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ABSTRACT

This paper examines the importance of learning-by-doing that is specific not just to individual firms,
but to pairs of firms working together in a contracting relationship. Using new, detailed data from
the oil and gas industry, I find that the joint productivity of an oil production company and its drilling
contractor is enhanced significantly as they accumulate experience working together. This learning
is relationship-specific: drilling rigs generally cannot fully appropriate the productivity gains acquired
through experience with one production company to their work for another. This result is robust to
other ex ante match specificities.

Relationship-specific learning is consequential because it implies that relationship stability is important
to productivity. When two firms accumulate experience working together, relationship-specific intellectual
capital is created that cannot be appropriated to pairings with other firms. If the relationship is broken,
this capital is destroyed and productivity decreases, thereby giving firms an incentive to maintain long-term
relationships. Accordingly, the data indicate that production companies prefer to work with drilling
rigs which they have accumulated considerable experience rather than those with which they have
worked relatively little. I demonstrate that this contracting pattern is difficult to explain with switching
costs or ex ante match specificities alone.
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1. Introduction 

The economic consequences of learning-by-doing, the hypothesis that unit costs decrease 
with cumulative production, are well-known. In industrial organization, learning-by-doing can 
rationalize pricing below short-run marginal cost and lead to increases in industry concentration 
through the emergence of a low-cost dominant firm (Spence 1981, Cabral and Riordan 1994, 
Benkard 2004, Besanko et al. 2007). In macroeconomics, on-the-job learning and knowledge 
spillovers are widely believed to play important roles in driving endogenous economic growth 
(Arrow 1962, Lucas 1988, Stokey 1988, Parente 1994, Jovanovic and Nyarko 1996). This paper 
uses a new dataset to document a form of learning that has thus far received little attention: 
relationship-specific learning. Learning-by-doing can be relationship-specific when the 
productivity improvements associated with the accumulation of experience are specific to not 
just an individual firm but to pairs of firms working together in a contracting relationship. For 
example, a contract accounting firm may improve the speed with which it prepares a client’s 
quarterly reports as its employees become familiar with the client’s personnel and accounts. 

Relationship-specific learning is consequential because it implies that relationship 
stability is important to productivity. When two firms accumulate experience working together, 
relationship-specific intellectual capital is created that cannot be appropriated to pairings with 
other firms. If the relationship is broken, this capital is destroyed and productivity decreases. 
Relationship-specific learning therefore gives firms an incentive to work with contractors with 
which they have substantial experience rather than those with which they have worked relatively 
little. This learning may also be a mechanism behind recent documentation of forgetting effects. 
Argote, Beckman, and Epple (1990), Benkard (2000), and Thompson (2003) find evidence that a 
firm’s recent production experience has a stronger impact on productivity than does older 
experience. Some of this experience depreciation may reflect an unobserved change in the firm’s 
contracting relationships and a commensurate loss of relationship-specific capital. Finally, like 
forgetting, relationship-specific learning may be important at the macroeconomic level: 
recessions that disrupt production and fracture relationships may result in a productivity decrease 
that persists beyond the rebound in output during the recovery. 

Are relationship-specific learning effects sufficiently large that they plausibly play a role 
in firms’ contracting or are a determinant of economic productivity? The literature is largely 
silent on this question. This paper therefore empirically evaluates the importance of relationship-
specific learning using a new dataset from the U.S. onshore oil and gas drilling industry. I ask 
two questions. First, when production requires coordinated inputs from multiple firms, to what 
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extent is productivity a function of not just each firm’s individual experience but also the firms’ 
joint experience? And second, do firms prefer to maintain long-term relationships rather than 
regularly switch contracting partners, consistent with a desire to maximize relationship-specific 
learning’s productivity benefits? 

The U.S. onshore drilling industry is well-suited to this investigation for several reasons. 
First, drilling requires inputs from two types of firms: production companies (“producers”) and 
drilling companies. Producers—for example, ExxonMobil and Chevron—are responsible for the 
technical design and planning of wells to be drilled but do not actually drill wells themselves. 
Drilling is instead outsourced to drilling companies that own and staff drilling rigs. Second, 
learning is an important source of productivity growth in this industry. Drilling cost-efficiency 
requires the technical optimization of drilling procedures as well as teamwork between producer 
personnel and the rig crew—skills that may be acquired through experience. Third, I have 
collected excellent data on both drilling contracting and performance, covering nearly 20,000 
wells drilled over 1991-2005, with which I can track drilling efficiency for producers, rigs, and 
producer-rig pairs.  

My primary finding is that not only do producers and rigs learn from their own 
experience, they also benefit from relationship-specific learning. Specifically, a rig that works 
with only one producer will, on average, benefit from productivity improvements more than 
twice as large as those of a rig that frequently changes producers. Because I observe multiple 
wells drilled per producer-rig pair, I am able to distinguish this learning effect from any ex ante 
match specificities that might cause certain firm pairs to drill more effectively and more 
frequently than others.  

For the average well in my dataset, I estimate that relationship-specific learning improves 
drilling productivity by 3.8%, yielding cost savings of about $9,700 per well. These savings give 
firms an incentive to maintain long-term relationships. Accordingly, the data indicate that 
producers prefer to work with rigs which they have accumulated considerable experience rather 
than those with which they have worked relatively little. I demonstrate that this contracting 
pattern is difficult to explain with switching costs or ex ante match specificities alone.  

Beyond these primary results, I also test for the presence of learning spillovers in the 
drilling industry. While I find that oil and gas producers are able to transfer knowledge obtained 
from experience in one oilfield to the drilling of another, I do not find evidence supporting 
learning spillovers across producers working side-by-side in the same field. This result stands in 
contrast to other studies that identify modest cross-firm learning spillovers in semiconductor 
manufacturing and shipbuilding (Irwin and Klenow 1994, Thornton and Thompson 2001). 
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While this paper focuses on the oil and gas drilling industry, it seems likely that the 
prevalence of relationship-specific learning extends well beyond the oilpatch. Construction and 
large manufacturing projects, for example, regularly involve multiple contractors and sub-
contractors working under a lead, general contractor. Consider Boeing’s recent launch of the 787 
Dreamliner passenger jet, which involved nearly 30 firms contracted directly with Boeing as well 
as countless additional subcontractors and suppliers. Collaboration amongst these firms has been 
central to the jet’s development and production—one manager commented that “interpersonal 
communication skills and building relationships have become more important than ever” 
(Managing Automation 2007). 

Finally, while I focus on relationship-specific learning as a phenomenon that occurs 
between firms, learning specificities are likely to be important within firms as well: workers may 
develop skills that are specific to their particular employer. For example, Huckman and Pisano 
(2006) find evidence suggesting that doctors’ surgical outcomes depend more on their hospital-
specific experience than on their general experience. Becker (1964), Prendergast (1993), and 
Gibbons and Waldman (1999, 2004) discuss the implications of job-specific learning for 
equilibrium wage and promotion paths, explaining why, for example, wages increase with age at 
a decreasing rate.1 These theories could in principle be translated to the pricing of service 
contracts between firms when learning is relationship-specific. 

The remainder of the paper is organized as follows: section 2 provides background 
information on the oil and gas drilling industry, and section 3 discusses industry mechanisms for 
learning-by-doing. Section 4 describes the data used in this study. Section 5 presents the 
empirical framework and estimation results for learning-by-doing by production companies, 
omitting the influence of the rigs they hire. This analysis provides a baseline for section 6, which 
presents evidence of relationship-specific learning. Section 7 discusses relationship persistence 
between producers and rigs, and section 8 offers concluding comments. 

 

                                                 
1 For an example and survey of the empirical literature on wage dynamics, see Poletaev and Robinson (2008). 
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2. The Onshore Oil and Gas Drilling Industry 

2.1 Production companies and the drilling problem 

Oil and gas reserves are found in geologic formations known as fields that lie beneath the 
earth’s surface. The mission of a production company is to extract these reserves for processing 
and sale. To operate in any given field, a producer must first obtain leases from the holders of 
that field’s mineral rights.2 A lease typically grants a right to operate in only a small part of a 
field, and most fields are operated and drilled by several distinct producers holding different 
leases.3 

A field’s reserves are typically buried under many layers of rock that do not contain oil or 
gas. The objective of drilling a well is to penetrate these overlying rock layers to reach the oil 
and gas in the field. Once a well is drilled to its target depth, the drilling rig is no longer needed 
and the well, if successful, will produce oil and/or gas for a period of several years. 

Typically, there is significant variation in geology across fields, particularly with regards 
to the depth at which they are buried. Some fields are found as shallow as 3,000 feet and can be 
drilled in a few days, while others are more than 20,000 feet deep and can require several months 
of drilling. The types of rock that must be drilled through also vary considerably: the layers of 
sandstone, shale, and limestone that may be encountered in one area will generally not be the 
same as those found elsewhere. 

Wells fall into two broad categories. “Wildcats” are those that are drilled into a 
previously unexplored field, and their goal is to assess whether the field will actually be 
productive. “Development” wells, on the other hand, are drilled into fields in which previously 
drilled wells already exist, and their goal is to enhance field production. Most wells are vertical 
holes; however, horizontal and directional wells are sometimes drilled when surface features 
make a vertical well impossible or when doing so will improve the well’s oil and gas production. 

Even though producers do not physically drill their own wells, they do design wells and 
write drilling procedures. This arrangement is a response to the fact that the optimal drilling 
program for any well is a function of the specific geologic features of the field in which it is 
drilled. Producers typically have more geologic information than do drillers, due to their 

                                                 
2 Onshore leasing differs from the federal offshore leasing studied by Hendricks and Porter (1988) in that there is no 
centralized process in Texas by which producers obtain leases. Instead, producers proactively approach the holders 
of mineral rights, who may then negotiate lease terms or organize a competitive bidding process. 
3 Leaseholding producers within a field may sometimes “unitize” their holdings by pooling them together, agreeing 
on ownership shares in the pooled unit, and naming one of the producers as the unit operator. See Wiggins and 
Libecap (1985) for a discussion of the economics of unitization. 
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knowledge from seismic imaging and previously drilled wells, and are therefore better placed to 
make these engineering decisions.4 

2.2 Rigs and contracting 

The actual drilling of wells is conducted by drilling companies, which own drilling rigs 
and employ drilling crews. A typical onshore drilling rig is pictured in figure 1. Its primary 
features are a tall derrick, which allows pipe to be drawn in and out of the well, and a motor that 
spins the drill pipe and drill bit during drilling. The size of this equipment determines a rig’s 
“depth rating,” the depth to which the rig is recommended to drill. Apart from this depth rating, 
rigs generally do not have field or producer-specific characteristics. The exceptions to this rule 
are recently-built or refurbished rigs carrying equipment that eases the drilling of horizontal and 
directional wells. 

