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1. Introduction

Firms facing volatile demand would like to respond ex-post to shocks by re-optimizing

prices charged and quantities sold. However, when firms are separated from their con-

sumers by long distances the lag between shipment and arrival can impose an important

constraint on adjustment. For example, ocean-borne shipments from China require, on

average, 24 days to reach the US market and many exporting countries face considerably

longer shipping times.1 In a market with volatile demand, quantities shipped well in ad-

vance of the sales date may not maximize profits by the time they arrive.

In two recent papers James Harrigan and coauthors have argued that geographical

proximity between suppliers and customers allows firms to respond to demand uncer-

tainty. In a domestic context, the need for timeliness and short reaction times may drive

up- and down-stream firms to cluster geographically (Harrigan and Venables, 2006). In-

ternationally, firms may prefer to buy from nearby exporters in order to gain flexibility in

the face of demand shocks even if this requires the payment of higher input costs (Evans

and Harrigan, 2005).

This paper explores an alternative solution available to firms facing volatile demand

first suggested by Aizenman (2004). Rather than bringing production closer to consumers

in space, airplanes bring production closer to consumers in time. Because air shipments

can reach any destination in a day, firms can wait until uncertainty is resolved before

deciding on quantities to be sold. As a consequence, air shipping provides firms with a

real option to smooth demand shocks. Of course, air cargo commands a large premium

relative to slower ocean cargo, which implies that adjusting quantities at the margin is

subject to sharply higher costs. In US imports, costs per kg shipped are on average 6.6

times higher for air shipment (see Table 1).

Despite this premium, air shipment is widely employed in trade. Air cargo in 2000

1The trade-weighted average of shipping times for all exporters to the US in 1999 was 22 days
(www.shipguide.com). Data from 2006 show no significant change in ocean delivery speed.
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represented 36 percent of US imports by value and 58 percent of US exports by value

with partners outside North America.2 This is not simply a case of bulky products arriving

on boats and high value electronics arriving on planes. Rather, a substantial fraction of

products arrive via a mixture of air and ocean modes. Denote an observation as an exporter

selling an HS10 product (roughly 15,000 unique goods) in a year. Considering all US

imports 1990-2004 from outside North America, 35 percent of observations representing

71 percent of trade by value enter the US through a mix of modes. Figure 1 provides a

histogram of air shares for these observations and shows that mixing occurs across a broad

range of product types with a continuously varying share of air shipment.

We examine theoretically and estimate empirically the extent to which air shipping

allows firms to hedge volatility on international markets. We model an exporter facing

uncertain demand in a foreign market and a choice of serving that market using slow

but inexpensive ocean transport or fast, expensive air transport.3 In order to arrive on

time ocean shipments must depart prior to the resolution of a demand shock, while air

shipments can be delayed until after the shock is realized. This enables the exporter to use

an option strategy, sending an initial ocean shipment and then if the shock is sufficiently

favorable, providing additional quantities via air.

Using only ocean shipping minimizes the total shipping bill, but incurs risk. If the

realization of the shock is unfavorable, the exporter will have too much quantity on the

market. Air shipments, on the other hand, optimize the quantity on the market, but at

much higher cost. This tradeoff provides us with three empirical hypotheses. A high

relative price for air shipping means that the real option of air transport is expensive and

2See Hummels (2007). Nor is the US anomalous: high income countries in Europe and Latin America
have similarly high air cargo shares in trade.

3There are subtle differences between our model and Aizenman’s. In his model, the marginal cost of
supply denominated in the consumer’s currency is uncertain and consumers in the importing country can
decide to increase quantities at the last minute given a favorable shock. In our model demand is uncertain
and a monopolist decides whether to increase quantities given a favorable shock. Both models predict that
air shipping is increasing in market volatility and decreasing in the cost of exercising the option. They differ
in whether air shipments are called forth by low realizations of prices (favorable to consumers) or high
realization of prices (favorable to firms).
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less likely to be used. A history of greater demand volatility will lead an exporter to

reduce the initial ocean shipment and increases the likelihood that an air shipment will be

observed. Finally, a high ex-post realization of demand will result in more air shipping in

that period.

We examine these three predictions using 10 digit (HS) US Imports of Merchandise

Data at monthly frequencies between 1990 and 2004. For each exporter-product obser-

vation we have data on trade quantities, prices, transport modes and transportation prices.

Our dependent variables are, one, whether firms are employing an option strategy (mixing

air and ocean), and two, the share of air shipments in total quantities. Looking across

exporters and products there is considerable variation in the cost of exercising the air ship-

ment option (the price of air relative to ocean shipping), and in the benefits of exercising

that option (the history of demand volatility, and the contemporaneous realization of de-

mand). We find that a history of greater demand volatility is positively related both to

the likelihood that the option strategy is employed as well as the share of trade that is air

shipped. Lower air freight rates, higher ocean freight rates, and a higher contemporaneous

realization of demand lead to a larger share of air shipment.

This paper is related to several distinct literatures. First, we add to the literature on

how demand uncertainty affects specialization. Like Evans and Harrigan (2005), who

focus on retail restocking rates in the apparel industry, we show that demand volatility

affects sourcing decisions. Unlike them, we examine trade in all products, and focus on

how modal choice rather than choice of sourcing country can be used to smooth volatility.

In short, we show that distance is a less significant penalty if low priced rapid transport is

available.

Second, we provide the first empirical evidence for a tradeoff between uncertainty

and time dependent transportation costs first suggested by the model in Aizenman (2004).

Aizenman is primarily interested in the macroeconomic implications of this tradeoff. In

particular, his model shows that the extent of exchange rate pass through is increasing in

the share of last minute (air-borne) shipments. While we are interested in a more general
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set of demand shocks, Aizenman’s paper makes clear that our findings have implications

for the observed degree of exchange rate pass through.

Third, air shipping is widely used in international trade despite being much more ex-

pensive than ocean shipping. Hummels and Schaur (2009) show that exporters have a

willingness to pay for faster shipping that far exceeds inventory holding costs. Using data

on air versus ocean modal usage, they show that exporters will pay as much as 0.8% ad

valorem to save a day in transit, but do not identify the precise source of this willingness-

to-pay. This paper shows that the ability to hedge demand uncertainty with an appropriate

transport mix is valuable, and that for exporters subject to high price volatility, the gains

from smoothing risk cover the higher expense of air transport. To the extent that firms also

use rapid shipping in a domestic context – air freight shipments within the US were valued

at $770 billion in 2002 – one can think about our results as evidence for an adjustment

mechanism widely-employed by firms subject to demand shocks.

Finally, we can use our estimates along with a simplified version of the model to cal-

culate the expected return on a hedging strategy. The expected return depends on the

volatility of demand and the price of air transport, which varies significantly over time due

to technological change, across goods due to their characteristics, and across countries due

to policies such as open skies agreements that liberalize air cargo trade4. The calculations

imply goods with demand volatility one standard deviation above the mean have an option

value 17.1 percent higher than the mean volatility good. Liberalizing trade in air cargo

services raises the option value of air transport by about 16.6 percent. The introduction of

jet engines raised the option value of air transport 30-fold for US imports and 100-fold for

US exports. This suggests that de-regulation and technological change have sizable and

important welfare consequences beyond the direct impact of lower input costs.

