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1 Introduction

This paper studies equilibrium and efficiency in economies with adverse selection as well

as the frictions modeled in competitive search theory. In our framework, a large number of

uninformed principals compete to attract agents. For example, firms may compete to attract

workers who have private information about their productivity or preferences, or buyers of

assets may compete to attract sellers who have private information concerning the quality

of their holdings. Principals post incentive-compatible contracts that specify actions if they

match with particular agent types. Agents observe the posted contracts and direct their

search, or apply, to the most attractive ones. Matching is limited by capacity constraints

(each principal can match with at most one agent) and possibly by search frictions (it may

be more difficult to contact a principal when more agents apply). Principals and agents form

rational expectations about the market tightness for each contract—the ratio of the measure

of principals posting that contract to the measure of agents who apply—as well as the types

of agents who apply.

Part of our contribution is technical: we extend the standard competitive search model

(Montgomery, 1991; Peters, 1991; Moen, 1997; Shimer, 1996; Acemoglu and Shimer, 1999;

Burdett, Shi and Wright, 2001; Mortensen and Wright, 2002) to allow ex-ante heterogeneous

agents with private information about their type. We prove that, under mild assumptions,

including a single-crossing condition, equilibrium exists where principals offer separating

contracts: each contract posted attracts only one type of agent, and different types direct

their search to different contracts. The expected utility of each type of agent is uniquely

determined in equilibrium. Moreover, equilibrium is easily found by sequentially solving a

constrained optimization problem for each type. We also present a series of examples and

applications to illustrate the generality and usefulness of our approach. These examples also

show that some well-known results in contract theory and search theory change when we

combine elements of both in the same model, and they allow us to explore the role of several

key assumptions.

The first application is a classic signaling problem (Spence, 1973; Akerlof, 1976). Suppose

that workers are heterogeneous with respect to both their productivity and their cost of

working longer hours, where more productive workers find long hours less costly, and firms

care about productivity but not the length of the workday. In equilibrium, firms require

that more productive workers accept longer hours than they would under full information—

a version of the rat race. In this example, although hours are distorted, the probability that

any worker gets a job is not. The equilibrium is not generally efficient: a Pareto improvement

is possible if there are sufficiently few low-productivity agents or the difference in the cost of
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working is small relative to the difference in productivity. We also consider the case where

long workdays are less costly for low-productivity workers; in this case there is an equilibrium

with pooling and no distortion in the workday (although other equilibria exist).

Our second example is a version of the Rothschild and Stiglitz (1976) insurance model.

Consider a labor market interpretation, rather than pure insurance, as in the original model.1

Risk-averse workers and risk-neutral firms match in pairs to produce output, but only some

pairs are productive. Workers differ in the probability that they can form a productive match,

and if a match is unproductive the worker is let go. In equilibrium, firms separate workers

by only partially insuring them against the probability the match will be unproductive. This

means that workers can be worse off if they lose their job than if they had never found a one.

We interpret this as an explanation for the observation that firms do not fully insure workers

against layoff risk: if they did, they would attract low-productivity applicants. In this

example, we show that a partial-pooling allocation—pooling only some types of workers—

may Pareto dominate the equilibrium.

Competitive search also offers a novel resolution to the famous nonexistence problem

in Rothschild and Stiglitz (1976). When there are relatively few low productivity workers,

equilibrium may not exist in the original model, for the following reason: given any separating

contract, profit for an individual firm can be increased by a deviation to a pooling contract

that cross subsidizes low-productivity workers. Here, such a pooling contract will not increase

profit. The key difference is that, in our model, because firms are capacity constrained, a

deviation cannot serve the entire population. Suppose a firm posts a contract designed to

attract a representative cross section of agents. Because of capacity constraints, the more

workers that apply for this contract the less likely it is that any one will match. This

discourages some workers from applying. Critically, it is the most productive workers who

are the first to withdraw their applications, because their outside option—trying to obtain

a separating contract—is more attractive. Hence, only undesirable workers are attracted by

such a deviation, making it unprofitable.

In the above applications, asymmetric information affects the contracts offered in equi-

librium, but not market tightness. Our third example reverses this: adverse selection makes

it harder for agents to find a partner, but it does not affect the terms of trade conditional on

a match. Consider a market where agents want to sell a heterogeneous object with uncertain

quality (Akerlof, 1970). Imagine these objects are apples, meant to represent assets, that

could be high or low quality.2 Principals want to buy apples from agents, but some apples

1We present the results in a labor market context because the assumption that a firm can only hire
a fraction of the available workforce may seem more reasonable than the assumption that an insurance
company can only serve a fraction of the potential customers.

