); It�1;xit; �0)] (15)

+
P
+;0
[ln (F (y1 > 0; y2 = 0); It�1;xit; �0) + ln (f1 (�jIt�1;xit))]

+
P
0;+
[ln (F (y1 = 0; y2 > 0); It�1;xit; �0) + ln (f2 (�jIt�1;xit))]

+
P
+;+

[ln (F (y1 > 0; y2 > 0); It�1;xit; �0) + ln f12(y1; y2jy1 > 0; y2 > 0; It�1;xit; �+)] :

Note that the log likelihood function contains two dependence parameters; �0 captures

dependence between the probabilities of having any drug and nondrug expenditures. Sim-

ilarly, the term �+ represents dependence between drug and nondrug expenditures when

both are positive.

For purposes of estimation, it is convenient to note that the log likelihood decomposes

into two parts which can be maximized separately, i.e., lnL = lnL1 + lnL2 where

lnL1 =
P
0;0
ln (F (y1 = 0; y2 = 0); It�1;xit; �0) +

P
+;0
ln (Fy1 > 0; y2 = 0; It�1;xit; �0) (16)

+
P
0;+
ln (F (y1 = 0; y2 > 0); It�1;xit; �0) +

P
+;+

ln (Fy1 > 0; y2 > 0; It�1;xit; �0)
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and

lnL2 =
P
+;0
ln (f1 (�jIt�1;xit)) +

P
0;+
ln (f2 (�jIt�1;xit)) (17)

+
P
+;+

ln f12(y1; y2jy1 > 0; y2 > 0; It�1;xit; �+):

lnL1 and lnL2 are maximized separately using a Newton-Raphson algorithm with numeri-

cal derivatives. Upon convergence, robust standard errors that adjust for clustering at the

individual level are calculated and used for inference throughout.

5. Data

The data for this study come from the 1996-2006 waves of the Medical Expenditure Panel

Survey (MEPS) collected by the Agency for Healthcare Research and Quality (AHRQ)

from which we construct a number of subsamples of substantive interest. MEPS consists

of a series of �ve interviews over a two-and-a-half year period from which an 8 quarter panel

is constructed for each respondent. Person-speci�c socioeconomic information and monthly

health insurance status comes from the Household Component Full Year �les. Informa-

tion on monthly health care spending comes from the Household Component Event �les.

Spending is accumulated at the quarterly level and includes spending from all sources on

the following services: prescription drugs (including re�lls), o¢ ce-based visits, outpatient

visits, inpatient hospital visits, and emergency room visits. The latter three categories in-

clude both facility and separately-billed-doctor expenses. The sample excludes individuals

who report quarterly drug or nondrug spending above the 99.5 percentile of all positive

spenders. Finally, all spending measures are adjusted for in�ation using the medical CPI

(http://www.bls.gov/cpi/), with fourth quarter 2006 serving as the base period.

We construct six subsamples of data for analysis as the full sample is likely too het-

erogeneous to be insightful. Each sample considers individuals 18 years of age and older

as children are likely to have di¤erent health conditions and treatment protocols. The

�rst two subsamples attempt to introduce homogeneity along age and insurance dimen-

sions. Thus they consist of (1) an elderly sample consisting of individuals ages 65 and older

(N = 78; 162), and (2) well-insured individuals covered by both medical and prescription

drug insurance (N = 289; 374). Four additional subsamples focus on subjects with speci�c
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health ailments: (3) diabetes (N = 42; 702), (4) mental illness (N = 76; 848), (5) arthritis

(N = 91; 230), (6) heart problems (N = 120; 552).

Table 1 presents descriptive statistics for quarterly drug and nondrug spending. Not

surprisingly, the probability of positive spending appears to vary somewhat with respect

to health problems, insurance, and age. The same is true for spending among positive

spenders, with the highest spending occurring among the elderly and those with diabetes,

arthritis, and heart conditions. The relatively large means of quarterly medical spending,

in comparison to the smaller medians, indicate long upper tails. Also, as expected, the

quarterly data exhibit substantial serial dependence. In Table 1, we also report the �rst

order serial correlation coe¢ cient for the indicator of positive spending as well as for the

logarithm of expenditure (with its value set to zero when expenditure is zero). Two patterns

are immediately apparent. First, nondrug expenditures display substantially more serial

correlation than drug expenditures. Second, the serial correlation in the indicator variable

is uniformly larger than the serial correlation in the corresponding continuous expenditure

variable.

Sample means for explanatory variables appear in Table 2. The samples exhibit dif-

ferences in socioeconomic and health characteristics. The elderly sample has lower rates

of employment, smaller family sizes, and higher rates of public insurance. The diabetes,

arthritis, and heart condition samples are older and have larger numbers of blacks, lower

rates of employment, and higher rates of public insurance. The mental illness sample has

more females, less blacks, and higher divorce rates compared to the other samples. The

sample of individuals with prescription drug coverage is younger, whiter, healthier, more

educated, and more likely to be employed and married. Di¤erences between the subsam-

ples highlight heterogeneity in health care markets and motivate separate consideration of

the di¤erent groups.

5.1. Covariates in marginal distributions

The speci�cation of the mean of the marginal distributions, controlling for both the initial

conditions and correlated random e¤ects, was provided in the preceding section. We now

discuss the covariates in greater detail.