Section 2 contains our model of the firm’s choice of air and ocean shipment in the

4See Gordon (1990) for “new goods” estimates of the value of jet engines, Hummels (2007) for data on
air cargo costs and the impact of technology and oil prices over time, and Micco and Serebrisky (2006) for
the impact of open skies agreements on cross-country differences in cargo rates.
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face of demand uncertainty. Section 3 discusses the data and tests our three empirical

predictions. Section 4 provides back of the envelope calculations of the option value of

rapid transport. Section 5 concludes.

2. Model

Consider a monopolist that lives for two periods and produces a single good for the

foreign market subject to uncertain demand. The inverse demand in the buyer’s currency

is given by p = ε(a− bQ), where Q is the total quantity sold. ε is a uniformly distributed

shock over the interval (1− z, 1 + z),with 1− z > 0 and z ≥ 0 so that the price is strictly

positive.5 In the first period the firm knows the distribution of ε, but not its realization.

The foreign market is active only in the second period during which demand shocks are

realized. We abstract from inventory holding after the second period so that the firm must

sell all of Q available on the market in this second period.

The firm can produce and ship goods to the foreign market using a combination of

ocean and air shipment. Let the quantity shipped over the ocean and air be qo and qa, Q =

qo+qa. Ocean shipment takes one period to arrive while air shipment arrives immediately.

Given this timing, ocean quantities must be set before demand uncertainty is resolved

while air quantities are decided after the demand shock is realized. The rates fa and f o

determine the constant marginal cost of producing and then shipping a unit via air and

ocean transport, fa > f o.6 This gives the firm an option to rapidly adjust quantities on the

market by paying a higher cost for air shipment.

The firm’s problem is to determine the total quantity sold along with an optimal mix

5Unlike Aizenman (2004), we abstract here from having distinct supplier and consumer currencies, and
consider ε as representing any demand shock. However, ε could be interpreted as the value of the exchange
rate. In this case freight rates would be denominated in the seller’s currency, and fast transport would be
used to hedge exchange rate risk.

6The simplest interpretation is that marginal costs of production are the same for both transport modes
so that the difference in rates represents only shipping costs. In this case, our empirical values for the rates
exactly correspond to the theory. The theory is more general, in that the difference in rates can also be
interpreted to include higher marginal costs of production for last minute sales. However, our data do not
allow us to identify the production component of differential costs.
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of ocean and air shipment. Without uncertainty, the exporter would ship the entire quan-

tity via ocean to minimize the transport bill. With uncertainty, a larger ocean shipment

increases the expected loss in the event of a bad demand shock. Waiting until the uncer-

tainty is resolved allows the firm to optimize the total quantity on the market, but necessi-

tates the use of more expensive air transport. The exporter balances the tradeoff between

uncertainty and transportation cost to determine an optimal mix of air and ocean shipping.

To solve the exporter’s problem we work backwards from the second period. We

first derive the exporter’s optimal rule for air shipment as a function of the first-period

ocean shipment and the realization of demand. We then employ this rule to derive the

exporter’s first-period expected profits and maximize expected profits to find the optimal

ocean quantity.

The exporter calculates the second-period profit as total revenue minus costs,

π2 = ε(a− b(qo + qa))(qo + qa)− qafa − qof o. (1)

Taking the ocean shipment qoand demand realization ε as given, the second period

objective is to maximize the profit with respect to the air quantity qa subject to qa ≥ 0.

(The firm cannot take quantities off the market or store them for subsequent periods.)

Taking the derivative of π2 with respect to qa yields the first order condition

∂π2

∂qa
= ε(a− bqo − bqa)− εb(qo + qa)− fa + λ = 0, (2)

where λ is the La Grange multiplier on the constrained qa ≥ 0. For an interior optimum,

the optimal air shipment is strictly greater than zero, λ = 0, and marginal revenue of ship-

ping an additional marginal unit by airplane must equal the marginal cost.7 From equation

(2) solve for the optimal air-shipment conditional on qa > 0,

7For b > 0, the second order condition, ∂2π2
∂(qa)2 = −2b < 0, is strictly negative for all qa.
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qa =
εa− fa

2εb
− qo. (3)

To find the threshold value, ε∗, that triggers an air shipment, set qa = 0 and solve for ε,

ε∗ =
fa

a− 2bqo
. (4)

Combining these equations gives us the the optimal rule for air shipping

qa =


εa−fa

2εb
− qo if ε > ε∗

0 if ε ≤ ε∗.

(5)

Below ε∗ the firm relies only on ocean shipments. Above ε∗, air quantities are increasing

in ε and decreasing in fa as the firm balances the higher marginal revenues from a greater

realization of demand against the higher marginal cost of air shipment. The threshold value

itself is increasing in the cost of air shipping and in the first-period ocean shipment. With

a large quantity already on the market, additional air shipments will only be employed for

higher realized values of demand.

Given the optimal rule for air shipping, we now solve for the optimal ocean quantity

chosen in the first period. Substituting (5) into the second-period profit function (1) we

obtain

π2(qo) =


−qof o − fa

(
− qo + aε−fa

2bε

)
+ ε

(
a− baε−fa

2bε

)
(aε−fa)

2bε
if ε > ε∗

−qof o + qo(a− bqo)ε if ε ≤ ε∗.

(6)

For ε > ε∗, the firm’s profits incorporate positive air and ocean quantities. For ε ≤ ε∗,

the firm sets qa = 0 and calculates the expected profit from the revenue and cost generated

by the ocean quantity. We apply the density function of the uniform demand distribution,

d(ε) = 1
2z

, and take the expectation over all possible realizations of the shock to derive the
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first-period expected profit function

E(Π) = −qof o +

∫ ε∗

1−z

[
qo(a− bqo)ε

]
1

2z
dε

+

∫ 1+z

ε∗

[
− fa

(
− qo +

aε− fa

2bε

)
+ ε

[
a− baε− f

a

2bε

]
(aε− fa)

2bε

]
1

2z
dε. (7)

Note that the bound of the integral ε∗ is a function of the ocean quantity. We differen-

tiate the expected profit (7) with respect to qo to solve for the optimal ocean quantity as a

function of the risk parameter (z), unit air and ocean freight rates (fa and f o), as well as

the demand parameters (a and b)

qo =
1

2b (1− 2z + z2)
×
[
− 2za− faz + a− fa + 2f oz + z2a

+ 2
√
−faf oz2 − faf oz + (f oz)2 + (fa)2z

]
.

(8)

The optimal ocean quantity, set in the first period, is affected by the cost of air shipping

even in cases where the optimal air shipment in the second period may be zero.8 The

reason is that the firm factors the possibility of bringing additional air quantities onto

the market when setting initial ocean quantities. Substituting (2) into (4) we derive an

analytical solution for the zero air shipment threshold and optimal air quantity for ε > ε∗

as a function of exogenous parameters.