2In our static environment, apples stand in for the claims to trees bearing fruit as dividends in the
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are bad—they are lemons. To make the case stark, assume there are no fundamental search

frictions, so that everyone on the short side of the market can match. But since the short

side of the market is endogenous, in equilibrium, agents with good apples only match proba-

bilistically. This serves to screen out low quality. This is different from related results in the

literature (e.g. Nosal and Wallace 2007), where lotteries are used to similar effect. Interest-

ingly, screening through matching saves resources, since posting contracts and trading with

lotteries is wasteful. Still, equilibrium here can be Pareto dominated by a pooling allocation

if there are few bad apples. We also find that in some cases adverse selection completely

shuts down the market—an extreme lemons problem that may have something to do with

the recent collapse in credit markets.

Our paper is related to a growing literature exploring competitive search theory with

informational frictions, including Faig and Jerez (2005), Guerrieri (2008), and Moen and

Rosén (2006), who propose different extensions of the standard model to allow one-sided

private information. However, in all those papers, agents are ex ante homogeneous, and

heterogeneity is match-specific. Inderst and Müller (1999) provide a model that extends

competitive search to an environment with ex ante heterogeneous agents; their model is a

special case of our first example, where the single-crossing condition is satisfied. Inderst and

Wambach (2001) explore a version of the Rothschild and Stiglitz (1976) model with a finite

number of principals and agents, and capacity constraints; this model is related to our second

example. Our paper is the first to develop a general framework for analyzing competitive

search with adverse selection and present a variety of applications.

Many papers study adverse selection without search, of course. Driven by the nonex-

istence issue in Rothschild and Stiglitz (1976), Miyazaki (1977), Wilson (1977), and Riley

(1979) propose alternative notions of equilibrium. In contrast to those papers, we do not

get cross subsidization in equilibrium. As we have mentioned above, the key difference with

Rothschild and Stiglitz (1976) in our model is this: since no principal can serve all the agents,

each must deduce which agents are most attracted to pooling contracts, and this eliminates

the incentive to pool. Prescott and Townsend (1984) study adverse selection in competitive

economies, concluding that “there do seem to be fundamental problems for the operation of

competitive markets for economies or situations which suffer from adverse selection” (p. 44).

This is consistent with our substantive findings, even though the models are very different.

More recently, Bisin and Gottardi (2006) study adverse selection with competitive markets,

where agents are restricted to trade incentive-compatible contracts, and also show that there

standard asset-pricing model of Lucas (1978). Lester, Postlewaite and Wright (2007) review some related
asset models with search and private information, but that literature does not analyze adverse selection and
competitive search.
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exists a separating equilibrium. Although our equilibrium concept is more strategic, some

features are similar, and the incentive-compatibility condition they impose is analogous to

one that we generate endogenously.

The rest of the paper is organized as follows. In Section 2, we develop the general

environment, define equilibrium, and discuss some critical assumptions. In Section 3, we

show how to find equilibrium by solving a constrained optimization problem, prove that

a separating equilibrium always exists, and show that equilibrium payoffs are unique. In

Section 4, we define a class of incentive-feasible allocations in order to discuss whether

equilibrium outcomes are efficient within this class. In Sections 5–7, we present the series of

applications discussed above, in each case characterizing equilibria and discussing efficiency.

Section 8 concludes. All proofs are relegated to the Appendix.

2 The Model

There is a measure 1 of agents, a fraction πi > 0 of whom are of type i ∈ I ≡ {1, 2, . . . , I}.
Type is an agent’s private information. There is a large set of ex ante homogeneous principals.

A principal may post a contract, at cost k > 0, that provides an opportunity to match with

an agent (we discuss the nature of a contract below). To keep the analysis focused, we

consider a static environment, where principals and agents have a single opportunity to

match.

There is a compact and nonempty set of feasible actions for principals and agents who

are matched, Y, contained in a metric space with metric d(y, y′) for y, y′ ∈ Y. A typical

element y ∈ Y may specify actions by the principal, actions by the agent, transfers between

them, and other possibilities; as we make explicit in the applications, it can include lotteries.

