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1 Introduction

In debating the charter for the Bank of England in 1840, Sir Robert Peel (the Prime Minister

of Britain at the time) used the following words:

While the charter is well-designed and while we are taking all precautions

which legislation can prudently take against the recurrence of a monetary crisis,

a crisis may occur despite of our precautions. If it does, and if it be necessary to

assume grave responsibility for the purpose of meeting it, I dare say men will be

found willing to assume such responsibility.

Sir Robert Peel’s words are as relevant today as they were 168 years ago. As the Unites

States is going through one of the worst financial crises of the last decades, and as its leaders

contemplate a large bailout, it seems important to recall that the current crisis is not unique

in its features. During the last few decades, the world has seen several financial crises

(Asian crisis, Russian crisis etc.) that all shared a common theme: Periods of increased

risk appetites, as typically evidenced by high leverage ratios, led financial institutions to

the brink of bankruptcy. Bailouts and restructuring followed, sometimes undertaken by the

government and sometimes resulting from negotiations between the parties directly involved

in these institutions. At the same time, large liquidations of risky positions - sometimes

referred to as “flight to quality” - exacerbated the initial negative shocks and led to prolonged

periods of depressed asset valuations.

The subprime lending crisis that the United States is experiencing these days provides a

reconfirmation of the general pattern: In the years 2004-2006 the quest for higher expected

returns led financial institutions to increase their leverage and their lending to subprime

borrowers. The expansion of leverage left little margin for error when house values declined

and delinquencies increased. The initial reaction to the ensuing crisis consisted of private

sector bailouts of the affected entities1 followed by outright government bailouts once some of

1For instance, during the early stages of the recent subprime lending crisis the parent companies of hedge
funds, structure investment vehicles, or originators of CDOs had to provide infusions of liquidity in order
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the largest private entities were considered “too big to fail”. At the same time, risky markets

that attracted several participants between 2004-2006 (such as the market for collateralized

debt obligations) were abandoned in a quite dramatic fashion in favor of simpler and safer

investment forms. This abrupt change in the willingness to take risk led to large risk premia,

illiquidity and deep discounts in several markets, which further exacerbated the crisis.

The commonality of the structure of financial crises suggests the possibility of an economic

mechanism that can simultaneously explain their recurrent themes. Two phenomena seem

to be of first order importance: a) the pattern of high initial risk taking followed by rapid

reversals of risk appetite around the onset of a crisis and b) the prevalence of bailouts and

restructuring during a crisis.

Pre-existing research has suggested that the first phenomenon may have a simple, almost

mechanical explanation: A large body of research has argued2 that it is the very nature of

the risk management practices followed by financial institutions that makes them prone to

risk appetite reversals. Indeed, existing risk management rules3 allow high volatility choices

in good times and automatically tighten the risk limits in response to declining market

values. This tends to exacerbate the effects of negative shocks. Then why do such risk

management rules exist in the first place ? This question is important both for positive as

well as normative reasons.

The present paper proposes an answer to this question. It develops a model where risk

management rules are derived as optimal responses to the adverse risk taking incentives

created by bailouts. Additionally, the incentives to undertake a bailout are endogenously

determined, making it possible to provide a joint explanation for the observed risk appetite

reversals and the prevalence of bailouts.

to avoid abrupt liquidation of these entities. (For instance Bear Sterns had to bail out two of its hedge
funds at the onset of the crisis). Such guarantees were sometimes explicit (through market value swaps)
and sometimes implicit (due to reputational concerns of the investment banks). See JP Morgan “US Fixed
Income Markets weekly” August 10, 2007 p. 66 for a discussion.

2See e.g. Basak and Shapiro (2001). Papers that are similar in spirit include Grossman and Zhou (1996),
Basak (1995), Pavlova and Rigobon (2005), Gromb and Vayanos (2002).

3One such example is Value at Risk (VAR).
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Specifically, in the baseline version of the model there are three agents: the firm’s share-

holders, its debtholders and a stakeholder (such as the parent company of the firm, an insurer

that guarantees principal repayment to debtholders, junior claimants, potentially the gov-

ernment etc.). The stakeholder incurs a discrete cost or externality if the firm is terminated.

The presence of this cost or externality makes the stakeholder willing to bail out the firm, by

injecting funds, once bankruptcy looms. However, the stakeholder’s guarantee to the share-

holders is implicit and the benefit from the firm’s continued presence is bounded. Hence,

bailouts can occur only if the stakeholder finds it profitable to undertake them. (The paper

also discusses a variant of the model, where there is no stakeholder and the bankruptcy cost

is incurred directly by the debtholders, who may have an incentive to “forgive” some debt

in order to avoid the discrete bankruptcy cost.)

In this baseline framework, the paper studies the shareholders’ incentive to take risk.

As one might expect, the presence of an implicit guarantee makes the shareholders inclined

to raise the volatility of the projects that they undertake. However, high volatility choices

could deter the stakeholder from bailing out the firm. This produces a tension. On the one

hand, shareholders want to raise volatility, but not so much that the stakeholder will find it

prohibitively costly to bail out the firm.

In reality, the tension produced by such conflicting goals leads to the adoption of regula-

tions, self-regulations, covenants, laws etc. that I will refer to as “risk management rules” or

commitments. Such rules place limits on the risks that firms can take and hence serve the

purpose of reassuring the stakeholder.

A new aspect of the model is that rules, regulations and commitments are allowed to

be imperfect, as they are likely to be in reality. The imperfection stems from the fact that

future shareholders may choose to renege by paying a cost. This helps capture situations

where firms can circumvent risk management rules by undertaking costly activities such as

setting up offshore, off-balance sheet entities etc. The imperfection of commitment implies

that the credibility of a risk management rule is not taken as given. Instead, adherence to

the rule has to be dynamically consistent.
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Within this framework, I analyze the optimal choice of a risk management rule and show

that it has a particularly simple form: undertake projects with high risk levels when net

worth (defined as assets minus liabilities) is sufficiently high and switch to projects with low

risk levels when net worth falls below an endogenously determined threshold.

The intuition for this result is simple. An optimal risk management rule should induce

the stakeholder to bail out the firm, in order to avoid the deadweight cost of bankruptcy.

Simultaneously, it should provide future shareholders with high continuation values, in order

to reduce the temptation to renege. The optimal risk management rule achieves both of

these objectives. By tightening the risk limits when net worth is low, it becomes possible

to allow projects with high volatilities when the firm’s assets safely exceed its liabilities.

By postponing the high volatilities for the times when net worth is high, the anticipated

growth rate of shareholder value is maximized. This “backloading” effect is common in

many dynamic contracting contexts.4

This paper belongs to the continuous time literature that analyzes capital structure via

contingent claim methods. This literature was initiated by the seminal Merton (1974) paper.

Duffie (2001) presents a textbook treatment.5 This literature takes the cash flow and control

rights of debt and equity claims as given and uses the risk neutral pricing approach of Cox

and Ross (1976) in a continuous time framework to price claims on a firm (including implicit

guarantees) by option valuation techniques. The present paper contributes to this literature

by explicitly modeling the incentives of the shareholders to take risk and the incentives of

the stakeholder to undertake a bailout.

Leland (1998) also models endogenous volatility choice. The present paper supports the

results in Leland (1998), in that it shows analytically the optimality of simple Markovian

“bang-bang” type volatility policies. However, the two papers have a different focus and

consider different frictions and choices, so that the optimal volatility process takes a different

form. Specifically, in Leland (1998) shareholders have an incentive to increase rather than

4See e.g. DeMarzo and Fishman (2007), DeMarzo and Sannikov (2006).
5A representative sample of papers in this voluminous literature includes Ronn and Verma (1986), Leland

(1994), Leland and Toft (1996), Anderson and Sundaresan (1996), Lucas and McDonald (2005), Constanti-
nides, Donaldson, and Mehra (2002), Pennacchi and Lewis (1994).
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decrease volatility as net worth declines and termination looms.6 The reason is that in

Leland (1998) there are no bailouts or debt renegotiations, so that the terminal nature of

bankruptcy removes the incentives to mitigate risk that are present in this paper. Therefore,

in Leland (1998) the incentives to mitigate risk result from the callability of debt, rather than

the participation constraint of the stakeholder. For parsimony, and in order to illuminate

the new insights of the present paper, I abstract from taxes, callability, and the endogenous

choice of capital structure, so that the only reason to mitigate risk is the participation

constraint of the stakeholder. In such a context the optimal rule is for firms to increase their

volatility when their net worth is high and reduce it as they come close to bankruptcy, giving

rise to a “flight to quality” phenomenon.

The model is also related to a literature in financial economics that studies how commonly

observed risk management practices can lead to variations in institutional risk taking. See

e.g. Grossman and Zhou (1996), Basak (1995) Pavlova and Rigobon (2005), Basak and

Shapiro (2001), Gromb and Vayanos (2002). Taking these risk management approaches

as given, previous literature has recognized their importance in limiting a firm’s ability to

absorb risk during times of crisis. The contribution of this paper is to understand why the

prevailing risk management rules dictate risk limits that tighten as firm’s net worth declines.

There exists a voluminous literature on debt, default and reorganization, that I will

not attempt to summarize here.7 This literature studies the allocation of control and cash

flow rights, strategic default service, reorganization etc. There are several major differences

between the present paper and that literature. First of all, for the most part the present

paper studies the incentives to inject “new money” into a company, as opposed to splitting

the existing cash flows. Second, and more importantly, the present paper focuses on the

risk taking and risk management incentives of bailouts. By having an explicit intertemporal

framework, it becomes possible to address the important issue of commitment and rules in

the context of choosing optimal risk management policies.8

6This result holds irrespective of whether one assumes commitment or not.
7See Hart and Moore (1998) for a seminal contribution in this literature.
8See e.g. Leland (1994) on the issue of commitment. In the context of banking, Ritchken, Thompson,

DeGennaro, and Li (1993) show that charter value can create risk management incentives. However, in their
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As Leland (1998) points out, commitment (and the lack thereof) is a central issue behind

the asset substitution problem of Jensen and Meckling (1976). Recent literature in economic

theory and monetary economics has made advances in terms of making commitment an

endogenous choice rather than imposing it as an assumption.9 In the context of the asset

substitution problem studied in this paper, section 5 introduces a new approach to modeling

commitment and more generally regulations or self-regulations. This approach allows com-

mitment that is somewhere between the two extremes of a) full commitment without any

requirement of time consistency and b) full dynamic consistency which completely precludes

firms from “tying their hands” through some form of covenant or regulation. The notion

of commitment that is proposed in section 5 allows for the possibility of reneging at a cost.

Therefore, commitment is not perfect, but it is not impossible either.

To endogeneize the extent of commitment, I let the involved parties choose both the risk

management rule and how large will be the cost if the commitment is abandoned. Further-

more, I assume that higher costs of reneging (more stringent regulations or self-regulations)

are associated with higher oppotunity costs associated with distortions, implementation,

monitoring etc..

Surprisingly, it turns out that endogeneizing commitment in this way implies two results:

a) Simple Markovian policies are optimal, since current decisionmakers have an incentive

to choose a commitment, that limits future shareholders’ temptation to renege. b) The

qualitative nature of the optimal risk management rule (high volatility in high net worth

states, low volatility in low net worth states) is not affected by whether the commitment

is imposed as a regulation by the stakeholder or is voluntarily chosen by the shareholders;

only the distribution of the rents from the bailout depends on the party that determines the

volatility policy.