Rigs are mobile and can easily change locations within a field; however, moves of more 
than 50 miles typically require several days and result in the charging of fees to the producer 
requesting the move. When under contract, rigs operate 24 hours per day and 7 days per week, 
rotating crews in three 8-hour shifts. My interviews with industry participants have indicated 
that, while the average employment tenure of a rig crewman is approximately one year, the rig 
foreman usually stays with a rig for much longer, and tenures longer than five years are not 
uncommon. 

It is natural to ask why this industry is vertically separated, particularly given the 
relationship-specific learning effects identified in this paper. The answer lies in the spatial and 
temporal variation with which producers drill wells. The drilling activity of any producer 
fluctuates with oil production outcomes from recently drilled wells and the firm’s success in 
finding new fields. Successful wildcats and development wells often lead to additional drilling, 
while “dry” unproductive holes do not. The mobility and non-specificity of rigs allow them to 
smooth these fluctuations in drilling requirements across producers. This smoothing minimizes 
overall rig capacity requirements, as well as rig transportation and mobilization costs, without 
requiring the producers to contract directly with each other. 

Producers typically contract with rigs for the drilling of one well at a time since they are 
generally reluctant to commit to a long-term contract when the total number of wells they will 
drill is unknown and contingent on oil production from the first several wells drilled. For 

                                                 
4 Very small producers, which drill infrequently and may not have engineering resources, sometimes outsource the 
planning and design function to the driller, particularly if the driller has experience in the same field.  



 6  

example, if a drilled well turns out to be a dry hole, the producer will usually not want to follow-
up with additional drilling in the field. Long-term relationships are therefore generally 
maintained through repeat contracting rather than formal long-term contracts.5 To the extent that 
relationship-specific learning is important, this repeat contracting creates rents that can be 
bargained over at each renewal. However, unlike classic examples of relationship-specific 
investments from the transactions cost literature (Williamson 1975, 1985 and Klein et al. 1978), 
relationship-specific learning does not generally require costly up-front investment so that the 
lack of a long-term contract does not create an inefficiency.6 

Producers initiate the contracting process by issuing a request for quotation (RFQ) from 
drilling companies with rigs in the vicinity of the proposed well. The RFQ contains detailed 
technical specifications regarding the well to be drilled, including for instance the well’s total 
depth and the density of the “drilling mud” to be pumped through the borehole during drilling. 
The driller then includes in its bid, along with price, the identities of the rig and crew it proposes 
to drill the well. In cases where a producer is following-up an initial well with further drilling 
and wishes to retain its current rig, it will generally renew its current contract rather than hold 
another auction. 

The RFQ will specify which of two standard contract types will be used: “dayrate” or 
“footage.” In a dayrate contract, the drilling company provides a rig and crew to drill the well 
under the producer’s direction, charging it a daily payment for the rig’s services. The producer is 
represented on the rig by one of its personnel, known as the “company man,” who directs the 
rig’s operations, typically in consultation with the rig’s foreman. In a footage contract, the rig is 
compensated at a rate set in dollars per foot drilled. This contract type is equivalent to a fixed-
price contract since the well’s depth is specified in advance in the RFQ. The producer may or 
may not place a company man on the rig. If present, he may monitor the rig’s activities and 
consult with the rig foreman on drilling decisions but has no direct contractual authority. 

Direct performance incentives clearly vary with the choice of contractual form. Under a 
dayrate contract, which is essentially cost-plus, the producer will have a direct incentive to 
design an efficient drilling program but the rig will not be directly incented to exert a high level 

                                                 
5 Exceptions to single-well contracting tend to occur in large well-established fields where geologic uncertainty is 
low. For example, trade publications and interviews with industry participants have indicated that, in the large 
Barnett Shale gas field in East Texas, development wells are virtually guaranteed to find gas and producers there 
regularly sign long-term contracts with their rigs. See, for example, RigZone (2006).  
6 An inefficiency may arise if firms are capable of enhancing relationship-specific learning through costly 
investments such as job training. In the absence of a long-term contract, firms may under-invest. Such an 
inefficiency may explain why some production companies and rigs use long-term contracts in fields such as the 
Barnett Shale where geologic uncertainty is low. 
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of effort. A footage contract, in contrast, places the full direct incentive on the rig. However, 
indirect performance incentives are important under both contract types. In the case of footage 
contracts, producers can use efficient well designs, backed by historically low drilling times, to 
obtain lower bids from drillers. As for dayrate contracts, interviews with industry participants 
have revealed that rig reputations are well-known by producers and that rigs known to have 
effective, experienced crews can command a dayrate premium over other rigs. Also, because the 
producer’s company man is present on the rig on a dayrate contract, he can observe the efforts of 
the rig foreman and crew. In an environment in which repeat contracting is common, this 
observability of effort can generate implicit performance incentives for the contractor (Corts 
2007).7 

2.3 Productivity and drilling time 

This paper uses the time necessary to drill a well as the measure of drilling productivity. 
While this approach is necessitated by the fact that I lack well-level cost data, it parallels the way 
producers and engineers actually view drilling efficiency and is arguably superior to using cost 
data were such information available. In practice, drilling engineers achieve cost savings almost 
entirely by reducing the time necessary to drill wells. Given dayrates that typically exceed 
$10,000 per day, saving a day’s worth of rig time is well worth the efforts of producers’ 
engineering teams. In addition, given a particular well and rig, there is little scope for 
substitution between drilling time and labor or capital. Rigs always work 24 hours per day and 7 
days per week, and adding crew members cannot make the drill bit turn more quickly. Most 
capital drilling inputs, such as the casing and tubing that are installed in the well, are fixed 
functions of the well’s depth. For these reasons, learning curve case studies in the petroleum 
engineering literature use drilling time as their performance metric, even though the authors 
typically have access to detailed cost data. Brett and Millheim (1986) argue that the drilling time 
metric is actually superior to a cost metric, since cost data are polluted by inconsistent 
accounting methods and variations in materials prices and rig rates. Moreover, rig rates are likely 
to be endogenous in my empirical model: the prices charged by rigs rise during periods of high 
drilling activity, which will create spurious correlation between drilling cost and experience. 

 

                                                 
7 Corts and Singh (2004) assess the determinants of contract type in the offshore drilling industry, and the onshore 
data I use here support his conclusions. In section 6.5, I address the possibility that the learning analysis presented in 
this paper is confounded by changes in firms’ choice of contractual form. 
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3. Firm-Specific and Relationship-Specific Learning 

This paper considers learning that is both firm and relationship-specific. Firm-specific 
learning refers to improvements in a firm’s productivity that are associated with increases in the 
firm’s experience. This “standard” learning-by-doing effect has been widely documented in the 
empirical literature, beginning with Wright’s (1936) and Alchian’s (1963) studies of aircraft 
manufacturing. Relationship-specific learning, on the other hand, refers to productivity increases 
that depend not only on a firm’s general experience but also its joint experience with the 
particular firms with which it works. These joint experience effects have received little attention, 
though McCabe (1996) finds evidence suggestive of relationship-specific learning in the 
construction of nuclear power plants: the productivity of primary construction contractors 
engaged in brief relationships with their utilities was lower than that of contractors in long-term 
relationships.8  

In the drilling industry, mechanisms exist for learning along three dimensions: (1) 
producer-level firm-specific learning; (2) rig-level firm-specific learning; and (3) relationship-
specific learning between producers and rigs working together. Producer-specific learning occurs 
because every well drilled into a field yields information regarding both the field’s geology and 
which drilling procedures work well in that geology. For example, the optimal selection of 
drilling bits and drilling mud depends critically on the types of rock encountered. Producers’ 
learning is therefore technical in nature and tends to be field-specific. This learning is well-
recognized within the drilling industry, and several engineering case studies have documented 
how producers use past experience to reduce drilling times. See, for example, Brett and Millheim 
(1986) and Adeleye et al. (2004). 

Because rigs are usually not involved in well design and planning, rig-specific learning is 
less technical in nature than is producer-level learning. Instead, rigs’ learning comes from 
improved teamwork and developments in crew members’ skills. For example, crews become 
more efficient at lowering drilling pipe into a hole, 90 feet at a time, after carrying out this same 
task on numerous wells in the past. 

Finally, several mechanisms of relationship-specific learning are possible. The rig’s crew 
may become familiar with the producer’s particular drilling procedures, or the producer’s 
company man may improve his knowledge of the capabilities of the rig and its crew. In addition, 
the ability to rapidly solve drilling problems—for example, a loss in the circulation of drilling 

                                                 
8 McCabe (1996) does not discern, however, whether the productivity differences in the data are driven by 
relationship-specific learning or by other utility-specific or relationship-specific heterogeneities. 
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mud or the sticking of pipe in the wellbore—is an important determinant of drilling efficiency. 
Industry participants have indicated that these problems are more easily solved if the company 
man and rig foreman have developed a working relationship that allows them to collaborate 
effectively, particularly if they have dealt with drilling problems together in the past.9  

The intuition behind relationship-specific learning has a parallel in recent theoretical 
work. Ellison and Holden (2008) develop a model in which a principal hires an agent to 
repeatedly take an action. The optimal action in each period is state-dependent, but the principal 
cannot communicate a complete contingent plan to the agent. Thus, in some states of the world, 
the agent may not take the optimal action. However, once a state has been realized and acted 
upon, the principal gains the ability to communicate the optimal action for that state, so that the 
agent can take that action when the state occurs again. In this way, the firms’ performance 
improves as they accumulate experience working together. 