A principal who matches with a type i agent gets a payoff vi(y)− k if they undertake action

y. A principal who does not post a contract gets a payoff normalized to 0, while one who

posts a contract but fails to match gets −k. A type i agent matched with a principal gets a

payoff ui(y) if they undertake y, while an unmatched agent gets a payoff also normalized to

0. For all i, ui : Y 7→ R and vi : Y 7→ R are continuous.

By the revelation principle, without loss of generality we assume that contracts are rev-

elation mechanisms. Precisely, a contract is a vector of actions, C ≡ {y1, . . . , yI} ∈ YI ,

specifying that if a principal and agent match, the latter (truthfully) announces a type i and

they implement yi. Contract C is incentive compatible if ui(yi) ≥ ui(yj) for all i, j.3 Let

C ⊂ YI denote the set of incentive compatible contracts. Principals only post contracts in

3Since we are not concerned with moral hazard, here, we assume that y can be implemented by any
principal and agent.
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C.

We turn now to the matching process. All agents observe the set of posted contracts and

apply, or direct their search to the most attractive ones. Let Θ(C) denote the principal-agent

ratio associated with contract C, defined as the measure of principals offering C over the

measure of agents who apply to that contract, Θ : C 7→ [0,∞]. Let γi(C) denote the share

of agents that apply to C whose type is i, with Γ(C) ≡ {γ1(C), . . . , γi(C), . . . , γI(C)} ∈ ∆I ,

the I-dimensional unit simplex. That is, Γ(C) satisfies γi(C) ≥ 0 for all i and
∑

i γi(C) = 1,

and Γ : C 7→ ∆I . The functions Θ and Γ are determined endogenously in equilibrium,

and are defined for all incentive compatible contracts, not only the ones that are posted in

equilibrium.

An agent who applies to contract C matches with a principal with probability µ(Θ(C)),

independent of type, where µ : [0,∞] 7→ [0, 1] is nondecreasing. A principal offering C

matches with a type i agent with probability η(Θ(C))γi(C), where η : [0,∞] 7→ [0, 1] is

nonincreasing. We impose µ(θ) = θη(θ) for all θ, since the left hand side is the matching

probability of an agent and the right hand side is the matching probability of a principal

times the principal-agent ratio. Together with the monotonicity of µ and η, this implies both

functions are continuous. It is convenient to let η̄ ≡ η(0) > 0 denote the highest probability

that a principal can match with an agent, obtained when the principal-agent ratio is 0.

Similarly let µ̄ ≡ µ(∞) > 0 denote the highest probability that an agent can match with a

principal. Conversely, µ(θ) = θη(θ) ensures that η(∞) = µ(0) = 0.

The expected utility of principals who post C = {y1, . . . , yI} is

η(Θ(C))
I
∑

i=1

γi(C)vi(yi) − k.

The expected utility of type i agents who apply to C and report type j if they match is

µ(Θ(C))ui(yj).

We now have the following definition of equilibrium.

Definition 1 A competitive search equilibrium is a vector Ū = {Ūi}i∈I ∈ RI
+, a measure

λ on C with support C̄, a function Θ(C) : C 7→ [0,∞], and a function Γ(C) : C 7→ ∆I

satisfying:

(i) principals’ profit maximization and free-entry: for any C = {y1, . . . , yI} ∈ C,

η(Θ(C))

I
∑

i=1

γi(C)vi(yi) ≤ k,
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with equality if C ∈ C̄;

(ii) agents’ optimal search: let

Ūi = max

{

0 , max
C′={y′

1
,...,y′

I
}∈C̄

µ(Θ(C ′))ui(y
′
i)

}

and Ūi = 0 if C̄ = ∅; then for any C = {y1, . . . , yI} ∈ C and i,

Ūi ≥ µ(Θ(C))ui(yi),

with equality if Θ(C) < ∞ and γi(C) > 0; moreover, if ui(yi) < 0, either Θ(C) = ∞
or γi(C) = 0;

(iii) market clearing:
∫

C̄

γi(C)

Θ(C)
dλ({C}) ≤ πi for any i,

with equality if Ūi > 0.

To understand our notion of equilibrium, first consider contracts that are actually posted

in equilibrium, C ∈ C̄. Part (i) of the definition implies that principals earn zero profits

from any such contract. Since η(∞) = 0 < k, it must be that Θ(C) < ∞. Part (ii) then

implies that if type i agents apply for a contract, γi(C) > 0, they cannot earn a higher level

of utility from any other posted contract. And part (iii) guarantees that all type i agents

apply to some contract, unless they are indifferent about participating in the market, which

gives them the outside option Ūi = 0.

Equilibrium also imposes restrictions on contracts that are not posted in equilibrium.