ε∗ = fa
(1− z)2

faz + fa − 2f oz − 2
√

(f o − fa) z (fa − f oz)
. (9)

8The optimal ocean quantity satisfies the second order condition for the parameter values we consider in
the following simulations.
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qa =
εa− fa

2εb
− 1

2b (1− 2z + z2)
×
[
− 2za− faz + a− fa + 2f oz + z2a

+ 2
√
−faf oz2 − faf oz + (f oz)2 + (fa)2z

] (10)

These are complex expressions and so we employ simulations to build intuition. Figure

2 describes regions of parameter space in which only ocean or a mix of air and ocean

shipments are employed. It plots the air shipment threshold (solid line) for given values of

the volatility parameter z and realizations of the demand shock ε, fixing other variables.

For a level of demand volatility, z′, ε is uniformly distributed on the support [1−z′, 1+z′] .

The cone formed by dotted lines then shows the range (2z′) of possible demand realizations

at each level of volatility z′. The range and the variance of ε, σ2 = 1
3
z2, are increasing in

z.

Initially consider levels of volatility z > z∗. In this range the zero air shipment thresh-

old lies within the cone. This means there is some realization of the demand shock that

will cause the firm to bring additional quantities to market at higher cost. Since the de-

mand shocks are uniformly distributed the ex-ante probability that air shipment is chosen

is given by (1 + z − ε∗)/2z. The numerator corresponds to the shaded area in Figure 2,

and the denominator corresponds to the width of the cone at a given level of volatility.

The ex-ante probability that air shipment is chosen is increasing in the volatility z. To

see why, recall that the ocean quantity chosen in the first period depends on the volatility.

When a firm faces a highly volatile market, the possibility exists that a demand shock well

belowE(ε) could be realized. This causes the firm to lower the first period ocean shipment,

and delay shipping additional quantities until the uncertainty concludes. Lowering the

ocean quantity in turn raises the marginal revenue of air shipping and makes it more likely

that air shipment will be employed if demand shocks close to E(ε) are realized. To see

this in Figure 2, suppose we fix the realization of the shock at its expected value ε = 1.

Within the cone, the air shipment threshold is decreasing in z and crosses ε = 1 at z = .45.
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For levels of volatility z < .45, a demand realization ε = 1 will not call forth air shipment,

whereas for volatility z > .45, that same demand realization will result in additional air

shipments.

Of course, how much quantity the firm holds off the market in the first period depends

on the relative cost of waiting. For a fixed level of demand volatility, a large first-period

ocean shipment minimizes transport costs, but sacrifices flexibility to intervene on the

market with an air shipment. As air shipping costs drop relative to ocean shipping, the

air threshold shifts downwards, making air shipment more likely for all values of z and

ε. On the limit as fa approaches f o , the firm no longer pays a premium for flexibility.

It lowers ocean shipments to equal the quantity shipped under the worst possible demand

realization, and serves any demand above this minimum using air shipment. As air ship-

ping becomes very expensive, higher initial ocean quantities are chosen and the zero air

threshold shifts upward for all levels of volatility.

Next, consider levels of volatility z < z∗ so that the air threshold lies outside the cone.

In this region, realized demands cannot be much lower than expected demands and this

raises initial ocean quantities. Combining high qo with a low demand ceiling (given our

symmetric demand distribution ε can also not be much higher than E(ε) ), the firm will not

choose air shipments for any feasible demand realization in this region. Knowing that air

shipment will never be chosen, the firm’s problem simplifies greatly. The firm constrains

itself to qa = 0, and a profit maximizing ocean quantity is chosen as if the firm knew

E(ε) = 1 with certainty.

Thus far we have focused on the likelihood that the firm chooses some positive quantity

of air shipment in response to demand shocks. We can also calculate the ex-post share of

air shipments and the expected share of demand served by late arriving shipments. For

qa > 0, apply equation (5) to obtain the ex-post air share as a function of the demand

shock

qa

qa + qo
=
εa− fa − 2qoεb

εa− fa
.
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Recall that ocean quantities are set in the first period as a function of volatility and

freight rates, given by equation (8). For given ocean quantities, a higher contemporaneous

realization of demand ε increases the share of air shipments in the total quantity. Figure 3

shows how total quantities and prices vary with ε, holding z, fa, f o fixed. For ε < ε∗, the

air share is zero, quantities are unresponsive to increases in demand, and ∂ ln(p)/∂ ln(ε) =

1. For ε > ε∗, additional air quantities and the air share of shipments are rising in ε, and

∂ ln(p)/∂ ln(ε) < 1.

Taking expectations on the ex-post air share over all ε, we obtain the expected share of

air shipment averaged over all possible realizations of the shock,

E

(
qa

qa + qo

∣∣∣∣z, fa, f o, a, b, γ) =

∫ γ+z

fa

a−2bqo(·)

εa− fa − 2qo(·)εb
εa− fa

1

2z
dε, (11)

where qo(·) is the optimal ocean quantity from equation (2). This is complex to evalu-

ate given that qo(·) determines the bound of the integral, so we again use simulation.

Figure 4 displays the expected share of air shipment over different levels of volatility

facing the firm. For sufficiently high volatility (z > z∗ as in Figure 2), the expected air

shipment is increasing in the volatility. Raising the cost of the air shipping option (the

dotted line) lowers expected air shipment at all levels of volatility.

3. Data, Specification and Estimation

Our theory contains distinct predictions for both the likelihood that, and extent to

which, firms use fast-arriving air cargo to hedge international demand volatility. Greater

volatility lowers the quantity of merchandise shipped by slow-moving ocean transport and

raises the probability that air cargo will be employed. Conditional on air cargo being em-

ployed, greater volatility increases the share of air shipments in total quantities sold. Both

the share of air cargo and the likelihood it is employed are decreasing in the air premium

(the cost of air relative to ocean cargo), and increasing in the contemporaneous level of

realized demand.
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To investigate these hypotheses we employ data from the US “Imports of Merchandise”

from 1990-2004. We have the value, weight in kg (W ), freight and insurance charges (F )

by transport mode (m = a(ir), o(cean)) and the total number of shipments (Count) for

US imports with detail by commodity groups (i) at the 10-digit Harmonized System, and

source country (j), all at monthly frequencies within each year (t).9 These data allows us

to directly calculate whether air shipments were employed, their shares in total shipment

quantities for each i− j − t triplet, and the freight charge per kg for each mode.

In the model, the firm knows the distribution of demand it faces, and the volatility is a

key variable in the decision process. Within each year twe observe up to 12 monthly prices

(p=value/weight) at which good i from exporter j was sold in the US market. We calculate

the extent to which product prices move within each year t using the coefficient of variation

in year t monthly prices for each i− j − t, V (p)ijt = stdev(pijt,month)/mean(pijt,month).

In the empirics we capture volatility using the coefficient of variation and its lags.10 This

is equivalent to assuming that firms use their (recent) experience of volatility in the US

market to infer the volatility they will face and set their hedging strategy appropriately.

The last variable suggested by the theory is the contemporaneous realization of demand,

which we measure using the yearly product price in that period, pijt.