 

4. Data 

The central empirical challenge of this paper is to separate the impact of relationship-
specific learning from that of firm-specific learning. My approach uses two datasets of drilling 
activity in Texas. I obtained the first of these from the Texas Railroad Commission (TRRC), 
Texas’s oil and gas industry regulator. These data consist of well-level records of every well 
drilled in the state from 1977-2005. Each observation identifies the field and county in which the 
well was drilled and the identity of the producer that drilled the well. I take the number of days 
required to drill each well as the difference between the well’s completion date and the date 
drilling began. This latter date was not regularly recorded until 1991: only 67.7% of observations 
have a drilling time prior to this date, compared to 89.8% afterwards. I therefore focus my 
analysis on 1991-2005, during which there exist 106,946 TRRC observations with a recorded 
drilling time.10 

                                                 
9 These mechanisms suggest that relationship-specific learning occurs between the producer’s company man and the 
rig’s foreman and crew rather than the producer and the physical rig itself. The ideal empirical analysis would 
therefore use data on the duration of relationships between producer and rig personnel (the rig foreman in 
particular). However, I only possess data on relationships between producers and rigs, not personnel, so am 
measuring the true relationship of interest with error. This error may not be too severe given that rig foremen 
typically have multi-year spells with a single rig, but will nonetheless attenuate estimates of relationship-specific 
learning.   
10 While the TRRC asks producers to report the date drilling began for all their wells, this reporting is not rigorously 
enforced. Beyond the missing data, 2.7% of the observations from 1991-2005 have drilling times that are clearly 
erroneous or technically infeasible. I drop wells with drilling times that are negative, wells with drilling times 
greater than 180 days, and wells that are more than 3,000 feet deep and implausibly reported to have been drilled in 
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The TRRC data do not include the identities of the drilling rigs that drilled each well. I 
therefore obtained information on rig activity from Smith Bits (SB). Smith Bits is a manufacturer 
of drilling bits, and its field sales force issues weekly reports on all onshore rig activity in North 
America. These reports give each rig’s location, by county, on every Friday from 1989 to 2005 
and also provide the identity of the production company to which the rig is contracted.11 Unlike 
the TRRC data, the unit of observation in the SB data is a rig-week, and I do not observe 
individual wells. Thus, if the SB data indicate that a particular rig spends three consecutive 
weeks working for the same producer in the same county, I cannot discern, without additional 
information, whether that rig has drilled three very quick wells or one long well. 

The empirical analysis requires a well-level dataset in which each observation reports the 
well’s drilling time, location, producer, and drilling rig. I construct this dataset by merging the 
SB rig location data into the TRRC’s well-level drilling records. Unfortunately, a large fraction 
of wells in the TRRC data cannot be matched to rig information in the SB data. Match failures 
occur for four reasons. First, some wells in shallow fields are drilled in less than one week and 
may therefore not be drilled on a Friday. Such wells, comprising 6.1% of the TRRC dataset, have 
no corresponding record in the SB data and are therefore impossible to match. In section 6.5, I 
verify that the selective removal of these wells does not substantially impact the empirical 
analysis. 

Second, 14.8% of the TRRC wells do not match because the producer names in the 
TRRC data do not always agree with the producer names in the SB data. Often, two names are 
similar only in part, and it is difficult to discern whether the two names do in fact point to the 
same firm. I use information on firm addresses, officer names, and drilling frequency to carefully 
match some similar names; however, I leave ambiguous cases unmatched to avoid the risk of 
matching firms that are, in fact, distinct. 

Third, 27.7% of the TRRC wells do not have a match because the SB data are not as 
comprehensive as the TRRC data: SB records 23.3% fewer drilling-weeks than does the TRRC. 
These match failures do not appear to be systematic; in particular, their incidence is not 
significantly correlated with wells’ drilling times, the primary dependent variable of the 
analysis.12 Finally, some non-unique matches occur when a producer employs multiple drilling 

                                                                                                                                                             
a single day. The incidence of these observations and those with missing drilling times is not correlated with the 
experience variables that I ultimately use in my analysis. 
11 Unfortunately, I do not observe the price charged or whether the rig is on a one-well or multi-well contract. 
12 Specifically, I regress a flag for whether each TRRC observation matched at least one SB observation on the log 
of the well’s drilling time and a set of field X producer fixed effects. The point estimate on the log of drilling time is 
-0.0085—small in magnitude—with a standard error of 0.0060. 
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rigs simultaneously in the same county. Because the SB data do not contain field or well 
information, I am unable to distinguish which rig is drilling which well in such cases. While I am 
able to use information on well depth and well type to match some of these wells to their rigs, 
there are other cases in which there is no way to confidently match the data. Rather than guess, I 
drop all wells that cannot be matched uniquely, reducing the dataset by a further 20.4% of the 
original TRRC well count. 

This matching process yields a dataset with 33,125 observations for which the producer 
and drilling rig are known. Of these wells, 7.7% are exploratory wildcats and are dropped 
because the field location is not recorded. In addition, because horizontal and directional wells 
are typically best-drilled with specialized rigs, I omit these wells, comprising 20.2% of the data, 
from my analysis. I also drop dry holes, comprising 14.3% of the remaining observations, 
because their drilling times can be artificially inflated if the producer keeps the rig on-site while 
it attempts to coax the well to flow.13 

Finally, I drop all fields, producers, and rigs for which there is only one observation since 
tracking learning for such entities is not possible. The final matched dataset consists of 19,059 
wells, spread over 1,354 fields, 704 producers, and 1,339 rigs. As indicated in table 1, there is a 
large variance in drilling activity across these entities. For example, in some fields I observe only 
two wells while in others I observe hundreds. Table 1 also indicates variance in the number of 
producers working within any field: some fields are drilled by only one producer and others are 
drilled by more than ten.  

Figure 2 illustrates the relation between drilling time and depth in the sample. Very 
shallow wells that are a few thousand feet deep may be drilled in less than a week, whereas wells 
deeper than 15,000 feet can require several months of drilling. The sample average drilling time 
is 23.0 days, the average well depth is 9,036 feet, and 90% of the data lie between 4,650 feet and 
13,800 feet. Summary statistics for depth, drilling time, and well type are presented in table 2. 

 

5. Empirical Analysis: Learning by Field Producers 

I begin the empirical analysis by examining the effect of producers’ experience on their 
drilling productivity, omitting the influence of their relationships with rigs. This analysis follows 
existing learning-by-doing studies that investigate lead firm productivity but do not incorporate 

                                                 
13 While horizontal, directional, and dry holes are not used in the final dataset, I still “count” the fact that they were 
drilled when I calculate the experience variables for the associated field, producer, and rig. Although the field 
locations of wildcats are unknown, their drilling is included in the experience of the associated producer and rig. 
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contractor relationships into the analysis. In section 6, I examine how the results presented here 
are affected by taking relationship-specific learning into account. 

5.1 Empirical framework 

This paper follows the learning-by-doing literature by estimating a production function in 
which firms’ past experience is the measure of human capital accumulation. The typical 
specification in the literature has the Cobb-Douglas form given by 

            yfpt = (Efpt)α(Kfpt)β(Lfpt)γνfpt    (1) 

where yfpt measures the productivity (inverse drilling time) with which a well is drilled by 
producer p in field f at date t. Efpt represents the producer’s experience in field f at t,14 Kfpt and Lfpt 
represent capital and labor inputs, and νfpt represents factors unobserved to the econometrician; 
for example, geologic characteristics of field f. The magnitude of the coefficient α indicates the 
importance of learning-by-doing. 

The capital and labor inputs to any given well are primarily determined by the well’s 
drilling rig and its crew. While the analysis of section 6 will control for rig heterogeneity, the 
present analysis will instead assume that capital and labor inputs are constant within each 
producer and field. That is, I will ignore for now any changes in the identities of the rigs with 
which each producer contracts as well as any rig-level learning. The impact of these omissions 
on the estimated learning rates of field producers will be assessed in section 6.  

Taking logs of (1) and rearranging to include field and producer fixed effects, the 
reference case specification for estimating producer-level learning is given by (2) below: 

  log(DTfpt) = f(Efpt) + γf + δp + ηt + φXfpt + εfpt   (2) 

The dependent variable for each well is the logarithm of its drilling time DTfpt, and the 
explanatory variable of primary interest is producer p’s experience in field f at time t, denoted by 
Efpt. Field and producer-specific capital and labor inputs have been subsumed into field and 
producer fixed effects γf  and δp. The field fixed effects also play an important role in controlling 
for the substantial geologic heterogeneity in drilling conditions across fields. Were producers to 

                                                 
14 This measure of experience will later be expanded to include measures of spillovers: experience by producer p in 
fields other than f and the experience of other producers in field f. 
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drill more frequently in fields that are “easier” to drill, the estimated learning effect would be 
biased downwards in the absence of these fixed effects. 

Specification (2) also includes year fixed effects ηt to control for industry-wide 
technological change.15 I include variables Xfpt for well type (oil vs. gas vs. both) and well depth 
to control for within-field heterogeneity.16 Xfpt also includes month-of-year fixed effects to 
control for seasonal variations in drilling time that may arise from changes in weather. The 
disturbance εfpt represents the presence or lack of drilling problems on each well and is presumed 
to be heteroskedastic and correlated across wells drilled within the same field. 

Given these fixed effects and controls, the effect of experience on drilling time is 
identified through variations in each producer’s drilling activity within a field. There exist 
numerous sources of such variation, including changes in oil and gas prices, discovery of new 
fields, and the identification of unexploited reserves in existing fields (through seismic imaging 
technology, for example). The identification assumption implicit in (2) is that producers do not 
drill wells more frequently in fields in which they have, for reasons unrelated to learning, 
specific skills or knowledge that make them more productive drillers. If this assumption is false, 
the estimate of (2) will be biased, yielding an inflated estimate of the learning effect. In practice, 
violations of this assumption seems unlikely to be substantial, given the numerous other factors 
that determine when and where a producer drills, such as its expectations about fields’ future oil 
and gas production. Nonetheless, I test the validity of this assumption by estimating a variant of 
(2) that includes fixed effects for field-producer interactions. While this specification will still be 
subject to biases arising from the omission of rig identities and rig-level learning, it will be 
robust to unobserved field-specific heterogeneity in producers’ drilling productivity. 