First, all marginal models use a common vector of covariates. Speci�cally, the lag
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structure is speci�ed to be the same for all outcomes. This restriction follows from the

results of Patton (2006) who developed �conditional�copula modeling by including lagged

dependent variables on the right hand side similar to what is proposed here. The model is

a nonlinear vector autoregressive system of equations. By including previous-period expen-

ditures variables on the right hand side, the model captures dynamic dependence between

drug and nondrug expenditures. Note that the model is not a simultaneous equations

system in the traditional sense.

In most previous applications of conditional copulas, usually in models of continuous

outcomes, and in the literature on dynamic binary response models, the lag is restricted to

one period. For potential �exibility, given that our data periodicity is quarterly, we include

two lags on both 1[yj > 0] and y+j : Speci�cally we use four variables at one- and two-period

lags to measure past expenditures:

1. one and two-period lagged values of a dichotomous indicator for positive drug expen-

ditures;

2. one and two-period lagged values of a dichotomous indicator for positive nondrug

expenditures;

3. one and two-period lagged values of log of drug expenditures with the variable coded

as zero when the expenditure is zero.

4. one and two-period lagged values of log of nondrug expenditures with the variable

coded as zero when the expenditure is zero.

The vector X includes all explanatory variables listed in Table 2, with dummies for

individual chronic conditions rather than the number of chronic conditions.4 The vector

X also includes measures of age squared and an interaction between age and female and

its square. Counting control variables in X, quarter dummies, lagged spending measures,

initial conditions, and the �Mundlak terms�, each marginal distribution includes a total of

91 explanatory variables plus an intercept term.5

4The chronic condition dummies indicate the presence of cancer, diabetes, arthritis, asthma, hyperten-
sion, a mental condition, a urine condition, and a heart condition.

5For some of the subsamples, the number of explanatory variables is less because some variables are
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6. Results

We �rst report model selection criteria for choice between di¤erent copulas. Next, we de-

scribe the results of a number of speci�cation tests to highlight the importance of a number

of key speci�cation features of the bivariate hurdle model and parameter estimates of the

dynamic relationships. We then report on the properties of contemporaneous association

and tail dependence highlighted by the copula. Finally, because the dynamic relationships

inherent in the parameter estimates are quite complicated, we report on calculations of

partial e¤ects which illustrate the dynamics much more transparently.

Table 3 reports Bayes Information Criteria (BIC) statistics for several combinations of

copulas. For each subsample, the Clayton copula provides a superior �t in both parts of

the model, except for three models for continuous expenditures for which there is little

discrimination across models. Therefore, all results presented and discussed below are

based a version of equation (15) in which all copulas are speci�ed as Clayton.

Parameter estimates from the bivariate hurdle model with Clayton copulas are reported

in Tables 4-9. The left panel of results corresponds to the hurdle part, and the right panel

reports �ndings for positive expenditures. Only estimates of the autoregressive parameters

are shown in the tables along with a number of speci�cation tests and the copula para-

meters. The models include a rich set of controls, as outlined above, but these are not

shown in the tables in the interest of brevity. Tables of results for the full models are

available upon request. Although not shown, we note that the estimated coe¢ cients of the

control variables are similar in sign to previous studies of medical care access and spending.

Not surprisingly, the most important determinants of medical spending, both in terms of

magnitude and statistical signi�cance, are health status measures. Individuals with health

problems and/or physical limitations are more likely to have positive spending and have

higher levels of spending compared to their more healthy counterparts.

The dynamic relationships between the two types of expenditures are captured by the

coe¢ cients of functions of lagged expenditures, both as binary indicators of any expenditure

omitted. For example, the sample consisting of subjects with prescription drug coverage omits the indicator
for prescription drug coverage. The time-varying variables used to calculate Mundlak terms are: age, age
squared, female*age, female*age squared, married, widow, divorced, family size, education, log of income,
employed, �rm size, govtjob, private insurance, public insurance, prescription drug coverage, very good
health, good health, fair health, poor health, physical limitation, injury, cancer, diabetes, mental illness,
arthritis, asthma, urine condition, hypertension, and heart condition.
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and the logarithm of expenditures. There is clear evidence of own and cross lagged e¤ects of

spending in both the binary response or hurdle part and the continuous part of the model.

Rather that discussing every own and cross e¤ect in Tables 4-9, the discussion that follows

focuses on the relationship between lagged drug spending and current period nondrug

spending, as this relationship informs on the presence and magnitude of cost-o¤sets.

In the hurdle component of the model, a consistent pattern emerges across the subsam-

ples: Indicators of lagged positive drug spending are associated with lower probabilities of

present-quarter nondrug spending. The 1-quarter lagged indicator of positive drug spend-

ing is negative and signi�cant in all six subsamples, while the 2-quarter lagged indicator

is negative and signi�cant in the well insured, mental illness, and arthritis samples. In

contrast, the actual amounts of lagged (logged) drug spending are positively related to the

probability of present-quarter nondrug spending. (The only lagged logged drug spending

measure that is not signi�cant is the 2-quarter lag in the 65 and older sample.) Although

negative coe¢ cients of the lagged binary indicators are larger in magnitude than the posi-

tive coe¢ cients of the lagged (logged) spending variables, it is di¢ cult to ascertain whether

this is evidence of cost-o¤sets, as the lagged measures correspond to di¤erent scales. Fur-

thermore, contemporaneous dependence, discussed in the following subsection, appears to

be unambiguously positive. We attempt to quantify these various o¤-setting e¤ects below.

