
NBER WORKING PAPER SERIES

ADOPTION CURVES AND SOCIAL INTERACTIONS

William A. Brock
Steven N. Durlauf

Working Paper 15065
http://www.nber.org/papers/w15065

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2009

This paper has been written in memory of Antoni Calvo-Armengol.  The research has been supported
by the National Science Foundation grant SES-0518274 and University of Wisconsin Vilas Trust and
Graduate School.  Thanks to Bryan Graham, Harald Uhlig and seminar participants at the memorial
conference for Antoni Calvo-Armengol and the University of Chicago for very helpful comments
on a previous draft.   Nonarit Bisonyabut and Xiangrong Yu have provided superb research assistance.
 The views expressed herein are those of the author(s) and do not necessarily reflect the views of the
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2009 by William A. Brock and Steven N. Durlauf. All rights reserved. Short sections of text, not
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source.



Adoption Curves and Social Interactions
William A. Brock and Steven N. Durlauf
NBER Working Paper No. 15065
June 2009
JEL No. C1,D01,O33

ABSTRACT

This paper considers the observational implications of social influences on adoption decisions for an
environment of perfect foresight adopters.  We argue that social influences can produce two observable
effects: 1) discontinuities in unconditional adoption curves and 2) pattern reversals in conditional adoption
curves, in which earlier adoption is found for one group of actors versus another when “fundamentals”
suggest the reverse ordering should occur; in turn the presence of either of these features can, under
weak assumptions, be interpreted as evidence of social influences.  As such, these properties are robust
implications of social effects.

William A. Brock
Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI   537061393
wbrock@ssc.wisc.edu

Steven N. Durlauf
Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI  53706-1393
and NBER
sdurlauf@ssc.wisc.edu



1 

 

1.  Introduction 

  

 There has been a resurgence of interest in the role of social interactions in 

determining the rate at which technologies are adopted (Bandiera and Rasul (2006), 

Conley and Udry (2005), Manski (2004,2006), Munshi (2004), Skinner and Staiger (2005), 

Young (2007)).  Some of these recent efforts echo earlier debates that emerged when 

Griliches produced his seminal work on adoption in agriculture (1957,1958).  Griliches was 

criticized by Havens and Rogers (1961) among others for ignoring the social determinants 

of adoption decisions1.  An important methodological implication of social interactions and 

adoption literature is that it shows that economic incentives and social influences may be 

synthesized so that any antithesis assumed between economic and social explanations is a 

false one; private incentives and social incentives are both compatible with the choice-based 

logic that Griliches developed.   

 This paper focuses on the properties of a particular rational expectations model 

of heterogeneous atomistic potential adopters.  “Social interactions” in the context of this 

model constitute positive feedback external spillover effects from the fraction having 

already adopted in the payoff function to each agent who has adopted.   Our objective is to 

identify properties of adoption curves that imply the presence of social interactions under 

relatively weak assumptions.  Of course, any judgment on whether these assumptions are 

weak enough to be plausible will depend on context. In motivating our analysis in various 

places, we will return to the hybrid corn example; Skinner and Staiger (2005) and Sutch 

(2008) are recent studies that revisit Griliches’ classic analysis in order to consider the 

effects on adoption.    Of course the general literature on adoption of new technologies, 

network effects, learning effects, and the relationship of adoption to general social 

interactions is very large and had moved far beyond Griliches’s early studies; see the survey 

by Hoppe (2002).   

  We characterize equilibria for rational adopters who maximize intertemporal 

profits.  This characterization focuses on uncovering observational implications of social 

interactions on adoption curves that are robust to various types of observed and 

                                                 
1See David (2005) for a discussion of this debate.  
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unobserved heterogeneity.  In doing this, we are particularly concerned to identify 

observable implications that are robust to the presence of heterogeneity.   To our 

knowledge the insertion of endogenous (in the sense of Manski (1993)) social interactions 

at the adoption level in the form of positive feedback of the fraction who have already 

adopted into the payoff function of each agent (after adoption) in the context of a rational 

expectations model of atomistic heterogeneous potential adopters and the study of the 

resulting patterns in adoption curves produced by this type of model is new.2  We 

recognize that the adoption curve itself may of less interest than other features of patterns 

of adoption (e.g. delays in adopting superior technologies, patterns of strategic interaction 

between a small number of major players, etc.) may be considered more relevant, 

especially for policy making, we focus on properties of the adoption curve here because of 

their use in uncovering the presence of social influences which are of general interest and 

matter for policy questions.   

 Our analysis reveals two properties that might assist empirical researchers in 

interpreting some interesting patterns in the data.  First, we demonstrate that social 

interactions can produce jumps in fraction adopting at some particular date.  Second, we 

demonstrate that social interactions can produce pattern reversals in which agents whose 

private characteristics suggest they would adopt earlier than others in fact adopt later.  

Rather, it follows from the requirement that agents with greater ability to profit from a new 

technology adopt before those with relatively lesser ability.  The reason that this 

requirement empirically distinguishes cases with and without social interactions is that 

under monotonic (in ability) adoption curves, lower ability agents face an environment in 

which a larger percentage of the population will have adopted than higher ability ones and 

hence may experience stronger social interaction effects because they adopt at a later date.  

In order to reconcile the difference in the strength of social interactions with the 

monotonicity requirement in adoption times and individual ability, discontinuities can 

occur.  As for pattern reversals, the presence of discontinuities with in adoption curves with 

respect to unobservables can break the monotonicity with respect to observables.    

                                                 
2See Brock and Durlauf (2001a,b,2006,2007), Graham (2008), Lee (2007) and Manski 
(1993) for the econometric literature on social interactions.  
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 To be clear, neither of these properties is necessary for the presence of social 

interactions, and each is sufficient only in conjunction with additional assumptions on the 

adoption process.  That said, the relatively weak nature of these assumptions (compared to 

others that appear in the literature) combined with the fact that these patterns only occur 

when social interactions are large (in a sense made precise below), provide strategies for 

empiricists to uncover social influences in adoption.3  While we certainly do not claim to 

have established that either discontinuities or pattern reversals constitute a sine qua non of 

observable implications of social interactions in adoption contexts, we do believe they 

represent useful directions for uncovering social influences on individual behavior.  As 

such, they follow a research strategy in the social interactions literature developed in Brock 

and Durlauf (2007), Graham (2008) of trying to identify implications of social interactions 

are hold for an array of assumptions on unobserved heterogeneity and so may be regarded 

as robust implications. 

 Methodologically, two papers are closest to ours.  Cabral (1990), in what appears 

to be a relatively neglected contribution, studies adoption curves when social interactions 

(in his language, network externalities) are present and shows how discontinuities in 

adoption curves may result.4  We differ from Cabral first in terms of our analysis of forward 

looking agents who face dynamic profit flows and second in our analysis of observable 

implications in the presence of various types of heterogeneity.5  Our analysis also shares 

much in common with Young (2007) who compares the properties of adoption models 

with and without different types of social interactions, and like us focuses on uncovering 

properties of adoption curves that are robust to heterogeneity.  While our goals are similar, 

our microstructures and analyses are not. We analyze environments in which adopters are 

                                                 
3 We thank an anonymous referee for this formulation. 
4We became aware of Cabral’s paper after writing the first draft of this one. We wish to 
emphasize Cabral’s priority in uncovering the discontinuity property for adoption, despite 
differences in our microeconomic specifications.  
5Other papers share important similarities with our analysis and Cabral’s.  De Palma (2007) 
studies a model of synchronization in the presence of social interactions.  This analysis 
produces interdependences in hazard functions for individuals and in turn is related to 
Brock and Durlauf (2001b) and especially Sirakaya (2006) each of which directly embeds 
social interactions in a duration framework. Adsera and Ray (1998) consider a dynamic 
migration model with spillovers and show that lags in the effects of social interactions can 
eliminate multiple equilibria.  
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forward looking whereas Young focuses on myopic adjustment rules that correspond to 

different types of social interactions.  Heterogeneity in Young’s analysis is associated with 

parameters of these adjustment processes whereas ours concerns observable and 

unobservable individual productivity.  We find that social interactions produce different 

observable implications from those identified by Young.  Unlike Young, we do not 

differentiate between types of social interactions.  

 We argue that one can derive some restrictions on adoption curves even when 

agents are forward looking and even quite general forms of heterogeneity are present.  This 

will occur in two respects.  First, we argue that social interactions can endogenously 

produce discontinuities in adoption curves.  These discontinuities only arise exogenously 

when social interactions are absent.  Second, we argue that social interactions can, in the 

presence of unobserved heterogeneity, reverse what would otherwise be a monotonic 

relationship between “fundamental” determinants of adoption and adoption times.   Brock 

and Durlauf (2007) introduce the idea of pattern reversals in social interactions models.  

While we do not claim to have established that either discontinuities or pattern reversals 

constitute a sine qua non of observable implications of social interactions in adoption 

contexts, we do believe they represent essential directions for uncovering social influences 

on individual behavior. 