5.2 Calculation of experience 

I define Efpt as the number of wells drilled by producer p in field f during the two years 
prior to date t, including the well completed at t.17 I calculate this variable using the original 
TRRC dataset rather than the smaller dataset generated by the match of the TRRC data to the SB 

                                                 
15 In alternative specifications, I use a polynomial function of time to control for technological change. Doing so 
does not substantially affect the estimated results. 
16 Geologic heterogeneity is predominantly cross-field rather than within field. For example, regressing well depth 
on a full set of field fixed effects yields an R2 of 0.88. Moreover, within-field depth variation is not correlated with 
producer-specific, rig-specific, or relationship-specific experience. For example, regressing the log of well depth on 
the log of each producer’s field-specific experience and a set of fixed effects for producer-field interactions yields an 
estimated coefficient on experience of -0.0024 with a standard error of 0.0020.  
17 The inclusion of the well completed at t implies that all wells in the dataset have at least one unit of experience 
and avoids taking a logarithm of zero in a log-log specification of learning. 



 14  

data. Were I to instead use this smaller dataset, I would understate each producer’s experience, 
and variations in the retention of data across fields and producers would add noise to the 
calculation, causing attenuation bias in the estimation of (2). 

I measure experience using the number of wells drilled within the past two years rather 
than the total cumulative number of wells drilled because the majority of the fields in the dataset 
were discovered prior to the start of the sample.18 I therefore have no means to calculate a 
cumulative experience measure. Even so, it is not clear that experience gained many years before 
time t is relevant to a producer’s expertise at t. Studies by Argote et al. (1990), Benkard (2000), 
and Thompson (2003) have demonstrated that experience effects decay with time as learning is 
“forgotten,” supporting the importance of recent experience in determining productivity. In 
section 6.4, I discuss evidence of forgetting effects in the drilling industry. 

As an alternative to measuring experience with Efpt, the number of recently drilled wells, 
I have also calculated fptÊ : the number of days of active drilling during the two years prior to t. It 
is not obvious which of these two variables is the more appropriate measure of experience. The 
intuition behind Efpt is that learning by producers is technical and driven by the geologic 
information gained with each penetration rather than the accumulation of days of experience. 
However, if firms tend to learn more from mistakes than from successes, measuring experience 
in terms of time spent drilling, per fptÊ , may be more appropriate. In the exposition of the 
estimation results, I will focus on those using Efpt for two reasons: (1) this measure is used more 
frequently in the petroleum engineering literature; and (2) it ultimately yields more conservative 
estimates of the relationship-specific learning effect. 

Measuring experience as the number of wells drilled within the past two years does, 
however, create potential for simultaneity bias that will cause an estimate of (2) to exaggerate the 
learning effect. Frequently, a rig will drill a series of wells for a producer one right after another. 
In such cases, the number of wells drilled within any fixed time period will be inversely related 
to the number of days required to drill each well. For example, a producer that can drill a well in 
20 days will drill 36 wells over two years, whereas a producer that requires only 15 days to drill 
a well will drill 49 wells over two years. Thus, decreases in drilling time due to learning may 
actually cause an increase in the number of wells recently drilled. This simultaneity will cause a 
spurious negative correlation between drilling time and Efpt in (2), exaggerating the estimated 
learning effect. I address this problem by instrumenting for Efpt with fptÊ . fptÊ  is not subject to 
the simultaneity problem: when wells are drilled back-to-back over two years or more, fptÊ will 
                                                 
18 The choice of two years is a compromise between capturing the tenures of rig crews and rig foremen. I discuss the 
results’ robustness to measurements of experience using periods shorter or longer than two years in section 6.5. 
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remain roughly constant as the drilling time per well decreases and the number of wells drilled 
increases. 

To capture learning spillovers, both across fields and across producers, an alternative 
specification of (2) includes two new variables, E-fpt and Ef-pt. These tally, respectively, the 
number of wells recently drilled by producer p in fields other than f and the number of wells 
recently drilled in field f by producers other than p. These variables are similar to those used by 
Thornton and Thompson (2001) in their study of learning spillovers in wartime shipbuilding, and 
summary statistics are presented in the upper section of table 3.19  

5.3 Estimation results 

To begin, I estimate (2) as written, without allowing for cross-field or cross-producer 
learning spillovers. Most studies of learning-by-doing model learning curves with a log-log 
(Cobb-Douglas) functional form, which in this setting implies that f(Efpt) = β·log(Efpt). Before 
taking this approach, I estimate (2) flexibly by fitting a cubic spline to f(Efpt), instrumenting with 
a spline on fptÊ . The results are plotted in figure 3. Drilling times are estimated to decrease by 
about 15% over the first 20 wells drilled by a field producer and then stay relatively constant 
over the remaining wells.  

Figure 3 also plots the estimate of the log-log functional form. The point estimate of β is 
equal to -0.042 with a clustered standard error of 0.005.20 This specification offers a reasonable 
fit to the spline, remaining within the 95% confidence interval of the spline estimate for the vast 
majority of observations. Most of the estimates reported in this paper are therefore of a log-log 
specification, though the results of estimating more flexible functional forms are also presented 
as robustness tests. 

Table 4 displays the full set of estimated coefficients for the log-log specification plotted 
in figure 3, which I now refer to as the reference case. The estimated coefficients on the control 
variables generally agree with intuition. Deeper wells require more drilling time than shallow 
wells. Gas wells require more time to drill than oil wells, reflecting the heightened difficulty of 
managing wellbore pressures in the presence of gas. The year fixed effects indicate the presence 

                                                 
19 The logic behind instrumenting for Efpt does not apply to the spillover variables because decreases in the drilling 
times of producer p in field f do not increase the number of wells that can be drilled in a two-year window by other 
producers in field f or in fields other than f. 
20 All standard errors presented in this section and in section 6 use a robust variance estimator that is clustered at the 
field level (Arellano 1987, Wooldridge 2003). This estimator allows for both heteroskedasticity and within-field 
correlation in the disturbance εfpt. Clustering on producer or on rig yields nearly identical results. 
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of some industry-wide technological improvement over the sample period, as drilling times 
decrease by approximately 20% from 1991 to 2005. 

The second column of table 5 reports the results of estimating (1) without instrumenting 
for experience. These results agree with the anticipated direction of bias: the uninstrumented 
learning rate is larger than that of the reference case, though not substantially so. Column III 
replaces Efpt with fptÊ  in (2), so that experience is measured as the number of days of drilling 
rather than the number of wells drilled. Here, the estimated learning effect is lower than that of 
the reference case: the point estimate of β is -0.020 rather than -0.042 and is estimated quite 
precisely with a standard error of 0.002. The source of this discrepancy may be that, if Efpt is a 
better reflection of the process by which human capital is accumulated, then fptÊ  measures 
experience with error and the point estimate in column III reflects attenuation bias. 

Column IV of table 5 addresses the possibility that producers drill wells more frequently 
in those fields that they are particularly good at drilling (for reasons other than learning) by 
including fixed effects for field-producer interactions. The estimated learning coefficient is -
0.050, similar to the reference case estimate of -0.042. This result indicates that the observed 
experience effects are driven by learning rather than the matching of producers to fields for 
which they have specific drilling expertise. 

Regression V examines the importance of learning spillovers. Producers’ experience in 
other fields appears to improve their productivity, though the magnitude of this effect is 
approximately one-half that associated with producers’ field-specific learning. On the other 
hand, the estimate of cross-firm learning spillovers is small and statistically insignificant. This 
result contrasts with those of Irwin and Klenow (1994) and Thornton and Thompson (2001), who 
identify modest cross-firm spillovers in the semiconductor and shipbuilding industries, 
respectively. Drilling industry participants have indicated that the lack of spillovers may be due 
to the competitive nature of common pool resource extraction. When multiple producers operate 
in the same field, an increase in production by one firm may deplete the resource in a way that 
adversely affects the production of the other firms. Thus, producers may be unwilling to aid each 
other by sharing their drilling procedures.21  

 

                                                 
21 Conversations with industry participants have indicated that producers will sometimes include confidentiality 
clauses in their drilling contracts to prevent rig crews from sharing field-specific knowledge across producers. 
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6. Empirical Analysis: Rigs and Relationship-Specific Learning 

The analysis presented thus far has followed traditional learning-by-doing studies in that 
it has omitted the impact of relationship-specificities on the learning process. The learning 
estimates presented in tables 4 and 5 attribute all learning effects to producers without allowing 
for the possibility that a share of this learning could be driven by rig or relationship-specific 
experience. This section takes advantage of producer-rig contracting data to examine rig and 
relationship-specific learning and assess the degree to which the previous section’s results 
misattributed learning effects solely to producers. 

6.1 Empirical framework 

I augment specification (2) with variables that track rig and relationship-specific 
experience and with rig fixed effects that control for rig heterogeneity. The new reference case 
specification is given by (3) below. 

                log(DTfprt) = f(Efprt) + γf + δp + ηt + υr + φXfpt + εfprt   (3) 

In (3), each well’s field, producer, rig, and date are indexed by the subscripts f, p, r, and t, 
respectively. Rig fixed effects are denoted by υr, while γf,  δp, and ηt denote field, producer, and 
year fixed effects as in (2). Efprt is now a vector of experience variables, and the reference case 
expands f(Efprt) per (4) below.22 

    f(Efprt) = β1·log(Efpt) + β2·log(E-fpt) + β3·log(Ef-pt) + β4·log(E-prt) + β5·log(Eprt) (4) 

The first three terms of the expansion denote the three dimensions of experience 
examined in section 5: the experience of producer p in field f, the experience of producer p in 
other fields, and the experience of other producers in field f. As was the case in section 5, each of 
these three variables is taken as the number of wells drilled within the past two years, and Efpt is 
instrumented with fptÊ , the number of drilling days accumulated by producer p in field f within 
the past two years. 