Motivated mostly by the Asian crisis, a literature in international economics consid-

ers the effects of bailouts and balance sheet effects for understanding crises in developing

simpler setup there are no commitment or strategic issues.
9See e.g. Caruana and Einav (2008) for game theoretic applications and Giannoni and Woodford (2002)

for applications to monetary economics.
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economies by taking a general equilibrium perspective.10 Typically, this literature does not

consider the incentives of the parties who undertake the bailout. The present paper takes

a microeconomic approach in order to understand jointly the incentives of stakeholders and

shareholders in a dynamic setting. The conclusions reached in this paper naturally comple-

ment the international finance literature, which is mostly concerned with general equilibrium

issues. An application of the present model is that levered institutions in developed markets

will rapidly decrease their risky positions in response to negative net worth shocks.11 Such

risk management practices could help explain contagion effects not only across countries but

also across seemingly unrelated markets.12

Methodologically, the paper uses continuous time methods to analyze an intertemporal

incentive problem. Continuous time methods allow a close and explicit characterization of

the solution to dynamic incentive problems. However, the present paper differs with the

dynamic contracting literature,13 since the goal is not to study the optimal design of debt

and equity or the dynamic evolution of a firm’s capital structure, the allocation of cash flows

etc.. The present paper takes the capital structure as given, and focuses exclusively on the

incentives to take risk and the incentives to undertake bailouts within a dynamic framework.

The structure of the paper is as follows. Section 2 presents the setup of the basic model.

In order to expedite the presentation of the main result, Section 3 restricts attention to

Markovian policies and derives the optimal volatility policy in that class assuming the pres-

ence of full commitment. Section 4 presents several realistic extensions of the baseline model

and a discussion of its real world implications. Section 5 introduces the notion of imper-

fect/costly commitment and shows that Markovian commitments are optimal even after

allowing for general (potentially history dependent) commitment policies. Assuming imper-

10See e.g. Schneider and Tornell (2004) and references therein.
11An illustrative example is the behaviour of Japanese banks during the Asian financial crisis. (See

Kaminsky and Reinhart (2001).) It is interesting to note that one of the financing forms that most rapidly
evaporated during the East Asian crisis was short term lending by international banks - especially Japanese
and European banks - that provided the bulk of credit lending to these countries. The risk management
practices of these banks coupled with capital adequacy requirements are viewed by many researchers as
responsible for the prolonged capital flow reversal.
12See e.g. Calvo (1999), Caballero and Panageas (2005)
13See e.g. DeMarzo and Fishman (2007),DeMarzo and Sannikov (2006).
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fect/costly commitment, section 6 establishes that the qualitative features of the optimal risk

management rule are the same irrespective of whether the rule is determined by the share-

holders or by the stakeholder through regulation. Finally, section 7 presents the implications

of imperfect/costly commitment for times prior to the first bailout. Section 8 concludes. All

proofs are relegated to the appendix.

2 Model

The baseline model makes a number of simplifying assumptions for expositional reasons.

Several of the simplifying assumptions are relaxed in subsequent sections.

2.1 Lenders and the outside stakeholder

There are three types of agents in the baseline model: a continuum of competitive lenders, a

continuum of anonymous shareholders and an outside stakeholder, who derives some benefit

from the firm’s continued existence.

The lenders hold a fixed liability of the firm in the amount L. This liability remains

constant throughout time for simplicity. The firm also owns assets in the amount Wt, so

that the firm’s net worth at time t is Wt − L. The assets of the firm satisfy W0 > L at time

0.

The firm is a productive entity that can never fully eliminate the risks associated with

its operation. However, it can choose to invest its assets in projects involving either high

or low risk. Under the risk neutral measure14 both high and low risk projects yield an

expected return equal to the interest rate r per unit of time dt. However, projects involving

high risk have instantaneous volatility σ2, while less risky projects have a lower volatility

0 < σ1 < σ2.
15 The firm can costlessly adjust the fraction that it invests in high and low risk

14Roughly speaking, pricing under the risk neutral measure means that the implied Arrow Debreu prices
in the market are used to determine the value of the firm. For more details on the relationship between
Arrow Debreu prices and risk neutral measures, see Duffie (2001).
15The fact that σ1 > 0 implies that the nature of the firm’s business is such, that it can never fully
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projects. As a result, its assets follow a geometric Brownian Motion under the risk neutral

measure

dWt

Wt
= rdt+ σtdZt (1)

where the drift r > 0 is the prevailing (real) interest rate in the economy, dZt is a standard

Brownian motion, and σt presents the volatility of total assets. By constantly adjusting

the fraction it invests in high risk and low risk projects, a firm can attain any level of σt ∈
[σ1, σ2] for all t ≥ 0.
To keep the analysis simple, in the baseline model the firm can pay no intermediate

dividends to its shareholders until a random time τ , at which time it pays a liquidating divi-

dend in the amount of Wτ −L. Section 4 relaxes this assumption and considers intermediate

dividends. The firm also pays a flow of rL to its lenders, up to the time of its liquidation.16

Liquidation occurs either exogenously or endogenously. Exogenous liquidation happens

at a random exponentially distributed time τ with constant hazard λ > 0. This will facilitate

the use of infinite horizon optimization techniques by making all solutions independent of

time. In addition to this exogenous arrival of termination, lenders can terminate the firm

prior to τ : By covenant, (or because lending is secured by the assets of the firm, or is

short term) they can enforce liquidation if the assets of the firm fall below its liabilities,

i.e. if Wt < L. This assumption and the associated simplicity of the bankruptcy trigger will

expedite the presentation of the results without affecting the conclusions.

When the firm gets terminated by its lenders (“endogenous liquidation”), the outside

stakeholder incurs a monetary cost B. Purely for simplicity, I assume that this cost does not

arise if liquidation is exogenous.17 The source of the cost B typically depends on whether

eliminate risk. For instance, if the firm is a mortgage granting institution, σ1 > 0 implies that there is
no perfectly safe mortgage. The idea that there is always some risk in a productive entity is a common
assumption in production economies (see e.g. Cox, Ingersoll, and Ross (1985)).
16As Leland (1994), I assume that equity issuance can be used to finance the payments to the debtholders,

as long as shareholder value is positive.
17This assumption can be easily relaxed without affecting any of the results.
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the firm is non-financial or financial. For the first type of companies, the cost B could have

political origins (e.g. the political cost associated with increased unemployment in a region).

For financial companies, the cost B could be interpreted as a fire sale or bankruptcy cost

due to rapid liquidation of the assets. In particular, assume that the outside stakeholder is

an insurer to the lenders and has committed to incur any fire sale or bankruptcy costs in the

event of a liquidation, so that debtholders do not experience any principal losses. In that

case, if the firm’s assets drop to L and the debtholders force liquidation of the firm, there

will be bankruptcy and fire sale costs in the amount of B, that the stakeholder will have to

incur.18A further interpretation of B as an externality occurs when a firm has claimants of

different seniority that could be hit asymmetrically by bankruptcy costs.19 B could also be

the result of systemic risk, or it could have reputational origins. For instance, at the onset

of the recent subprime lending crisis, several major investment banks bailed out structure

investment vehicles or hedge funds they were sponsoring, so as to shield their claimholders

from losing their invested capital.

Before proceeding, it should be noted that even though the assumption of a discrete

bankruptcy cost or externalityB is critical for the results, the assumption about the existence

of an outside stakeholder isn’t. Section 4.1 presents a variant of the basic model where it is

the debtholders who incur the cost B rather than some outside stakeholder.

Whatever the reason for the cost or externality B, the outside stakeholder has the option

of making transfers to the firm in order to keep its assets above L, and hence prevent

liquidation by the lenders. In mathematical terms

dWt = rWtdt+ σtWtdZt + dGt (2)

18For instance, a standard practice of major investment banks was to provide their structured investment
vehicles (SIV’s) with a guarantee to purchase their short term paper at fixed rates, if the need presented
itself. Economically this is identical to providing a guarantee to the debtholders of the fund. Similarly, the
deposit insurance agency of a given country might have to incur such bankruptcy costs in order to protect
the bank’s lenders.
19As an example, consider a firm that has debt in the amount L = LS +LJ , whrere LS is senior debt and

LJ is junior debt. If there are bankruptcy costs in the amount B ≤ LJ and senior debtholders can request
liquidation once the firm’s assets reach L, then they can impose an externality on junior debtholders by
requesting liquidation.
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where dGt ≥ 0 represents incremental transfers that can be used once Wt = L in order to

enforce Wt ≥ L for all t. Intuitively, one should think of these injections as follows: Each

time the firm’s assets Wt fall by an amount ε > 0 below L, the stakeholder transfers ε to the

firm. Since the stakeholder has no incentive to make transfers to the firm beyond the ones

that are absolutely necessary to ensure its existence, one can focus on the minimal process

that is required to keep Wt > L. Karatzas and Shreve (1991) (p.210-211) show that the

unique minimal process for Gt that will safeguard Wt ≥ L for all t is given by

R t
0
dGs

L
= max

∙
0, max
0≤s≤t

½
−
µ
log (W0)− log (L) + rs− 1

2

Z s

0

σ2udu+

Z s

0

σudZu

¶¾¸
. (3)

In the baseline model the stakeholder injects funds without receiving a share of the firm’s

dividends (or other form of security) in exchange for the transfers Gt. Section 4 enriches the

model to allow for this realistic extension.

A key assumption of the model is that the stakeholder has a choice on whether to bail

out the firm or not. In particular, once the assets of the firm become equal to its liabilities,

the stakeholder can decide whether to make the transfers dGt or to just let the lenders seize

the assets and terminate the firm.

Defining τ l to be the time of firm liquidation (be it exogenous or lender-induced), a

sufficient condition for the stakeholder to always prefer to bail out the firm is that the net

present value of the costs associated with keeping the firm alive is less than the benefit of

doing so

Et

ÃZ τ l

t

e−r(s−t)dGs|Wt = L

!
≤ B, (4)

where the process Gt is given by (3). The expectation is taken under the risk neutral

measure, and so are all expectations in the rest of the paper. Since the firm controls the

volatility process σt, it also influences the net present value of the transfers on the left hand

side of this equation.
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2.2 Shareholders

The volatility choices of the firm are determined by its shareholders. Therefore, I use the

terms “the firm” and “the shareholders” interchangeably.

To determine the value of the firm to shareholders, observe that the total value of the

firm is given by Wt + Pt, where Pt is the value of the implicit option that the stakeholder

extends to the firm

Pt = Et

ÃZ τ l

t

e−r(s−t)dGs

!
(5)

The total value of the firm is just equal to the sum of the claims that debtholders and

shareholders hold. Letting Vt denote shareholder value and Dt denote debtholder value, one

obtains Wt + Pt = Vt +Dt. Since debtholders can always induce liquidation once Wt = L,

they hold effectively riskless debt. Accordingly Dt = L. Using this observation, shareholder

value is

V (Wt) =Wt − L+ Pt (6)

Equation (6) has two implications. First, different volatility processes will affect share-

holder value through their effect on the value of the guarantee Pt. Since Pt ≥ 0, shareholders
always have an incentive to induce the stakeholder to extend the guarantee once Wt = L.