 The ability of discontinuities and pattern reversals to reveal social interaction 

effects in adoption curves does not rely on the existence of multiple equilibria, which is the 

source of the pattern reversal findings in Brock and Durlauf (2007).  Rather, it follows from 

the requirement that agents with greater ability to profit from a new technology adopt 

before those with relatively lesser ability.  The reason this requirement empirically 

distinguishes cases with and without social interactions is that lower ability agents face an 

environment in which a larger percentage of the population will have adopted than higher 

ability ones and hence may experience stronger social interaction effects.  In order to 

reconcile the difference in the strength of social interactions with the monotonicity 

requirement in adoption times and individual ability, discontinuities and pattern reversals 

can occur.  The uncovering of evidence of social interactions via multiple equilibria would 

require repeated observations of the same environment, so that differences in the 
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equilibrium outcomes can be used to infer the presence of the multiplicity.  No such 

mechanism is available here.  

 

 

2.  Basic model 

  

 We model potential adopters as rational farsighted individuals who choose 

adoption times.  We claim no novelty for the microeconomic specification of this forward 

looking model with the exception of the introduction of social interactions.  Variations on 

the model without social interactions appear in several papers in Punzo (2001); Brock 

(2001) also gives a review of some of this type of literature.  In general, the social 

interactions literature has not dealt with dynamic environments with rational agents.    

Reinganum’s pioneering work (1981a,1981b) is an important predecessor in terms 

providing examples of studies of adoption settings in which decisions are interdependent 

because of the competitive structure.  Reinganum shows that this force alone (with no 

heterogeneity across individual actors) is enough to produce many Nash equilibria with 

heterogeneous adoption times. In contrast, our model focuses on social forces that lead to 

bunching in adoption times and explicitly considers the implications of heterogeneity.  

Bandiera and Rasul (2006) is a recent study that is complementary to our; they work with a 

social learning model in a linear environment.   

 Formally, we consider a population of individuals each of whom chooses an 

adoption time t  in order to maximize the present discounted value of current and future 

profits.  We allow for heterogeneity across the individuals, by associating each individual 

with a scalar x  which may be interpreted as individual ability. Ability should be understood 

as indexing individual productivity; we take no stance on its determinants as it is treated as 

exogenous to the model.  This heterogeneity is drawn from some continuously 

differentiable distribution function ( )XF x  with associated density ( )Xf x . The support of 

x  is assumed to be an interval [ ]ˆ0,I x= , where x̂  may be infinite. 

 Individual actors choose adoption times t  in order to maximize 
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 ( ) ( ) ( )( ) ( )( )( ), exp exp , e

t
J t x t C a s x q s dsρ ρ π

∞
= − − + −∫  (1) 

 

In this expression ρ  is the discount rate, C  is the cost of adoption, a  is the rate of 

technical progress, ( )( ), ex q sπ  is expected profit flow at date s  (which depends upon the 

type x ), where ( )eq s  is the expected fraction of adopters in the population who have 

adopted by date s .  We assume that all agents have the same expectations.  The 

dependence of profits on this fraction constitutes what we mean by social interactions.  

Relative to standard adoption models, the only innovation is the presence of ( )eq s  in the 

profit function.  Our objective is to understand whether observed adoption behavior can 

reveal the role of social interactions in individual decisions.  

We make the following assumptions on the elements of this decision problem. 

 

Assumption A.1. 0aρ − > . 

 

Assumption A.2. ( )eq t  is a piecewise differentiable monotone nondecreasing function with 

a finite number of points of discontinuity.  For all t , right derivatives are well defined and 

left limits exist for ( )eq t .   

 

Assumption A.3. ( ),x qπ  is strictly increasing in x , weakly increasing in q  and is twice 

continuously differentiable in ( ),x q . 

 

Assumption A.4. Each potential adopter of type x  does not take into account the impact 

of his choice of adoption time t  upon the adoption time choices of others.  

   

 Assumption A.1 is necessary to ensure that each individual’s maximization problem 

is well defined; it simply ensures that the present discounted value of profits is bounded.  

Assumption A.2 imposes some regularity on the set of admissible beliefs which is useful in 

developing our results as it rules out potential pathologies.   The monotonicity requirement 
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is substantively quite restrictive. We make it in order to render the problem of 

characterization of the set of rational expectations equilibria tractable.6  We conjecture that 

monotone beliefs may be plausible in microfounded models where adopters keep learning 

about their new technology by newsletters, user groups, and other mechanisms of 

information transfer where the usefulness of the information transferred is increasing in the 

fraction that have already adopted the particular technology under scrutiny.  Assumption 

A.3 restricts the payoff function and is therefore substantive in its impositions of 

monotonicity, but is of course far weaker than assuming a particular functional form.  The 

main restriction is that the heterogeneity scalar x  has a monotonic effect on profits, which 

limits what sorts of interpretation may be placed on it.  Assumption A.4 allows us to ignore 

strategic interactions, i.e. we treat each agent as atomistic.  The assumption is sensible when 

an individual adopter is small relative to the overall group. 

 All propositions stated in the paper assume at least some of A.1-A.4; for ease of 

exposition we assume all of them for each of our lemmas and theorems.  Further, we 

always assume that there is a finite date in the past when the new technology first appears 

and the first adoption occurs after that date; without loss of generality we date at which the 

innovation first appears at 0.7  Finally, we conceptualize each agent as choosing an adoption 

time from ( ),T−∞ , this avoids problems of corner solutions in the optimization problem.   

 The first order necessary condition (FONC) and secondary order necessary 

condition (SONC) for the optimal adoption time *t  by type x  are given by 

                                                 
6The assumption is consistent with the strategy of finding rational expectations equilibria 
that is standard in macroeconomics models in that we in essence conjecture that agents 
form beliefs that have certain properties and then show that these beliefs are justified in 
the equilibrium law of motion for the system.  
7Sutch (2008) shows that this is precisely what happeed in the case of hybrid corn.  Hybrid 
corn was invented by Donald F. Jones in 1917-1918, was developed and introduced on a 
trial basis by Henry Agard Wallace in 1924, was first sold commercially in 1925, 
competitors began sales in 1928, and widespread commercial adoption began in 1932.  In 
1933 .1 percent of the nation’s corn acreage was planted in hybrid corn and by 1960 hybrid 
corn was planted on 96.3 percent of the nation’s corn acreage. 1917 corresponds to our 

0t = .   
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 ( ) ( ) ( )( )( )( )* 1 ln ln , 0 et x C x q t
a

ρ π= − =  (2) 

 

and 

 

 ( ) ( )( ) ( )( )
( )

( )2
,

exp ( ) ,
e e

e
e

x q t dq t
C at a x q t

q t dt
π

ρ ρ π
⎛ ⎞∂
⎜ ⎟− ≤ − +
⎜ ⎟∂⎝ ⎠

 (3) 

 

respectively for dates t, if ( )eq t  is differentiable at t.  However, as will become clear, we do 

not wish to assume differentiability at all dates. If ( )eq t  is not differentiable at date t, 

observe that by A.3 ( ) ( )e eq t q t− +<  where “− ” denotes the operation of taking the left 

limit and “+” denotes the operation of taking the right limit.  A local maximum is 

characterized (in our case) by the left limit being greater than the right derivative with a zero 

between these two values.  Letting ( ),J t x  denote the objective function in (1) evaluated at 

the particular point ( ),t x .  Then the first and second order necessary conditions for a local 

maximum at t  may be expressed as 

 

 

( )( ) ( )( )( )

( )( ) ( )( )( )

, , ,

0

, , ,

e t at e

e t at e

J t x q t e C e x q t

J t x q t e C e x q t

ρ

ρ

ρ π

ρ π

− − − −

+ + − +

′ = − ≥

≥

′ = −

 (4) 

 

since this inequality can be decomposed in terms of the usual FONC and SONC, 

( ) ( ), 0, , 0J t x J t x′ ′′= ≤  when ( )eq t  is differentiable at t .8   

                                                 
8 Throughout, we write t t t− += =  for the parts of functions that are continuous in t .  
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In the case where ( )eq t  is differentiable at date t , the FONC is quite intuitive as it 

amounts to equating the marginal benefit to adoption at a given time with the associated 

marginal cost. To understand the SONC, rewrite (2) as 

 

 ( ) ( )( )exp , eC at x q tρ π= . (5) 

 

Substituting into (3), the second order condition holds if and only if,  

 

 ( )( ) ( )( )
( )

( ),
0 ,

e e
e

e

x q t dq t
a x q t

q t dt
π

π
∂

≤ +
∂

. (6) 

 

Equation (6) is satisfied provided that ( )( ), 0ex q tπ ≥  
( )( )

( )
,

0
e

e

x q t
q t

π∂
≥

∂
 and 

( ) 0
edq t
dt

≥ .  

The first inequality is immediate from the FONC, since the cost of adoption is positive. 

The second inequality holds by Assumption A.3 above.  The third inequality cannot be 

assessed without specification of the expectations formation process. In our subsequent 

analysis 
( ) 0

edq t
dt

≥  will be shown to hold in equilibrium under rational expectations.  In 

the case where ( )eq t  is not differentiable at t  we will show that ( ) ( )e eq t q t− +≤  holds in 

equilibrium.  Hence it will be the case that the SONC holds for interior critical points t  for 

(2). If ( )( ), 0eC x qρ π< , it is locally optimal to set 0t =  for type x .  