The fourth term in (4) represents the experience of rig r with producers other than p, and 
the fifth term captures relationship-specific learning by measuring the experience of rig r with 
producer p. I calculate these two variables using the SB dataset before it is matched to the TRRC 

                                                 
22 The estimation of alternative functional forms for f(Efprt), for example a CES function, is discussed in section 6.5. 
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data as this avoids understating each rig’s experience. I define Eprt to be the number of weeks rig 
r was actively drilling for p within the two years prior to t and define E-prt similarly. Each rig’s 
experience is measured in units of time rather than wells because rig-level learning occurs 
through the repetition of tasks and the accumulation of interactions with the producer, both of 
which should be functions of time. Moreover, this calculation is necessitated by the data, since 
Smith Bits tracks drilling activity in rig-weeks rather than well-by-well. Summary statistics for 
E-prt and Eprt are indicated in the lower section of table 3. 

Relationship-specific learning is important to the extent that β5 is more negative than β4. 
These coefficients are identified through two sources of variation: (1) changes in the producer to 
which a given rig is contracted; and (2) the employment of multiple rigs (either simultaneously 
or in series) by a producer. If rigs have producer-specific characteristics (independently of 
human capital acquired through learning) and are likely to have longer relationships with 
producers to which they match well than those to which they do not, then this variation will not 
be exogenous and the estimate of β5, the coefficient on relationship-specific learning, will be 
biased downwards. Two institutional features of the drilling industry, however, suggest that 
match specificities are unlikely to be a serious concern. First, as noted in section 2.2, the rig 
equipment itself is generally not field or producer-specific, apart from the rig’s depth rating. 
Second, most producer-rig contract terminations in the data appear to be driven by a lack of 
additional drilling by the producer, with any rig, rather than by poor performance. When a 
producer releases a rig, it is rare that the rig is replaced with a new rig; instead, the producer 
simply ceases drilling, indicating that the relationship ended because the producer had no 
additional work to offer the rig. Specifically, only 12.8% of terminations are followed by the 
hiring of another rig by the producer within four weeks. These facts suggest that performance is 
unlikely to drive tenure, at least on average, in this setting. Nonetheless, I examine whether 
producer-rig specificities drive the estimate of (3) by adding fixed effects for producer-rig pairs 
to the specification. With the inclusion of these fixed effects, identification of relationship-
specific learning comes only from variations in joint experience within each rig-producer pair.23 

                                                 
23 Even when rig-producer fixed effects are included in the specification, I am, strictly speaking, only estimating a 
relationship-specific learning rate for those rig-producer pairs that I actually observe in the data. If producers are 
more likely to work with rigs with which they anticipate having steep learning curves, then hypothetical learning 
rates for the rig-producer pairs that I don’t observe could be lower than the learning rate I estimate here. Short of 
being able to run a randomized experiment, there exist no plausible means to estimate an “average” learning rate 
over all possible rig-producer pairs. However, it is not clear that such a learning rate is actually a parameter of 
greater economic interest than the learning rate for relationships that actually occur in the industry.  
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6.2 Primary estimation results 

Column I of table 6 reports the results of estimating relationship-specific learning per 
equations (3) and (4). The estimated coefficient on log(Eprt)—joint experience between a rig and 
a producer—is -0.025, statistically significant at the 1% level. This result implies that a rig that 
works with the same producer over one year can expect to decrease its drilling times by 10%. 
However, the estimated coefficient on log(E-prt) is only -0.010, implying that a rig that frequently 
changes producers during a year can expect to decrease its drilling times by only 3.9%. Thus, on 
average, rigs with stable contracting relationships improve their productivity more than twice as 
quickly as rigs that frequently change contracting partners. Moreover, the difference between the 
coefficients on log(Eprt) and log(E-prt) driving this result is statistically significant: an F-test 
rejects pooling with a p-value of 0.003. 

In addition, the point estimate corresponding to learning by field producers is only -0.030 
in this specification. This point estimate is lower in magnitude than was reported in column V of 
table 5, when the impact of producers’ relationships with rigs was not considered in the 
regression. Thus, investigating learning using only the experience of producers overestimates the 
contribution of their stand-alone experience to observed productivity improvements.  

Column II of table 6 adds fixed effects for producer-rig pairs to the specification and also 
removes from the data all pairs for which there is one observation. The estimate of relationship-
specific learning is not significantly affected by the addition of these fixed effects: the new point 
estimate on log(Eprt) is -0.023 rather than -0.025. The difference between the coefficients on 
log(Eprt) and log(E-prt) is still statistically significant with a p-value of 0.026.24 This result is 
consistent with a limited effect of producer-rig match specificities on relationship durations. 

I use the estimated coefficients to obtain an estimate of the cost savings obtained through 
relationship-specific learning. In a counterfactual in which joint experience yields the same 
productivity benefit as stand-alone experience (that is, β5 equals β4 in (4)), the average drilling 
time in my sample would be increased by 3.8%, equal to 0.88 days at the sample average drilling 
time of 23.0 days. This efficiency gain is of comparable magnitude to that obtained on average 
from producers’ stand-alone learning: 6.4% (1.5 days).25 

                                                 
24 The coefficient on log(E-prt) is still identified in the presence of producer-rig fixed effects because rigs sometimes 
have multiple employment “spells” with a single producer, and E-prt will be different in each spell. 
25 The 3.8% figure is equal to the sample average of exp((β4 – β5)·log(Eprt)) - 1, and 6.4% is the sample average of 
exp(– β1·log(Efpt)) – 1. 
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At the 2005 rig dayrate of approximately $11,000 per day for a well of average depth, the 
0.88 day efficiency gain attributed to relationship-specific learning translates to an average 
reduction in rig rental cost of $9,700 per well. Is this magnitude sufficient to drive firms to try to 
maintain long-term relationships? The data indicate that it is rare for a producer to switch rigs in 
the middle of a drilling program—the vast majority of contract terminations appear to be caused 
by a lack of new drilling work rather than a desire to change contractors. Section 7 investigates 
this pattern in the data more carefully in an effort to distinguish whether this contracting pattern 
is driven by relationship-specific learning or by other explanations such as switching costs or ex 
ante match specificities. 

6.3 Mechanisms behind relationship-specific learning 

This section examines more closely the mechanisms behind the observed relationship-
specific learning. Is this learning driven by rigs’ increasing familiarity with the characteristics of 
the fields that are drilled by their producers, familiarity with the particular procedures and 
personnel used by their producers, or both? I attempt to disentangle these mechanisms by 
decomposing each rig’s experience into the following field-specific and non-field-specific 
components:26 

(1) E-f-prt: experience with producers other than p in fields other than f 

(2) Ef-prt: experience with producers other than p in field f 

(3) E-fprt: experience with producer p in fields other than f 

(4) Efprt: experience with producer p in field f 

I use these variables to test whether a rig’s experience specific to both its current field 
and current producer has a greater effect on drilling time than does its experience specific only to 
its current field and report the results in the third column of table 6. The estimated coefficients 
suggest that both field-specific and producer-specific experience are important determinants of 
rigs’ drilling productivity. The estimated coefficient on log(Efprt) is more than twice that on any 
of E-f-prt, Ef-prt, or E-fprt and is statistically distinct from each at the 5% level. The point estimates 

                                                 
26 This decomposition of experience is complicated by the fact that the SB data do not contain field identifiers. Thus, 
even though I can identify each rig’s field location for each matched observation, I cannot do so for every week in 
which a rig is active. I therefore estimate each rig’s field-specific experience using a two-step procedure. First, 
within the matched data, I find the fraction of wells drilled by each rig within the past two years that were in the 
same field as the rig’s current field. I then multiply this fraction by the total number of weeks the rig has been active 
during the past two years, taken from the SB data. 
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imply that a rig that works for the same producer in the same field for a year can expect a 10% 
increase in drilling productivity. However, were the rig to then switch producers (or fields), its 
productivity would on average be only 3% (or 4%) larger than that of a rig with no experience at 
all.  

In column IV of table 6, I repeat the specification of column III but include fixed effects 
for the triple interaction of field, producer, and rig identifiers. Similar to the producer-rig fixed 
effects applied in columns I and II, these terms address the possibility that the column III results 
are driven by match-specificities between fields, producers, and rigs. Including these fixed 
effects removes from the sample nearly 5000 observations that are associated with a field-
producer-rig for which I observe only one well and requires 3,299 fixed effects. This reduction in 
degrees of freedom hinders inference, as evidenced by the increase in the standard errors of the 
estimated coefficients. While the magnitudes of the coefficients in column IV fall roughly in line 
with those in column III, the coefficient on log(Efprt) is no longer statistically distinguishable 
from those of E-f-prt, Ef-prt, or E-fprt. 

Thus, while conclusions drawn from this set of results must be tempered, they do provide 
some suggestive evidence that knowledge acquired through work in a field with one producer is 
not fully portable to other producers in the same field. This result is consistent with the views 
expressed to me by industry participants that the building of a personal relationship between 
producer and rig personnel is important, and with the evidence presented in section 5 indicating 
that cross-producer learning spillovers are, at best, small. In addition, the lessons learned by a rig 
in one field do not appear to be completely transferable to a different field, even if the rig 
continues to work for the same producer. This result seems likely to be driven by variations in 
producers’ drilling procedures or personnel across fields. 

6.4 Forgetting effects 

This section investigates whether experience effects in the drilling industry decay over 
time, consistent with institutional “forgetting” of knowledge. Specifically, I ask whether 
experience from the distant past has a smaller effect on current productivity than does recent 
experience. This inquiry relates to research by Argote et al. (1990), Benkard (2000), and 
Thompson (2003) that identified forgetting effects in aircraft manufacturing and shipbuilding. I 
first examine producers’ forgetting in the setting of section 5, in which rig and relationship-
specific learning are not considered, paralleling this literature. I then evaluate producers’ 
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forgetting within the full model of sections 6.1 and 6.2 to investigate the extent to which 
forgetting effects can be explained by relationship-specific learning. 