Each principal anticipates that it cannot affect the utility of any type of agent, and so takes

Ū = {Ūi}i∈I as given. Intuitively, when a principal considers posting a new contract C ∈ C,

he initially imagines an infinite principal-agent ratio. Some contracts will not be able to

attract agents even at that ratio, Ūi ≥ µ̄ui(yi) for all i, in which case Θ(C) = ∞ and the

choice of Γ(C) is arbitrary and immaterial. Otherwise, agents would be attracted to the

contract, pulling down the principal-agent ratio. This process would stop at the value of

Θ(C) such that Ūi = µ(Θ(C))ui(yi) for some i and Ūj ≥ µ(Θ(C))uj(yj) for all j. Moreover,

only type i agents with Ūi = µ(Θ(C))ui(yi) would be attracted to the contract, pinning

down Γ(C). This is all captured by equilibrium condition (ii).4 Equilibrium condition (i)

4The requirement that if ui(yi) < 0 then either Θ(C) = ∞ or γi(C) = 0 rules out the possibility that type
i agents earn zero utility, but apply for contract C = {y1, . . . , yI} with the expectation they will not be able
to get it, Θ(C) = 0. Other agents with Ūj > 0 would then not apply for the contract. Such a belief might
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then imposes that, for principals not to post C, in equilibrium, they must not earn positive

profit from it, given Θ(C) and Γ(C).

Let

Ȳi ≡
{

y ∈ Y | η̄vi(y) ≥ k and ui(y) ≥ 0
}

be the set of actions for a type i agent that deliver nonnegative utility while permitting the

principal to make nonnegative profits if the principal-agent ratio is 0, and

Ȳ ≡
⋃

i

Ȳi.

In equilibrium, actions that are not in Ȳ are not implemented.

For the benchmark analysis, we make three assumptions on preferences over y ∈ Ȳ, as

we now discuss.

Assumption A1 Monotonicity: for all y ∈ Ȳ,

v1(y) ≤ v2(y) ≤ . . . ≤ vI(y).

This mild assumption says that for any fixed action, principals weakly prefer higher types.

For the next assumption, let Bε(y) ≡ {y′ ∈ Y|d(y, y′) < ε} be a ball of radius ε.

Assumption A2 Local non-satiation: for all i ∈ I, j < i, y ∈ Ȳi, and ε > 0, there exists a

y′ ∈ Bε(y) such that vi(y
′) > vi(y) and uj(y

′) ≤ uj(y).

Another mild assumption, A2 is satisfied in any application where actions allow transfers.5

The next assumption guarantees that it is possible to design contracts that attract some

agents without attracting less desirable agents.

Assumption A3 Sorting: for all i ∈ I, y ∈ Ȳi, and ε > 0, there exists a y′ ∈ Bε(y) such

that

uj(y
′) > uj(y) for all j ≥ i and uj(y

′) < uj(y) for all j < i.

One should interpret A3 as a generalized version of a standard single-crossing condition.

Assume for illustration that: y ≡ (y1, y2) ∈ R2; Ȳ is open; and the functions ui(y1, y2) are

make a deviation unprofitable, if η̄vi(yi) < k, but we find it implausible. In particular, it is inconsistent with
the adjustment process described in the text.

5Moreover, we use A2 only in the proof of Proposition 2 below, and nowhere else. We use it to establish
that it is possible to make a principal better off while not improving the well-being of agents. If η is strictly
decreasing, we could do this by adjusting market tightness, but since for some examples it is interesting to
have η only weakly decreasing, we introduce A2.
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differentiable. Then A3 holds if the marginal rate of substitution between y1 and y2 is higher

for higher types—i.e., if
∂ui(y1, y2)/∂y1

∂ui(y1, y2)/∂y2

is monotone in i.6 Assumption A3 is important for the results: in Section 5.4 we show how

the nature of equilibrium changes when A3 fails.

3 Equilibrium Characterization

We now show that equilibrium solves a set of optimization problems. For any type i, consider

the following problem:

max
θ∈[0,∞],y∈Y

µ(θ)ui(y) (P-i)

s.t. η(θ)vi(y) ≥ k,

and µ(θ)uj(y) ≤ Ūj for all j < i.

In terms of economics, (P-i) chooses market tightness θ and an action y to maximize the

expected utility of type i subject to a principal at least breaking even when only type i

agents apply, and subject to types lower than i not wanting to apply.