 The following lemma provides a sufficient condition for uniqueness of an 

individual adoption time. 

 

Lemma 1. Uniqueness of optimal adoption time 

 

Given, A.1-A.4, the optimal time to adopt for each agent type exists and is unique.   
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For comparative purposes, we note the case where there are no social interactions, 

i.e.  ( )( ) ( ), ex q t xπ π= .  In this case the optimal adoption times follow 

 

 
( ) ( ) ( )( )

( )

*

*

1 ln ln  if ,

0 if 

t x C x x x
a

t x x x

ρ π= − <

= ≥
 (7) 

 

where x  is defined by ( )* 0t x =  (if such an x  exists).  Observe that ( )*t x  is decreasing in 

x by Assumption A.3; this simply means that higher productivity types adopt earlier as the 

profit incentives are higher.   

 

 

3. Adoption curves and rational expectations equilibria 

 

We now consider equilibria under social interactions by imposing a rationality 

requirement on beliefs about adoption levels.  For any expectations process, one can 

construct the actual adoption curve  ( )q t  that describes the percentage of the population 

which has adopted by date t .  We first note a lemma. 

 

Lemma 2. Monotonicity of adoption with respect to ability 

 

Given A.1-A.4, suppose 1 1 and t t x x< < . If 1x  adopts at time 1t , then for all 1x x< , the 

adoption time t  of type x  satisfies 1t t≥ . 

 

Monotonicity means that the adoption rate may be calculated using the formula 

 

 
( )

( )( )( ) ( ) 1X Xa t
q t f z dz F a t

∞
= = −∫  (8) 

 

where the lower integral limit ( )a t  is implicitly defined by 
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 ( )( )*t a t t= . (9) 

 

Eq. (8) means that there is a tight link between the adoption curve and the distribution 

function of the type-specific heterogeneity.  To understand eq. (9), recall that we have 

shown that for each x  there exists a unique adoption time ( )*t x , a decreasing function 

which may be discontinuous, i.e. ( ) ( )* *t x t x− +>  may occur.  At continuity points of 

( )*t x , the associated inverse function is well defined and one can solve for the value 

( )x a t=  that satisfies (9) at date t .  At discontinuity points of ( )*t x  we use the right limit 

x+  as x  decreases towards the point of discontinuity.  This choice rule is consistent with 

Assumption A.2; this ensures that ( )eq t  is increasing in t . 

Since the profit functions are assumed to depend on the expected adoption curves 

of each agent, rational expectations equilibria thus are straightforward to define as they 

require that the beliefs about adoption rate coincide with the actual adoption rates along an 

equilibrium path.   

 

Definition: rational expectations equilibrium (REE).    

 

A rational expectations equilibrium is a pair of functions ( )*t x  and ( )*q t  such that  

 

i. individual adoption times are optimal, 

   

and  

 

ii. the aggregate adoption curve is consistent with these individually optimal choices. 

 

The requirements of a rational expectations equilibrium, implicitly characterizes the 

optimal adoption times. At points of differentiability, the optimal times must fulfill 
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 ( ) ( ) ( )( )( )( ) ( )* * *1 ln ln ,  if 0t x C x q t t x
a

ρ π= − >
 (10) 

 

and the equilibrium fraction who have adopted by date t , ( )q t , must fulfill 

 

 ( ) ( ) ( )( )( ) ( )( )* * *Pr exp , 1 Xq t x C at x q t F x tρ π= − ≤ = − . (11) 

 

where ( )*x t  is implicitly defined by the first equality in (11). Substituting (11) into (10) 

 

 ( ) ( ) ( )( )( )( )* *1 ln ln ,1 Xt x C x F x t
a

ρ π= − −  (12) 

 

In contrast to this function, one can consider a best response function for each type 

in which the population fraction adopting corresponds to the distribution of types: 

 

 ( ) ( ) ( )( )( )1 ln ln ,1 .XS x C x F x
a

ρ π= − −  (13) 

 

This ( )S x  function differs from ( )*t x  as it is the best response function for an individual 

without self-consistency imposed between the adoption time and adoption curves as an 

equilibrium condition. 

 

 

4. Restrictions on the shape of the adoption curve 

 

In this section, we consider how social interactions manifest themselves in observed 

adoptions decisions. We follow the tradition started with Griliches (1957) in placing 

primary emphasis on the shape of the equilibrium adoption curve ( )*q t .  We consider 

how social interactions, in the sense that the profit function ( , )x qπ  increases in both x  
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and q  restricts this curve.  Our goal is to understand how restrictions emerge in light of 

heterogeneity as characterized by ( )XF x  and the unobservability of ( ),x qπ .  In other 

words, we are interested in uncovering empirical implications of social interactions that are 

robust to unobserved heterogeneity in terms of individual types and the associated profit 

functions that characterize agents. 

 In order to develop restrictions on the shape of the adoption curve which are 

generateed by social interactions, we focus on eq. (13).   When social interactions are 

absent, ( ) ( ),x q xπ π=  and so is monotonically increasing in x  by Assumption A.3; this 

implies that ( )S x  is monotonically decreasing as well.  On the other hand, when social 

interactions are present the ( )( ),1 Xx F xπ −  in (13) is not necessarily increasing in x  

despite Assumption A.3 because ( )1 XF x−  is decreasing in x ; by (13) nonmonotonicity 

may be transferred to ( )S x .   Intuitively, this means that, as a best response, higher ability 

agents may not find it as profitable to adopt as lower ability agents because of the absence 

of others who adopt at the same or earlier times. The breakdown, in the presence of social 

interactions, of the monotonicity of the profit function with respect to x  and associated 

nonmonotonicity of ( )S x  has important implications for the behavior for the observable, 

( )*q t .   

We start by concentrating on a form of ( )S x  such that ( )0S = ∞ ,  when x  is 

small, with a unique minimum x .  Let ( )1x t  denote the smallest and ( )2x t  the largest 

solutions to ( )t S x= . We wish to demonstrate that ( )1x t  can be part of a rational 

expectations equilibrium, but that ( )2x t  cannot.  Suppose that ( )2x t  is part of an REE.  

At ( )2x t , higher *t  values are associated with larger x  values.  This solution is not one 

that will be produced by agents choosing optimally conditional on their commonly shared 

belief that ( )2x t  is an equilibrium; this contradiction follows from Assumption A.3 that 

partial derivative of the profit function with respect to x  is positive.  Hence only ( )1x t  has 
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the potential to be part of an REE solution.  This type of argument generalizes to produce 

Lemma 3; the proof is trivial given our previous results and is therefore omitted. 

 

Lemma 3. Monotonicity along equilibrium adoption paths 

 

Given A.1-A.4, along an equilibrium adoption path ( ) ( )( )* *1 Xq t F x t= − , 

  

A. the process for optimal adoption times ( )*t x  must obey  0dx
dt

<  for points of 

differentiability.  

 

B. At jumps, larger x types adopt earlier than smaller x types. 

   

How does the possibility of nonmonotonicity of ( )S x  interact with the 

requirement that  0dx
dt

<  in equilibrium?   The reconciliation of these requirements places 

restrictions on ( )*q t .  Intuitively, in order to ensure that 0dx
dt

< , at differentiable times it 

is necessary that for higher x ’s, a sufficient number of adopters are present to ensure that 

adoption is monotonic in type.  In order for this to always hold, it may be necessary for the 

( )*q t  function to exhibit discontinuities.  This can produce discontinuities of the following 

form:  as t  increases from slightly below *t  to slightly above *t , a mass point of size 

( ) ( )* 0X XF x F x′− >  adopts where *x x′ <   is defined by 

 

 ( ) ( )* .S x S x′ =  (14) 

 

This jump in the number of adopters means that the ( )*t x  is never increasing in x . The 

adoption of a mass point at date *t  causes a jump of size  
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 ( ) ( ) ( ) ( )* 0X Xq t q t F x F x+ − ′− = − > , (15) 

 

to occur at time *t t= .  Hence an observable implication of social interactions, when the 

interactions are strong enough to induce a nonmonotonicity in the function ( )S x  in x , is 

that there may exist at least one jump in ( )*q t .   

As our objective is to explicitly link discontinuities in the REE function ( )*q t  to the 

identification of social interactions, we formulate a theorem for the particular case of ( )S x  

in which the function has a single local minimum minx  and a single finite local maximum 

maxx ; Figure 1 illustrates the qualitative shape of ( )S x  that is assumed in the theorem  The 

structure of the theorem makes it evident that other formulations are possible.  While we 

conjecture that a more general theorem may be produced which directly maps the 

nonmonotonicity of ( )S x  to discontinuities in ( )*q t , we have yet to show this; the 

difficulty is that in dynamic models, one needs to evaluate the best reply function against 

the full dynamic path of the associated adoption curve.  A parametric example of the 

theorem is provided in the Appendix. 