Note that in our baseline specifications we follow the model in employing prices and

their variance as the relevant measures of contemporaneous demand and demand volatility,

rather than employing quantities and their variance. The logic of the model turns on how

firms must fix ocean quantities well in advance of sales and only adjust quantities with air

shipment at steeply higher cost should sufficiently great demand be realized (see Figure

3). This implies that a series of demand shocks below the threshold ε∗ would result in no

9The 10 digit level of the HS has roughly 15000 categories. We only employ observations that enter
the continental US. We exclude imports from Canada and Mexico as a large portion of imports from these
countries is by road and we lack data on both the timing and the charges associated with these shipments.

10Using the history of volatility requires that an exporter-product be in the data continuously. Our most
data intensive specification employs four lags of price volatility. This data restriction causes us to reduce our
sample from 1113090 mixing observations in the US import data at HS10 annual observations to 201296
observations and tends to exclude lower valued trade flows.
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measured quantity volatility. In contrast, prices are responsive to the level and volatility

of demand shocks along the entire continuum of shocks. This suggests prices are a better

measure of the level and variance of demands. However, for robustness we also experiment

with using quantity volatility with similar results.

For completeness, we also include determinants of the shipping mix that vary across

source countries and time but are outside the model . AvDaysj is the average ocean transit

time between country j and the US. The real interest rate (Rjt), captures inventory costs

in the exporting country. The pipeline cost (pipejt = ln(Rijt) ∗ ln(AvDaysj)) captures

the opportunity cost of locked up capital on lengthy ocean transit. An increase in the

pipeline cost raises the cost of ocean transport relative to air shipment and raises the share

of air shipments. As a final macro determinant we account for the exchange rate volatility

V (ejt) , constructed as the within year standard deviation of the monthly growth rate in

the exchange rate between the US$ and the exporter’s currency. Note that exchange rate

volatility that passes into import prices is already captured in V (p)ijt, so this variable

captures any volatility affects above and beyond prices.

Table 1 provides summary statistics on our included variables. Considering all US

imports 1990-2004 from outside North America, 36 percent of (exporter-HS10 product-

year) trade flows representing 71 percent of US trade by value enter the US through a

mix of modes. Within this set, the average air share is 24 percent despite the fact that

air freight rates per kg shipped are on average 6.6 times higher than ocean freight rates.

Mixing occurs across a broad range of product types with a continuously varying share of

air shipment. Figure 1 provides a histogram of air shares for the mixed mode observations

with separate categories for five broad and dissimilar manufacturing types. All five cate-

gories are present in every bin in roughly similar proportion. The histogram excludes the

observations that enter the US via only one mode (generally, ocean only). We examine

below whether the ocean only observations can also be explained by our model, that is, if

they correspond to products with demand volatility sufficiently low that the air shipment

threshold is never reached.
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Our measure of volatility V (p)ijt suggests that there is considerable movement in

prices sold within the year for each exporter-product-year observation – much more than

volatility associated with exchange rates. This also holds when we measure volatility

using prices taken from only a single mode (ocean) or when measuring volatility in quan-

tities. Some of this may represent measurement error in the price and quantity data, and

so the key is whether variation in the volatility measures is correlated with the use of air

shipments.

Toward this end, our data allow us to use variation across products, exporters and time

to identify the hypothesized effects. Some HS product codes may be subject to more

demand volatility than others (e.g. children’s toys v. steel ball bearings) and different

countries selling in the same HS product code (women’s leather footwear) may be subject

to varying degrees of volatility depending on whether they serve the high or low fashion

segments of that market. Similarly, two firms facing the same absolute volatility may

choose different hedging strategies depending on the (widely varying) air premium they

must pay to access the US market. There are also large time series changes in the variables

of interest. Over the 15 years spanned by our data there have been pronounced changes

in the air premia – falling significantly from 1990-2001 and rising rapidly from 2001-

2004 – in response to changes in technology, regulatory policy, and oil prices (Hummels

2007). The extent of volatility itself also changes over time for a given exporter-product,

perhaps in response to changes in market structure, product characteristics, or the ability

to manage inventories with improved information technology. In our data, V (p)ijt exhibits

an aggregate downward trend of about 4 percent per year (conditioning on i− j), but with

wide variation across the exporter-product observations in the signs and magnitudes of

change over time.11

In our simplest specifications we exploit variation across all three dimensions of varia-

11To see this, we examine year to year variation in our measure of volatility for each exporter-product
observation. For a typical exporter-product, a one standard deviation increase in V (p)ijt is 50 percent
higher than the exporter-product mean of V (p)ijt.
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tion. In others we use exporter-product fixed effects and exploit only within i− j variation

over time in order to control for unobservables outside of model that explain likelihood

of air usage, and are correlated with model variables. For example, perishable goods may

exhibit large fluctuations in price throughout the year and be air shipped because they “ob-

solesce” very rapidly. Fixed effects will then eliminate the over-time average perishability

effect, identifying only off of within i− j changes in air share, volatility, and other model

variables. Similarly, any time-invariant country characteristic that is correlated with the

use of air shipping and with model variables will be eliminated by the fixed effects.

3.1. The probability of mixing modes

We begin by using a simple probit to model the probability that a trade flow uses a

mix of transportation modes. Let the dependent variable y = 0 if exporter j shipping

product i uses only ocean shipment in time t, while y = 1 if shipments from i − j arrive

by both ocean and air modes at time t. That is, we are estimating the likelihood of being

in the shaded area of Figure 2. The dependent variables are volatility (with lags), ocean

shipping rates, and the additional controls noted above. Since we do not observe air freight

rates for shipments where qa = 0, we exclude air charges as an explanatory variable.

This regression examines the existence of mode-mixing but not its intensity, and exploits

variation across i− j − t dimensions of the data.12

Results are reported in Table 2. We find that the probability of mixing transport modes

is positively correlated with higher demand volatility (contemporaneously and through the

third lag) and higher contemporaneous realization of demand. The exchange rate volatility

measure is also positively correlated with the use of hedging, but weakly. Firms are more

likely to mix when pipeline costs are high (and it is expensive to leave goods in transit for

weeks). The ocean freight charge has the wrong sign, but this is likely because we lack air

12It would be desirable to exploit within i − j variation over time, but we cannot use mean differencing
to eliminate fixed effects in the non-linear probit, and it is infeasible to directly estimate nearly 100,000
exporter-product combinations. We focus on within i− j variation in the air share regressions below.
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freight as an additional control within countries.13

3.2. The extent of hedging

We next turn to regressions that examine the extent of hedging as these allow us to

measure all theoretically indicated variables and also to exploit purely within i−j variation

in the data. Our base specification is

ln

(
qaijt

qaijt + qoijt

)
= θt + δ0lnV (p)ijt + ...+ δ4lnV (p)ijt−4

+δ4lnAir Chargeijt + δ5lnOcean Chargeijt + cij + uijt (12)

We estimate equation (12) using simple OLS (and exploiting all i− j − t dimensions

of the data) and with a fixed effect cij , implemented via mean differencing. Columns 1

and 2 of Table 3 report the OLS and Fixed Effect results of the baseline specification. The

fixed effects control for any exporter-product characteristic that could affect the extent of

hedging and be correlated with volatility or other model variables. Columns 3 and 4 aug-

ment the OLS and Fixed Effect specifications with additional controls (contemporaneous

demand, interest rate, pipeline cost, and number of distinct records) as explained above.14

Examining Table 3, we see that volatility (up to the 4th lag) affects the extent of hedg-

ing. Recall the channel through which this operates. A history of demand volatility causes

the firm to lower ocean quantities in the first period in order to avoid having excessive

quantities in the second period. For similar demand realizations, more volatility then leads

to a larger share of demand being served by air shipping. We also see that a high contempo-

raneous realization of demand calls forth a larger share of air shipping in total quantities.