In the second part of the model, which describes positive spending, none of the lagged

measures of drug spending, either binary of logged amounts, appears to be signi�cantly

related to nondrug spending. Therefore, we expect that cost-o¤sets, to the extent that

they exist, are largely driven by the hurdle part of the model.

The chi-square test of the null hypothesis that the initial conditions have zero coe¢ -

cients is reported in Tables 4-9; this refers to the � j term in (10). The joint null is rejected

in every case, for both parts of the model, at p < 0:01. The tables also report a chi-square

test that the �Mundlak terms�are jointly insigni�cant. This refers to the joint signi�cance

of the �j coe¢ cients in (10) of the correlated random e¤ects speci�cation. This null hy-

pothesis is also conclusively rejected in every case. Both these tests support the desirability

of our more �exible random e¤ects speci�cation. Finally, the tables report tests of the hy-

pothesis that �j = �
+
j for j = 1; 2, i.e., the shape parameters of the gamma distributions for

y+1 and y
+
2 are the same in the speci�cations of the densities in y

+
1 ; y

0
2, y

0
1; y

+
2 and y

+
1 ; y

+
2 .
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The null hypothesis of equality is rejected in every case. In addition, although we do not

report test statistics, it is clear that skewness and kurtosis are signi�cantly higher for drug

than for nondrug expenditures.

6.1. Contemporaneous and tail dependence

The copula dependence parameters �0 and �+, reported at the bottom of Tables 4-9, mea-

sure contemporaneous dependence between drug and nondrug spending, after controlling

for the in�uence of all explanatory and lagged spending variables. Although less inter-

esting from a policy perspective, contemporaneous dependence represents an important

benchmark, as most previous studies have estimated contemporaneous cost-o¤sets based

on cross sectional data. Our results indicate that the Clayton copula gives the best �t,

and this copula supports positive contemporaneous dependence. The results show strong

evidence of positive contemporaneous dependence in all subsamples and for both parts of

the model. Both �0 and �+ are estimated with high degrees of precision, so this appears

to be a robust �nding.

Contemporaneous dependence is larger in magnitude in the hurdle part, with �0 between

1.00 and 1.30 (Kendall�s tau between 0.33 and 0.39). By comparison, in the second part,

�+ is between 0.20 and 0.25 (Kendall�s tau between 0.09 and 0.11). The interpretation is

that an individual�s probabilities of positive drug and nondrug spending are more closely

related than the amounts of drug and nondrug spending.

The illustrate contemporaneous dependence, post estimation we set explanatory vari-

ables equal to their mean values and coe¢ cients equal to their estimated values for each

subsample. From the estimated bivariate density, we then draw 2000 Monte Carlo real-

izations of (Pr(y1 > 0);Pr(y2 > 0)) for the hurdle part and (y1; y2) for the second part.

These simulated pairs are reported graphically in Figures 1 and 2. The �gures illustrate

the degree of lower tail dependence, formally de�ned as limv!0+
C(v;v)
v : Informally, lower

tail dependence is evident when events that occur with lower cumulative probabilities tend

to occur together. Lower tail dependence is visually summarized by the extent of clustering

in the lower left corners of Figures 1 and 2. Note that the lower tail dependency measure

for the Clayton copula is 2�1=� which indicates that a larger � value is associated with

greater lower tail dependency. The implication from Figure 1 is that quarters in which
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an individual has low probability of incurring drug expenses tend to be the same quarters

of low probability of nondrug expenses. Similarly, Figure 2 indicates that quarters of low

drug spending also exhibit low nondrug spending.

6.2. Dynamic dependence and partial e¤ects

In principle, the dynamic dependence and partial e¤ects are functions of each of the lagged

expenditure coe¢ cients. However, the complexity of the model makes it impossible to

fully understand these e¤ects directly from coe¢ cients. Therefore, we compute measures

of e¤ects that are analogous to the average partial e¤ect proposed by Wooldridge (2005).

We de�ne the average partial e¤ect (APE) on yk;t of the e¤ect of yj;t�1 as

APEk(yj;t�1) = E(yk;tjy(1)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)� E(yk;tjy(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) (18)

where j; k = 1; 2 and y(1)j;t�1 and y
(0)
j;t�1denote values of yj;t�1 over which the partial e¤ect

is desired. All other covariates in the model, including other lagged endogenous regressors

y�k;t�1;yt�2 and exogenous covariates x are �xed at representative values denoted by ���.
Di¤erent conventions may be used to set x�; see, for example Stuart et al. (2007). This

measure is limited because it only captures the one-period impact on y(2)it of the lagged

change in binary-valued variable y(1)it�1:

In the context of the bivariate hurdle model, it is also insightful to examine the decom-

position of APE into the e¤ects on the probability or hurdle part of the model and the

continuous outcome, conditional on it being positive. Thus we de�ne

APE0k(yj;t�1) = Pr(yk;t = 1jy
(1)
j;t�1; y

�
�k;t�1;y

�
t�2;x

�)� Pr(yk;t = 1jy(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)

(19)

as the partial e¤ect on the probability of a positive outcome and

APE+k (yj;t�1) = E(yk;tjyk;t > 0; y(1)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) (20)

� E(yk;tjyk;t > 0; y(0)j;t�1; y
�
�k;t�1;y

�
t�2;x

�)

as the partial e¤ect conditional on the outcome being positive. Note that Pr(yk;t =