 

Theorem 1.  Discontinuities in the adoption curve as evidence of social interactions  

 

Given A.1-A.4, suppose that 

 

i. ( )S x  is continuously differentiable in x , ( )0S = ∞ , 

  

ii. ( )S x  is initially strictly decreasing in x , until it takes a positive local minimum at minx , 

 

iii. ( )S x  increases in the open interval ( )min max,x x ,  
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iv. ( )S x  takes a unique local maximum at max minx x> , and then strictly decreases in x  for 

all maxx x>  until some point maxx x>%  is reached 

   

v. For all ( ),  0x x S x> <% .   

 

Define * min maxx x x< <  via ( ) ( )*
max *t S x S x= = .  Then,  

 

A. There exists an REE, ( )*q t  defined by, ( ) ( )( )* *1 Xq t F x t= − , for which ( )*x t  satisfies 

the equation, 

 

 ( )( )*t S x t=  (16) 

 

where ( )*x t  is defined to be the largest solution, ( )3x t , to the equation 

( ) *,  for t S x t t= ≤  and ( )*x t  is defined to be the unique solution, ( )1x t , to the equation 

( ) *,  for t S x t t= > where ( )*
maxt S x= . 

 

B. There exists one jump point of positive size in the equilibrium adoption curve ( )*q t  

which occurs at ( )*
maxt S x= , 

 

C. There is a mass point, ( )1 XF x− % , at 0t = .   

 

 This discontinuity property represents a variant of a partial identification 

argument in econometrics, cf. Manski (2008).  By this, we mean that the presence of social 

interactions can, for certain magnitudes of the interactions, place restrictions on observable 

data, but that these restrictions neither identify the magnitude of the interactions (in this 

case the effects of q  on ( ),x qπ  nor are the restrictions necessary for the interactions to be 

present.  The presence of a discontinuity means that in comparing the adoption model 
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with and without social interactions, i.e. comparing the implications of the dependence of 

the profit function on q , a discontinuity may be interpreted as evidence of social 

interactions.  However, the absence of a discontinuity does not imply that social 

interactions are absent. The discontinuity property requires that the strength of the 

influence of social interactions is large.  Given the absence of any restrictions on ( ),x qπ  

beyond Assumption A.2, one cannot be more precise about what is meant by larger; if a 

functional form were chosen in which a parameter measured the strength of social 

interactions, then one could interpret the presence of discontinuities as a statement about 

the parameter’s magnitude.  “Large” is model-specific. 

 Of course, discontinuities in ( )XF x  can produce discontinuities in ( )*q t  even 

when social interactions are absent.  If individual adoption times and associated values of x  

are observable (so that ( )XF x  is observable), this alternative explanation can be assessed as 

any discontinuity at dt  would have to align with a discontinuity at dx  so that ( )*
d dt x t= .  

An example in the hybrid corn context is the date 1936 when the news that hybrid corn 

produced much more then open pollinated varieties in that drought year spread like 

wildfire through the farming community and caused the demand for hybrid seed to 

explode (Sutch (2008, page 18)).  This would look like a jump in the data but would not be 

due to social interactions in the sense that the jump is not caused by 0
q
π∂
>

∂
.  Of course if 

one conditions on relative yield information in 1936, separation of causes of jumps in 

adoption rates due to 0
q
π∂
>

∂
 in contrast to an exogenous driver of jumps (such as 

information on the relative productivity of hybrid corn in drought conditions) should be 

possible.9     

                                                 
9 One might argue that in the hybrid corn historical record our model is most relevant to 
the period after the 1936 jump.  Following Sutch (2008), this is so because of the 
combination of the key initial role of Henry Agard Wallace in promoting the use of hybrid 
corn and the fact that did not dramatically expand until prompted by the news of the very 
high relative yields in the drought year, 1936.  Sutch discusses the continued improvement 
of varieties of hybrid corn, the role of demonstration plots, the sharing of information 
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 Once one introduces individual heterogeneity, it is possible to develop empirical 

implications of social interactions which do not rely on the presence of jumps.  For 

example, if one observes the adoption under two different distributions of observed 

heterogeneity, one of which stochastically dominates the other, the absence of social 

interactions places strong restrictions on the associated adoption curves.  

 

Theorem 2. Stochastic dominance and the absence of social interactions 

 

Suppose that the distribution function ( ),1XF ⋅  is stochastically dominated by the 

distribution function ( ),2XF ⋅ . If there are no social interactions, i.e. ( ) ( ),x q xπ π= , then it 

must be the case that ( ) ( )1 2q t q t≤  for all t.   

 

 

 The application of this Theorem would require that a research is able to identify 

distinct cases of adoption under different ( ),X iF ⋅ ’s.   

 

 

5.  Unobservable heterogeneity 

 

In this section we introduce unobservable heterogeneity and consider how 

empirical implications are affected.  Interestingly, unobservable heterogeneity can produce 

a different route to uncovering social interactions that is not present when the heterogeneity 

is absent. 

We focus on the case of a scalar observable 1x  and a scalar unobservable 2x .  

Before we begin a detailed analysis for the case of one observable and one unobservable 

we wish to indicate that the approach extends easily to the case of multiple observables and 

                                                                                                                                                 

about tailoring varieties to specific land types and the role of agricultural extension offices 
in the diffusion process of hybrid corn. 
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multiple unobservables.  This will follow from an assumption of monotonicity of π  in both 

observables and unobservables. 

It is useful to recall the following elementary result from functional separability 

theory in general utility theory (Varian (1992, p. 150)):  For vector x  and scalar q , if 1) 

( ),x qπ  is strictly increasing in both arguments and 2) ( ) ( ), ,x q x qπ π ′≥  if and only if 

( ) ( ), ', 'x q x qπ π′ ≥ for all x , x′ , q  and q′ , then there exists a “subprofit” function ( )u x  

(mapping x  to a scalar) and an aggregator function ( ),V u q  such that 

 

 ( ) ( )( ), ,x q V u x qπ = . (17) 

 

If ( ),V u q  is strictly increasing in ( ),u q  one may simply repeat our earlier analysis by 

replacing x  in the above analysis with u .  Hence in an REE, it must be the case that, 

( )1 Uq F u= − .  In an REE, when ( ),V u q  is independent of q , individuals with higher 

levels of u  adopt first.   When  ( ),V u q  varies in q , the best response adoption times for 

individuals with level u  is given by 

 

 ( )( )( )1( ) ln ln ,1 US u C V u F u
a

ρ= − −  (18) 

 

In parallel to our earlier discussion, the unconditional equilibrium adoption curve is given 

by  

 

 ( ) ( )* 1 Uq t F t= −  (19) 

 

where  

 

 
( ) ( ) ( ) ( )( )( )( ) ( )

( ) ( )( )( ) ( )

* * * *

* *

1 ln ln ,1  if 0

0 if ln , 0 ln .

Ut u C u t F u t t u
a

t u u q C

ρ π

π ρ

= − − >

= ≥
 (20) 
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Functional separability provides a general strategy for introducing unobservables.  

Suppose that productivity is a vector rather than a scalar attribute.  Partition the vector as 

( )1 1,x x x−=  where 1x  is observable and 1x−  is not.  We may now repeat our earlier 

analysis to conditional adoption curves ( )*
1q t x .  These curves must obey 

 

 ( ) ( )( )
1

*
1 | 11 |U Xq t x F u t x= − . (21) 

 

We now focus on the case of a scalar unobservable, i.e. ( )1 2,x x x= , where each 

component is one dimensional.  Notice that if one had infinite data on each “cell” 1x , i.e. 

one observes the conditional adoption curve ( )1|q t x  for every 1x , then this would be 

enough to “reveal” the one dimensional unobservable 2x  except at those dates when 

nonmonotonicity of the conditional best response time ( )2 1|S x x  occurs.   To put it 

another way if the function ( )2 1|S x x  is one-to-one for all 1x  then knowledge of the 

conditional adoption curves at t and the observable covariate 1x  reveals the unobservable 

2x .  On the other hand when the function ( )2 1|S x x  is not monotone in 2x  for some 1x  

then our results derived above on the characterization of REE’s apply, i.e. there will 

typically be a discontinuous burst of adoption as time t  passes through a critical value 

where the function is not monotone for this particular value of 1x .  

 Without any restrictions on the unobservables, one cannot identify any 

observable implications for social interaction effects on adoption curves.   Any adoption 

pattern that is generated with social interactions can be replicated with them by suitable 

choice of unobservables.   We proceed by using a “weak” assumption on the 

unobservables: 

 

A.5. ( )
2 1 2X XF x  is stochastically increasing in 1x in the sense, 1 1x x ′< , implies that 
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 ( ) ( )
2 1 2 12 1 2 1X X X XF x x F x x′≥ . (22) 

 

Stochastic dominance is an example of a shape restriction.  Shape restrictions are not only 

weaker than functional form restrictions, they are often interpretable in economic terms in 

ways that functional forms are not.  For example, if one thinks of individual farmers as 

characterized by an unobservable ability level and an observable education level, then 

stochastic dominance says nothing more than higher education levels imply that the density 

of abilities is shifted to the right. Brock and Durlauf (2007) show how stochastic dominance 

can facilitate identification of social interactions, using partial identification arguments.  