13In the mixed mode data we see a clear positive correlation in air and ocean rates across exporter-
products. Goods vary in their bulk and handling requirements and exporters vary in their distance to market
and infrastructure quality. This means that some i− j observations will exhibit higher air and ocean freight
costs than others. Omitting the air freight (with a predicted negative coefficient) will negatively bias the
ocean freight coefficient.

14AvDaysj is excluded since it is collinear with our fixed effects.
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Now that we have both air and ocean freight rates in the equation we see that signs are

as predicted by the model, with hedging used less extensively when the relative cost of

hedging is high (that is, when air shipping is expensive and ocean shipping is cheap).

Notably, the volatility coefficients are smaller when using fixed effects. This could be

because unobservable i− j characteristics are spuriously correlated with volatility and air

shipment. Or it could be that by restricting ourselves to only within variation (identifying

off of changes in volatility for Chinese ball bearings) we are throwing out useful variation

in volatility across the i−j’s (comparing volatility in Chinese ball bearings to volatility in

Italian men’s suits). In any case, we follow a conservative estimation strategy and restrict

our attention to within i− j variation henceforth.

3.3. Robustness Exercises

In this section we examine whether our main findings are robust to different measures

of volatility, different treatment of the time series properties of the data, and to the possi-

bility that volatility is endogenous to the hedging response we seek to identify.

3.3.1. Other Measures of Demand Volatility

An examination of Figure 3 suggests two alternative measurements of volatility. Below

ε∗, Q does not change in response to demand shocks. Above ε∗, Q changes while the

response of price to changes in ε is damped by the ability to bring additional (air) quantities

onto the market. Accordingly, we employ the volatility of total quantities sold V (Q)ijt,

and its lags, constructed in a manner analogous to V (p)ijt.

For similar reasons we also construct a price volatility measure using only prices for

ocean shipped goods, V (po)ijt. This measure has an added benefit. In our model, a single

firm chooses a higher ratio of air/ocean shipping when demand is more volatile. Suppose

instead that we are capturing in the data two types of firms, the first of which uses only

ocean shipping and the second of which only uses air shipping. This might reflect subtle

differences in product characteristics (despite measuring the goods at a very highly disag-

gregated HS 10 digit level), or differences in characteristics of the importing consumers. In
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this two-types model, we would not expect that changes in the history of demand volatility

facing the ocean-using firm would have a strong effect on the contemporaneous level of

shipments for the air-using firm.

In Table 4 we re-estimate the augmented base specification using V (Q)ijt in the first

two columns and using V (po)ijt in the third and fourth columns (both OLS and FE in

each case). The results are very similar in both sign and magnitudes to the Table 3 results

– higher volatility in quantities and higher volatility in ocean-only prices leads firms to

employ air shipments more intensively. Notably, price volatility constructed using only

ocean shipments shows a similar effect on the air share as using prices from combined

modes. This provides indirect evidence against the idea that air /ocean mixing reflects two

distinct types of firms operating in the market.

3.3.2. Serial Correlation

Next, we consider the possibility that there is serial correlation across time within

each i − j. To address this we re-estimate the model in first differences and capture the

industry’s history of demand smoothing with the lag of the dependent variable. A high air

share in the past reveals that the firm was subject to demand volatility. Since firms that

were subject to demand volatility in the past shift into a faster transport mix, this results in

a positive relationship between the current air share and its lags. In addition, past demand

volatilities are a function of the firm’s effort to smooth demand in the past. To account for

these channels, we estimate the partial effect of the past demand volatility on the current

air share, holding fixed the industry’s history of the transportation mix.

We augment (12) with the first lag of the dependent variable, drop the 4th lag of the

demand volatility and first difference to obtain

∆ln(Sijt) = ∆ln(Sijt−1) + ∆θt + ∆δ0ln(V (p)ijt) + ...+ ∆δ3ln(V (p)ijt−3)+

+ ∆δ5ln(Air Chargeijt) + ∆δ6ln(Ocean Chargeijt) + ∆X + ∆vijt. (13)
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∆ is the first difference operator, ∆X denotes our control variables in first differences, and

the exporter-commodity fixed effect is eliminated by first differencing.

From equation (12) we see that the air share in t− 1 is a function of the error in t− 1,

which means that the difference in the error term (vijt− vijt−1) will be correlated with the

lag of the first difference of the air share (Sijt−1−Sijt−2). Accordingly, we instrument for

the first lag of the difference in the air share, ∆ln(Sijt−1) , using higher order lags of the

first difference of the air share.15

Table 5 shows the results from the FD-2SLS estimation. In the first column we include

the first lag of the dependent variable, instrumenting with the second lag. In the second

column we include first and second lags, instrumenting with the third lag. Either way

we find that the magnitudes and signs of the coefficients are similar to the fixed effect

estimation: an increase in the past demand volatility results in a higher air share in the

current period.

3.3.3. Feedback Effects of Hedging to Observed Prices

The final robustness exercise examines the endogeneity of the price volatility with

respect to an exporter’s hedging strategy. Figure 3 shows that a hedging strategy dampens

the effect of demand shocks on market prices for high realizations of ε, lowering observed

price volatility. In our specification this implies a downward bias on the coefficients of

price volatility, because whenever the air share is high, exporters smooth high price shocks.

To examine the impact of the feedback effect from the air shares to the prices and

price volatility, we instrument for past price volatility. Table 6 reports results from FD-

2SLS using similar specifications as in Table 5. For comparison, column (1) of Table

6 instruments for the lag of the air share and the contemporaneous price. Column (2)

instruments for the current period price volatility in addition to the variables in column

(1).16 As we expect from the theory, all coefficients on the price volatilities increase. The

15That is, we assume that the error term in a given period t can be correlated with the endogenous regres-
sors in the current or future periods but not with their past.

16The column (1) instruments are ∆Sijt−1, ∆Sijt−3, ∆pijt−2. The column (2) instruments are ∆Sijt−1,
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specification in column (3) adds the lag of the first difference of the price volatility to

the list of instrumented variables.17 This variable is endogenous by construction due to

first differencing. Again the coefficients on the history of the price volatilities increase,

but precise identification in this case is difficult as we now instrument for four variables

employing only their higher order lags of levels and differences as instruments. Column

(4) drops the current period price volatility which is insignificant in column (3) to re-

establish significant estimates on the lagged price volatilities. Table (6) says that as we

account for potential feedback effects from a hedging strategy to the price volatilities,

the impact of the price volatilities increases. This is consistent with our theory, where

exporters subject to high price shocks smooth the price realizations with additional air

shipments.