1jy(m)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) and E(yk;tjyk;t > 0; y(m)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) for m = 0; 1 are ob-

tained directly from the marginal probit and gamma distributions respectively. The cal-

culation of E(yk;tjy(m)j;t�1; y
�
�k;t�1;y

�
t�2;x

�);m = 0; 1 involves terms from both hurdle and
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conditional parts of the model. Speci�cally

E(yk;tjy(m)j;t�1; y
�
�k;t�1;y

�
t�2;x

�) = Pr(yj = 0; yk > 0)� E2(ykjyj = 0; yk > 0)

+ Pr(yj > 0; yk > 0)� E+k (ykjyj > 0; yk > 0)

In this paper, we calculate APE�s corresponding to the cost o¤set hypothesis, i.e.,

we calculate the e¤ects of drug expenditures at time (t � 1) on non-drug spending at
time t. Speci�cally, we set y(0)j;t�1 = 0 (no drug expenditure) and calculate APE�s over

the empirically observed values of y(1)j;t�1 (positive values of drug expenditure). These

are reported in the 6 panels of Figure 3; APE0, APE+and APE reading from left to

right. Although we display the APE�s over the entire range of y(1)j;t�1 we believe they are

most reliable in the interior of the range of observations, e.g., between the 25th and 75th

percentiles of observed values.

The vertical lines in the graphs mark the 25th and 75th percentiles of positive drug ex-

penditures in the data. Within this range, estimated APE, shown in the rightmost panels,

are negative for �ve of the six subsamples. For all six samples, the magnitude of APE de-

creases from the 25th to the 75th percentile. Taking the 65 and older sample as an example,

previous quarter drug spending at the 25th percentile (approximately $40) is associated

with a current quarter reduction in nondrug spending of approximately $50. Similarly

previous quarter drug spending at the 75th percentile (approximately $200) translates to

a current quarter reduction in nondrug spending of approximately $10. Estimates of APE

within the 25th to 75th percentile range for the other samples are as follows: continuously

insured: �$35 to �$5, diabetes: �$90 to �$30, arthritis: �$60 to �$10, heart condition:
�$70 to �$10. For the mental illness sample, the change in nondrug spending switches
from approximately �$20 at the 25th percentile to +$10 at the 75th percentile.

Estimates of APE become smaller as previous quarter drug spending increases, primar-

ily because estimates of APE0, shown in the leftmost panels, are positive and increasing

between the 25th and 75th percentiles of drug spending. For �ve of the six samples, pre-

vious quarter drug spending at the 25th percentile is associated with an approximate 1

percentage point increase in the probability of positive current period nondrug spending;

this e¤ect is approximately zero for the mental illness sample. On the other hand, previous

quarter drug spending at the 75th percentile translates to an approximate 3�4 percentage
point increase in the probability of positive current quarter nondrug spending.
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For all six samples, estimates of APE+, which appear in the middle panels, are negative

between the 25th and 75th percentiles of previous quarter drug spending. For the diabetes

and heart condition samples, estimated APE+ become smaller in magnitude (less negative)

as previous quarter drug spending increases. For the other four samples, the estimated

APE+ become larger in magnitude as previous quarter drug spending increases.

The overall APE estimates suggest modest cost-o¤sets in nondrug spending in the

quarter following an increase in drug expenditures. The only instance in which there is no

cost-o¤set is among those with mental illnesses who experience relatively large increases

in previous quarter drug spending. Over most of the distribution of drug spending, the

magnitudes of cost-o¤sets are less than dollar-for-dollar, indicating that increases in drug

spending translate to increases in aggregate medical spending.

6.3. An alternative measure of cost-o¤set

The APE�s de�ned above estimate partial e¤ects that are �marginal� over the distribu-

tion of current drug expenditures. But, given that drug expenditures at time t are often

predicated on nondrug spending at time t via prescription re�ll rules and/or physician

monitoring behavior, it is important to identify cost o¤sets conditional on speci�c values

of current drug expenditures, especially as the preferred Clayton-copula formulation sug-

gests positive contemporaneous association along with left tail dependence between the

two types of spending. Therefore, we de�ne the conditional average partial e¤ect (CAPE)

on yk;t given yj;t of the e¤ect of yj;t�1 as

CAPEk(yj;t�1) = E(yk;tjy(1)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�) (21)

� E(yk;tjy(0)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�);

where j; k = 1; 2 and j 6= k and y(1)j;t�1 and y
(0)
j;t�1denote values of yj;t�1 over which the

partial e¤ect is desired. The key di¤erence between APE described by equation (18) and

CAPE described by equation (21) is the additional conditioning on yj;t in the calculation

of CAPE. Thus CAPEk shows how APEk(yj;t�1) changes with yj;t. Analogous to APE0

and APE+, we also de�ne CAPE0 and CAPE+, each of which conditions additionally on
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yj;t, as

CAPE0k(yj;t�1) = Pr(yk;t = 1jy
(1)
j;t�1; yj;t; y

�
�k;t�1;y

�
t�2;x

�)�Pr(yk;t = 1jy(0)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�)

(22)

and

APE+k (yj;t�1) = E(yk;tjyk;t > 0; y(1)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�) (23)

� E(yk;tjyk;t > 0; y(0)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�):

Calculation of the conditional (on yj;t) expectations is considerably more complicated

than the unconditional expectations needed for the calculation of the APE�s. For the

hurdle probabilities,

Pr(yk;t = 1jy(1)j;t�1; yj;t = 0; y
�
�k;t�1;y

�
t�2;x

�) =
Pr(yj = 0; yk > 0)

Pr(yj = 0)

and

Pr(yk;t = 1jy(1)j;t�1; yj;t > 0; y
�
�k;t�1;y

�
t�2;x

�) =
Pr(yj = 0; yk > 0)

Pr(yj > 0)

where the terms in the numerator involve the copula formulation and the terms in the

denominator are the probit marginals. For the expectations in the �positives�part of the

model,

E(yk;tjyk;t > 0; y(1)j;t�1; yj;t; y
�
�k;t�1;y

�
t�2;x

�) =

1Z
lim vk!0

vk
f12(yj ; vkjyj > 0; yk > 0)
f+j (yj jyj > 0; yk > 0)

dvk;

which is computed using numerical integration.