This work, in turn, draws from Manski (1997) and Manski and Pepper (2000) who 

emphasize the constructive role of assumptions such as shape restrictions.  

 

Theorem 3.  Monotonicity of adoption curves with respect to observables.  

 

Given A.1-A.5, suppose that both observables and unobservables, 1 2,x x  are one 

dimensional.   

 

A. If there are no social interactions, i.e. 
( )1 2, ,

0
x x q

q
π∂

=
∂

, then if  (22)  holds  

 

 ( ) ( )1 1 1 1 implies ,  for all 0.x x q t x q t x t′ ′< < ≥  (23) 

 

B. If  

 

 ( ) ( )1 1 1 1but ,x x q t x q t x′ ′< >  (24) 

 

then it must be the case that 
( )1 2, ,

0
x x q

q
π∂

≠
∂

. 
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 The theorem is intuitive.  One expects agents with higher values of observable 

characteristics 1x  to have better values of unobservable characteristics on average and, 

hence, to have higher profits on average which cause more of them to adopt at any given 

observed date.  Unless there is some kind of externality in the profit function, i.e. 

dependence on q , pattern reversals require that unobserved and observed heterogeneity 

move in opposite directions, which is ruled out by the stochastic dominance assumption.     

 Other routes exist to using pattern reversals as the basis for uncovering social 

interactions. Theorem 4 is one example; the proof is analogous to the proof of Theorem 3 

and is therefore omitted. 

 

   

Theorem 4.  Pattern reversals and order reversals 

 

Suppose there exists a time 0t  such that two different observable types adopt at this time. 

Suppose that at this 0t ,  

 

 ( ) ( )0 1 0 1 ,q t x q t x′>  (25) 

 

i.e. more of the less educated types adopted by 0t  than the more educated types.  Then 

either ( ) ( )
2 1 2 12 1 2 1X X X XF x x F x x′<  or 

( )1 2, ,
0

x x q
q

π∂
≠

∂
. 

 

 As a special case of the Theorem, if 1x  and 2x  are independent, then a pattern 

reversal is interpretable as evidence of social interactions.   

 Theorem 4 assumes a one-dimensional unobservable, but is more general than it 

appears on the surface. For an n − dimension unobservable, denote the individual profit 

function as ( )1 1, ,x x qπ −   where 1 2( ,..., )nx x x− =  and assume that the profit function is 

increasing in all arguments.  To adapt the argument to the higher dimension vector of 

unobservables, assume there exist monotone increasing scalar valued functions V and u 
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such that ( ) ( )( )1 1 1 1, , , ,x x q V x u x qπ − −= .  One can then replace the scalar 1x−  in the 

argument leading to Theorem 4 with the scalar ( )1u x−  and obtain a generalization of 

Theorem 4 to an arbitrary number of unobservables; the last part of Theorem 4 

generalizes to the requirement that either 

( ) ( ) ( )( )
1 1

1 2
1 1

, ,
| |  or  0U X U X

V x u x q
F u x F u x

q
∂

′< ≠
∂

.  Of course, the functional separability 

of payoffs with respect to a vector of unobservables may be more difficult to justify based 

on heuristic economic reasoning. 

 

 

6.  Comparisons to other approaches to uncovering social interactions in adoption 

 

 In this section, we consider some alternate approaches which have been proposed 

for uncovering social interactions 

 

A. logistic functions and adoption curves 

 

It is often claimed that logistic adoption curves are evidence of social interactions; 

Schelling (1997) provides an overview of interpretations of logistic curves as evidence of 

social effects.  This type of argument typically derives from a view of social interactions as a 

type of infection phenomena in which the fraction of those who have not adopted, 

( )1 q t− , changes via  

 

 
( ) ( ) ( )( )1 .

dq t
Rq t q t

dt
= −  (26) 

 

See Daley and Gani (2001) for discussion of this equation in epidemiology. In our model, 

the derivative of the adoption curve is 
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( ) ( ) ( ) ( )( ) ( )( )

1

1 ,X X X

dq t dS x
f x R F x F x

dt dx

−
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 (27) 

 

and can be constructed by solving the ordinary differential equation,  

 

 ( ) ( )
( )( ) ( )1

X

X X

f x
S x

R F x F x
′ =

−
. (28) 

 

But it follows from the definition of ( )S x  that 

 

 ( ) ( )
( )

1 x
S x

a x
π
π
′⎛ ⎞′ = −⎜ ⎟

⎝ ⎠
. (29) 

 

Hence, given ( )Xf x  (and the associated distribution function ( )XF x , in order to have a 

logistic dynamic (26) generated by our model all one must do is to construct a ( )xπ  

function, to satisfy the equation, 

 

 ( )( ) ( )( ) ( )
( )( ) ( )( )0

0ln ln
1

x X

x
X X

f xax x dx
R F x F x

π π− =
−∫ , (30) 

 

for some lower bound 0x .  This indicates how logistic dynamics can result from the shape 

of the profit function ( )xπ  with no implication about social interactions in the adoption 

process.  Since the profit function is not observable, one cannot use the shape of the 

adoption curve to infer anything about social interactions.  Put differently, ( )xπ  represents 

a latent variable that varies across types and is itself a form of unobserved heterogeneity; eq. 

(31) shows that the mapping of a logistic curve to social interactions is not robust when this 

type of heterogeneity is present.   
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 One can develop a parallel analysis to demonstrate that, in the context of our 

model, logistic adoption curves may be generated in absence of social interactions10.   

Suppose that the profit function does not embody social interactions and has the form 

 

 ( ), ,  0< <1x q Axαπ α=  (31) 

 

Mimicing our earlier arguments, profit maximization implies that equilibrium adoption 

times are implicitly defined by 

 

 ( ) ( )1/ /( ) / a tx t C A eα αρ −=  (32) 

 

Previous arguments establish that ( )dq dxf x
dt dt

= −  therefore (32) implies dx ax
dt α

= − .  

Further, (26) indicates the necessary condition for a logistic adoption curve. Combining 

these yields the following differential equation for F(x) 

 

 ( )
( ) ( )( )1

dF xa dxr
xF x F xα

=
−

 (33) 

 

Integrating both sides of (33) (using partial fractions for the LHS) one obtains the 

solution 

 

 
/

0
0/

0

( ) ,  0
1

r a

r a

c xF x c
c x

α

α= >
+

 (34) 

 

and 

                                                 
10See Manuelli and Seshadri (2008) for a distinct framework in which S-shaped adoption 
curves are produced without social interactions, which captures the qualitative features of 
the logistic function, the importance of which is discussed below. 
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 0

0

( )
1 rt

dq t
d e−=

+
 (35) 

 

where the constant /
0 0: ( / )r ad c C Aρ= .  This is a logistic function.   The logistic shape for 

this case derives from the density of types, ( )F x , not from the presence of interactions.  

One can therefore object that this is a knife edge case.  However, as noted by Feller (1940) 

and further argued in Brock (1999) and Dinardo and Winfree (2007), it is very difficult to 

distinguish logistic curves from S-shaped alternatives, hence the qualitative properties of the 

logistic are derivable from a range of densities. 

 

B. relative acceleration rates 

 

Young (2007) is a recent effort to use adoption curve shapes to uncover social 

interactions. His analysis is based on the function  

 

 ( ) ( ) ( ) ( )
2

2 evaluated at  where .r r

d q t dq t
g r t q t r

dt dt
= =  (36) 

 

which he calls the “relative acceleration rate when r  is the proportion of the population 

that has already adopted.” Young argues that in one type of social interactions model, a 

social learning process, the relative acceleration rate “is often nonlinear: rising in the early 

phases of adoption and declining in the later phases.  In another type of social interactions 

model, a contagion process, by contrast, he argues that the relative acceleration rate is 

typically level or declining from beginning to end.” (Young (2007, p. 4)).   

 To understand the behavior of the relative acceleration rate in our model, algebraic 

manipulation reveals that, even when social interactions are absent, the relative acceleration 

rate for our model is 
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( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 2* * * 2 * * * *

*
2( ) X r r r r

X r

df x t dt x t d t x t dt x t
g r f x t

dx dx dx dx

− −
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= −
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (37) 

 

where the quantities are evaluated at *( )rx t .  Additional algebraic manipulation produces 

 

 ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1* *
*

1 2* * 2 * *
* *

2

( )

.

r X
r

X r r r
X r

g r

d x t df x t
a x t

dx dx

df x t d x t d x t d x t
f x t x t

dx dx dx dx

π
π

π π π
π

−

−

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟×
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

(38) 

 

For our purposes, what is important about this expression is that one can manufacture a 

wide variety of shapes of ( )g r  by varying the values of  
( )Xdf x

dx
 and 

( )2

2

d x
dx
π

 .  Economic 

theory of course does not restrict these functions. Hence, the relative acceleration rate is 

not restricted by our forward looking model.   By implication, one cannot distinguish types 

of social interactions, i.e. contagion versus social learning. Again, 
( )Xdf x

dx
 and 

( )2

2

d x
dx
π

 are 

forms of unobserved heterogeneity that break any logical link between the shape of the 

adoption curve and social interactions.    