To check intuition, it is also useful to confirm that the firm has an incentive to set

high levels of volatility in order to exploit the guarantee provided by the stakeholder. To

be more specific, ignoring temporarily the constraint (4) and assuming that the stakeholder

unconditionally guarantees the perpetual continuation of the firm until the time of exogenous

termination, the following result holds:

Lemma 1 Assume that τ l = τ in expression (5). Assume furthermore that volatility is
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constant at the level σ for all t ≥ 0 and define α as:

α (σ) =
−(r − 1

2
σ2)−

r³
r − σ2

2

´2
+ 2σ2 (r + λ)

σ2
< 0 (7)

Then, the value of the stakeholder guarantee is given by:

P (Wt;σ) =
L

|α (σ)|
µ
W

L

¶α(σ)

(8)

It is also straightforward to show the following result

Lemma 2 Assume that τ l = τ in expression (5). Then the volatility choice that maximizes

Pt is given by σt = σ2.

In light of the above result, if the stakeholder extended an unconditional and perpetual

guarantee to the firm, then the shareholder value maximizing choice of volatility would be to

set σt equal to its upper bound σ2 for all t > 0. This captures the standard asset substitution

intuition of unconditional guarantees.

The above two Lemmas only apply if the guarantee is unconditional. The focus of this

paper, however, is on guarantees that are implicit, i.e. guarantees that will only be extended

if (4) is satisfied. In order to make the problem interesting, I make the following assumption:

Assumption 1

P (L;σ1) =
L

|α (σ1)| < B <
L

|α (σ2)| = P (L;σ2) (9)

In light of Lemma 1 and equation (4), assumption 1 has two implications: a) to ensure

that the firm has at least one feasible choice of volatility that will make it possible to satisfy

the constraint (4) (namely by setting σt = σ1) and b) to impose that setting volatility equal

to the upper bound σ2 for all t > 0 will violate the constraint (4).

In the baseline model, B is a time invariant constant that satisfies assumption 1. Preview-

ing results, this will imply that optimal volatility choices will always induce the stakeholder
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to bail out the firm. Section 4.3 presents a simple example where B is time-varying and

shows that termination can occur in equilibrium.

2.3 Commitment and risk management rules

The above discussion illustrates the tension that is at the core of this paper. On the one

hand, shareholders would like to set high volatility levels in order to increase the value of the

implicit guarantee. On the other hand, if volatility choices are too large, then it will become

too expensive for the stakeholder to extend the guarantee.

To resolve this tension, I introduce commitment via some form of regulation that I will

refer as a “risk management rule”. Commitment serves the purpose of reassuring the stake-

holder that the firm will not exploit the implicit protection.

To expedite the presentation of the key results, this section makes several simplifying

assumptions: Specifically, once the firm is started shareholders have the ability to pre-

commit costlessly and perfectly as to how future volatility will be determined. Furthermore,

shareholders can only formulate Markovian commitments, i.e. the promised volatility choice

depends exclusively on the state variableWt. Finally, the risk management rule is determined

in a shareholder-value maximizing way.

Section 5 relaxes all these simplifying assumptions by allowing arbitrary adapted policies

(i.e. not necessarily Markovian policies). Furthermore, that section allows for the possibility

of imperfect and costly commitment, in the sense that the risk management rule can be

circumvented at a cost. Section 6 discusses the case where the stakeholder can impose the

risk management rule on the shareholders via regulation or law. The main result of sections

5 and 6 is that the features of the optimal risk management rule are not altered by these

extensions.

In light of the simplifying assumptions introduced in the present section, determining the

optimal risk management rule amounts to solving the following problem.

Problem 1 Let M denote the class of Markovian policies, i.e. policies of the form σt =
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f(Wt) for some f : [L,∞)→ [σ1, σ2]. Then for any Wt, choose σ so as to maximize

max
σ∈M

P (Wt;σ) (10)

subject to the constraint

P (L) ≤ B. (11)

In light of (6) maximizing P (Wt;σ) is equivalent to maximizing shareholder value. Hence,

the objective (10) is the familiar shareholder value maximization objective, while (11) simply

re-states the stakeholder’s participation constraint (4) taking into account that the Markov-

ian nature of the volatility policies makes Pt also Markovian.

3 Solution

3.1 The set of feasible payoffs

The first step towards solving problem 1 is to characterize the set of payoff functions P (W )

that can be attained by σ(W ) ∈M, while also satisfying (11). This is the purpose of the

next Lemma.

Lemma 3 Let the payoff function P be defined as in (5), and assume that it satisfies con-

straint (11). Then the following results hold for any σ(W ) ∈M :

1. In the domain (L,∞) , P satisfies the ordinary differential equation

σ2(W )

2
W 2PWW + rPWW − (r + λ)P = 0 (12)

2. P is within the bounds 0 ≤ P (W ) ≤ B for all W ∈ [L,∞). At +∞ the function P

satisfies limW→∞ P (W ) = 0
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3. P ∈ C1 and the derivatives of P satisfy PW (L) = −1, PW < 0, PWW > 0.

Lemma 3 states several properties of any feasible payoff function. The first property

is a familiar Black-Scholes type differential equation. Heuristically, it can be derived by

observing that Pt is a “claim” whose rate of appreciation in the domain [L,∞) is equal to
the sum of the interest rate r and the hazard rate of termination λ

dE (Pt)

dt
= (r + λ)Pt (13)

Using Ito’s Lemma, dE(Pt)
dt

can be expressed as σ2(W )
2

W 2PWW + rPWW . Combining Ito’s

Lemma with (13) leads to (12).

Property 2 in Lemma 3 places upper and lower bounds on the set of feasible payoffs.20

Property 3 has a somewhat more intricate proof, which is given in the appendix. It is however

straightforward to give a heuristic intuition for PW (L) = −1. Consider a situation where the
assets of the firm fall below L by a small amount ε. Assuming participation compatibility,

the stakeholder will intervene in order to restore the assets back to L by making a transfer of

ε. Therefore, it is as if the “claim” P pays a “dividend” ε and the state variable W is reset

back to L. Therefore P (L − ε) = ε + P (L). Expanding the left hand side of this equation

in a Taylor fashion around L gives P (L)− εPW (L) = ε+ P (L). Cancelling P (L) from both

sides and dividing by ε gives PW (L) = −1.
20To see why P will always be between those two bounds, fix a t ≥ τ0 and let τL be the first time (after

t) such that WτL = L. Then

P (Wt) = Et

³
e−(r+λ)(τ

L−t)PτL
´
≤ Et

³
e−(r+λ)(τ

L−t)B
´
≤ B (14)

The first equality in (14) follows from dGs = 0 for all s ∈ [t, τL] . The first inequality in (14) follows by
constraint (11) and the second inequality follows since e−(r+λ)(τ

L−t) ≤ 1.
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3.2 The optimization problem as a regular optimal control prob-

lem

Note that P (Wt) in the maximization problem 1 can be rewritten as

P (Wt) = P (L) +

Z ∞

L

P 0(x)1{x < Wt}dx

1{x < Wt} is an indicator function taking the value 1 if x < Wt and 0 otherwise. Assuming

that the participation constraint binds, P (L) = B.(Lemma 6 in section 5 verifies that this

constraint optimally binds). Furthermore, using the characterization of all attainable payoffs

from Lemma 3, one can rewrite the optimization problem 1 as a standard (deterministic)

optimal control problem using (P,P 0) as state variables

max
σ(x)

Z ∞

L

P 0(x)1{x < Wt}dx (15)

∙
P 0

P 00

¸
=

⎡⎣ 0 1

2(r+λ)
σ2

1
x2
− 2r

σ2
1
x

⎤⎦∙P
P 0

¸
(16)

∙
P (L)

P 0(L)

¸
=

∙
B

−1
¸
, lim
x→∞

P (x) = 0 (17)

Equation (16) is simply a transformation of the second order equation (12) into a system

of two first order ordinary differential equations, while equation (17) gives the boundary

conditions of the state variables (P, P 0) at L and ∞.

Letting π1, π2 denote the co-state variables for the two state variables (P, P 0) , the Hamil-

tonian for this optimal control problem is

H = 1{x < Wt}P 0(x) + π1P
0(x) + π2

2

σ2
((r + λ)P (x)

1

x2
− rP 0(x)

1

x
) (18)

The fact that P 00 > 0 (by Lemma 3) implies that ((r + λ)P (x) 1
x2
− rP 0(x) 1

x
) > 0 (by [12]).
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Hence, maximizing H w.r.t. σ gives the optimal policy

σ∗(x) =
½
σ1 if π2 > 0
σ2 if π2 < 0

(19)

By standard optimal control theory, the co-state variables must satisfy:

π̇1 = −2 (r + λ)

[σ∗(x)]2
π2
1

x2
(20)

π̇2 = − (π1 + 1{x < Wt}) + r
2

[σ∗(x)]2
π2
1

x
(21)

The form of (19) suggests that the optimal policy will have a “bang-bang” form, with a

switch at the point W ∗ where π2 changes sign. Motivated by this observation, a reasonable

conjecture is that the optimal policy is of the form

σ∗(x) =
½
σ1 if x < W ∗

σ2 if x ≥W ∗ (22)

for an appropriately chosen constantW ∗. The next Lemma uses policy (22) to determine

a closed form solution for P (Wt;σ
∗) taking an arbitraryW ∗ ≥ L as given. It then determines

W ∗ in such a way as to satisfy the boundary condition P (L;σ∗) = B. In a final step,

Proposition 1 verifies that (22) solves (19), and hence is optimal.

Lemma 4 Take an arbitrary W ∗ > L and suppose that shareholders adopt policy σ∗ of

equation (22). Then P (Wt;σ
∗) is given by

P (Wt;σ
∗)

L
=

½¡Wt

L

¢α+1 α−2 −α
−
1

α−2 −α
+
1
( L
W∗ )

α+1 −α
−
1

α−1 −α+1
α−2 −α

−
1

α−2 −α
+
1
( L
W∗ )

α+1 −α
−
1
− ¡Wt

L

¢α−1 1

α−1 −α+1
α−2 −α

−
1

α−2 −α
+
1
( L
W∗ )

α+1 −α
−
1
if L ≤Wt ≤W ∗

α−2 −α
−
1

α−2 −α
+
1

−1 ( L
W∗ )

α−2 −α
−
1

α−1 −α+1
α−2 −α

−
1

α−2 −α
+
1
( L
W∗ )

α+1 −α
−
1

¡
Wt

L

¢α−2 if Wt > W ∗

(23)
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where

α±1 =
−
³
r − σ21

2

´
±
r³

r − σ21
2

´2
+ 2σ21 (r + λ)

σ21
and α±2 =

−
³
r − σ22

2

´
±
r³

r − σ22
2

´2
+ 2σ22 (r + λ)

σ22
(24)

Accordingly, P (L;σ∗) = B if and only if W ∗ is chosen as:

W ∗ = L

"µ
α−2 − α+1
α−2 − α−1

¶ ¡
1 + B

L
α−1
¢¡

1 + B
L
α+1
¢# 1

α−1 −α
+
1

(25)

Lemma 4 determines the appropriate value ofW ∗, that makes the policy of equation (22)

satisfy (11). The appendix solves the differential equations (20), (21), and confirms that

this policy also satisfies (19). It becomes then straightforward to establish the optimality of

policy σ∗t :

Proposition 1 Let σ∗t be defined as in (22) with W
∗ given by (25). Then

P (Wt;σ
∗
t ) ≥ P (Wt;σt)

for any volatility policy σt ∈M and for any Wt ≥ L. The inequality becomes an equality if

σt = σ∗t .

This proposition implies that the firm will always follow a simple policy: keep volatility

at the lower bound σ1 while Wt ≤ W ∗, and then switch to maximal volatility σ2 if current

assets Wt exceed W ∗. The critical wealth level W ∗ is determined in such a way as to make

the key constraint (11) hold as an equality.