CAPE0 estimates, presented in the leftmost panels, suggest that conditional on positive

current quarter drug spending, previous quarter drug spending between the 25th and 75th

percentiles is associated with a slight reduction in the probability of current period nondrug

spending. In contrast, when conditioned on zero current quarter drug spending, CAPE0

estimates are positive.

CAPE+ estimates, shown in the middle panels, are negative regardless of the condi-

tioning value of current period drug spending. However, estimates are larger in magnitude

(more negative) when conditioning on the 75th percentile of current quarter drug spending,

compared to the 25th percentile.
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Finally, overall CAPE estimates, shown in the rightmost panels, suggest that while the

existence of dynamic cost-o¤sets is robust to conditioning on present quarter drug spending,

the magnitudes of cost-o¤sets depend on the amount of present period drug spending.

When conditioning on positive current period drug spending (whether at the 25th or 75th

percentiles), cost-o¤sets are larger than dollar-for-dollar at the median of the distribution of

drug spending, with the exception of the mental illness sample. Cost o¤sets become smaller

than dollar-for-dollar as previous quarter drug spending becomes larger. Furthermore,

conditioning on larger current quarter drug spending produces stronger evidence of larger-

than-dollar-for-dollar cost o¤sets.

7. Conclusion

Previous research on the relationship between drug and nondrug spending has produced

mixed results. This is due to several empirical complications. First, with high proportions

of zeros, health care spending measures cannot be easily described by a single statistical

distribution. Second, the bivariate dependence between drug and nondrug spending might

exhibit substantial departures from normality. Third, the contemporaneous relationship

between drug and nondrug spending might be fundamentally di¤erent from the economi-

cally more relevant dynamic relationship. Fourth, as medical e¤ects of prescription drugs

might be fast-acting, investigating the dynamic relationship between drug and nondrug

spending requires panel data recorded at relatively high frequency.

This paper proposes a dynamic nonlinear multivariate hurdle model of drug and non-

drug spending. Using nationally-representative quarterly data on medical expenditures,

the model is estimated for six policy-relevant subsamples. The models produce evidence

of positive contemporaneous dependence, somewhat similar to previous studies. However,

the models produce negative dynamic dependence across numerous samples and speci�-

cations, which we interpret as evidence of cost-o¤sets. Average partial e¤ects (APE),

analogous to those proposed by Wooldridge (2005), suggest that cost-o¤sets are smaller

than dollar-for-dollar. Conditional average partial e¤ects (CAPE), calculated similarly to

APE but conditioned on speci�c values for current quarter drug spending, reveal that for

median values of previous quarter drug spending, cost-o¤sets are larger than dollar-for-

dollar for reasonably large current period drug spending (i.e., above the 25th percentile of
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drug spending). However, cost-o¤sets are smaller than dollar-for-dollar as previous quarter

drug spending become larger.

These results hold important implications for public health insurance policies. If cost-

o¤sets are larger than dollar-for-dollar, then aggregate health care spending might be

reduced by encouraging increased spending on prescription drugs. Although our results

indicate larger than dollar-for-dollar cost-o¤sets might exist under certain conditions, those

conditions are likely to be too unpredictable to allow formulation of appropriate policies.

For example, CAPE estimates suggest that larger than dollar-for-dollar cost-o¤sets exist

between previous quarter drug spending and current quarter nondrug spending when: (1)

current quarter drug spending is reasonably large and (2) previous quarter drug spending is

not too large. It seems di¢ cult to implement policies based on these conditions, as spending

for certain drugs might be highly unexpected, and because new drug development and

changing demographics will probably alter the distribution of drug spending in the future.
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Table 1 : Quarterly medical spending by subsample
Drug expenditure Nondrug expenditure

Statistic all 1(> 0) j > 0 all 1(> 0) j > 0

65 and older

Mean 49.18 0.29 168.42 2824.92 0.67 2824.92

Median 0.00 90.68 422.58 422.58

1st order serial corr 0.19 0.18 0.43 0.38

Continuously insured - medical and Rx

Mean 29.20 0.21 139.14 1925.60 0.46 1925.60

Median 0.00 74.15 322.85 322.85

1st order serial corr 0.19 0.18 0.42 0.37

Diabetes

Mean 69.09 0.34 202.31 3258.39 0.70 3258.39

Median 0.00 110.23 470.04 470.04

1st order serial corr 0.17 0.15 0.42 0.35

Mental Illness

Mean 55.79 0.31 178.63 2406.50 0.61 2406.50

Median 0.00 98.09 414.17 414.17

1st order serial corr 0.20 0.19 0.44 0.38

Arthritis

Mean 51.75 0.32 162.53 2608.91 0.66 2608.91

Median 0.00 91.44 442.35 442.35

1st order serial corr 0.18 0.17 0.43 0.37

Heart condition

Mean 58.02 0.32 180.73 2750.15 0.66 2750.15

Median 0.00 99.11 404.76 404.76

1st order serial corr 0.16 0.15 0.40 0.33
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Table 2: Sample means by subsample
65 and Fully mental heart