Now consider the larger problem (P) of solving (P-i) for all i. More precisely, we say that

a set I
∗ ⊂ I and three vectors {Ūi}i∈I, {θi}i∈I∗ , and {yi}i∈I∗ solve (P) if:

1. I∗ denotes the set of i such that the constraint set of (P-i) is non empty and the

maximized value is strictly positive, given (Ū1, . . . , Ūi−1);

2. for any i ∈ I∗, the pair (θi, yi) solves problem (P-i) given (Ū1, . . . , Ūi−1), and Ūi =

µ(θi)ui(yi)

3. for any i /∈ I∗, Ūi = 0.

6Actually, A3 is more general. For example, suppose

ui(y1, y2) =
(

1

2
yρi

1
+ 1

2
yρi

2

)1/ρi − y2

1
+ y2

2

2
− 1

8
.

for ρi < 1, and ρi is higher for higher types. Then the elasticity of substitution between y1 and y2, 1/(1−ρi),
is increasing in i. Let Y = [0, 1]2, a superset of the points where ui(y1, y2) > 0. Any point (y1, y2) on the
boundary of Y is not in Ȳ since ui(y1, y2) < 0. This example fails the single-crossing condition when y1 = y2,
but satisfies A3, since it is possible to increase the spread between y1 and y2 and attract higher types while
repelling lower ones.
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Proposition 1 below says that we can find any equilibrium by solving (P); conversely,

Proposition 2 says that any solution to (P) generates an equilibrium. As a preliminary step,

we prove that (P) has a solution and provide a partial characterization, by showing that the

zero profit condition binds and that higher types are not attracted by (θ, y). This implies

that only downward incentive constraints are relevant in equilibrium (while, in fact, in the

primitive definition incentive compatibility requires no j > i or j < i would want to apply

and pretend to be type i).

Lemma 1 Assume A1-A3. There exists I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ that solve (P). At

any solution,

η(θi)vi(yi) = k for all i ∈ I
∗,

µ(θi)uj(yi) ≤ Ūj for all j ∈ I and i ∈ I
∗.

All formal proofs are in the Appendix, but the idea is to notice that (P) has a recursive

structure. As a first step, (P-1) depends only on exogenous variables and thus determines

Ū1. In general, at step i, (P-i) depends on the previously determined values of Ūj for j < i

and determines Ūi. Thus, we can solve (P) in I iterative steps.

We now show that a solution to (P) can be used to construct an equilibrium in which

some principals offer a contract to attract type i ∈ I
∗, while keeping out other types. The

relevant contract is suggested by the solution to (P), but we must also show that no other

contract gives positive profit.

Proposition 1 Assume A1-A3. Suppose I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ solve (P). Then

there exists a competitive search equilibrium {Ū , λ, C̄, Θ, Γ} with Ū = {Ūi}i∈I, C̄ = {Ci}i∈I∗

where Ci = (yi, . . . , yi), Θ(Ci) = θi, and γi(Ci) = 1.

The next result establishes that any equilibrium can be characterized using (P). The

proof is based on a variational argument, showing that if (θi, yi) does not solve (P), it cannot

be part of an equilibrium.

Proposition 2 Assume A1-A3. Let {Ū , λ, C̄, Θ, Γ} be a competitive search equilibrium. Let

{Ūi}i∈I = Ū and I
∗ = {i ∈ I|Ūi > 0}. For each i ∈ I

∗, there exists a contract C ∈ C̄

with Θ(C) < ∞ and γi(C) > 0. Moreover, take any {θi}i∈I∗ and {yi}i∈I∗ such that for each

i ∈ I∗, there exists a contract Ci = {y1, . . . , yi, . . . , yI} ∈ C̄ (so the ith element of Ci is yi)

with θi = Θ(Ci) < ∞ and γi(Ci) > 0. Then I∗, {Ūi}i∈I, {θi}i∈I∗, and {yi}i∈I∗ solve (P).

The above results imply that in equilibrium any contract C = {y1, . . . , yi, . . . , yI} that

attracts type i solves (P-i), in the sense that the solution to the problem has θ = Θ(C) and
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y = yi. This does not necessarily mean that each contract attracts only one type of agent.

In general, a contract could attract more than one type, or the same type could apply to

more than one type of contract. But if a contract C = {y1, . . . , yI} attracts two types, say i

and j, then Θ(C) and yi solve (P-i) and Θ(C) and yj also solve (P-j).

The existence of equilibrium and uniqueness of equilibrium payoffs follow immediately

from the above results.

Proposition 3 Assume A1-A3. Then competitive search equilibrium exists, and the equi-

librium Ū is unique.