4. The Option Value of Air Transport

Air transport allows firms to decrease their first period shipment and take advantage

of favorable market conditions after demand uncertainty is revealed. In other words, air

transport is a real option that a firm can realize at the price of higher transportation costs.

In this section, we employ a simplified model with discrete rather than continuous real-

izations of demand. This allows us to provide analytical expressions for many, but not all,

of the model predictions described in Section II. In addition, it allows us to use estimates

from our empirical section to provide back-of-the-envelope calculations of the value to

firms of having fast transport available.

The model set up is the same as in Section II, except that we assume a linear demand

function P (Q) = (a + ε − bQ), where the random variable ε captures the demand uncer-

tainty, and ε = γ or ε = −γ with equal probability. Here, demand uncertainty enters as

a E(ε) = 0 parallel shift of the demand curve as opposed to the Section II assumption of

uncertainty rotating the demand curve.

∆Sijt−3, ∆pijt−2, ∆V (p)ijt−4, ∆V (p)ijt−2.
17The column (3) and column (4) instruments are ∆Sijt−2, ∆Sijt−3, ∆pijt−2, ∆V (p)ijt−4, V (p)ijt−2.
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Following the derivation in Section II, we solve the problem backwards. In the second

period the firm takes the ocean quantity and the realization of the shock ε as given and

maximizes

Eπmix
2 (qa) = (a+ ε− b(qo + qa))(qo + qa)− qof o − qafa (14)

with respect to the air shipment. This results in the optimal air quantity qa(ε) =

a+ε−fa

2b
− qo. As in Section II, we write first period expected profits by substituting the

optimal air shipment into the profit function and taking expectations to obtain

Eπmix
1 (qo) =

1

2
{[a− γ − b(qo)]qo − qof o}

+
1

2
{[a+ γ − b(qo + qa(γ))](qo + qa(γ))− qof o − qa(γ)fa} . (15)

Solving for optimal ocean quantities yields

qo
∗

=
1

2b
(fa + a− γ − 2f o). (16)

Ocean quantities are increasing in the air freight premium and decreasing in the vari-

ance of demand, as firms subject to potentially very low realizations of demand will hold

back quantities until after uncertainty is resolved. Substituting qo∗ into the expression for

optimal air shipment, we arrive at

qa
∗

=
1

b
(γ + f o − fa). (17)

Note that qa(γ) > 0 ⇔ ε > fa − f o. Since ε takes on discrete values of (−γ, γ) the

problem simplifies considerably relative to our Section II model, and the range of demand

realizations determines three possible cases. In the first case, γ < fa − f o , the highest

realization of demand yields an increase in prices that is less than the air freight premium.
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As a result, air shipment is never optimal and only ocean shipments are employed. (This

result is similar to the case where z < z∗ in Figure 2 from the continuous model.) Here,

the monopolist sets ocean quantities by maximizing profits subject to the expected value

of demand, or E(P (Q)) = (a− bQ).

When demand is more variable, γ > fa−f o , ex-post realizations of demand determine

modal choice discretely. For low realizations of the shock, ε = −γ < fa − f o, and

only ocean shipment is chosen. For high realizations of the shock, ε = γ > fa − f o

and additional air quantities are brought into the market. This is the primary difference

between this simplified model and the continuous demand distribution from Section II.

In the simple model the probability of choosing air shipping depends only on whether

demand is variable enough and whether the high demand state is realized. It is therefore

independent of the ocean quantities chosen in the first stage.

We can now apply optimal air and ocean quantities to calculate the expected share of

air shipments given freight rates and demand volatility, as

Sa = −f
a − f o − γ
γ + a− fa

. (18)

As in the model of section II, the average air share is increasing in the variance of

demand,∂S
a

∂γ
= a−fo

(γ+a−fa)2
> 0.

Finally, the simplified model allows us to calculate the option value to firms of having

fast transport available to them. We define this value Ω as expected profits for a firm that

can react ex-post to demand shocks using air shipment less expected profits for a firm that

must commit quantities to the market via ocean shipping before demand uncertainty is

resolved. Employing our solutions for optimal air and ocean quantities and prices in each

case, we find

Ω ≡ 1

4b
(γ − (fa − f o))2. (19)

The option value is a function of the price premium commanded in high demand peri-
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ods relative to the air premium that must be paid to take advantage of these high demand

periods. For a sufficiently high variance of demand such that air shipment might be em-

ployed, γ > fa − f o, the option value of air shipments is decreasing in the air premium,

and increasing in the variance of demand, since

∂Ω

∂γ
= − ∂Ω

∂(fa − f o)
=

1

2b
(γ + f o − fa). (20)

It would be desirable to calculate Ω directly, but this requires information we lack

regarding the demand parameter b, and the calculation is sensitive to the units employed

in the volatility measure. We can arrive at a more manageable expression by expressing

the expected air share as a function of γ, and substituting this into the expression to obtain

Ω(Sa) =
(Sa)2

(Sa − 1)2

(a− f o)2

4b
. (21)

We can use this expression to describe marginal changes in model variables (demand

volatility, the air freight rate) acting through changes in the share of air shipping. For

example, to analyze a change in volatility we write, ∂ ln Ω
∂ ln γ

= ∂ ln Ω
∂ lnS

∂ lnS
∂ ln γ

. The elasticity of

the option value with respect to the air share is

∂ ln Ω

∂ lnS
= − 2

s− 1
. (22)

In our sample, the average air share for products that mix modes is 0.24, so ∂ ln Ω
∂ lnS

=

2.63. Our Table 2 estimates show a 0.07 percent increase in the average air share for a

one percent increase in the first lag of the price volatility. Combining these yields ∂ ln Ω
∂ ln γ

=

∂ ln Ω
∂ lnS

∂ lnS
∂ ln γ

= .184 percent. That is, a one percent increase in the first lag of the price

volatility raises the option value of air transport by about 1/5 of a percent. We also estimate

that volatility measured at one, two and three lags has an independent positive effect on

the air share. Suppose a product were to experience a 1 percent increase in volatility at

each of the three lags. The cumulative effect on the option value would then be ∂ ln Ω
∂ ln γ

= .37
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percent.

We can also use this calculation to infer differences in option values across goods de-

pending on the volatility of demand they face. Recalling Table 1, the mean of (normalized)

price volatility is about 0.53 with a standard deviation of 0.49. This means that a product

with volatility one standard deviation above the mean is about 92.4 percent more volatile,

which increases the expected air share by about 6.5 percent. This implies an increase in

the option value of air transport by about 17.1 percent.