Why is it optimal for the firm to lower, instead of raise volatility as its net worth declines

? To see intuitively why, let τ 0 be a time when Wτ0 = L, fix a level W1 > L and let τ 1 be

the first time after τ 0 such that Wτ1 =W1. Because of (4), the continuation value Pτ1 must

19



satisfy the constraint

Eτ0

µZ τ1

τ0

e−(r+λ)(s−τ0)dGs

¶
+ Pτ1Eτ0

¡
e−(r+λ)(τ1−τ0)

¢ ≤ B,

which implies that

Pτ1 ≤
B −Eτ0

³R τ1
τ0

e−(r+λ)(s−τ0)dGs

´
Eτ0 (e

−(r+λ)(τ1−τ0))
≤

B −minσs∈[τ0,τ1] Eτ0

³R τ1
τ0

e−(r+λ)(s−τ0)dGs

´
minσs∈[τ0,τ1] Eτ0 (e

−(r+λ)(τ1−τ0))
. (26)

The rightmost expression of equation (26) gives an upper bound to the continuation

value that can be assigned at time τ 1. It is possible to show that the solution to the two

minimization problems of equation (26) is obtained by setting σs∈[τ0,τ1] = σ1. This is intuitive:

By setting volatility at the lowest level between τ 0 and τ 1, it becomes possible to obtain the

highest possible guarantee value at time τ 1, while still satisfying (4). Of course, after a

certain point, the optimal risk management rule needs to switch to high levels of volatility

in order to “deliver” on these high continuation values to the shareholders.

Proposition 1 is the main result of the paper. It illustrates that the optimal risk manage-

ment rule is to set high volatilities when the firm is doing well (in the sense that it has a high

net worth) and reduce volatility when the firm’s net worth declines. The rest of the paper

studies how general is this conclusion. The next section describes variations and extensions

of the baseline model, that take into account the many forms that real-world bailouts take.

Section 5 introduces costly and imperfect commitment and shows that Markovian policies

are optimal. The last two sections develop implications of costly and imperfect commitment.

Section 6 discusses cases, where the stakeholder has all the bargaining power and can impose

the risk management rule via law or regulation, while Section 7 discusses implications of the

model for times prior to the first bailout.
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4 Extensions and Discussion

4.1 Absence of a stakeholder and debt forgiveness

It seems reasonable to ask if the model’s predictions carry through even in cases where no

stakeholder is present. To answer this question, this subsection discusses a simple model with

only shareholders and debtholders. It is possible to show in a simple and stylized variant of

the previous model that optimal principal writedowns can produce effects that are similar

to bailouts.21

Specifically, this subsection keeps all the assumptions made sofar with the exceptions

that 1) there is no stakeholder and hence dGs = 0, 2) endogenous liquidation makes the

firm’s assets instantaneously decline by a fraction b < 1, i.e. Wτ+ = (1− b)Wτ− , and most

importantly 3) wheneverWτ < Lτ the debtholders either have the option to declare the firm

bankrupt and obtain its assets that are worth (1− b)Wτ , or they can forgive debt ∆Lτ < 0

so as to ensure that Lτ + ∆Lτ = Wτ . Under these assumptions, if a firm has survived by

time t, it means that Lt is given by

Lt = min{L0, min
0≤s≤t

Ws}.

A sufficient condition to induce debtholders to always prefer to write down principal is

that for every time τ such that Wτ = Lτ , the value of a bankrupt firm is less than the

anticipated present value of interest and principal payments. Mathematically,

(1− b)Wτ ≤ Eτ

Z τL

τ

e−r(s−τ)(rLs)ds+Eτ

h
e−r(τ

L−τ)LτL

i
for all τ :Wτ = Lτ (27)

Applying integration by parts on the right hand side of (27), using the fact thatWτ = Lτ ,

21For a rich and tractable model that studies allocation of cash flows and strategic debt service within a
dynamic valuation framework, see Anderson and Sundaresan (1996). Sundaresan and Wang (2007) study
strategic debt service in the presence of real options.
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and simplifying gives the simpler condition:

−Eτ

Z τL

τ

e−r(s−τ)dLs ≤ bLτ . (28)

Notice that (28) has a form that is quite similar to (4) except that dGs is replaced by

−dLs (recall that dLs < 0) and the right hand side is proportional to Lτ .

Assuming that equation (28) will always be satisfied, shareholder value is given by

V (Wt, Lt) =Wt−Et

Z τL

t

e−r(s−t)(rLs)ds+Et

h
e−r(τ

L−t) (WτL − LτL)
i
=Wt−Lt+ bP (Wt, Lt)

where bP (Wt, Lt) is defined as

bP (Wt, Lt) ≡ −Et

Z τL

t

e−r(s−t)dLs. (29)

Assuming that one can constrain attention to volatility policies that set σt as a function of

the asset to liability ratio wt ≡ Wt

Lt
, then the following analog of Lemma 3 obtains.

Lemma 5 Let the payoff function bP be defined as in (29), and assume that it satisfies (28).

Then the following results hold for any σ(wt)

1. There exists a function p(wt) such that bP (Wt, Lt) = Ltp(wt). In the domain (1,∞) ,
p (wt) satisfies the ordinary differential equation

σ2(w)

2
w2pww + rpww − (r + λ)p = 0

2. p is within the bounds 0 ≤ p (w) ≤ b for all w ∈ [1,∞). At +∞ the function p satisfies

limw→∞ p(w) = 0.

3. p ∈ C1 and the derivatives of p satisfy pw(1) = −1 + p(1), pw < 0, pww > 0.
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The proof of this Lemma is practically identical to the proof of Lemma 3 and is therefore

omitted.22

Given the similarity between the characteristics of feasible payoffs of Lemma 3 and Lemma

5, the volatility policy that maximizes p(wt) has a similar form. Indeed, assuming that

1

1− α−1
≤ b ≤ 1

1− α−2
,

and repeating the same logic of section 3, one obtains that the optimal policy is given by

σ∗(x) =
½σ1 if x ∈ ∙1,n³α−2 −α+1

α−2 −α−1

´³
1+bα−1 −b
1+bα+1 −b

´o 1

α−1 −α
+
1

¸
σ2 if x ≥

n³
α−2 −α+1
α−2 −α−1

´³
1+bα−1 −b
1+bα+1 −b

´o 1

α−1 −α
+
1

Notice that the optimal policy has the same familiar form as before: choose high volatilities

when the asset to liability ratio is high and switch to low volatilities when the asset to

liability ratio is low.

In summary, this section showed that the assumption of a stakeholder is not crucial for

the key results. All that is required is a discrete drop in the value of assets upon bankruptcy.

Of course in reality debt renegotiations are much more complex than outright principal

writedowns. In most cases the existing debt is exchanged for some other claim (for instance

some debt with alternative terms, equity etc.) The next subsection discusses such cases.

22The only part that requires some explanation is the fact pw = −1 + p(1). This follows from the fact
that when Wt declines below Lt by a small ε we obtain bP (Lt − ε, Lt) = ε+ bP (Lt − ε, Lt − ε). (This follows
because once Wt becomes smaller than L by ε > 0, the assets Wt don’t change but Lt is reset downward by
ε.) Taking a first order Taylor expansion leads to bP (Lt−ε, Lt) = bP (Lt−ε, Lt−ε)+ε bPL(Lt−ε, Lt−ε)+o(ε)

where o(ε)
ε → 0 as ε→ 0. Combining the last two equations gives ε bPL(Lt− ε, Lt− ε)+ o(ε) = ε. Dividing by

ε and sending ε → 0 leads to bPL (Lt, Lt) = 1. Since bP (Wt, Lt) = Ltp(wt), and wt =
Wt

Lt
it follows at once

that bPL(Lt, Lt) = p(1) − p0(1) and therefore pw(1) = −1 + p(1). Since any optimal policy should make the
constraint (28) binding, it follows that p(1) = b and pw (1) = −1 + b.
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4.2 Bailouts and Security Issuance

In the baseline model bailouts have taken the form of direct transfers. In reality, the stake-

holder undertaking the bailout often obtains some form of security in exchange for injecting

funds. To have a simple example, return to the baseline model and suppose that the first

time that Wt = L, the firm gives the stakeholder a claim to a share x < 1 of the firm’s liqui-

dating dividends in exchange for receiving the transfer process Gt as described by equation

(3).

Since the shareholder value of the firm is given by (6), andWt = L, the total value of the

firm (including the newly issued shares) is Pt. By obtaining a fraction x of the firm’s shares,

the cost of the bailout to the shareholder is reduced to (1− x)Pt and hence the constraint

(4) becomes

(1− x)Et

ÃZ τ l

t

e−r(s−t)dGs|Wt = L

!
≤ B (30)

More importantly, even though the value of the firm to the original shareholders is now

xPt, the same volatility commitments that maximize Pt will maximize xPt, and all the

analysis of the paper can be repeated after replacing the constraint (4) with (30).

An alternative way to think about equation (30) is as follows: Through the bailouts, the

stakeholder “pays” an amount Pt (this is the net present value of the transfers) to purchase

shares that are worth (1− x)Pt. Hence, she effectively purchases over-priced shares, which

results in a net transfer to the original shareholders. Whether the transfer takes the form of

outright cash injections, or purchases of “over-priced” shares has no material consequence

for the analysis.

It should also be clear that the above argument does not depend on the type of claim

that stakeholders obtain. As long as a) the firm survives once Wt = L, b) the shareholder

retains some non-zero cash flow rights on the liquidating dividend, and c) the debtholder gets

repaid capital and interest in all states of the world, then the stakeholder must be purchasing

overpriced securities.
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Even though the argument of this subsection was developed in the context of the baseline

model, it carries over also to the case of principal writedowns (section 4.1). In particular,

the conclusions of this section also apply to the setups, where the debtholders write down

principal in exchange for obtaining equity - a common outcome of renegotiations to avoid

bankruptcy.

Finally, a practical implication of allowing security issuance during a bailout is that the

guarantee-extending party can even gain from a bailout ex-post, even though ex-ante the

bailout is not profitable.

4.3 Temporary Externalities

Realistically, it is sometimes observed that firms wind down after being bailed out. The

present framework allows for this, if one assumes that externalities are temporary. In reality,

one motivation for bailouts is that there is a temporary shortage of liquidity in the market

that could produce large termination costs B. With the passage of time however, and with

active search for buyers for the firm’s assets, these costs could be eliminated.

To model such a situation in the simplest possible way, suppose that after bailing out

a firm (i.e. the first time that Wt = L), the stakeholder can start a project to reduce the

termination cost B (such as searching for an appropriate buyer for the firm’s assets). This

project has a constant hazard rate of success β. However, if the project succeeds, it can

reduce the externality from B down to 0.23

This modification of the setup can be easily accommodated by changing equation (12) to

σ2(W )

2
W 2PWW + rPWW − (r + λ+ β)P = 0. (31)

Equation (31) asserts that once the stakeholder starts her efforts to eliminate the exter-

nality, the overall hazard rate of guarantee termination is λ + β. This stylized setup shows

23The results also go through when B drops to a level smaller than L
|α(σ1)| , because then assumption 1 is

violated.
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that if bailouts are associated with active efforts by the stakeholder to reduce the externality

produced by the firm, then one should expect that bailouts will be temporary phenomena.