The last result of this section shows that, when there are strict gains from trade for all

types, all agents get strictly positive utility.

Proposition 4 Assume A1-A3, and that for all i there exists y ∈ Y with η̄vi(y) > k and

ui(y) > 0. Then in any competitive search equilibrium, Ūi > 0 for all i, and in particular

there exists a contract C ∈ C with Θ(C) < ∞ and γi(C) > 0.

The proof follows by showing that the maximized value of any (P-i) is positive as long as

Ūj > 0 for j < i. One might imagine a stronger claim, that if there are strict gains from

trade for any type i then Ūi > 0, but Section 7 shows that this may not be the case. In

particular, if there are no gains from trade for some type j < i and Ūj = 0, it may be that

Ūi = 0 even though there would be gains from trade for type i with full information.

4 Incentive Feasible Allocations

To set the stage for studying efficiency, we define an incentive feasible allocation. We begin

by defining an allocation, by which we basically mean a description of the posted contracts

together with the implied search behavior and payoffs of agents.

Definition 2 An allocation is a vector Ū of expected utilities for the agents, a measure λ

over the set of incentive-compatible contracts C with support C̄, a function Θ̃ : C̄ 7→ [0,∞],

and a function Γ̃ : C̄ 7→ ∆I .

Note that Θ̃ and Γ̃ are different from the Θ and Γ in the definition of equilibrium, because

the former are defined only over the set of posted contracts, while the latter are defined for

all incentive compatible contracts.

An allocation is incentive feasible whenever: (1) each posted contract offers the maximal

expected utility to agents who direct their search for that contract and no more to those
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who do not; (2) the economy’s resource constraint is satisfied; and (3) markets clear.7 More

formally, we have:

Definition 3 An allocation {Ū , λ, C̄, Θ̃, Γ̃} is incentive feasible if

1. for any C ∈ C̄ and i ∈ {1, . . . , I} such that γ̃i(C) > 0 and Θ̃(C) < ∞,

Ūi = µ(Θ̃(C))ui(yi),

and

Ūi ≡ max
C′∈C̄

µ(Θ̃(C ′))ui(y
′
i)

where C ′ = {y′
1, . . . , y

′
I};

2.
∫

(

η(Θ̃(C))
I
∑

i=1

γ̃ivi(yi) − k

)

dλ(C) = 0;

3. for all i ∈ {1, . . . , I},
∫

γ̃i(C)

Θ̃(C)
dλ(C) ≤ πi,

with equality if Ūi > 0.

The set of incentive feasible allocations provides a benchmark for what the economy could

conceivably achieve, perhaps through legal or other restrictions on the contracts that can be

offered.

5 Application I: The Rat Race

We now proceed with the first of our three main applications, a version of a classic signaling

model (Akerlof, 1976). For concreteness, think of agents here as workers who are heteroge-

neous in terms of both their productivity and their cost of working long hours, and principals

as firms that are willing to pay more for high-productivity workers and can observe hours

but not productivity. The main substantive result in this example is this: if the cost of a long

workday is lower for more productive workers, equilibrium will separate types by distorting

hours relative to the first best, but will not distort market tightness.8

7The resource constraint in the formal definition to follow can be read as saying that principals’ profits
are 0 on average, but this is not the only interpretation, since there may be different ways to implement the
same outcome—e.g. we can imagine a planner posting the contracts directly.

8This example is essentially a static version of Inderst and Müller (1999), although we also extend it to
consider cases where the sorting assumption A3 fails.
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5.1 Setup

An action here is y = {t, x}, where t is a transfer from the firm to the worker and x ≥ 0 is

the length of the workday. The payoff of a type i worker who undertakes {t, x} is

ui(t, x) = t − x

ai

,

where higher values of ai imply that x is less costly. The payoff of a firm matched with type

i who undertakes {t, x} is

vi(t, x) = bi − t,

where bi is the productivity the worker. We assume I = 2 and b2 > b1. We restrict the set of

feasible actions to Y = {(t, x)|t ∈ [−ε, b2] and x ∈ [0, b2 max{a1, a2}]} for some ε > 0. This

ensures Y is compact but is not otherwise important (although it is convenient to allow for

the possibility of a small negative transfer).9

The space of actions that provide nonnegative utility to type i and nonnegative profit

when the firm-worker ratio is 0 is

Ȳi = {(t, x) ∈ Y|x/ai ≤ t ≤ bi − k/η̄}.