Thus far, I have defined Efpt—the experience of producer p in field f at date t—as the 
number of wells drilled by producer p in field f during the two years prior to t. Here, I define Efpt 
as a function of a decay parameter δ, per expression (5) below, in which Nfpτ denotes the number 
of wells drilled by producer p in field f on date τ. 
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For negative values of δ, wells drilled on dates long before t carry less weight in Efpt(δ) 
than do wells drilled near date t. I estimate δ by inserting (5) into learning specification (2), 
which does not allow for rig or relationship-specific learning, yielding expression (6) below. 

          log(DTfpt) = β·log(Efpt(δ)) + γf + δp + ηt + φXfpt + εfpt   (6) 

I estimate (6) using nonlinear least squares. As in section 5, I instrument for experience 
using the number of days producer p actively drilled in field f during the two years prior to date 
t.27 I obtain a point estimate of δ equal to -0.813 with a clustered standard error of 0.420, 
consistent with the presence of forgetting. While this result suggests, at first glance, that δ̂  is 
statistically significant (with a p-value of 0.053), the proper statistical test for forgetting must 
take into account the negative correlation between δ̂ and β̂ . The point estimate of β is -0.051, 
larger in magnitude than in the reference case results without relationship-specific learning (table 
5, column I). This increase in magnitude occurs because learning is now a function of 
depreciated experience rather than total experience. Because the estimates of δ and β are linked, I 
test for forgetting by testing whether these estimates are jointly different from those reported in 
the reference case, in which δ = 0 and β = -0.042. I find that the null hypothesis of no forgetting 
can be rejected with only a p-value of 0.149, rather than at nearly the 5% level. 

The estimated rate of experience depreciation is somewhat large: the point estimate of δ 
implies that a well drilled one year ago makes a contribution to experience that is only 44% of 
that made by a well drilled one day ago. This depreciation rate is not as great as that estimated by 
Argote et al. (1990) in shipbuilding (for which the corresponding figure is 3.2%), though greater 
than that estimated by Benkard (2000) in aircraft manufacturing (61%). While this result could 

                                                 
27 The estimation also instruments for the derivative of experience with respect to δ using the derivative of drilling 
time-based experience with respect to δ. 
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reflect literal human forgetting of knowledge or turnover amongst producers’ personnel, it may 
also reflect losses of intellectual capital associated with changes in producers’ drilling rigs. I 
investigate this possibility by augmenting (6) with rig fixed effects and variables measuring rig 
and relationship-specific experience, per equations (3) and (4). While the new point estimate of δ 
from this specification is still negative and quite large in magnitude at -1.43, it is estimated quite 
imprecisely: testing against a null hypothesis of no forgetting yields a p-value of only 0.282.28 
This result suggests that losses of relationship-specific capital between lead firms and contractors 
may be one of the mechanisms behind forgetting effects documented by other studies. 

6.5 Alternative specifications and robustness 

Functional form: Table 7 presents the results of estimating functional forms that are alternatives 
to the Cobb-Douglas specification given by equations (3) and (4). One such form that nests 
Cobb-Douglas as a special case is the constant elasticity of substitution (CES) relation (7): 

 f(Efprt) = β1·log(Efpt) + β2·log(E-fpt) + β3·log(Ef-pt) + (δ/ρ)·log((1-α) ρ
prt-E  + α ρ

prtE ) (7) 

In (7), the importance of relationship-specific learning is evaluated by testing whether α 
is greater than ½. The Cobb-Douglas case that has been considered thus far is equivalent to the 
limit of (7) as ρ approaches zero. As an alternative to Cobb-Douglas, I first consider in column II 
of table 7 another special case of (7) in which ρ is fixed at unity: perfect substitution. Using 
nonlinear least squares, I find that the point estimate of α under perfect substitution is 0.928 and 
statistically distinct from 0.5 with a standard error of 0.082, implying a strong relationship-
specific learning effect. Together with the point estimate of δ of -0.033, this result implies that a 
rig that works for a single producer over the course of a year will improve its productivity by 
13% on average, relative to a 5.2% improvement for a rig that frequently changes producers. 
That is, after a year, relationship-specific learning drives a productivity improvement 2.5 times 
as great as that driven by general learning, nearly the same ratio that was estimated in the Cobb-
Douglas specification.  

Column III of table 7 reports the results of estimating (7) without any restrictions on ρ. 
The point estimate of ρ is 0.263 with a standard error of 0.432, clearly failing to reject Cobb-
Douglas but rejecting perfect substitution at the 10% level. The point estimate of α is 0.712 and 

                                                 
28 When allowing for forgetting, the importance of rig’s producer-specific experience is still statistically distinct 
from that of rig’s stand-alone experience at the 1% level. 
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statistically distinct from 0.5 at the 10% level, again supportive of relationship-specific learning 
effects. 

In column IV, I estimate a flexible functional form in which Efpt, E-fpt, and Ef-pt enter the 
specification as cubic splines, while leaving the variables tied to rig experience, E-prt and Eprt, in 
a parameterized Cobb-Douglas form. That is, I model: 

   f(Experiencefprt) = s1(Efpt) + s2(E-fpt) + s3(Ef-pt) + β4·log(E-prt) + β5·log(Eprt) (8) 

The estimates of β4 and β5 from (8), presented in column IV, are similar to those of the 
reference case, indicating that the relationship-specific learning result is not driven by the 
parameterization in (4). Going a step further, I also estimate a version of (8) in which all five 
forms of experience enter through splines. The estimated functions s4(E-prt) and s5(Eprt) are 
plotted in figure 4, which shows that relationship-specific experience has a stronger effect on 
performance than does general experience across the full domain of data. Moreover, the two 
curves are point-wise statistically distinct at the 5% level for experience values between 1 and 86 
weeks, beyond which point the sample size becomes too small to separate them. 

Finally, in column V of table 7, I replace the fourth term in (4), β4·log(E-prt), with 
β4·log(Ert): the total experience of rig r in the two years prior to date t. In this case, relationship-
specific learning is no longer measured by the difference between β4 and β5 but by the difference 
between β5 and zero. I find that the point estimates of both β4 and β5 are equal to -0.018 and that 
both are significantly different from zero at the 1% level. This result accords well with the 
reference case specification, as it implies that a rig that maintains a stable relationship will 
improve its performance twice as quickly as a rig that frequently changes producers. 

Contract type: Could the decreases in drilling times I observe for producer-rig pairs could be 
driven by changes in contract type as producers and rigs accumulate experience together? The 
analysis to this point has not taken the firms’ choice of dayrate or footage contract into account. 
If firms tend to switch from dayrate to footage contracts (or vice-versa) over the course of a 
relationship, the performance improvements that I observe may be driven by changes in 
incentives rather than learning. 

I address the potential impact of changes in contract type by taking advantage of the fact 
that most producer-rig pairs do not change contractual form during the sample period. 76.4% of 
all observations are associated with a producer-rig pair that either always uses a dayrate contract 
or always uses a footage contract. I remove from the sample those producer-rig pairs that switch 
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contracts and test for relationship-specific learning in the sub-sample of pairs with stable contract 
types. I include fixed effects for rig-producer interactions in this test to ensure that I do not 
identify learning effects from cross-pair comparisons, for which contract type may vary. The 
results of this regression are reported in column II of table 8. I still find a strong and statistically 
significant effect of joint experience on drilling time. The coefficient on log(Eprt) is -0.022, very 
similar to that found when the same regression was run on the full sample (column II of table 6). 
The joint experience effects evident in the data do not appear to be driven by changes in contract 
type.29 

Measurement and data issues: As part of the merge process, some wells that were drilled in 
less than one week were dropped from the sample because they could not be matched to records 
in the Smith Bits data. Although these wells constitute only 6% of the overall population, it is 
possible that this selection on the dependent variable may bias the results. I address this concern 
by estimating (3) and (4) with data only for wells that are at least 8000 feet deep (12,581 
observations). Such wells are essentially impossible to drill in less than one week, and estimation 
with this sub-sample neutralizes the potential selection problem. Results, presented in column III 
of table 8, are very similar to those obtained from the full sample, shown in column I. The 
difference between the coefficients on log(E-prt) and log(Eprt) is statistically significant with a p-
value of 0.022.  

The results reported thus far measure Efpt, E-fpt, and Ef-pt as the number of wells drilled 
within two years of date t. Table 8, column IV presents the results of estimating an alternative 
specification in which each of these variables is measured as the number of days of drilling 
within two years of date t. In this specification, the importance of the producer’s experience, both 
within and outside of its current field, is diminished relative to the reference case model in 
column I. This decrease in the learning estimates parallels that discussed in section 5.3. Here, the 
alternative specification also slightly strengthens the estimated relationship-specific learning 
effect: the estimated coefficients on log(E-prt) and log(Eprt) are -0.009 and -0.027, respectively, as 
compared to -0.010 and -0.025 in the reference case. Column V indicates that these results are 
robust to the inclusion of fixed effects for producer-rig interactions to the specification. 

                                                 
29 I have run a related regression in which I parse the effect of joint experience into that for producer-rig pairs using 
dayrate contracts and that for pairs using footage contracts. I find that learning rates are larger for dayrate contracts 
than for turnkey contracts. However, the endogeneity of contract choice suggests that this is not a causal result. In 
particular, it may be that learning rates are faster for the types of wells that are amenable to dayrate contracting—
these wells tend to be more geologically challenging than those drilled under footage contracts and likely present 
greater scope for learning. 
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Finally, I verify that the results are robust to changes in the length of time over which I 
calculate the experience variables. The results in columns II, III, and IV of table 9 calculate 
experience over one, three, and five years, respectively, rather than the reference case of two 
years. In all three formulations, the coefficients on rigs’ general and producer-specific experience 
change little and remain statistically distinct at at least the 5% level. These estimates remain 
precise despite the fact that, at longer windows of experience, the early years of the data must be 
dropped because the Smith Bits data only exist back to 1989. 

 

7. Empirical Analysis: Relationship Persistence 

In this section, I empirically examine whether the pattern by which producer-rig 
relationships are formed and broken is consistent with firms’ recognition of relationship-specific 
learning. Specifically, do producers prefer to use rigs with which they have substantial prior 
experience? If so, is this preference driven by learning or by other factors? 