The option value depends on air transport costs and these are sensitive to changes in

policies. Micco and Serebrisky (2006) estimate that Open Skies Agreements (treaties that

permit competition in international aviation markets) reduce air transport costs by 9 per-

cent. According to our Table 2 estimates, a 9 percent reduction in air transport costs raises

the air share by about 6.3 percent. Evaluated at the average air share of 0.24, signing open

skies agreements raises the option value of air shipping by ∂ ln Ω
∂ ln fa = ∂ ln Ω

∂ lnS
∂ lnS
∂ ln fa

∂ ln fa

∂OSA
=

16.6 percent

Hummels (2007) reports that the cost of air transport fell 80 percent from 1965 to 2000

largely as a result of innovation in jet aircraft. This caused the air share of US imports from

outside of North America to rise from 8 to 36 percent, and the air share in US exports to

outside North America to rise from 11.9 to 57.6 percent. To evaluate these non-marginal

changes in freight prices and air shares, we can express the ratio of the option value at two

points in time. Substituting these air shares into equation (21) above, and assuming no

other change in parameters,18 we arrive at

Ω(US imports, 2000)/Ω(US imports, 1965) = 31.3

Ω(US exports, 2000)/Ω(US exports, 1965) = 101.1

18Hummels (2007) also shows that ocean shipping costs were largely unchanged over this period, so we
take fo as fixed.

24



To use the model’s interpretation, the enormous drop in air shipping costs in this period

made feasible a broad use of air transport as an option to smooth demand uncertainty. The

value of this option rose 31-fold for US imports and 100-fold for US exports over a 35

year span.

5. Conclusion

Physically moving goods between distant locations introduces a significant lag be-

tween when a product is shipped and when it arrives. This can be especially problematic

for firms facing volatile demand, who must then place orders before knowing the res-

olution of demand uncertainty. One solution for these firms is to bring producers and

consumers closer together in space. We explore an alternative solution: using airplanes to

bring producers and consumers closer in time.

In our model of this process, fast transport allows firms to lower the quantities shipped

prior to the resolution of demand, thereby reducing the risk of having large quantities on

hand during a low demand period. It also allows firms to respond quickly to favorable

demand realizations, bringing greater quantities into the market in these periods. Fast

transport thus provides firms with a real option to smooth demand volatility.

The model predicts that the likelihood and extent to which firms employ air shipments

is increasing in the volatility of demand they face, decreasing in the air premium they must

pay, and increasing in the contemporaneous realization of demand.

We test and find support for all three conjectures using detailed US imports data from

1990-2004. Air shipment is sensitive to past volatility out to the third lag, and the cumula-

tive impact of the demand volatility on air shipments is similar in magnitude to the impact

of the ocean freight rate. These estimates are robust to respecification, accounting for the

firm’s past history of the transport mix, and controlling for other plausible determinants of

the transport mix.

We use a simplified model to express the option value associated with fast transport as

a function of demand volatility and shipping costs, which in turn depend on variation in
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goods characteristics, technology, and policy variables. A one standard deviation increase

in the past demand volatility raises the option value of air transport by about 17.1 percent.

Liberalization of air cargo services raises the option value by 16.6 percent. The rapid

decline in air transport costs associated with the introduction of jet engines increased the

option value 31-fold for US imports and 100-fold for US exports.

These results provide insights into several broader problems.One, we provide evidence

for a specific micro channel – hedging demand shocks – that helps explain why firms are

willing to pay a very large premium to air ship products. Two, as shown in Aizenman

(2004), exchange rate pass through is increasing in the share of last minute shipments.

To the extent that air shipping as a real option varies across exporters and products (due

to variation in both demand volatility and the air premium) this may help explain where

exchange rate pass through is large or small. Three, express air cargo carriers such as Fed

Ex are active both in domestic and international markets. Our results provide evidence for

a specific but widely employed adjustment cost – paying a premium for rapid transport –

facing firms subject to demand shocks.
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Figure 1: Air Cargo Shares in US Imports

Note: An observation is a unique exporter-HS10 product flow in each year from 1990-
2004. North American trade and observations with zero air shipments or zero ocean ship-
ments are excluded (68 percent of total).
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Figure 2: The Air Shipment Threshold

Note: Dotted lines form upper and lower bound of demand realization. Solid line is zero
air shipment threshold, air shipment occurs in gray area. The parameters are a = 1000,
b = 1.
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Figure 3: Prices and Quantities at Different Realizations of the Shock
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Figure 4: The Share of Air Shipments in Total Quantity
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Table 2: Probability of Mixing
Probit Probit Probit

Natural Logs (1) (2) (3)
V(p)ijt .408 .389 .378

(.003)∗∗∗ (.004)∗∗∗ (.005)∗∗∗

V(p)ijt−1 .136 .111 .099
(.003)∗∗∗ (.003)∗∗∗ (.004)∗∗∗

V(p)ijt−2 .103 .082
(.003)∗∗∗ (.004)∗∗∗

V(p)ijt−3 .084
(.004)∗∗∗

Ocean Chargeijt -.045 -.057 -.062
(.003)∗∗∗ (.004)∗∗∗ (.005)∗∗∗

Pijt .624 .638 .644
(.003)∗∗∗ (.003)∗∗∗ (.004)∗∗∗

Countijt .445 .467 .481
(.002)∗∗∗ (.002)∗∗∗ (.003)∗∗∗

Rjt -1.076 -1.158 -1.207
(.038)∗∗∗ (.045)∗∗∗ (.051)∗∗∗

Pipeline Costjt .347 .372 .385
(.012)∗∗∗ (.015)∗∗∗ (.017)∗∗∗

AvDaysjt -.805 -.842 -.845
(.026)∗∗∗ (.031)∗∗∗ (.036)∗∗∗

V(e)jt .022 .018 .015
(.001)∗∗∗ (.001)∗∗∗ (.001)∗∗∗

N 759800 585911 461958
Chi2 137582.68 120232.50 86979.99
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Table 3: Base Specifications
OLS FE OLS FE

Natural Logs (1) (2) (3) (4)
V(p)ijt .168 .033 .167 .091

(.007)∗∗∗ (.006)∗∗∗ (.006)∗∗∗ (.006)∗∗∗

V(p)ijt−1 .135 .074 .117 .074
(.007)∗∗∗ (.006)∗∗∗ (.006)∗∗∗ (.005)∗∗∗

V(p)ijt−2 .083 .038 .064 .031
(.007)∗∗∗ (.005)∗∗∗ (.006)∗∗∗ (.005)∗∗∗

V(p)ijt−3 .073 .027 .054 .021
(.007)∗∗∗ (.005)∗∗∗ (.006)∗∗∗ (.005)∗∗∗

V(p)ijt−4 .075 .019 .043 .008
(.006)∗∗∗ (.005)∗∗∗ (.005)∗∗∗ (.005)

Air Chargeijt -.753 -.654 -1.000 -.720
(.008)∗∗∗ (.008)∗∗∗ (.006)∗∗∗ (.008)∗∗∗

Ocean Chargeijt 1.092 .450 .329 .130
(.008)∗∗∗ (.008)∗∗∗ (.006)∗∗∗ (.006)∗∗∗

Pijt 1.050 1.035
(.004)∗∗∗ (.009)∗∗∗

Countijt .043 .025
(.003)∗∗∗ (.007)∗∗∗

Rjt -.894 -.170
(.023)∗∗∗ (.079)∗∗

Pipeline Costjt .298 .055
(.007)∗∗∗ (.025)∗∗

V(e)jt .028 -.015
(.002)∗∗∗ (.004)∗∗∗

N 201296 201296 201296 201296
R2 .24 .129 .511 .265
F 1776.638 525.855 6437.466 1066.637
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Table 4: Alternative Measures of Volatility
OLS FE OLS FE