 

 

7. Conclusions 

 

 In this paper we have analyzed a model of adoption decisions in which social 

interactions are present.  Our analysis indicates that even in the presence of observable and 

unobservable heterogeneity, it is possible to uncover properties of adoption curves that 

observationally differentiate environments in which social interactions matter from those 

that do not.  While we have not translated these observational differences into econometric 
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analogs, their presence provides a basis for constructing formal econometric tests.  Work in 

the time series literature and finance literatures on the identification of jumps in stochastic 

processes, e.g. Ait-Sahalia (2004), Ait-Sahalia and Jacod (2008) and Barndoff-Neilson and 

Shephard (2006), suggests that such testing is possible. 
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Figure 1 

 

Shape of ( )S x  in Theorem 1 

 

S(x)

x 
xmin xmax 
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Appendix 1: Proofs of Theorems 

 

Proof of Lemma 1. 

 

 Assumption A.1 implies that ( )( ) ( ), ,1ex q t xπ π≤  t∀ .  Suppose by way of 

contradiction that there exist two optimal times 1 2t t<  such that 

( )( ) ( )( )1 2, , , ,e eJ t x q t J t x q t= .  There are four cases to  consider  (i)  ( )eq t  is 

differentiable at both t’s,  (ii) ( )eq t  is differentiable at 1t  but not 2t , (iii) ( )eq t  is 

differentiable at 2t  but not 1t , (iv) ( )eq t  is not differentiable at either t .  For each of the 

cases, ( )( ) ( )( ), , 0 , ,e e
i i I iJ t x q t J t x q t− − + +′ ′≥ ≥  by eq. (4). Using the representation in (4) 

and cancelling off te ρ− , it must be the case that  

 

 ( )( ) ( )( ), 0 ,i iat ate e
i iC e x q t C e x q tρ π ρ π− +− ≥ ≥ −  (A.1) 

 

 By Assumption A.2 any jump in ( )eq t  must be positive.  Thus any jump in 

( )( ),iat e
iC e x q tρ π −−   can only jump down if it jumps at all.  Since ( ) ( )1 2

e eq t q t+ −≤  by 

A.2, we have a contradiction to eq. (A.1).  To see this, consider the RHS of eq. (A.1) for 1t : 

 

 ( )( ) ( )( ) ( )( )1 2 2
1 1 20 , , , 0at at ate e eC e x q t C e x q t C e x q tρ π ρ π ρ π+ + −≥ − > − > − ≥  (A.2) 

 

The second inequality between the 0’s follows because 1 2t t<  and the third inequality 

follows from monotonicity of ( ),π ⋅ ⋅  and ( ) ( )1 2
e eq t q t+ −≤ .  We thus arrive at a 

contradiction.  This argument addresses all four cases and ends the proof  . 
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Proof of Lemma 2. 

 

Suppose by way of contradiction that 1t t< . Since 1t  is optimal, 

 

 ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 10 , exp , exp , 0.e eg x t C at x q t C at x q tρ π ρ π− − +≤ = − < − ≤  (A.3) 

 

This chain of inequalities follows from optimality of 1t , the assumptions 1 1 and t t x x< < , 

and the implication of Assumption A.2 that ( ) ( )1
e eq t q t− +≥ .  As eq. (A.3) is internally 

contradictory, it must be the case that 1t t≥  . 

 

 

Proof of Theorem 1. 

 

We first prove that the candidate REE above is an REE.  It will help to follow the 

argument if one considers the graph of ( )S x  with x  on the horizontal axis and S  on the 

vertical axis.   

Let ( ) ,  1, 2,3ix t i =  denote the smallest, middle and largest solutions of the 

equation, ( )t S x= ; when the solution is unique, these solutions simply coincide. Note that 

for ( ) ( )*
* min max,  t S x t S x= =  there are two distinct values of x , *

*  and x x  such that 

( ) ( )* *
* *,t S x t S x= = .  Note that *

* min maxx x x x< < < .  We will use the notation 

( ) ( )1
i ix t S t−=  when it is useful.  For *t t< , the large x solution, ( )3x t  is the only solution 

of the equation ( )t S x= , so intuitively it must be an REE, if an REE exists at all.  For 

*t t>  the small x solution ( )1 ,x t  is the only solution of the equation ( )t S x=  so intuitively 

it must be an REE, if an REE exists at all.  The first step in the proof of the theorem is to 

formally demonstrate that the large x solution is part of an REE.  The same type argument 

will also imply that the small x solution is part of an REE.   In other words, for each x, we 
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need to prove that the optimal *t  is the part of ( )S x  described in the theorem statement.  

Since we showed in Lemma 1 that, for each fixed x, there can be at most one solution to 

the necessary conditions for a local maximum of ( ), ,J t x q  all we need to do is show that 

the relevant parts of ( )S x  satisfy these necessary conditions for each x.   

Consider first maxx x> .  By the implicit function theorem, the implicit function 

( ) 0S z τ− =  has a well defined solution ( ) ( )1
3z Sτ τ−=  in an open neighborhood of the 

point ( ),t x  (given that  ( ) 0S x′ < ).  We claim that  

 

 ( ) ( )( )( )1
3, ,1 (a

XJ x e C e x F Sρτ ττ ρ π τ− −′ = − −  (A.4) 

 

equals 0 at ( )t S xτ = =  and is decreasing for all τ  in an open neighborhood of t , i.e. t is 

a local maximum of ( ),J xτ .  Substituting ( )S xτ =  into ( ),J xτ  and using the definition 

of ( )S x  and the identity ( )( )1
3S S x x− =  it is evident that ( ), 0J xτ′ =  at ( )t S xτ = = .  

Since ( ).x qπ  and ( )XF x  are, by assumption, continuously differentiable, and since by the 

implicit function theorem, 1
3 ( )S z−  is differentiable at z x= , it must be the case that 

( ), ,J x qτ  is differentiable at tτ = .  Since ( )1
3S z−  is strictly decreasing, we find by direct 

computation that ( ), 0J xτ′′ <  at tτ =  by using ( ), 0J xτ′ =  at tτ = .  Hence the best 

reply property for an REE is satisfied for maxx x> .  The argument extends to maxx x=  by 

taking right hand limits.  Define * min maxx x x< <  to be the smaller value of the two values of 

x that satisfy the equation ( ) ( )max *S x S x= .  The same argument as above shows that the 

best reply property is satisfied for *x x< .   

We next verify that the optimal t for * max[ , ]x x x∈  is ( ) ( )*
* maxt S x S x= = .  We do 

maxx  first.  If one inserts maxx x= , into J ′  evaluated at *t , one sees immediately that 
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( )*
max, 0J t x′ = .  If one replaces *t  by a slightly smaller value of t, J ′  will be negative at 

maxx x=  (on the branch ( ) ( )1
3 3x t S t−= ).   

We next consider *x .  This requires us to show that the derivative ( )*,J t x′   

 

 ( ) ( )( )( )* ** * *, ,t atJ t x e C e x q tρ ρ π− −′ = −  (A.5) 

 

Is positive (negative) for t slightly less (greater) than *t  for 
( )( )max max

1* ln
,1

Ct
a x F x

ρ
π

=
−

.  

Now put *x x= , but evaluate ( )*,J t x′  in an interval around *t , i.e. compute  right limits 

and left limits at *t .  (Note that for the left limit we will be on the branch 

( ) ( )( )* 1 *
31 ,  Xq s F S s s t−= − <  and for the right limit we will be on the branch 

( ) ( )( )* 1 *
11 ,  Xq s F S s s t−= − > ).  The left limit as t approaches *t  from below of 

( )* *, ,J t x q′  is easily seen to be given by  

 

 ( ) ( )( )
( )( )

* * max*
*

max max

,1
, 1 0

,1
Xt

X

x F x
J t x e C

x F x
ρ π
ρ

π
− −

⎛ ⎞−
′ = − >⎜ ⎟⎜ ⎟−⎝ ⎠

. (A.6) 

 

This same inequality holds for all * max[ , )x x x∈  since π  is assumed to be strictly increasing 

in x.  Notice that ( )* ,J t x−′  above is the marginal gain to waiting an extra day to adopt 

before the jump in *q .   