older insured diabetes illness arthritis condition

Socioeconomic

Age 74.6 44.8 59.2 47.7 57.7 60.7

Female 0.59 0.53 0.56 0.68 0.63 0.58

Black 0.12 0.11 0.19 0.10 0.15 0.18

Hispanic 0.12 0.13 0.24 0.16 0.15 0.14

Married 0.52 0.69 0.58 0.49 0.56 0.58

Divorced 0.10 0.11 0.16 0.21 0.17 0.15

Widow 0.34 0.04 0.17 0.11 0.17 0.18

Family size 1.90 2.98 2.60 2.65 2.41 2.41

Education 11.25 13.40 11.14 12.30 11.89 11.81

Northeast residence omitted

Midwest residence 0.22 0.24 0.19 0.22 0.22 0.21

West residence 0.38 0.35 0.43 0.36 0.39 0.42

South residence 0.21 0.23 0.23 0.26 0.23 0.20

Metropolitan statistical area 0.74 0.81 0.75 0.77 0.75 0.75

Employed 0.17 0.83 0.43 0.62 0.50 0.47

Log income 5.15 5.23 5.15 5.16 5.17 5.17

Firm size 1.07 12.89 5.73 7.73 6.19 6.22

Government job 0.02 0.16 0.08 0.11 0.09 0.09

Health

Excellent health omitted

Very good health 0.27 0.35 0.17 0.26 0.25 0.25

Good health 0.32 0.26 0.35 0.31 0.32 0.35

Fair health 0.18 0.07 0.29 0.19 0.21 0.21

Poor health 0.06 0.02 0.14 0.09 0.10 0.09

Physical limitation 0.56 0.19 0.55 0.43 0.55 0.48

Injury 0.21 0.21 0.23 0.30 0.32 0.23

Number of chronic conditions 1.75 0.74 2.52 1.79 2.08 2.13

Insurance

Private Insurance 0.55 1.00 0.55 0.63 0.64 0.63

Public Insurance 0.44 0.00 0.35 0.24 0.28 0.29

Have Prescription drug insurance 0.34 1.00 0.46 0.56 0.52 0.52
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Table 3: Maximized log likelihoods for models with alternative copulas
Copula Subsample Hurdle lnL Conditional lnL Overall lnL

Models with Clayton copula

Clayton 65 and older -81341� -594359 -675700�

Continuously insured -280333� -1425303� -1705636�

Diabetes -45777� -347241 -393018�

Mental illness -81647� -539333� -620981�

Arthritis -96854� -689050 -785904�

Heart condition -131270� -916224� -1047494�

Models with Survival Clayton copula

Survival Clayton 65 and older -81934 -594359 -676293

Continuously insured -283909 -1425319 -1709228

Diabetes -46009 -347249 -393258

Mental illness -82470 -539352 -621822

Arthritis -97865 -689041� -786907

Heart condition -131991 -916232 -1048223

Models with Frank copula

Frank 65 and older -81531 -594357* -675888

Continuously insured -281689 -1425343 -1707032

Diabetes -45822 -347237* -393059

Mental illness -81887 -539344 -621231

Arthritis -97167 -689057 -786224

Heart condition -131411 -916235 -1047646

Models with Gaussian copula

Gaussian 65 and older -81527 -594369 -675896

Continuously insured -281123 -1425348 -1706471

Diabetes -45837 -347246 -393084

Mental illness -81864 -539357 -621221

Arthritis -97176 -689061 -786237

Heart condition -131448 -916243 -1047691
� denotes model with best �t for given subsample
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Table 4: Bivariate two-part model: coe¢ cients of lagged variables
Sample: age 65 and older

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.089** -0.117** -0.149** -0.046

(0.032) (0.036) (0.050) (0.072)

1(nondrugt�1> 0) 0.002 0.105** -0.096* -0.910**

(0.025) (0.028) (0.043) (0.062)

ln (drugt�1) 0.003 0.038** 0.032** -0.001

(0.007) (0.008) (0.010) (0.015)

ln (nondrugt�1) 0.022** 0.066** 0.022** 0.166**

(0.004) (0.004) (0.006) (0.008)

1(drugt�2> 0) 0.009 0.040 -0.180** 0.023

(0.032) (0.036) (0.051) (0.074)

1(nondrugt�2> 0) 0.091** 0.274** 0.022 -0.458**

(0.026) (0.028) (0.044) (0.064)

ln (drugt�2) 0.023** 0.004 0.057** -0.004

(0.007) (0.008) (0.010) (0.015)

ln (nondrugt�2) 0.004 0.020** -0.009 0.065**

(0.004) (0.004) (0.006) (0.008)

�2 test for initial conditions = 0 242.6** 781.5** 35.5** 17.0**

�2 test for Mundlak terms = 0 195.9** 151.4** 105.5 88.4**

�2 test for �j= �
+
j � � 10.7** 1811**

�0; �+ 0.997 0.224

(0.020) (0.022)

Kendall�s Tau 0.333 0.101

(0.004) (0.009)

lnL -81341 -594359

N 78162 55848

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 5: Bivariate two-part model: coe¢ cients of lagged variables
Sample: well insured - medical and Rx