It is clear from the data that firms do generally maintain their relationships. Producers 
rarely change rigs in the middle of a drilling program: relationships tend to end only when a 
producer runs out of work. This fact alone, however, can be supported by explanations other than 
learning and in particular by the presence of switching costs. I therefore test for relationship 
persistence by focusing on instances in which a producer has two rigs drilling for it in the same 
county. When the producer releases one of these two rigs, I ask whether the rig that is released is 
that with the least producer-specific experience. This last in-first out (LIFO) pattern would be 
consistent with firms’ maximization of the benefits of relationship-specific learning and would 
also be difficult to explain using switching costs alone since the test is conditioned on a 
switching cost being paid.30 This pattern may, however, be consistent with the presence of other 
ex ante match specificities as discussed below. 

I execute this analysis using the original SB dataset, prior to its match with the TRRC 
data. There are 323,730 rig-week observations in this dataset, and for each I observe the county 
in which the rig is located and the producer for which the rig is drilling. Week-to-week, rigs 
maintain their relationship with their producer 89.5% of the time. Rigs change producers in 7.4% 
of the observations, implying that a switch occurs every 13 weeks, on average. Rigs also 
occasionally exit the market on a temporary or permanent basis; such exits together constitute 
3.1% of the data. 

                                                 
30 A LIFO pattern may result if switching costs are heterogeneous, a possibility I examine below. 
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I define all instances in which a producer has two rigs drilling for it in the same county as 
a “pair” and use these pairs as the unit of observation in my analysis.31 There are 907 unique 
pairs in the data, and with two rigs per pair, there exist 1,814 total observations, spread over 821 
unique rigs and 531 unique county-producer combinations. 

Within each pair, I determine which rig leaves the pair first to work for an alternate 
producer. I then capture this rig’s exit date and calculate the producer-specific experience of both 
rigs at that date. I calculate this experience in exactly the same manner as was done for the 
relationship-specific learning analysis of section 6. I then test for a systematic relationship 
between each rig’s experience and the identity of the rig that is released first: as the difference in 
producer-specific experience between the two rigs grows, does it become more likely that the 
less-experienced rig is released first? 

Figure 5 illustrates the evidence of relationship persistence in this sample. The horizontal 
axis plots the absolute value of the difference (in logs) of producer-specific experience between 
the two rigs in each pair. Thus, points plotted on the right side of the graph represent 
observations in which the two rigs have very different levels of producer-specific experience. All 
observations are grouped into bins of width 0.2, and the vertical bars indicate the number of pairs 
in each bin. Each data point indicates the percentage of pairs within each bin for which the less-
experienced rig was the first to exit. There exists a clear systematic pattern in the data: as the 
difference in specific experience between the two rigs in each pair grows larger, it becomes more 
and more likely that the less-experienced rig will exit first. This pattern is consistent with firms’ 
recognition of relationship-specific learning’s benefits. 

Regression analysis confirms these graphical results. I use a conditional logit model to 
estimate the effect of a rig’s producer-specific experience on its probability of being the first to 
exit its pair. Specifically, I estimate equation (9) below, in which Experiencei1 denotes the 
producer-specific experience of rig 1 in pair i. 

))log(exp())log(exp(
))log(exp(

)Pr(
21

1
1,

ii

i
RigiPair ExperienceExperience

Experience
ExitFirst

⋅+⋅
⋅

=
ββ

β
 (9) 

The results of this regression are reported in column I of table 10: rigs with more 
producer-specific experience are significantly less likely to exit first. The estimated marginal 
effect of -0.061 implies that, in a pair consisting of a rig with 12 months of experience and a rig 
                                                 
31 I exclude pairs in which both rigs change producers during the same week. I also exclude all pairs in which one or 
both rigs leave its producer in order to exit the market rather than to work for another firm. This restriction implies 
that the rig movements I study in my analysis are not driven by a rig’s need for maintenance or repairs, or by poor 
data tracking by Smith Bits. 
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with 1 month of experience, the less experienced rig has a 63.7% probability of being the first to 
exit. 

Column II of table 10 presents the results of estimating (9) when each rig’s total 
experience is used as the explanatory variable. In this case, there is no significant relationship 
between experience and movements of rigs between producers. This result reflects the fact that 
the general experience of a rig does not provide productivity benefits that are producer-specific. 
While a highly experienced rig may be more productive than other rigs, its productivity when 
working for other producers will also be higher, and it is therefore likely to command a higher 
price in the market. 

Of course, there exist alternative explanations behind the LIFO pattern exhibited in figure 
5 and column I of table 10. First, it may be that some rigs have lower switching costs than others 
and therefore change jobs frequently. A rig market in which some rigs are “switchers” and others 
are “stayers” would generate a LIFO pattern even without a relationship-specific learning effect. 
Second, ex ante match specificities would cause producers to first hire those rigs to which they 
match best and to release those rigs last. 

To rule out heterogeneity in rig switching costs, I re-estimate (9) while including a set of 
rig fixed effects. I do so using a linear probability model, since including rig fixed effects in a 
conditional logit is likely to lead to an incidental parameters problem that will cause the estimate 
of β to be inconsistent (Neyman and Scott 1948, Lancaster 2000). Fortunately, the baseline 
results do not appear to be sensitive to model choice: as indicated in column III of table 10, 
estimating a linear probability model with the log of producer-specific experience and group 
fixed effects as covariates yields a marginal effect very close to that of the conditional logit. 
When rig fixed effects are added to the specification, I still find a strong systematic LIFO effect. 
As shown in column IV, the marginal effect is -0.067, compared to -0.059 in column III, and still 
statistically significant at the 5% level. Rig heterogeneity is not driving the LIFO result. 

Taking a step further and adding fixed effects for producer-rig interactions would 
eliminate the influence of match specificities on this result. Unfortunately, within the 1814 
observations in the sample there are 1,488 unique producer-rig combinations. The limited sample 
variation remaining after including these fixed effects precludes inference, as indicated in 
column V of table 10. The standard error of the estimated marginal effect nearly triples, relative 
to column IV, and this regression provides no evidence either for or against the LIFO pattern.  

Supplemental evidence, however, supports the hypothesis that the relationship 
persistence is not driven by matching. First, I use information on rig depth ratings and well 
depths to assess how the matching of rigs’ attributes to producers’ wells affects producers’ 
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hiring. For each rig in each pair, I calculate the absolute difference between the rig’s depth rating 
and the average depth of the wells it drills.32 Across pairs, I find that the distribution of this 
“depth difference” for the first rig to enter each pair is very similar to that of the rig that enters 
last: a Kolmogorov-Smirnov test for the equality of these distributions fails to reject equality 
with a p-value of 0.582. This result indicates that the two rigs in each pair are equally well-
matched in depth rating to their wells.  

Further, I investigate pre-existing performance differences between the rigs in each pair 
by comparing the drilling times of the first well drilled by each rig within that pair. As with the 
depth differences, the data fail to reject equality of the initial performance of the rig that enters 
first with that of the rig that enters second: the Kolmogorov-Smirnov p-value is 0.886.33 This 
similarity between both the initial performance and the depth rating of the two rigs in each pair 
suggests that the LIFO pattern in the data is not driven by pre-existing match specificities 
between producers and rigs. 

The evidence is therefore consistent with a recognition by producers that maintaining 
long-term relationships helps to maximize the productivity benefits of relationship-specific 
learning. I cannot, however, rule out the possibility that these results are purely driven by 
friendships formed between the personnel of each firm. Personal relationships are important in 
the Texas drilling industry, and friendships may develop over the course of a long business 
relationship that neither party would want to break. Of course, friendship is likely to play a role 
in driving relationship-specific learning in the first place, by facilitating communication between 
producers and rigs. The value of empirically differentiating the learning and friendship stories is 
therefore not obvious, even if the necessary data were available.  

 

8. Conclusions 

This paper demonstrates that relationship-specific learning can be an important driver of 
productivity improvement and play a role in firms’ contracting decisions. I find that a drilling rig 
that accumulates experience with one producer improves its productivity more than twice as 
quickly as a rig that frequently changes contracting partners. As a consequence, producers and 
rigs have a strong incentive to maintain their relationships, and the data demonstrate that 

                                                 
32 The average depth difference is 2,898 feet, with a standard deviation of 2,675 feet. 
33 On average, the first-well drilling time of the first rig to enter is actually 4.8% higher than that of the second rig 
(this difference is not statistically significant). This fact likely reflects producer-specific learning: by the time the 
second rig enters, the producer has learned from the wells it drilled with the first rig and improved its drilling times 
accordingly. 
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producers are more likely to work with rigs with which they have substantial prior experience 
than those with which they have worked relatively little. 

These results seem likely to generalize to other industries in which outsourcing is 
common. For example, construction contractors or management consulting firms may develop 
relationship-specific intellectual capital through joint work experience with their clients. The 
importance of relationship-specific learning presumably varies with industry and firm 
characteristics. For example, greater technical complexity in an industry’s production process 
could drive steeper learning curves than those documented in this paper.  

Firms may also be able to take actions that influence their rate of relationship-specific 
learning. A lead firm might embed some of its employees within the organizations of its 
contracting partners, or a contractor might set up offices near its clients. While such investments 
plausibly increase the rate of learning, the accumulated knowledge that results is also a form of 
relationship-specific capital. Thus, when learning rates may be enhanced through costly actions, 
it may be in firms’ interests to develop contracting arrangements that alleviate ex post bargaining 
problems and promote efficient investment. Relationship-specific learning may therefore play a 
role in promoting long-term contracts and vertical integration. 