4.4 Bailouts through mergers and acquisitions

Especially in government sponsored bailouts, there is pressure for the government to not

bailout the existing shareholders for reasons of “fairness”. However, in many such cases

the government may still try to salvage the company by finding a buyer, who acquires the

company with all of its assets and its liabilities. In such a situation the government and the

buyer typically enter negotiations. The joint surplus that the government and the buyer can

obtain is B, i.e. the cost of liquidating the firm. In these negotiations the government may

agree (implicitly or explicitly) to provide transfers to the buyer in order to incentivize him or

her to acquire the company24 and the buyer will have an incentive to give a volatility promise

that satisfies the constraint (4). From this point on, one can simply repeat the analysis of

the baseline version of the model. Furthermore, if political redistribution concerns imply

that the amount of time that the new shareholders can enjoy the government’s protection is

exponentially distributed with parameter β, then the model from the perspective of the new

buyer becomes formally equivalent to the model of temporary externalities of the subsection

4.3.25

In summary, the model’s qualitative predictions do not depend on whether it is the

existing shareholders or the new buyers who enter the volatility management commitment.

As long as there is a surplus to be had, negotiations between the government and the acquiror

will give the acquiror the incentives to enter a volatility commitment. (See also section 6 for

the case where the government has some bargaining power.)

4.5 Intermediate Dividends
24For instance in the recent bailout of Bear Stearns by JP Morgan, the government agreed to provide a

muti-billion dollar credit line to JP Morgan in order to provide incentives for the acquisition.
25One can extend the model in a straightforward way to allow for repeated purchases of the company

by newly arriving buyers, once the “grace” period of past buyers has elapsed and the company is about to
become bankrupt again.
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Finally, the assumption that the firm only distributes a terminal dividend can easily be

relaxed. Specifically, assume that the firm distributes a constant fraction δ of its assets as

dividends to shareholders. In this case, equation (2) becomes

dWt = (r − δ)Wtdt+ σtWtdZt + dGt.

The expression for shareholder value, however, is still given by (6). The reason is that

the total value of the firm is still given by Wt + Pt and the claim of the debtholders is still

L. The only subtlety introduced by intermediate dividends is that equation (12) becomes

σ2(W )

2
W 2PWW + (r − δ)PWW − (r + λ)P = 0.

Accordingly, letting er = r−δ and eλ = λ+δ, all the expressions obtained in Lemma 4 and

Proposition 1 continue to apply in the presence of intermediate dividends with er replacing r
and eλ replacing λ.26
5 Imperfect and Costly commitment

So far, the paper has only considered Markovian policies. A voluminous literature restricts

attention to Markovian policies on a priori informational grounds.27 However, a more impor-

tant reason why the analysis sofar has focused attention on such policies, is that Markovian

policies turn out to be optimal in the space of all (possibly history-dependent) policies as

long as commitment is imperfect and costly rather than perfect and costless.

To introduce the notion of imperfect and costly commitment, let τ 0 be the first time that

26A more complex issue, that is beyond the scope of this paper, arises if dividends are assumed to be
endogenous. Then the shareholders have an incentive to distribute excessive dividends in order to maximize
the value of the guarantee. In that case the optimal commitment to the stakeholder needs to include
provisions not only about volatility choice, but about dividend distribution as well.
27See e.g. Chapter 13 in the textbook of Fudenberg and Tirole (1991) for a list of papers that restrict

player’s actions to be Markovian. In the case where the players are firms, this restriction to “memory-less”
strategies is routinely motivated by the fact that firms -unlike individuals- are run by continuously changing
managers who may not have full access to the past history. However, they do know the current state variables.
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Wτ0 = L, so that the stakeholder needs to form a view as to how the firm will set volatility in

the future. Importantly, from this point onward shareholders will be able to choose arbitrary

adapted volatility policies.

In reality, commitment is likely to be imperfect and costly. To model these notions,

I assume that any risk management rule can be circumvented (i.e. abandoned) by future

shareholders at a cost I > 0. For instance, in a world of imperfect accounting, shareholders

can pay a cost and create legal entities or invest in off-balance sheet items that make it hard

to assess the value of the firm’s assets, thus allowing them to take extra risk.

To endogeneize the extent of commitment, I assume that the parties currently involved

in the formulation of a risk management rule can choose ex-ante the penalty I that future

shareholders will have to pay if they choose to deviate. In most real-world examples such a

choice is achieved by restricting the firm’s ability to invest in certain instruments. As already

noted, such restrictions can be circumvented -say by creating new legal entities. However, by

making the restrictions more stringent, the cost of circumventing them is likely to become

higher. In that sense, by making the restrictions more stringent, the current shareholders

and stakeholders can choose how costly it will be to circumvent the risk management rule.

Clearly, the higher I, the more credible any risk management rule will become. However,

it also seems plausible that rules that impose a high I may have other unintended distortions:

For instance, by making it very costly for a firm to engage in certain types of transactions

(such as derivatives, off-balance sheet and off-shore transactions) it also becomes hard for

the firm to use these instruments for tax-planning or risk sharing. To capture the idea

that more “draconian” commitment devices lead to more distortions, I assume that if future

shareholders’ cost of reneging is set to some level I, then current shareholders will incur a

monetary deadweight cost equal to kI, where k ∈ (0, 1). This is the “implementation cost”
associated with the risk management rule.

A novel implication of this setup is that since commitment is costly, both the rules and

the cost of reneging are jointly and endogenously determined. Different choices of I between

0 and infinity span the spectrum between no commitment and limitless commitment.
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The definitions that follow formalize the notions described above. In this section, share-

holders have all the bargaining power and hence can choose both the risk management rule

and the penalties associated with deviation (self-regulation). The next section discusses the

opposite case, whereby the stakeholders can impose both the risk management rule and the

penalties via law or regulation.

In the following definitions, the notation σs>t refers to the volatility process that is

adopted after time t. Importantly, σs>t can be an arbitrary adapted process (i.e. not neces-

sarily Markovian).

Definition 1 Let τL be any time such that WτL = L. Then a volatility process σs is partic-

ipation compatible if

P (L;σs≥τL) ≤ B (32)

Clearly, a stakeholder will never agree to bail out a firm at time τL unless constraint (32)

is satisfied. The next definition captures the idea of commitment credibility.

Definition 2 Let τ0 be the time at which the commitment is entered. Fix a t > τ0 and let

χ be the first time after t, such that Wχ = L. For a given level of I, a volatility process σs≥τ0

is credible if for all t and Wt

P (Wt;σs≥t) ≥ sup
σs∈(t,χ)

Ee−(r+λ)(χ−t)
"
sup
σs≥χ

P (L;σs≥χ)− kI

#
− I (33)

and σs≥χ is participation compatible.

Definition 2 captures the simple notion that the value of the guarantee under commitment

and/or the cost I should always be large enough, so that future shareholders will not find

it optimal to pay the cost I and then reset the volatility from that point on. The term

inside square brackets is the value that the shareholder can obtain by re-entering a new

promise at some future time χ > t, at which time the shareholders and the stakeholder will
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have to contemplate a new bailout. The term supσs∈(t,χ) Ee
−(r+λ)(χ−t) captures the idea that

shareholders can choose volatility freely between t and χ, if they choose to renege.

Definition 2 implies that for any given volatility process σs≥t, there exists a minimal

amount bI (σs≥t) that will make that volatility process credible.28
With all these definitions in hand, it is now possible to give the definition of an optimal

volatility process.

Definition 3 Let bI (σ) = min I ∈ [0,∞) such that σs≥τ0 is credible. A volatility process

σ∗s≥τ0 is optimal if it is participation compatible, and

P
¡
L;σ∗s≥τ0

¢− kbI ¡σ∗s≥τ0¢ ≥ P (L;σs≥τ0)− kbI (σs≥τ0) (34)

for any other participation compatible σs≥τ0 .

According to this definition, a process σ∗s≥τ0 is optimal if it is participation compatible

and maximizes the value of the implicit guarantee net of the costs that are required to ensure

its credibility.

It will be useful at this stage to make a conjecture, that is verified later. Let τL denote

any time at which WτL = L. Then

P (L;σ∗s≥τL) = B (35)

In particular the conjecture (35) applies to time τ 0.

Given conjecture (35), the search for the optimal commitment σ∗s≥τ0 amounts to min-

imizing bI (σs≥τ0) over all policies that satisfy (35). Intuitively, shareholders would like to
put the stakeholder against her participation constraint, while keeping the implementation

cost kbI (σs≥τ0) as low as possible. An additional implication of (35) is that equation (33)
28Since the volatilities are bounded, both the left hand side and the second term on the right hand side

are bounded.
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becomes

P (Wt;σs≥t) ≥ [B − kI] sup
σs∈(t,χ)

Ee−(r+λ)(χ−t) − I = [B − kI]

µ
Wt

L

¶α(σ2)

− I (36)

The rightmost equality of (36) asserts that once shareholders renege, they will set volatil-

ity to the highest possible level, until they have to negotiate with the stakeholder again.29

Given this constant volatility choice, the expression Ee−(r+λ)(χ−t) has a simple closed form

expression30 given by (Wt/L)
α(σ2) .

Re-arranging equation (36) and recognizing that bI will have to be determined so that
(36) holds at all times and for all levels of Wt gives

bI (σs≥τ0) = max
Wt≥L

B
¡
Wt

L

¢α(σ2) − inft≥τ0 P (Wt;σs≥t)

1 + k
¡
Wt

L

¢α(σ2) (37)

Under conjecture (35), the aim of the shareholders is to choose a volatility process that will

minimize bI, while satisfying (35).
Equation (37) implies that bI is a decreasing function of the continuation values P (Wt;σs≥t) .

Between two participation compatible commitments, the one that implies higher continua-

tion values at each point in time, will be preferred since shareholders in the future will be

less tempted to renege. Accordingly, bI will be lower.
An important implication of (37) is that shareholders at two times t1 and t2 such that

Wt1 =Wt2 are treated symmetrically; equation (37) implies that it is only min(Pt1 , Pt2) that

matters for the determination of bI (σs≥τ0), whether t1 < t2 or t2 > t1. This time invariance

makes Markovian policies (that set by definition Pt1 = Pt2) optimal. Formally, this is shown

in the next proposition.

Proposition 2 For any (potentially non-Markovian) participation compatible policy σ,

there exists a lower bound bI∗, such that bI∗ ≤ bI(σ). Finally, for the Markovian policy σ∗

29The proof of this fact follows the same steps as Lemma 2 and is omitted.
30See Øksendal (2003), p. 217.
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of equation (22), one obtains bI∗ = bI(σ∗).
Proposition 2 shows that the policy of equation (22) is optimal, since it attains the lower

bound bI∗, while satisfying the constraint (35).3132
The last step is to verify the conjecture (35).

Lemma 6 It is always optimal for constraint (32) to hold as an equality.

6 Allocation of bargaining power

In several realistic situations risk management rules are imposed by the stakeholder via

regulation. Assuming costly commitment, this section shows that the distinction between

regulation and self-regulation affects the rents of the two parties, but not the qualitative

features of the optimal rule.