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) -0.007 -0.171** -0.228** -0.020

(0.020) (0.020) (0.034) (0.053)

1(nondrugt�1> 0) 0.077** 0.015 -0.003 -0.995**

(0.016) (0.016) (0.029) (0.045)

ln (drugt�1) 0.027** 0.053** 0.059** -0.015

(0.004) (0.004) (0.007) (0.011)

ln (nondrugt�1) 0.013** 0.078** 0.013** 0.213**

(0.003) (0.003) (0.005) (0.006)

1(drugt�2> 0) -0.008 -0.082** -0.293** 0.016

(0.019) (0.019) (0.035) (0.052)

1(nondrugt�2> 0) 0.122** 0.249** 0.030 -0.395**

(0.016) (0.016) (0.031) (0.046)

ln (drugt�2) 0.026** 0.031** 0.079** -0.007

(0.004) (0.004) (0.007) (0.011)

ln (nondrugt�2) -0.002 0.005 -0.000 0.075**

(0.003) (0.003) (0.005) (0.007)

�2 test for initial conditions = 0 804.6** 1543** 57.2** 32.9**

�2 test for Mundlak terms = 0 1091** 900.1** 305.2** 210.1**

�2 test for �j= �
+
j � � 11.5** 3431**

�0; �+ 1.155 0.204

(0.010) (0.017)

Kendall�s Tau 0.366 0.093

(0.002) (0.007)

lnL -280333 -1425303

N 289374 139969

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 6: Bivariate two-part model: coe¢ cients of lagged variables
Sample: diabetes

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.076 -0.161** -0.215** -0.084

(0.041) (0.047) (0.062) (0.093)

1(nondrugt�1> 0) -0.052 0.030 -0.057 -1.023**

(0.033) (0.038) (0.055) (0.086)

ln (drugt�1) 0.007 0.047** 0.049** 0.004

(0.008) (0.010) (0.012) (0.019)

ln (nondrugt�1) 0.021** 0.074** 0.015 0.173**

(0.005) (0.006) (0.008) (0.011)

1(drugt�2> 0) 0.006 -0.052 -0.169** -0.005

(0.041) (0.047) (0.063) (0.098)

1(nondrugt�2> 0) 0.031 0.169** -0.091 -0.707**

(0.034) (0.038) (0.055) (0.084)

ln (drugt�2) 0.020* 0.026** 0.042** -0.005

(0.008) (0.009) (0.012) (0.019)

ln (nondrugt�2) 0.010 0.032** 0.016* 0.100**

(0.005) (0.006) (0.008) (0.011)

�2 test for initial conditions = 0 90.5** 158.2** 21.8** 9.90**

�2 test for Mundlak terms = 0 225.5** 115.5** 101.1** 92.5**

�2 test for �j= �
+
j � � 1.78 931.3**

�0; �+ 1.062 0.195

(0.028) (0.031)

Kendall�s Tau 0.347 0.0890

(0.006) (0.013)

lnL -45777 -347241

N 42702 31680

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 7: Bivariate two-part model: coe¢ cients of lagged variables
Sample: mental illness

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.001 -0.229** -0.145** 0.051

(0.031) (0.034) (0.050) (0.073)

1(nondrugt�1> 0) 0.004 0.020 -0.174** -1.106**

(0.026) (0.029) (0.044) (0.067)

ln (drugt�1) 0.029** 0.062** 0.032** -0.021

(0.006) (0.007) (0.010) (0.015)

ln (nondrugt�1) 0.018** 0.085** 0.037** 0.206**

(0.004) (0.005) (0.007) (0.009)

1(drugt�2> 0) -0.012 -0.100** -0.218** 0.074

(0.030) (0.033) (0.050) (0.071)

1(nondrugt�2> 0) 0.033 0.176** 0.003 -0.532**

(0.027) (0.029) (0.047) (0.067)

ln (drugt�2) 0.025** 0.029** 0.061** -0.026

(0.006) (0.007) (0.010) (0.014)

ln (nondrugt�2) 0.010* 0.026** 0.004 0.086**

(0.004) (0.005) (0.007) (0.009)

�2 test for initial conditions = 0 195.3** 371.3** 24.4** 40.8**

�2 test for Mundlak terms = 0 317.5** 282.5** 101.8** 87.1**

�2 test for �j= �
+
j � � 9.13** 1293**

�0; �+ 1.267 0.246

(0.021) (0.023)

Kendall�s Tau 0.388 0.110

(0.004) (0.009)

lnL -81647 -539333

N 76848 49601

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 8: Bivariate two-part model: coe¢ cients of lagged variables
Sample: arthritis

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.016 -0.145** -0.283** -0.058

(0.028) (0.032) (0.044) (0.063)

1(nondrugt�1> 0) -0.020 0.030 -0.087* -0.967**

(0.023) (0.026) (0.039) (0.059)

ln (drugt�1) 0.022** 0.046** 0.062** -0.001

(0.006) (0.007) (0.009) (0.013)

ln (nondrugt�1) 0.023** 0.076** 0.021** 0.187**

(0.003) (0.004) (0.006) (0.008)

1(drugt�2> 0) -0.023 -0.105** -0.175** -0.029

(0.028) (0.031) (0.045) (0.066)

1(nondrugt�2> 0) 0.123** 0.184** 0.026 -0.416**

(0.024) (0.026) (0.041) (0.059)

ln (drugt�2) 0.030** 0.036** 0.057** 0.005

(0.006) (0.007) (0.009) (0.013)

ln (nondrugt�2) -0.003 0.023** -0.005 0.060**

(0.004) (0.004) (0.006) (0.008)