Next, compute the right hand limit of ( ),J t x′  as t approaches *t  from above.  The 

atom ( ) ( )max *X XF x F x−  has now adopted.  Compute ( )*,J t x′  at *t to obtain 

 

 ( ) ( )( )
( )( )

* * **
*

max max

,1
, 1 0

,1
Xt

X

x F x
J t x e C

x F x
ρ π
ρ

π
−

⎛ ⎞−
′ = − =⎜ ⎟⎜ ⎟−⎝ ⎠

, (A.7) 
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because, by the definition of *x , ( ) ( )* maxS x S x=  implies that 

( )( ) ( )( )* * max max,1 ,1X Xx F x x F xπ π− = −  and ( ) ( )( )
1 ln

,1 X

CS x
a x F x

ρ
π

=
−

.  We will be 

finished once we show that ( )*, ,J t x q′  is negative for t  slightly bigger than *t .  We have  

 

 ( ) ( ) ( )( )
( )( )

*
* *

*

max max

,
, 1

,1
t

X

x q t
J t x e C

x F x
ρ ε π ε

ε ρ
π

− +
⎛ ⎞+
⎜ ⎟′ + = −
⎜ ⎟−
⎝ ⎠

. (A.8) 

 

Define ( )
( )( )

( )( )

* *

max max

,
1

,1 X

x q t
h

x F x

π ε
ε

π

+
= −

−
.  It is clear from (24) that the sign of ( )* ,J t xε′ +  

must be the same as ( )h ε .  Since ( )h ε  is continuously differentiable at 0ε = , it has a 

Taylor expansion, ( ) ( ) ( ) ( )0 0h h h oε ε ε′= + + .   We first show that ( )0 0h <   Recall that 

( ) ( )* *
0 *lim 1 Xq t F xε ε−> + = −  because under *q  the atom ( ) ( )max *X XF x F x−  is 

anticipated to have already adopted for dates t slightly greater than *t .  From this, we 

obtain 

 

 ( ) ( )( )
( )( )

*

max max

,1
0 1 0

,1
X

X

x F x
h

x F x
π

π
−

= − <
−

. (A.9) 

   

We next show that ( )0 0h′ <   This derivative equals  

 

 
( )( ) ( )

( ) ( )( )
* * *

* * *

,1
(0) 0

,1
q X X

X

x F x f x
h a

S x x F x
π

π
−

′ = − + <
′ −

, (A.10) 

 

which is negative because ( )* 0S x′ < .  This completes the proof for *x x= . 
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The proof for each ( )* max,x x x∈  proceeds as follows.  We have already shown that 

the left hand limit of ( )*,J t x′  is positive for each such x.  We must now show that the 

right hand limit of  ( )*,J t x′  is negative for each such x.  We have 

 

 ( ) ( ) ( )( )
( )( )

*
* *

*

max max

,
, 1

,1
t

X

x q t
J t x e C

x F x
ρ ε π ε

ε ρ
π

− +
⎛ ⎞+
⎜ ⎟′ + = −
⎜ ⎟−
⎝ ⎠

. (A.11) 

 

Define ( )
( )( )

( )( )

* *

max max

,
1

,1 X

x q t
h

x F x

π ε
ε

π

+
= −

−
.  We show that ( )0 0h < .  Recall that 

( ) ( )* *
0 *lim 1 Xq t F xε ε−> + = −  because under *q  the atom ( ) ( )max *X XF x F x−  is 

anticipated to have already adopted for dates t slightly greater than *t .  From this, we 

obtain 

 

 ( ) ( )( )
( )( )

*

max max

,1
0 1 0

,1
X

X

x F x
h

x F x
π

π
−

= − <
−

 (A.12) 

 

because ( )( ) ( )( ) ( )( )max max *,1 ,1 ,1X X Xx F x x F x x F xπ π π− < − < −  for ( )* max,x x x∈ . This 

completes the proof  . 

 

 

Proof of Theorem 2. 

 

 If there are no social interactions, ( ) ( ),x q xπ π= .  Hence the equation 

( ) ( )
1 ln Ct S x a

x
ρ
π

− ⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
 has a unique solution for each t.  Denote 

( ) ( )( )1
,1i X iq t F S t−= − .  Therefore, ( ) ( )( ) ( ) ( )( )1 1

1 ,1 2 ,21 1X Xq t F S t q t F S t− −= − ≤ = − , 
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by stochastic dominance  .  

 

 

Proof of Theorem 3. 

 

The proof of the first part is obtained from a straightforward chain of inequalities 

that exploits the assumption that ( )1 2,x xπ π=  is independent of q and is strictly increasing 

in both x’s as well as Assumption A.5,  Formally, 

 

 
( ) ( )( )
( )( ) ( )( ) ( )

2 1

2 1 2 1

1
1 1 1

1 1
1 1 1 1 1

| 1 | |

1 | | 1 | | |

X X

X X X X

q t x F S t x x

F S t x x F S t x x q t x

−

− −

= − ≤

′ ′ ′ ′− < − =
. (A.13) 

 

The first inequality follows from eq. (22) and the second follows from 

( ) ( )1 1
1 1| |S t x S t x− − ′> , which follows from ( ) ( )2 1 2 1| |S x x S x x′> , an inequality which 

follows directly from the assumption that ( )1 2,x xπ  is strictly increasing in the vector 

( )1 2,x x .  Given the proof of the first part, the proof of the second part is immediate.  This 

ends the proof  . 
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Appendix 2 : Closed Form Example For Theorem 1. 

 

 Here we construct a parametric example of an environment of the type assumed 

in Theorem 1.  First, note that ( ) ( )( )
1 ln

,
CS x a

x q x
ρ

π
−=  falls, then rises, then falls again if 

and only if ( )( ),x q xπ , where ( ) ( )1 Xq x F x= −  moves in the opposite way, i.e. rises, then 

falls, then rises. We therefore construct a ( )( ),x q xπ  and ( ) ( )1q x F x= −  that satisfies 

these last properties.  We will choose 1 0A >  and construct two functions with the first 

function designed so that it is concave, continuously differentiable, and increases then 

decreases on ( )10, A  and the second function defined on [ )1,A ∞  such that they join 

together to form a continuous function.  The parameters of these functions will be 

designed so they generate an example of Theorem 1.  This exercise will prove that 

Theorem 1 applies to a nontrivial set of examples.   

 We define the first function by 

 

 ( )( ) ( )( )( )1 , 1x q x x K B F x
βαπ = + −  (A.14) 

 

where 0, 0,  1α β α β> > + = , 0K > , 0B > and ( )XF x  are chosen so that this function 

is continuously differentiable, concave, increases, takes a maximum, call it minx  (because it 

is a local minimum of ( )S x , on ( )10, A , for appropriately chosen 1 0A > , and decreases to 

the smaller value ( )( ) ( )( )1 1 1 1 min min, ,A q A x q xπ π< .  Clearly ( )( )0, 0 0qπ = .  As we will 

see below, this function will be concave, will increase to a maximum, then take a smaller 

value at ( )( )1 1,1 XA F Aπ −  for appropriately chosen linear ( )XF x  on 1(0, )A .   

 Our second function will be defined by 

 

 ( )( ) ( ) ( ) ( )( )2 1 1 1 1 1 2 1,1 ,1 ( ) ( )X X X Xx F x A F A L x A L F A F xπ π− = − + − + −  (A.15) 
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where  2 1A A> , ( )XF x  is chosen to be linear, and the other parameters are chosen so that 

( )( )2 ,1 Xx F xπ −  increases on [ )1,A ∞  and ( )( ) ( )( )2 2 2 1 min min,1 ,1X XA F A x F xπ π− > − . 

Note that the rightmost term comes from the term ( ) ( )( )2 1L q x q A−  and that the two 

functions take the same value at 1x A= .  Therefore the join is continuous at 1x A= . We 

also choose ( )XF x  so that it has positive support on [ ) 20, , S Sx x A≥   

 Return to the specification of the first function.  Compute 

 

 

( )( )

( ) ( )( )( ) ( )

( )( ) ( )
( )( )

1

11

1

,

( 1 ( ) 1

,
1

X X X

X

X

d x q x
dx

x K B F x x K B F x Bf x

Bf xax q x
x K B F x

ββα α

π

α β

β
π

−−

=

+ − − + − =

⎛ ⎞
−⎜ ⎟⎜ ⎟+ −⎝ ⎠

 (A.16) 

 

It is evident that this derivative is positive for small x, is 0 for some min 0x > , and is negative 

for larger x’s iff 
( )

( )( )1
X

X

Bf xa
x K B F x

β⎛ ⎞
−⎜ ⎟⎜ ⎟+ −⎝ ⎠

 has the same properties.  We therefore choose 

( )XF x  to satisfy, 

 

 

( ) [ )

[ )

1
1

1 1
1 2

1 2

2

,  0, ,

, ,

1,  

X
xF x x A
a

A x A x A A
a a

x A

= ∈

−
= + ∈

= ≥

 (A.17) 

 

where we are free to choose all these parameters to get what we want and satisfy all the 

explicit and implicit constraints needed to get an example with just one jump.  It is easy to 
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check that 1π  rises for small x’s, takes a first zero at 
( )1

min

a K B
x

B
α

α β
+

=
+

, and is 

concave on ( )10, A  so our first constraint on our parameter set is that min 1x A< .   

 Without loss of generality recall that we can assume that 1α β+ =  by taking a 

monotonic transformation.  Therefore we know that 1π  is concave on ( )10, A  so we know 

that we have identified a maximum on 1(0, )A .  We now wish to construct the “rest” of 

( )XF x  and the function 2π  to produce a local minimum of π  at 1A  and such that for 

some 2 1A A> , we have ( )( ) ( )( )2 2 2 1 min min,1 ,1X XA F A x F xπ π− > −  before the end of the 

support of ( )XF x  is reached.  To do this, we identify parameters so that there is a local 

minimum of π  at 1x A= .  We already know that the left hand derivative of 1π π=  at 

1x A=  is negative.  We must specify the parameters of 2π  so that the right hand derivative 

of 2π π=  is positive at 1x A= .  This condition is satisfied if 2
1

2

0LL
a

− > . 