To be precise, suppose that the shareholders of the firm have some outside option when

Wτ = L. Such an outside option could be the result of legal difficulties in enforcing absolute

priority, or more simply it could result from some scarce expertise that the shareholders can

use elsewhere if the firm gets liquidated. Whatever the source, suppose that the monetary

value of this outside option is ev ∈ (P (L;σ1) , B). Since shareholders can always “walk away”
31An implication of Proposition 2 is that there exists a minimum amount of bI∗, that needs to be paid in

order to insure the credibility of any participation compatible policy. A corollary of Proposition 2 that can
be proven in a similar way, is that it is impossible to find any participation compatible strategy unless the
firm pays at least bI∗. From a practical perspective this shows that the conclusions of the model are robust
to how exactly one models credibility. Specifically, definition 2 requires that a commitment be credible at
all states and dates. This assumption may seem too strong at first. However, the above argument implies
that participation compatibility alone and by itself places a lower bound on I. The reason is intuitive. If I is
not large enough, then the stakeholder anticipates that the shareholders will renege, which in turn increases
the stakeholder’s cost and makes it harder to satisfy the constraint (32). Hence, as long as one requires
the rather unobjectionable property of participation compatibility, the proposed policy of this paper will be
optimal.
32Proposition 2 does not assert that σ∗ is the unique policy that attains the lower bound bI∗. However, it

does assert that no other participation compatible (potentially non-Markovian) policy can improve on the
markovian policy σ∗.
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with ev, it must be the case that
P (L;σ)− kbI(σ) ≥ ev (38)

Now suppose that the stakeholder can determine the risk management rule and the associated

punishments. Since the stakeholder is trying to minimize the value of the implicit guarantee,

the stakeholder has an incentive to impose a risk management rule that will make equation

(38) hold as an equality. However, as long as the assumptions of section 5 still hold, and

shareholders could deviate from the prescribed policy at some cost I, then the optimal policy

that minimizes P (L;σ) is the one that minimizes the implementation cost kbI(σ). To see this,
note that since (38) has to hold as an equality it follows that P (L;σ) = ev + kbI(σ) for any
policy and henceminσ P (L;σ) = ev+kminσ bI(σ). (It should also be noted here, that it doesn’t
matter if the implementation cost kbI(σ) is “levied” on the shareholders or the stakeholder,
since it simply reduces the joint surplus.)

From this point on, the entire analysis of the paper is applicable, with the only exception

that the binding constraint P (L) = ev + kbI(σ) replaces the binding constraint (35). Since
the optimal policy has always the same qualitative form irrespective of the value of P (L),

it follows that the optimal risk management rule remains qualitatively intact: choose low

values of σ1 when Wt is lower than some threshold, and choose σ2 when Wt is above that

threshold. However, the exact magnitude of the threshold, and hence the distribution of

rents, does depend on whether it is the stakeholder or the shareholders that choose the

optimal risk management rule.

In summary, the qualitative features of the optimal rule are invariant with respect to

the party that chooses the rule. Be it through regulation or self-regulation, an optimal rule

should “tempt” future shareholders as little as possible. By choosing a rule that postpones

the high volatilities for times when net worth is high, the anticipated growth rate of the value

of the guarantee is maximized. In turn, this reduces the temptation of future shareholders

to circumvent the risk management rule, which results in smaller required punishments bI(σ)
and smaller distortions kbI(σ).
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7 The implications of the model for t < τ 0

In section 5, the discussion focused on risk management rules that are imposed at τ 0, the

time at which the firm may be threatened with bankruptcy. However, risk management rules

are likely to take effect already at time t < τ 0.

To give an example suppose that at time 0 shareholders have the ability to start a firm by

making an equity contribution equal to W0−L. If started, the firm will produce a total gain

equal to v0 to the shareholder and U0 to the stakeholder. For instance, if the stakeholder is

the government, the new firm will produce a positive externality because it will pay taxes,

reduce unemployment due to job market frictions etc. In a private sector context the new

firm could be a joint venture between an established firm (“the stakeholder”) and a smaller

firm with scarce abilities (“the shareholders”) that will lead to synergies. In either case, the

termination of the newly created firm could lead to an externality B for the stakeholder as

assumed throughout.

If the shareholders have an outside option with value equal to ev0, (such as investing
abroad) then the firm will only get started if

W0 − L+ v0 + P (W0) ≥W0 − L+ ev0. (39)

The left hand side of equation (39) is the value of the firm to shareholders once started, while

the right hand side is the value of the outside option. To make the situation interesting,

suppose that the stakeholder enjoys no benefit if the firm does not get created and that

v0 < ev0 and U0 ≥ ev0 − v0. In such a situation, there is an incentive for the stakeholder to

extend an implicit guarantee such that

ev0 − v0 ≤ P0 = E0

ÃZ τ l

0

e−r(s−t)dGs

!
≤ U0. (40)

Moreover, the risk management rule should also satisfy (32) since the stakeholder has the

possibility of “walking away” in the future. The inequality (40) leaves room for many possible
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values of P0. For instance, if shareholders have all the bargaining power then

P0 = E0

ÃZ τ l

0

e−r(s−t)dGs

!
= U0, (41)

while P0 = ev0− v0 when the stakeholder has all the bargaining power. I will focus on the

first case, since the latter one can be handled analogously. Assuming that the shareholders

(or the stakeholder) still have to incur costs kbI(σ) for any risk management rule σ that is
adopted at time 0, then the policy that satisfies (41) as an equality and minimizes bI(σ) is
given as follows.

Lemma 7 Let P ∗ (W ) ≡ P (W ;σ∗) be the value of the guarantee that is defined in Lemma

4 and let τ 0 be the first time that Wτ0 = L. Letting W0 denote the assets of the firm at

t = 0, and assuming that33 U0 ≥ P ∗(W0), there exists a level of assets cW ∗ ≤ W ∗, such that

the optimal risk management rule prescribes the policy of equation (22) for t ≥ τ 0, and the

following policy for t < τ 0 :

σ∗(x) =
½
σ1 if x <cW ∗

σ2 if x ≥ cW ∗

8 Conclusion

This paper presented a model, whereby a firm is bailed out so as to avoid costs associated with

bankruptcy. The optimal actions for the stakeholder, the firm and the lenders were derived

endogenously. Even though the presence of an implicit guarantee increases the shareholders’

incentives to take risk, it also makes it more and more costly for the stakeholder to continue

33The assumption U0 ≥ P ∗ (W0) is made purely to simplify the proof and save space. A full discussion of
the optimal policy for arbitrary values of U0 is beyond the illustrative scope of this Lemma. An empirical
advantage of this assumption is that a firm that hasn’t received bailouts in the past will have less tight risk
limits than firms that have received bailouts in the past, since cW ∗ ≤W ∗.
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providing the implicit protection.34

The optimal risk management rule is to increase volatility when the firm’s net worth is

high and reduce volatility when its net worth declines. This policy reduces future sharehold-

ers’ temptation to renege, when assets are safely above liabilities. At the same time, it keeps

the stakeholder at her participation constraint.

The predictions of the model seem to be qualitatively in line with existing risk manage-

ment practices that tighten risk limits in response to declining net worth. Therefore, the

model provides a potential justification for existing risk management rules, and is consistent

with empirical phenomena such as flight to quality.

34For a paper that shows that moral hazard is attenuated in an infinite horizon setting, see e.g. Panageas
and Westerfield (2005).
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A Appendix

Proof of Lemma 1. Let τW denote the first passage time to some W > Wt > L, defined as

τW = infs≥t{s : Ws ≥ W}. Consider the price of a guarantee that is terminated at either the
exogenous liquidation time τ l or τW , whichever comes first

P (W ) (Wt;σ) = Et

ÃZ τW∧τ l

t
e−r(s−t)dGs

!
(42)

It is easiest to price this claim first and then take the limit as W → ∞ in order to arrive at (8).

One can use standard results to express P (W ) as

P (W ) (Wt;σ) = Et

ÃZ τW

t
e−(r+λ)(s−t)dGs

!
(43)

In order to construct P (W ) it is simplest to start by searching for a function that satisfies the

following properties

σ2W 2
s

2
P
(W )
WW + rP

(W )
W Ws − (r + λ)P (W ) = 0 (44)

P
(W )
W (L) = −1 (45)

P (W )(W ) = 0 (46)

P
(W )
W < ∞ for all W ∈ £L,W ¤

(47)

Finding a P (W )
W that satisfies (44), along with the boundary conditions (45) and (46) is straight-

forward. With α given by (7) and α+ defined as

α+ =
−(r − 1

2σ
2) +

r³
r − σ2

2

´2
+ 2σ2 (r + λ)

σ2
> 0,

the general solution to (44) is:

P (W )(Wt) = C1W
α
t +C2W

α+
t

where C1, C2 are arbitrary constants. One needs to determine the constants C1, C2 so that (45)
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and (46) hold. Carrying out this computation, yields the following unique solution to (44), that

satisfies (45), (46) and (47):

P (W )(Wt) =

L
α

³
W
L

´α
Wα+

t − L
α

³
W
L

´α
W

α+−α
Wα

t

W
α+ − α+

α Lα+
³
W
L

´α (48)

It is now straightforward to verify that (48) is the solution to (43). Applying Ito’s Lemma to

P (W ) and taking expectations yields

0 = P (W )(Wt) (49)

−Et

h
e−(r+λ)(τ

W−t)P (W )(W )
i
+

+Et

"Z τW

t
e−(r+λ)(s−t)

µ
σ2W 2

s

2
P
(W )
WW + rP

(W )
W Ws − (r + λ)P (W )

¶
ds

#

+Et

"Z τW

t
e−(r+λ)(s−t)σP (W )

W WsdBs

#

+Et

"Z τW

t
e−(r+λ)(s−t)P (W )

W (L)dGs

#

The second line in (49) is zero because of (46). The third line is zero because of (44). The fourth

line is zero because σP (W )
W Ws is bounded for all W ∈

£
L,W

¤
by (47). Hence (49) reduces to

P (W )(Wt) = −Et

"Z τW

t
e−(r+λ)(s−t)P (W )

W (L)dGs

#
(50)

Combining (45) and (50) leads to (43).

To conclude the proof, let W → ∞ in equation (48) and apply the monotone convergence

theorem to obtain limW→∞ P (W )(Wt) = P (Wt) = −L
α

¡
Wt
L

¢α
.

Proof of Lemma 2. By Lemma 1, P (σ2) = P (W ;σ2) = −L
α

¡
Wt
L

¢α
is convex in W, because

α(σ2) < 0. Hence P (σ2) satisfies the Hamilton Jacobi Bellman equation

max
σ∈[σ1,σ2]

½
σ2

2
W 2P

(σ2)
WW

¾
+ rWP

(σ2)
W − (r + λ)P (σ2) = 0. (51)

The boundary conditions at L and at +∞ are the same as in Lemma 1. Given the continuous

38



differentiability of P (σ2), a classical verification theorem along the lines of Fleming and Soner

(1993) implies that setting σt = σ2 is optimal.

Proof of Lemma 3. To show result 1, let U be any domain of the form: (L,W2) for arbitrarily

large W2 such that Wt < W2 <∞. Consider now any stopping time τU before Wt exits the domain

U . Then, by the definition of P and for any volatility process σt :

e−(r+λ)tP (Wt) = Et

h
e−(r+λ)τ

U
P (WτU )

i
This local martingale property of e−(r+λ)tP (Wt) in the domain U implies that (12) holds and that
P ∈ C1 (for details see Øksendal (2003), Chapter 9). The first part of the proof of result 2 is
contained in the text (see equation [14]). To see why limW→∞ P (W ) = 0, define τL = infs≥t{s :
Ws = L} and note that for arbitrary x > t :

P (Wt) = E

µ
e−(r+λ)(τ

L−t)E
µZ τ

τL
e−r(s−τ

L)dGs|WτL = L

¶¶
≤ E

³
e−(r+λ)(τ

L−t)B
´
=

= Pr
¡
τL < x

¢
E
³
e−(r+λ)(τ

L−t)B|τL < x
´
+Pr

¡
τL ≥ x

¢
e−(r+λ)(x−t)E

³
e−(r+λ)(τ

L−x)B|τL ≥ x
´

≤ B
h
Pr
¡
τL < x

¢
+Pr

¡
τL ≥ x

¢
e−(r+λ)(x−t)

i
(52)

Now, fix an arbitrary ε > 0 and choose large x such that e−(r+λ)(x−t) = ε
2B . The properties of

Brownian motion imply that there always exists Wt large enough such that Pr
¡
τL < x

¢
< ε

2B . In

light of (52), this then implies that P (Wt) < ε. Since ε can be chosen arbitrarily small, the result

follows.