�2 test for initial conditions = 0 303.3** 560.7** 42.7** 43.7**

�2 test for Mundlak terms = 0 322.5** 196.6** 144.6** 88.9**

�2 test for �j= �
+
j � � 11.9** 1743**

� �
�0; �+ 1.245 0.200

(0.020) (0.021)

Kendall�s Tau 0.384 0.091

(0.004) (0.009)

lnL -96854 -689050

N 91230 62983

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Table 9: Bivariate two-part model: coe¢ cients of lagged variables
Sample: heart conditions

Hurdle part Positive spending part

1(drugt> 0) 1(nondrugt> 0) drugt nondrugt

1(drugt�1> 0) 0.059* -0.139** -0.131** -0.081

(0.025) (0.027) (0.040) (0.061)

1(nondrugt�1> 0) -0.049* -0.016 -0.098** -1.112**

(0.020) (0.022) (0.033) (0.053)

ln (drugt�1) 0.009 0.043** 0.031** 0.004

(0.005) (0.006) (0.008) (0.012)

ln (nondrugt�1) 0.023** 0.073** 0.024** 0.192**

(0.003) (0.003) (0.005) (0.007)

1(drugt�2> 0) -0.000 -0.042 -0.208** -0.020

(0.025) (0.027) (0.041) (0.061)

1(nondrugt�2> 0) 0.057** 0.215** -0.035 -0.499**

(0.020) (0.022) (0.035) (0.053)

ln (drugt�2) 0.018** 0.021** 0.056** 0.006

(0.005) (0.006) (0.008) (0.012)

ln (nondrugt�2) 0.006* 0.021** 0.004 0.073**

(0.003) (0.003) (0.005) (0.007)

�2 test for initial conditions = 0 246.4** 548.1** 42.4** 22.6**

�2 test for Mundlak terms = 0 548.9** 244.5** 139.2** 174.8**

�2 test for �j= �
+
j � � 1.56 2520**

�0; �+ 1.070 0.238

(0.016) (0.018)

Kendall�s Tau 0.348 0.106

(0.003) (0.007)

lnL -131270 -916224

N 120552 84980

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Figure 1: Simulated probabilities from hurdle part (2000 points plotted)
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Figure 2: Simulated spending from positive spending part (2000 points plotted)
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Figure 3: Average Partial E¤ects
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Figure 3: Average Partial E¤ects (cont.)
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Figure 4: Conditional Average Partial E¤ects
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Figure 4: Conditional Average Partial E¤ects (cont.)

­.1
­.0

5
0

.0
5

Ð 
Pr

(n
on

dr
ug

(t)
 >

 0
 | d

ru
g(

t))

0 100 200 300 400
drug( t­1)

drug( t)  = 0
drug( t)  > 0

­1
50

­1
00

­5
0

0
50

Ð 
E(

no
nd

ru
g(

t) 
| n

on
dr

ug
(t)

>0
, d

ru
g(

t))
0 100 200 300 400

drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

­1
50

­1
00

­5
0

0
Ð 

E(
no

nd
ru

g(
t) 

| d
ru

g(
t))

0 100 200 300 400
drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

Ð denotes difference from the probability  or expectation evaluated at drug(t­1)=0
vertical lines  represent 25th and 75th percentiles  of pos itive drug expenditure

Conditional Average Partial Effects: Sample of persons with a mental i llness

­.0
4

­.0
2

0
.0

2
.0

4
Ð 

Pr
(n

on
dr

ug
(t)

 >
 0

 | d
ru

g(
t))

0 100 200 300 400
drug( t­1)

drug( t)  = 0
drug( t)  > 0

­1
60

­1
40

­1
20

­1
00

­8
0

Ð 
E(

no
nd

ru
g(

t) 
| n

on
dr

ug
(t)

>0
, d

ru
g(

t))

0 100 200 300 400
drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

­1
50

­1
40

­1
30

­1
20

­1
10

Ð 
E(

no
nd

ru
g(

t) 
| d

ru
g(

t))

0 100 200 300 400
drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

Ð denotes difference from the probability  or expectation evaluated at drug(t­1)=0
vertical lines  represent 25th and 75th percentiles  of pos itive drug expenditure

Conditional Average Partial Effects: Sample of persons with arthri tis

­.0
4

­.0
2

0
.0

2
.0

4
Ð 

Pr
(n

on
dr

ug
(t)

 >
 0

 | d
ru

g(
t))

0 100 200 300 400 500
drug( t­1)

drug( t)  = 0
drug( t)  > 0

­1
80

­1
70

­1
60

­1
50

­1
40

­1
30

Ð 
E(

no
nd

ru
g(

t) 
| n

on
dr

ug
(t)

>0
, d

ru
g(

t))

0 100 200 300 400 500
drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

­2
50

­2
00

­1
50

­1
00

Ð 
E(

no
nd

ru
g(

t) 
| d

ru
g(

t))

0 100 200 300 400 500
drug( t­1)

drug( t)  = 25th perc entile of drug(t)>0
drug( t)  = 75th perc entile of drug(t)>0

Ð denotes difference from the probability  or expectation evaluated at drug(t­1)=0
vertical lines  represent 25th and 75th percentiles  of pos itive drug expenditure

Conditional Average Partial Effects: Sample of persons with a heart condition

41