Natural Logs (1) (2) (3) (4)
V(Q)ijt .186 .061

(.008)∗∗∗ (.008)∗∗∗

V(Q)ijt−1 .190 .110
(.008)∗∗∗ (.007)∗∗∗

V(Q)ijt−2 .129 .051
(.008)∗∗∗ (.007)∗∗∗

V(Q)ijt−3 .123 .028
(.007)∗∗∗ (.007)∗∗∗

V(po)ijt .178 .077
(.006)∗∗∗ (.005)∗∗∗

V(po)ijt−1 .136 .062
(.006)∗∗∗ (.005)∗∗∗

V(po)ijt−2 .094 .032
(.006)∗∗∗ (.004)∗∗∗

V(po)ijt−3 .087 .021
(.005)∗∗∗ (.004)∗∗∗

Air Chargeijt -.958 -.718 -.988 -.711
(.006)∗∗∗ (.008)∗∗∗ (.007)∗∗∗ (.008)∗∗∗

Ocean Chargeijt .275 .130 .339 .154
(.005)∗∗∗ (.006)∗∗∗ (.006)∗∗∗ (.007)∗∗∗

Pijt 1.067 1.028 1.028 1.019
(.004)∗∗∗ (.009)∗∗∗ (.004)∗∗∗ (.010)∗∗∗

Countijt .057 .013 .028 .034
(.003)∗∗∗ (.007)∗∗ (.002)∗∗∗ (.007)∗∗∗

Rjt -.806 -.169 -.906 -.156
(.023)∗∗∗ (.079)∗∗ (.024)∗∗∗ (.083)∗

Pipeline Costjt .257 .055 .301 .052
(.007)∗∗∗ (.025)∗∗ (.007)∗∗∗ (.026)∗

V(e)jt .038 -.015 .029 -.016
(.002)∗∗∗ (.004)∗∗∗ (.002)∗∗∗ (.004)∗∗∗

N 201285 201285 181010 181010
R2 .506 .263 .522 .251
F 6804.245 1150.7 6551.501 1001.747
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Table 5: Impacts of Lagged Dependent Variables
FD-2SLS FD-2SLS

Log Diff. (1) (2)
∆ Sijt−1 .109† .089†

(.008)∗∗∗ (.014)∗∗∗

∆ Sijt−2 -.008
(.006)

∆ V(p)ijt .069 .070
(.006)∗∗∗ (.006)∗∗∗

∆ V(p)ijt−1 .064 .065
(.007)∗∗∗ (.007)∗∗∗

∆ V(p)ijt−2 .016 .019
(.007)∗∗ (.006)∗∗∗

∆ V(p)ijt−3 .010 .014
(.007) (.006)∗∗

∆ Air Chargeijt -.719 -.713
(.008)∗∗∗ (.009)∗∗∗

∆ Ocean Chargeijt .113 .112
(.006)∗∗∗ (.006)∗∗∗

∆ Pijt 1.030 1.023
(.009)∗∗∗ (.010)∗∗∗

∆ Countijt .075 .074
(.009)∗∗∗ (.009)∗∗∗

∆ Rjt -.429 -.421
(.091)∗∗∗ (.090)∗∗∗

∆ Pipeline Costjt .140 .137
(.029)∗∗∗ (.029)∗∗∗

∆ V(e)jt -.031 -.030
(.005)∗∗∗ (.005)∗∗∗

N 160547 160547
F 1052.333 1075.256

Note: FD-2SLS(1-2) First difference 2 stage least squares estimation with robust standard
errors. Dependent variable: First difference of the log air share, Sijt. ∆ : First differ-
ence operator. All variables are in logs. † : Instrumented variables. We report the first
stage R2 in the order as the instrumented variables appear in the table from top to bot-
tom. Column(1) instruments using ∆Sijt−2 (R2 = 0.19). Column(2) instruments using
∆Sijt−3 (R2 = 0.24). All specifications include a year fixed effect. The standard errors
are reported in parentheses.
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Table 6: Endogeneity of Price Volatility
FD-2SLS FD-2SLS FD-2SLS FD-2SLS

Log Diff. (1) (2) (3) (4)
∆ Sijt−1 .112† .112† .112† .112†

(.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗ (.008)∗∗∗

∆V(p)ijt .044 .068† -.097†
(.010)∗∗∗ (.034)∗∗ (.335)

∆V(p)ijt−1 .064 .077 .111† .092
(.007)∗∗∗ (.018)∗∗∗ (.071) (.024)∗∗∗

∆V(p)ijt−2 .019 .026 .039 .032
(.007)∗∗∗ (.011)∗∗ (.028) (.014)∗∗

∆V(p)ijt−3 .013 .017 .022 .019
(.006)∗∗ (.007)∗∗ (.013)∗ (.008)∗∗

∆Air Chargeijt -.697 -.698 -.693 -.696
(.010)∗∗∗ (.011)∗∗∗ (.015)∗∗∗ (.010)∗∗∗

∆Ocean Chargeijt .243 .243 .236 .240
(.043)∗∗∗ (.043)∗∗∗ (.045)∗∗∗ (.043)∗∗∗

∆ Pijt .588† .593† .572† .587†
(.144)∗∗∗ (.144)∗∗∗ (.151)∗∗∗ (.141)∗∗∗

∆ Countijt .062 .067 .036 .054
(.010)∗∗∗ (.012)∗∗∗ (.065) (.009)∗∗∗

∆ Rjt -.401 -.400 -.405 -.402
(.092)∗∗∗ (.092)∗∗∗ (.093)∗∗∗ (.092)∗∗∗

∆ Pipeline Costjt .132 .132 .134 .133
(.030)∗∗∗ (.030)∗∗∗ (.030)∗∗∗ (.030)∗∗∗

∆ V(e)jt -.031 -.031 -.031 -.031
(.005)∗∗∗ (.005)∗∗∗ (.005)∗∗∗ (.005)∗∗∗

N 160547 160547 160547 160547
F 540.844 541.25 534.255 563.05

Note: FD-2SLS(1-2) First difference 2 stage least squares estimation with robust standard
errors. Dependent variable: First difference of the log air share, Sijt. ∆ : First differ-
ence operator. All variables are in logs. † : Instrumented variables. We report the first
stage R2 in the order as the instrumented variables appear in the table from top to bottom.
Column(1) instruments using ∆Sijt−2, ∆Sijt−3, ∆pijt−2. The first stageR2 are 0.23 and
0.18. Column(2) instruments using ∆Sijt−2, ∆Sijt−3, ∆pijt−2, ∆sdpijt−4, sdpijt−2. The
first stage R2 are 0.23, 0.3 and 0.17. Column(3) and Column(4) instrument using ∆Sijt−2,
∆Sijt−3, ∆pijt−2, ∆sdpijt−4, sdpijt−2. The first stage R2 are .23,.03, .28, .17 and .23, .28,
.17 respectively. All specifications include a year fixed effect. The standard errors are
reported in parentheses.
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