Assertion 3 contains three specific statements. The first statement is that PW (L) = −1. To see
why this is so, take any W and define τ = inf{s ≥ t :Ws ≥W}. Applying Ito’s Lemma to P gives:

e−(r+λ)(T∧τ−t)P (WT∧τ ) = P (Wt) +

Z T∧τ

t
e−(r+λ)(s−t)

µ
σ2(Ws)

2
W 2

s PWW + rPWWs − (r + λ)P

¶
ds

+

Z T∧τ

t
e−(r+λ)(s−t)PWσ(Ws)WsdBs

+

Z T∧τ

t
e−(r+λ)(s−t)PW (L)dGs
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Taking expectations on both sides and using equation (12) leads to:

P (Wt) = −Et

µZ T∧τ

t
e−(r+λ)(s−t)PW (L)dGs

¶
(53)

−Et

µZ T∧τ

t
e−(r+λ)(s−t)PWσ(Ws)WsdBs

¶
+Et

h
e−(r+λ)(T∧τ−t)P (WT∧τ )

i
Since P (Wt) represents the payoff of strategy σ(W ) it follows that:

P (Wt) = Et

µZ T∧τ

t
e−(r+λ)(s−t)dGs

¶
+Et

h
e−(r+λ)(T∧τ−t)P (WT∧τ )

i
(54)

for any stopping time τ . Combining (54) and (53), it follows that:

Et

µZ T∧τ

t
e−(r+λ)(s−t)[1 + PW (L)]dGs

¶
= −Et

µZ T∧τ

t
e−(r+λ)(s−t)PWσ(Ws)WsdBs

¶
(55)

As the differential equation (12) has a classical solution35, PW is a continuous and hence bounded

function in the closed interval
£
L,W

¤
.Therefore, PWσ(Ws)Ws is bounded in

£
L,W

¤
. Hence the

integrand on the right hand side of equation (55) is a martingale. Therefore, the right hand side of

equation (55) is 0, and hence so must be the left side. This can only be the case if PW (L) = −1.
The proof that PW < 0 proceeds by contradiction. Assume otherwise. In particular assume

that there exist a W ∗∗∗ > L such that PW (W ∗∗∗) > 0. Since PW (L) = −1 and the differential
equation (12) has a continuous first derivative, there must be a point cW > L such that PW (cW ) =

0. Since equation (12) holds at cW, one obtains (σ2(cW )/2)cW 2PWW

³cW´
= (r + λ)P

³cW´
>

0, since P > 0. Hence PWW

³cW´
> 0. Therefore, at cW the function P must have a local

minimum. Since P > 0 for all W ≥ L and limW→∞ P (W ) = 0, the function P must also have

a local maximum at some point fW > cW , so that PW
³fW´

= 0, and PWW

³fW´
< 0. But this is

impossible, by equation (12), since at fW it would have to be the case that (σ2(fW )/2)fW 2PWW

³fW´
= (r + λ)P

³fW´
> 0, which is a contradiction to PWW

³fW´ < 0. Hence it must be the case that

PW (W ) ≤ 0 for all W. Given that PW ≤ 0 it is now straightforward to use (12) to establish that
PWW = 2

σ2(W )W 2 [−rPWW + (r + λ)P ] > 0. In turn, PWW > 0 implies that PW is increasing

35See Øksendal (2003), Chapter 9
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throughout. Moreover it can never cross 0. Hence it must be bounded between PW (L) = −1 and
0 as was asserted above.

Proof of Lemma 4. A detailed proof of this Lemma would replicate the same steps as

Lemma 1. To save space, I only give a sketch. Applying the same logic as in Lemma 1, P should

satisfy:

0 =

½σ22W
2

2 PWW + rPWW − (r + λ)P if W > W ∗ ≥ L
σ21W

2

2 PWW + rPWW − (r + λ)P if L ≤W ≤W ∗

The general solution to this equation is

P (W ) =

½
C21W

α+2 + C22W
α−2 if W > W ∗ ≥ L

C11Wα+1 + C12Wα−1 if L ≤W ≤W ∗

where the constants α+1 , α
−
1 , α

+
2 , α

−
2 are defined in (24). In order to be able to replicate the same

steps as in Lemma 1, P (W ) must be continuous and continuously differentiable36 at W ∗. This

implies:

C21 (W
∗)α

+
2 + C22 (W

∗)α
−
2 = C11 (W

∗)α
+
1 +C12 (W

∗)α
−
1 (56)

α+2 C21 (W
∗)α

+
2 −1 + α−2 C22 (W

∗)α
−
2 −1 = α+1 C11 (W

∗)α
+
1 −1 + α−1 C12 (W

∗)α
−
1 −1 (57)

To enforce limW→∞ P (W ) = 0, it is also necessary to impose C21 = 0. Finally, the condition

PW (L) = −1 implies:

α+1 C11 (L)
α+1 −1 + α−1 C12 (L)

α−1 −1 = −1 (58)

Solving for C11, C12, C22 from equations (56), (57), (58) leads to (23). Equation (25) follows imme-

diately by setting P (L) = B and solving for W ∗.

Proof of Proposition 1. The first step towards proving Proposition 1 is to establish the

existence of a solution to the system of equations (20) and (21), satisfying π2(W ∗) = 0 and

π2(x)

½≥ 0 if x < W ∗

≤ 0 if x > W ∗ (59)

36In particular, these conditions will make it possible to apply Ito’s Lemma as in Lemma 1.
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with at least one of the two inequalities being strict for some values x. Furthermore, to provide

sufficient conditions for the optimality of policy (22), the following properties will also be required:

lim
x→∞ |π1(x)| < ∞ (60)

lim
x→∞ |π2(x)| < ∞ (61)

The next Lemma constructs an explicit continuous solution to π1, π2 that satisfies (20), (21), (59),

(60), (61) and π2(W
∗) = 0.

Lemma 8 Let W ∗ be given by (25). Then, there exist continuous functions π1 and π2 that solve

the pair of differential equations (20), (21) and satisfy π2(W ∗) = 0, (59), (60), (61).

Proof of Lemma 8. The proof proceeds by explicitly constructing two functions that satisfy

all the stated properties. Assume first that W > W ∗. By the form of the conjectured optimal

policy, one needs to distinguish 3 sub-regions for x :

(a) L ≤ x < W ∗

(b) W ∗ ≤ x ≤W

(c) x > W

Define the four constants β+1 , β
−
1 , β

+
2 , β

−
2 as

β±1 =
−
³
σ21
2 − r

´
±
r³

σ21
2 − r

´2
+ 2σ21 (r + λ)

σ21
and β±2 =

−
³
σ22
2 − r

´
±
r³

σ22
2 − r

´2
+ 2σ22 (r + λ)

σ22

In light of the conjectured optimal policy, in region (a) the differential equation (20), (21) has the

general solution:

π1 (x) = D11x
β+1 +D21x

β−1 − 1
π2 (x) = − σ21β

+
1

2 (r + λ)
D11x

β+1 +1 − σ21β
−
1

2 (r + λ)
D21x

β−1 +1
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for appropriate constants D11,D21. Similarly, in region (b) the general solution is:

π1(x) = D12x
β+2 +D22x

β−2 − 1
π2(x) = − σ22β

+
2

2 (r + λ)
D12x

β+2 +1 − σ22β
−
2

2 (r + λ)
D22x

β−2 +1

and in region (c):

π1(x) = D13x
β+2 +D23x

β−2

π2(x) = − σ22β
+
2

2 (r + λ)
D13x

β+2 +1 − σ22β
−
2

2 (r + λ)
D23x

β−2 +1

It remains to determine the 6 constants in the above equations in order to obtain the solution

to π1, π2. Starting with region (c), it is clear that (60), (61) can only hold if D13 = 0, since β+2 > 0.

To ensure continuity of π1(x), π2(x) at point W , the constants D23,D12,D22 need to satisfy (after

some straightforward cancellations):

D12W
β+2 + (D22 −D23)W

β−2 = 1 (62)

−β+2 D12W β+2 +1 − β−2 (D22 −D23)W
β−2 +1 = 0 (63)

Similarly, continuity of π1(x), π2(x) at W ∗ implies that

D11 (W
∗)β

+
1 +D21 (W

∗)β
−
1 = D12 (W

∗)β
+
2 +D22 (W

∗)β
−
2

−β+1 D11 (W ∗)β
+
1 +1 − β−1 D21 (W

∗)β
−
1 +1 = −

µ
σ2
σ1

¶2 h
β+2 D12 (W

∗)β
+
2 +1 + β−2 D22 (W

∗)β
−
2 +1

i
Finally, to ensure π2(W ∗) = 0 it must also be the case that

−β+1 D11 (W ∗)β
+
1 +1 − β−1 D21 (W

∗)β
−
1 +1 = 0 (64)

Solving this system of equations leads to the following solution for π1, π2 :
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(a) L ≤ x < W ∗

π1(x) =

µ
W ∗

W

¶β+2 1¡
β+1 − β−1

¢ ³ x

W ∗
´β−1 ∙

β+1 − β−1
³ x

W ∗
´β+1 −β−1 ¸− 1

π2(x) = − σ21
2 (r + λ)

µ
W ∗

W

¶β+2 β−1 β
+
1¡

β+1 − β−1
¢ ³ x

W ∗
´β−1 ∙

1−
³ x

W ∗
´β+1 −β−1 ¸

x

(b) W ∗ ≤ x ≤W

π1(x) =
1¡

β+2 − β−2
¢ ³ x

W

´β−2 "
β+2

µ
W ∗

W

¶β+2 −β−2
− β−2

³ x

W

´β+2 −β−2 #− 1
π2(x) = − σ22

2 (r + λ)

β+2 β
−
2¡

β+2 − β−2
¢ ³ x

W

´β−2 "µW ∗

W

¶β+2 −β−2
−
³ x

W

´β+2 −β−2 #
x

(c) x > W

π1(x) =
β+2¡

β+2 − β−2
¢ µW ∗

W

¶β−2
"µ

W ∗

W

¶β+2 −β−2
− 1
#³ x

W ∗
´β−2

π2(x) = − σ22
2 (r + λ)

β+2 β
−
2¡

β+2 − β−2
¢ µW ∗

W

¶β−2
"µ

W ∗

W

¶β+2 −β−2
− 1
#³ x

W ∗
´β−2

x

By construction, π1(x), π2(x) are continuous and satisfy π2(W
∗) = 0, (60), (61). It remains

to verify that this solution also satisfies (59). This follows from β+2 > 0, β−2 < 0 and also β+1 >

0, β−1 < 0. The proof for W < W ∗ follows similar steps and is therefore omitted.

Proof of Proposition 1 continued. Given the existence of an appropriate pair of co-state

variables π1, π2 it is now possible to verify optimality by using a standard sufficiency theorem of

optimal control (see e.g. Leonard and Van Long (1992), p. 289). To save space, I omit a proof of

the sufficiency theorem and make it available on request.