 Finally we require 1

1

1A
a

<  and 1 2 1

1 2

1A A A
a a

−
+ ≤ . Since ( ) ( )( )

1 ln
,
CS x

a x q x
ρ

π

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, 

we may choose Cρ  large enough so that it is above π  evaluated at minx  so that 

( )min 0S x > .  We still have quite a bit of freedom to construct the rest of the example to 

illustrate Theorem 1.  Note that we have a nondifferentiability of ( )S x  at 1x A=  whereas 

Theorem 1 assumes continuous differentiability of ( )S x .  But the proof uses left and right 

limits so differentiability is not really needed.  In any event one can always locally smooth 

the construction at 1x A= . 

 We still need to choose the parameters so that the local maximum value of π  is 

smaller than 2 2( ,1 ( ))XA F Aπ −  so that we have a positive atom for our jump.  This is 

satisfied provided that 
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( )( )

( ) ( ) ( ) ( )( )
2 2 2

1 1 1 1 2 1 2 1 2 1 min min

,1

,1 ( ) ( ) ( ) ,1
X

X X X X

A F A

A F A L A A L F A F A x F x

π

π π

− =

− + − + − > −
(A.18) 

 

For simplicity, assume 1 20 a a< = .  The restrictions needed on the various parameters may 

be summarized as 

 

 1 1 2 2
1 1

1 1 1

( )1,  ,  1,  0A a K B A LA L
a B a a

α +
< < ≤ − >  (A.19) 

 

and 

 

 

( )

( )

2 1 2
1 2 1

1

2 min 1
1 2 1 1 min 1 1

1 1 1

( )

1,1 ,

L A AL A A
a

L x AL A A x A
a a a

π π

−
− + =
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− − > − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (A.20) 

 

 The approach we have outlined provides a method for the construction of a fairly 

large class of examples.  The construction illustrates that it is straightforward to construct a 

class of examples that satisfy the conditions of Theorem 1 so that there is an atom jump.  

For example if one assumes that 0K =  and 1B = , it is clear that one can set 1L  large 

enough and 2L  small enough to satisfy all the above constraints.  Define  

 

 

( )

1 1
1

2 1
1

1 ln / ,1 ,  if 

1 ln / ,1  if 

S x

xC x x A
a a

xC x x A
a a

ρ π

ρ π

⎛ ⎞⎛ ⎞
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⎛ ⎞⎛ ⎞
= − ≥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (A.21) 
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Thus, ( )*
1t S A= , by continuity there is ( ) ( )*

* min 1 * 1,  x x A t S x S A< < = = .  The size of 

the jump atom is ( ) ( ) 1 *
1 *

1
X X

A xF A F x
a
−

− = .   

 The lack of differentiability of the example at 1x A=  is not a problem since we 

did not actually use differentiability in the proof of Theorem 1.  Furthermore, the example 

can be smoothed in an arbitrarily small neighborhood of 1x A=  by choosing smooth 

functions for each side of 1x A= . 

 

 



42 

 

Bibliography 

 
Adsera, A. and D. Ray, (1998), “History and coordination failure,” Journal of Economic 
Growth, 3, 267-276. 
 
Ait-Sahalia, Y., (2004), “Disentangling diffusion from jumps,” Journal of Financial 
Economics, 74, 487-528. 
 
Ait-Sahalia, Y. and J. Jacod, (2008), “Testing for jumps in a discretely observed process,” 
Annals of Statistics, forthcoming. 
 
Bandiera, O., Rasul, I., (2006), “Social networks and technology adoption in northern 
Mozambique,” Economic Journal, 116, 869-092. 
  
Barndoff-Neilson, O. and N. Shephard, (2006), “Econometrics of testing for jumps in 
financial economics using bipolar variation,” Journal of Financial Econometrics, 4, 1-30. 
 
Brock, W., (1999), “Scaling in economics: A reader’s guide,” Industrial and Corporate 
Change, 8, 409-446. 
 
Brock, W., (2001), “Complexity-based methods in cycles and growth: Any potential value-
added?” in Punzo, L., pp. 301-338. 
 
Brock, W. and S. Durlauf, (2001a), “Discrete choice with social interactions,” Review of 
Economic Studies, 68, 235-260. 
 
Brock, W. and S. Durlauf, (2001b), “Interactions-based models,” in: J. Heckman and E. 
Leamer, eds., Handbook of Econometrics, Volume 5, North-Holland: Amsterdam, 3297-
3380. 
 
Brock, W. and S. Durlauf, (2006), “Multinomial choice with social interactions,” in The 
Economy as an Evolving Complex System III, L. Blume and S. Durlauf, eds., New York: 
Oxford University Press. 
 
Brock, W. and S. Durlauf, (2007), “Identification of binary choice models with social 
interactions,” Journal of Econometrics, 140, 52-75. 
 
Cabral, L., (1990), “On the adoption of innovations with ‘network’ externalities,” 
Mathematical Social Sciences, 19, 299-308. 
 
Conley, T. and C. Udry, (2005), “Learning about a new technology: Pineapple in Ghana,” 
Working paper, University of Chicago and Yale University. 
 
Daley, D. and J. Gani, (2001), Epidemic Modelling, New York: Cambridge University 
Press. 
 



43 

 

David, P., (2005), “Zvi Griliches on diffusion, lags and productivity growth…connecting the 
dots,” mimeo, Stanford University. 
 
De Palma, A., (2007), “Inference in a synchronization game with social interactions,” 
mimeo, University of Pennsylvania. 
 
DiNardo, J. and J. Winfree, (2007), “The law of genius and home runs refuted,” mimeo, 
University of Michigan. 
 
Feller, W., (1940), “On the logistic law of growth and its empirical verification in biology,” 
Acta Biotheoretica, 5, 51-66. 
 
Graham, B., (2008), “Identifying social interactions through conditional variance 
restrictions,” 76, 3, 643-660. 
 
Griliches, Z., (1957), “Hybrid corn: An exploration of the economics of technical change,” 
Econometrica, 25, 501-522. 
 
Griliches, Z., (1958), “Research costs and social returns: Hybrid corn and related 
interactions,” Journal of Political Economy, 66, 419-431.  
 
Havens, E. and E. Rogers, (1961), “Profitability and the interaction effect,” Rural 
Sociology, 26, 409-414. 
 
Lee, L.-F., (2007), “Identification and estimation of econometric models with group 
interactions, contextual factors and fixed effects,” Journal of Econometrics, 140, 333-374. 
 
Manski, C., (1993), “Identification of endogenous social effects: The reflection problem,” 
Review of Economic Studies, 60, 531-42. 
 
Manski, C., (1997), “Monotone treatment response,” Econometrica, Society, 65, 6, 1311-
1334. 
 
Manski, C., (2004), “Social learning from private information: The dynamics of the 
selection problem,” Review of Economic Studies, 71, 443-458. 
 
Manski, C., (2006), "Social learning and the adoption of innovations," in Blume L., 
Durlauf, S., eds., The Economy as an Evolving Complex System, III, Oxford University 
Press: Oxford. 
 
Manski, C. and J. Pepper, (2000), “Monotone instrumental variables with an application to 
the returns to schooling,” Econometrica, 68, 997-1010. 
 
Manuelli, R. and A. Seshadri, (2008), “Frictionless technology diffusion: the case of 
tractors,” mimeo, Univeresity of Wisconsin. 
 



44 

 

Munshi, K., (2004), “Social learning in a heterogeneous population: technology diffusion in 
the Indian Green Revolution,” Journal of Development Economics, 73, 185-213. 
 
Punzo, L., ed., (2001), Cycles, Growth, and Structural Change: Theories and Empirical 
Evidence, Routledge: New York. 
 
Reinganum, J., (1981a), “On the diffusion of new technology: A game theoretic approach,” 
Review of Economic Studies, 98. 395-405. 
 
Reinganum, J., (1981b), “Market structure and the diffusion of new technology,” Bell 
Journal of Economics, 12, 2, 618-624.   
 
Schelling, T., (1997), “Social mechanisms and social dynamics,” in Social Mechanisms, P. 
Hedstrom and R. Swedberg, eds., New York: Cambridge University Press. 
 
Sirakaya, S. (2006), “Recidivism and social interactions,” Journal of the American Statistical 
Association, 101, 475, 863-877. 
 
Skinner, J. and D. Staiger, D., (2005), “Technology adoption from hybrid corn to beta 
blockers,” National Bureau of Economic Research Working Paper no. 11251. 
 
Sutch, R., (2008), “Henry Agard Wallace, the Iowa corn yield tests, and the adoption of 
hybrid corn,” National Bureau of Economic Research Working Paper no. 14141.  
 
Varian, H., (1992), Microeconomic Theory, New York: Norton. 
 
Young, H. P., (2007), “Innovation diffusion in heterogeneous populations,” mimeo, 
University of Oxford. 
 

 
 
 
 