The fact that b2 > b1 implies A1, and A2 holds because (t, x) ∈ Ȳi implies t ≥ 0, so t

can be reduced to raise vi(t, x) and lower uj(t, x) (this is where it is convenient to allow

negative transfers). In terms of A3, consider (t, 0) ∈ Ȳ. There are nearby points (t′, x′) with

u1(t
′, x′) < u1(t, 0) and u2(t

′, x′) > u2(t, 0) if and only if a2 > a1, so more productive workers

find it less costly to have higher x. At any other {t, x} ∈ Ȳ, A3 holds for all a1 and a2. We

impose a2 > a1, for now, and discuss later what happens if this is violated. Finally, assume

η̄b1 > k, so that there are gains from trade for both types, and hence Proposition 4 implies

Ū1 > 0 and Ū2 > 0.

9A firm would never offer t > b2 and the worker would never accept t < 0. Also, a worker would never
provide x > b2 max{a1, a2}, given that b2 ≤ t.
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5.2 Equilibrium

Based on Section 3, we characterize equilibrium by solving (P). In this example, (P-i) is

Ūi = max
θ∈[0,∞],(t,x)∈Y

µ(θ)

(

t − x

ai

)

s.t. η(θ)(bi − t) ≥ k,

and µ(θ)

(

t − x

aj

)

≤ Ūj for j ≤ i.

Let us assume µ is strictly concave and continuously differentiable. Then we have the

following (again, all proofs are in the Appendix):

Result 1 There exists a unique competitive search equilibrium with µ′(θi)bi = k, for i = 1, 2,

and so θ1 < θ2. Moreover, we have

x1 = 0; x2 =
a1

µ(θ2)

[(

µ(θ2)

µ′(θ2)
− θ2

)

−
(

µ(θ1)

µ′(θ1)
− θ1

)]

k > 0;

ti =

(

1

µ′(θi)
− θi

µ(θi)

)

k, for i = 1, 2;

Ū1 =

(

µ(θ1)

µ′(θ1)
− θ1

)

k and Ū2 =

[

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 − a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)]

k.

In equilibrium, some firms post contracts to attract only type 1 workers, while others

post contracts to attract only type 2 workers. To achieve separation, the contracts of type 1

are undistorted, while those of type 2 are distorted by having them work (unproductively)

long hours. Notice that market tightness is equal to the first-best or full-information level

for both types, so matching and hence employment are not distorted in this example. Also,

note that without additional assumptions we cannot rule out the possibility that t2 < t1, so

type 2 workers may actually receive less compensation in addition to working longer hours;

they are compensated for this by a higher probability of being hired, θ2 > θ1.

5.3 Efficiency

Equilibrium is not necessarily efficient. Consider an allocation that treats the two types

identically, C̄ = {C}, where C = {(t, 0), (t, 0)}. Then let Θ̃(C) = θ∗, with θ∗ solving

µ′(θ∗)(π1b1 + π2b2) = k, γ̃i(C) = πi, and λ({C}) = 1/θ∗. Note that θ1 < θ∗ < θ2, so market

tightness now is in between the levels for the different types in equilibrium. Then choose t

13



so profits are 0:

t =

(

1

µ′(θ∗)
− θ∗

µ(θ∗)

)

k

This contract is obviously incentive compatible, since types are treated identically. All

workers want to apply, and get the same expected utility, so condition (1) of feasibility is

satisfied. And the resource and market clearing conditions are satisfied by the choice of t

and λ. Hence, this constitutes an incentive feasible allocation.

The expected utility for all workers is

Ū =

(

µ(θ∗)

µ′(θ∗)
− θ∗

)

k.

Comparing this with equilibrium, Ū > Ū1 since θ∗ > θ1, and Ū ≥ Ū2 if and only if

µ(θ∗)

µ′(θ∗)
− θ∗ ≥ a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

+

(

1 − a1

a2

)(

µ(θ2)

µ′(θ2)
− θ2

)

.

This inequality holds if a1/a2 is close to 1 (screening is very costly) or if π1 is close to zero

(there are very few type 1 agents). The reason is that, in equilibrium, firms who want to

attract type 2 need to screen out type 1, or they would be swamped by applications from

low-productivity workers. Screening may not be socially optimal, however, if there are few

type 1 workers or screening is costly. Thus it may be socially preferable to subsidize type 1

workers and eliminate screening, but this is not consistent with equilibrium, any individual

firm has incentive to deviate and try to screen.