Finally, I find that horizontal learning spillovers are unlikely to be important in oil and 
gas drilling. Given prior findings of spillover effects in semiconductor manufacturing and 
shipbuilding, this result suggests that the importance of spillovers varies with industry 
characteristics. For example, the lack of spillovers in drilling may be related to the competitive 
nature of production from a common pool resource. Further study with richer data may be 
fruitful in illuminating the drivers of learning spillovers and in assessing the importance of their 
macroeconomic effects. 
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Figure 1: Photo of drilling rig 
 

 
 

 
 

Figure 2: Drilling times vs. well depths 

 
 

Note: Observations grouped into depth “bins” of 1000 feet 
          Horizontal axis excludes highest and lowest 1% of depths 

Mean drilling time 

10th and 90th percentiles 
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Figure 3: Estimates of learning by field producers: spline and log-log specifications 
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Figure 4: Estimated splines for rigs’ general and relationship-specific learning 
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Figure 5: Likelihood that the least experienced rig is the first to change producers  
vs. the within-pair difference in rigs’ producer-specific experience 
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Min
25th 

percentile Median
75th 

percentile Mean Max

Number of wells per field 2 2 4 10 14.1 784
Number of wells per producer 2 3 7 20.5 27.1 630
Number of wells per rig 2 4 8 19 14.1 157

Number of producers per field 1 1 2 3 2.9 54
Number of fields per producer 1 1 3 6 5.5 124
Number of rigs per driller 1 1 3 6 7.7 194

Table 1: Distributions of wells, fields, producers, and rigs

 
 

 
 
 

Number of 
observations Min Median Mean

Std. 
Dev. Max

Drilling time (days) 19059 2 18 23.0 19.2 179
Well depth (feet) 19059 631 9000 9036 2817 23000
Gas well (0/1 dummy) 19059 0 1 0.620 0.485 1
Oil and gas well (0/1 dummy) 19059 0 0 0.001 0.036 1

Table 2: Sample summary statistics

 
 
 
 
 
 

Number of 
observations Min Median Mean

Std. 
Dev. Max

Number of wells drilled during the 
past two years in:

Same field, same producer 19059 1 7 22.0 51.0 711
Different field, same producer 19059 1 46 125.7 169.6 1098
Same field, different producer 19059 1 10 69.6 171.6 1813

Number of weeks of drilling within 
past two years by:

Same rig, different producer 19059 1 29 34.1 29 105
Same rig, same producer 19059 1 14 27.7 30.6 105

Table 3: Summary statistics of experience variables

The well represented by each observation is included in all measures of experience. Thus, the minimum experience 
level is one rather than zero.  
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Variable
Point 

estimate Variable
Point 

estimate

log(field-producer exper.) -0.042 (0.005) *** 1992 -0.040 (0.026)
log(well depth) 1.179 (0.075) *** 1993 -0.016 (0.022)

Gas well 0.058 (0.026) ** 1994 -0.062 (0.030) **
Oil and gas well 0.239 (0.081) *** 1995 -0.060 (0.035) *

February -0.021 (0.014) 1996 -0.038 (0.032)
March -0.030 (0.013) ** 1997 -0.026 (0.036)
April -0.048 (0.014) *** 1998 -0.035 (0.039)
May -0.045 (0.013) *** 1999 -0.089 (0.039) **
June -0.062 (0.014) *** 2000 -0.072 (0.037) *
July -0.046 (0.014) ** 2001 -0.022 (0.039)

August -0.034 (0.014) ** 2002 -0.087 (0.036) **
September -0.016 (0.014) 2003 -0.116 (0.040) ***

October -0.053 (0.014) *** 2004 -0.191 (0.043) ***
November -0.030 (0.014) ** 2005 -0.204 (0.042) ***
December -0.033 (0.015) **

Regression includes fixed effects for fields and producers
Standard errors are clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.

Standard
error

Standard
error

Table 4: Regression results for learning by field producers
Dependent variable is log(drilling time)

 
 
 

I II III IV V

Log of experience with:

Reference 
case

(Table 4)

Experience 
not 

instrumented
Drilling time 
experience

Field-
producer 

fixed effects
Learning 
spillovers

  -0.042***
   -0.053***

   -0.020***
   -0.050***   -0.041***

(0.005) (0.005) (0.002) (0.007) (0.005)
- - - -    -0.022***

- - - - (0.008)
- - - -      -0.001     
- - - - (0.007)

Number of observations 19059 19059 19059 19059 19059

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.

N

All regressions include controls for depth and well type, month and year fixed effects, and field and producer fixed effects

Table 5: Regression results for learning by field producers
Dependent variable is log(drilling time)

N Y NField X producer dummies N

Same field, same producer

Different field, same producer

Same field, different producer
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I II III IV

Log of experience with:

Relationship-
specific 
learning

Producer-rig 
fixed effects

Rig-producer-
field 

specificities

Rig-producer-
field fixed 

effects

  -0.030***   -0.027***
  -0.027***

  -0.032*

(0.006) (0.008) (0.007) (0.018)

  -0.022*** -0.003   -0.022*** -0.015
(0.008) (0.012) (0.008) (0.018)

-0.005 0.003 -0.005 0.005
(0.005) (0.008) (0.005) (0.014)

 -0.010** -0.005 - -
(0.004) (0.006) - -

  -0.025***   -0.023*** - -
(0.004) (0.006) - -

- - -0.005 -0.010
- - (0.004) (0.009)
- - -0.007 0.001
- - (0.007) (0.013)
- -    -0.011*** -0.006
- - (0.004) (0.007)
- -   -0.024***    -0.019**

- - (0.005) (0.009)

Number of observations 19059 16325 19059 14289

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level
All regressions include controls for depth and well type, month and year fixed effects, and field, producer, and rig fixed effects

Field X producer X rig fixed effects

Same rig, same field, same producer
(Experience fprt )

Producer X rig fixed effects N Y

N

N N

N N Y

Same rig, diff field, same producer
(Experience f-prt )

Same rig, diff field, diff producer
(Experience -f-prt )

Same rig, same field, diff producer
(Experience f-prt )

Table 6: Regression results for relationship-specific learning
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

Same rig, same producer
(Experience prt )
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I II III IV V

Log of experience with:
Reference 

Case
Perfect 

substitution General CES

Field and 
producer 

spline
Total rig 

experience

   -0.030***
  -0.031***

   -0.031***
    -0.030***

(0.006) (0.006) (0.006) (0.006)

   -0.022***
  -0.020**

   -0.020***
    -0.022***

(0.008) (0.008) (0.006) (0.008)

-0.005 -0.005 -0.005 -0.005
(0.005) (0.005) (0.005) (0.005)

  -0.010** - -   -0.008** -
(0.004) - - (0.004) -

- - - -    -0.018***

- - - - (0.007)

   -0.025*** - -    -0.026***    -0.018***

(0.004) - - (0.004) (0.004)

-      0.928***   0.712* - -
- (0.082) (0.112) - -
- - 0.263 - -
- - (0.432) - -
-    -0.033***    -0.040*** - -
- (0.008) (0.007) - -

Number of observations 19059 19059 19059 19059 19059

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level

Statistical significance for α is for a test against a null hypothesis of α=0.5

Same rig
(Experience rt )

Same rig, different producer
(Experience -prt )

spline

spline

spline

Table 7: Relationship-specific learning results: alternative functional forms
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

All regressions include controls for depth and well type, month and year fixed effects, and field, producer, and rig fixed effects

Same rig, same producer
(Experience prt )

α

ρ

δ

Specification in columns II and III includes a CES function of rig experience given by (δ/ρ)·log((1-α)Eρ
-prt + αEρ

prt).  ρ is set to 1 in column II.
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I II III IV V

Log of experience with:
Reference 

case

Stable 
contract 

types
Wells 8000 ft 

and deeper
Drilling time 
experience

Drilling time 
experience, 
Prod-rig FE

   -0.030***
   -0.031***

  -0.024***
   -0.013***

   -0.012***

(0.006) (0.010) (0.007) (0.003) (0.003)

   -0.022*** 0.007   -0.019**
   -0.014*** -0.002

(0.008) (0.016) (0.009) (0.003) (0.008)

-0.005 0.006 -0.007 -0.003 0.001
(0.005) (0.011) (0.007) (0.005) (0.004)

  -0.010** 9.1E-06   -0.009**   -0.009** -0.003
(0.004) (0.008) (0.004) (0.004) (0.006)

   -0.025***    -0.022***    -0.023***    -0.027***    -0.024***

(0.004) (0.007) (0.005) (0.004) (0.006)

Number of observations 19059 11877 12581 19059 16325

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level.
All regressions include controls for depth and well type, month and year fixed effects, and field, producer, and rig fixed effects

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

N

Same rig, same producer
(Experience prt )

Table 8: Relationship-specific learning results: alternative specifications
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

Producer X rig fixed effects YN Y N
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I II III IV

Log of experience with: Reference Case
One-year 

experience
Three-year 
experience

Five-year 
experience

  -0.030***   -0.033***   -0.025***    -0.026***

(0.006) (0.006) (0.006) (0.006)

  -0.022***   -0.025***   -0.018*** -0.014
(0.008) (0.008) (0.006) (0.011)

-0.005 -0.006 -0.007 -0.004
(0.005) (0.007) (0.007) (0.008)

 -0.010**  -0.010**  -0.009**   -0.010*

(0.004) (0.004) (0.004) (0.005)

  -0.025***   -0.025***   -0.023***    -0.023***

(0.004) (0.004) (0.004) (0.004)

Number of observations 19059 19059 17891 15515

Parenthetical values indicate standard errors clustered on field. 
*,**,*** indicate significance at the 10%, 5%, and 1% level
All regressions include controls for depth and well type, month and year fixed effects, and field, producer, and rig fixed effects

Table 9: Relationship-specific learning results: robustness of experience calculation
Dependent variable is log(drilling time)

Same field, same producer
(Experience fpt )

Same rig, different producer
(Experience -prt )

Different field, same producer
(Experience -fpt )

Same field, different producer
(Experience f-pt )

Same rig, same producer
(Experience prt )

  
 
 
 
 

I II III IV V

   -0.061*** -   -0.059***   -0.067** 0.036
(0.012) - (0.016) (0.034) (0.093)

- -0.008 - - -
- (0.017) - - -

Marginal effects calculated at sample mean.
Parenthetical values indicate standard errors clustered on producer.
*,**,*** indicate significance at the 10%, 5%, and 1% level.

Table 10: Estimates for the probability a rig is the first to exit its pair
Values shown are marginal effects: dPr(ExitFirst) / dX

Pair FE N/A N/A Y Y Y

Linear probability model

Rig FE N N N Y

Rig X producer fixed effects

Log of rig's total experience

Log of rig's producer-specific 
experience

Conditional logit

Y

N N N N Y

 