Proof of Proposition 2. Let Π be the set of all participation compatible policies σ. The

first step in order to obtain bI∗ is to find a function g(Wt) such that

g(Wt) ≥ inf
t≥τ0

P (Wt;σs≥t) for all σ ∈ Π (65)
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Constructing such an upper bound is straightforward. First, fix a level W1 > L and let τ1 be

the first time after τ0 such that Wt = W1. An upper bound to inft≥τ0 P (W1;σs≥t) is given by

the highest possible value Pτ1 that can be assigned by any participation compatible policy. Two

observations are useful in order to determine Pτ1 . The first observation is that Pτ1 must satisfy the

constraint

Eτ0

µZ τ1

τ0

e−(r+λ)(s−τ0)dGs

¶
+ Pτ1Eτ0

³
e−(r+λ)(τ1−τ0)

´
≤ B,

which can be rewritten as

Pτ1 ≤
B −Eτ0

³R τ1
τ0

e−(r+λ)(s−τ0)dGs

´
Eτ0

¡
e−(r+λ)(τ1−τ0)

¢ (66)

Using an argument similar to the proof of Lemma 2, one can show that37 setting σs = σ1 for

all s ∈ [τ0, τ1] will minimize both Eτ0

³R τ1
τ0

e−(r+λ)(s−τ0)dGs

´
and E

¡
e−(r+λ)(τ1−τ0)

¢
, and hence

will maximize the right hand side of (66). This is intuitive. In order to have the highest possible

flexibility to promise a high level of Pτ1 , one needs to set volatility prior to τ1 as low as possible.

More importantly, this simple observation suggests that it is possible to find an explicit expression

for the right hand side of equation (66). In particular, let u(W ) be the solution to the differential

equation σ21
2 uWWW 2 + ruWW − (r + λ)u = 0, subject to the boundary conditions u(L) = B, and

uW (L) = −1. There is a unique solution to this equation which is given by

u(W ) = L

"
α+1

B
L + 1

α+1 − α−1

µ
W

L

¶α−1
− α−1

B
L + 1

α+1 − α−1

µ
W

L

¶α+1
#
. (67)

By arguments similar to the ones used in the proof of Lemma 3, the function u(W ) satisfies:

u(W1) =
B −Eτ0

³R τ1
τ0

e−(r+λ)(s−τ0)dGs|σs∈[τ0,τ1] = σ1

´
Eτ0

¡
e−(r+λ)(τ1−τ0)|σs∈[τ0,τ1] = σ1

¢ (68)

and hence it gives a closed form expression for the right hand side of (66).

Letting χ be the first time after τ1 such that Wχ = L, a second observation about Pτ1 is that

37The proof of this fact follows steps similar to Lemma 2 and is ommited. It is available upon request.
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it is bounded above by

Pτ1 ≤ maxσ E
³
e−(r+λ)(χ−τ1)

´
B = E

³
e−(r+λ)(χ−τ0)|σs∈[τ1,χ] = σ2

´
B = B

µ
W1

L

¶α−2
. (69)

This bound is intuitive. It states that even if volatility is set at its maximum between times τ1 and

χ, the continuation value after that point cannot be larger than B.

The above observations, together with the fact that W1 is arbitrary, imply that the function

g(W ) ≡ min

∙
u(W ), B

¡
W
L

¢α−2 ¸ satisfies the equation (65). In turn, this implies that for any

participation compatible policy

bI(σ) ≥ bI∗ ≡ max
W>L

⎡⎣B ¡WL ¢α−2 − g(W )

1 + k
¡
W
L

¢α(σ2)
⎤⎦ = max

W>L

⎡⎣B ¡WL ¢α−2 − g(W )

1 + k
¡
W
L

¢α−2
⎤⎦ , (70)

where the rightmost equality follows from α(σ2) = α−2 . It will be useful to establish a few properties

of the expression inside the square brackets of (70). To this end define

n(W ) =
B
¡
W
L

¢α−2 − g(W )

1 + k
¡
W
L

¢α−2
By its definition g(L) = B, and hence n(L) = 0. Also, the definition of g(W ) implies that n(W ) ≥ 0.
Moreover, uW (L) = −1 and assumption (9) implies that

d

∙
B
¡
W
L

¢α−2 ¸
dW|Wt=L

= α−2
B

L
> −1.

These two last facts can be used to show that nW (L) > 0, and hence n > 0 in a neighborhood of

L.

Finally, by assumption (9), α−1
B
L + 1 < 0. Hence, u(W ) → ∞ and38 uW → 0 as W → ∞. By

contrast B
¡
W
L

¢α−2 → 0 as W →∞ and the derivative of B
¡
W
L

¢α−2 is always negative. Hence there
always exists a value Wu, such that g(w) = B

¡
w
L

¢α−2 for all w ≥ Wu. Therefore n(w) = 0 for all

w ≥ Wu. Since the function n starts at 0 when W = L, and becomes 0 for all W ≥ Wu, and is

positive and continuous for W ∈ [L,Wu], it must attain a maximum at some point W ∗∗ between

38Since α+1 > 1.
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L and Wu.

To compute this maximum it is easiest to take the log of n(W ), differentiate with respect to W

and set the resulting expression equal to 0 to obtain

α−2
B
L

¡
W∗∗
L

¢α−2 −1 − ∙α−1 α+1
B
L
+1

α+1 −α−1
¡
W∗∗
L

¢α−1 −1 − α+1
α−1

B
L
+1

α+1 −α−1
¡
W∗∗
L

¢α+1 −1¸
B
L

¡
W∗∗
L

¢α−2 − ∙α+1 B
L
+1

α+1 −α−1
¡
W∗∗
L

¢α−1 − α−1
B
L
+1

α+1 −α−1
¡
W∗∗
L

¢α+1 ¸ =
α−2 k

¡
W∗∗
L

¢α−2 −1
1 + k

¡
W∗∗
L

¢α−2 (71)

Straightforward, but tedious algebra can be used to show that this equation has a unique root.39

Having obtained bI∗ as a lower bound on bI(σ), it is now possible to verify the optimality of the
policy σ∗ of equation (22), by showing that bI(σ∗) = bI∗. As a first step towards showing this, I use
the quantity W ∗ as defined in equation (25) and show that W ∗ < W ∗∗. After some manipulations

one can verify that

α−2
B
L

¡
W∗
L

¢α−2 −1 − ∙α−1 α+1
B
L
+1

α+1 −α−1
¡
W∗
L

¢α−1 −1 − α+1
α−1

B
L
+1

α+1 −α−1
¡
W∗
L

¢α+1 −1¸
B
L

¡
W∗
L

¢α−2 − ∙α+1 B
L
+1

α+1 −α−1
¡
W∗
L

¢α−1 − α−1
B
L
+1

α+1 −α−1
¡
W∗
L

¢α+1 ¸ = α−2

µ
W ∗

L

¶−1
<

α−2 k
¡
W∗
L

¢α−2 −1
1 + k

¡
W∗
L

¢α−2
(72)

where the equality follows from (56)-(57) and the inequality follows from α−2 < 0, k < 1, W
∗

L > 1.

Combining (71) and (72) shows that nW (W ∗) < 0. Hence it must be the case that W ∗∗ < W ∗.

Since the functions P (W ) of equation (23) and u(W ) coincide between L and W ∗, and W ∗∗ <

W ∗, it follows that

bI∗ = max
L<W

⎡⎣B ¡WL ¢α−2 − g(W )

1 + k
¡
W
L

¢α−2
⎤⎦ = max

L<W<W∗

⎡⎣B ¡WL ¢α−2 − u(W )

1 + k
¡
W
L

¢α−2
⎤⎦ = max

L<W<W∗

⎡⎣B ¡WL ¢α−2 − P (W )

1 + k
¡
W
L

¢α−2
⎤⎦ .

(73)

The first equation in (73) is the definition of bI∗, the second and third equations follow from the

fact that u(W ) = P (W ) < B(W/L)α
−
2 for all W ∈ (L,W ∗]. The final step of the proof is to verify

39Details are available upon request.
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that

max
L≤W≤W∗

⎡⎣B ¡WL ¢α−2 − P (W )

1 + k
¡
W
L

¢α−2
⎤⎦ = max

L<W

⎡⎣B ¡WL ¢α−2 − P (W )

1 + k
¡
W
L

¢α−2
⎤⎦ = bI(σ∗). (74)

This follows from the fact that
∙
B
¡
W
L

¢α−2 − P (W )

¸
/

∙
1 + k

¡
W
L

¢α−2 ¸ is a declining function of W
for W > W ∗, and hence

max
W>W∗

⎡⎣B ¡WL ¢α−2 − P (W )

1 + k
¡
W
L

¢α−2
⎤⎦ = B

¡
W∗
L

¢α−2 − P (W ∗)

1 + k
¡
W∗
L

¢α−2 ≤ max
L≤W≤W∗

⎡⎣B ¡WL ¢α−2 − P (W )

1 + k
¡
W
L

¢α−2
⎤⎦ (75)

Using (75), it follows that (74) holds. Finally combining (74) and (73) implies that bI∗ = bI(σ∗).
Proof of Lemma 6. Lemma 2 has established that for any level of B, the policy σ∗ of

equation (22) is optimal, in the sense that it attains the lower bound bI∗ (which also depends on B).
Since the optimal policy σ∗ assigns the same value P (L) = B every time that Wt = L, it suffices

to check that is is optimal to set Pτ0 = B. To verify this, note that the shareholders’ value if they

set Pτ0 = B, is given by V = B − kbI∗. Differentiating V with respect to B, combining (70) with

(67) and using the envelope theorem shows that

VB = 1−
⎡⎣ k

¡
W∗∗
L

¢α−2
1 + k

¡
W∗∗
L

¢α−2
⎤⎦ α+1

∙
1− ¡W∗∗

L

¢α−1 −α−2 ¸− α−1

∙
1− ¡W∗∗

L

¢α+1 −α−2 ¸
α+1 − α−1

(76)

The second term on the right hand side of (76) is smaller than 1, because 1 − ¡W∗∗
L

¢α−1 −α−2 < 1

(because α−1 < α−2 < 0) and 1 − ¡W∗∗
L

¢α+1 −α−2 < 0. Hence VB > 0, and hence it is optimal to set

P (L) = B.

Proof of Lemma 7. The proof of this fact is rather straightforward. To save space, I

only give a sketch. First observe that the definition (37) implies that extending the duration of

a risk management rule from [τ0,∞) to [0,∞) can never lower bI(σ), since inft≥τ0 P (Wt;σs≥t) ≥
inft≥0 P (Wt;σs≥t) . Furthermore, proposition 2 implies that any participation compatible commit-

ment will involve bI(σs≥0) ≥ bI∗. Therefore, it suffices to show that bI(σs≥0) = bI∗. Since the policy
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σ∗ is identical to the policy of equation (22) for t ≥ τ0, it is sufficient to show that Pt∈[0,τ0](Wt) ≥
Pt≥τ0(Wt). In turn this will automatically be the case if cW ∗ ≤W ∗. Following a strategy similar to

Lemma 4, the value P (Wt) for t < τ0, satisfies (12), P (L) = B, and limW→∞ P (W ) = 0. Further-

more, cW ∗ needs to be determined so that P (W0) = U0. Since U0 ≥ P (W0, σ
∗
s≥τ0), it follows thatcW ∗ ≤W ∗.
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