5.4 Pooling

The sorting condition A3 plays a critical role. To understand this, consider a variant where

signaling is cheaper for less productive workers, a1 ≥ a2 while b1 < b2.
10 Now firms would like

to screen out low-productivity workers, but cannot: if they try to attract high-productivity

types, the low-productive types would apply and claim to be high-productivity. In this case,

we now show that there is a class of equilibria in which firms attract both types, and ask

the low-productivity agents to work x ≥ 0 unproductive hours.

When A3 is violated, we cannot use the analysis in Section 3 to characterize the outcome,

and we must go back to the primitive definition of equilibrium. Given this, we describe a

10We claim this violates A3. Fix t and set x = 0. For any nearby contract (t′, x′),

u1(t
′, x′) − u1(t, 0) = t′ − t − x′/a1 ≥ t′ − t − x′/a2 = u2(t

′, x′) − u2(t, 0),

since x′ ≥ 0. Hence, there is no (t′, x′) with u1(t
′, x′) < u1(t, 0) and u2(t

′, x′) > u2(t, 0).
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class of equilibria indexed by x1 ∈ [0, a1(b2 − b1)(1 − π1)/π1]. All firms post the same

contract C = {(t + x1/a1, x1), (t, 0)}, where t is chosen to make profit 0, all workers apply,

and γi(C) = πi. Given this, suppose a firm considers offering a contract that attracts only

one type. If it tries to attract type 1, it loses the benefit of cross-subsidization, and is unable

to attract them while earning positive profits. If it tries to attract type 2 workers, it is unable

to devise a contract that will exclude type 1, again making the deviation unprofitable.

Result 2 Suppose a1 ≥ a2. For any x1 ∈ [0, a1(b2−b1)(1−π1)/π1], there exists a competitive

search equilibrium where C̄ = {C} with C = {(t + x1/a1, x1), (t, 0)} and

t = π1

(

b1 −
x1

a1

)

+ π2b2 −
θ

µ(θ)
k,

where θ solves

µ′(θ)

(

π1

(

b1 −
x1

a1

)

+ π2b2

)

= k.

The expected utility for all workers is Ū = µ(θ)t.

There are equilibria where x > 0, because if firms did not set x > 0 they would be stuck

exclusively with type 1 workers. Clearly, x > 0 is socially wasteful, and these equilibria can

be Pareto ranked, with x1 = 0 being the best. Moreover, if a1 > a2, then not only do there

exist the equilibria in Result 2, we can show that any equilibrium where all firms post the

same contract must be in that class.

Result 3 Suppose a1 > a2. If there exists a competitive search equilibrium with C̄ = {C}
where C = {(t1, x1), (t2, x2)}, γi(C) = πi, and Θ(C) < ∞, then x2 = 0, and t1 = t2 + x1/a1.

6 Application II: Insurance

Our next application is based on Rothschild and Stiglitz (1976), where risk neutral prin-

cipals offer insurance to risk averse agents who are heterogeneous in their probability of a

loss. This illustrates several features. First, although we had linear utility in the previous

section, this is not necessary in the general framework. Second, we show here that even if

a pooling allocation does not Pareto dominate the equilibrium, a partial-pooling allocation

may. Finally, to illustrate that traditional search frictions are not necessary, in this example

we allow the short side of the market to match for sure: µ(θ) = min{θ, 1}.
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6.1 Setup

We again specify the model in terms of worker-firm matching.11 Now the productivity of a

match is initially unknown by both the worker and firm. Some workers are more likely than

others to generate productive matches, but firms cannot observe this: type i produce 1 unit

of output with probability pi and 0 otherwise, and pi is the agent’s private information. A

contract specifies a transfer to the worker conditional on realized productivity and reported

type. Workers are risk averse and firms are risk neutral. In the absence of adverse selection,

full insurance equates the marginal utility of agents across states. We show that firms here

do not provide full insurance, because incomplete insurance helps keep undesirable workers

from applying.

An action consists of a pair of consumption levels, conditional on employment or unem-

ployment after match productivity has been realized, y = {ce, cu}. The payoff of a matched

type i worker given y is

ui(ce, cu) = piU(ce) + (1 − pi)U(cu),

where p1 < p2 < · · · < pI < 1 and U : [c,∞) → R is increasing and strictly concave with

limc→c U(c) = −∞ for some c < 0 and U(0) = 0. The payoff of a firm matched with type i

given y is

vi(ce, cu) = pi(1 − ce) − (1 − pi)cu.

To ensure A1 is satisfied, we restrict the set of feasible actions to Y = {(ce, cu)|cu + 1 ≥
ce ≥ c and cu ≥ c}. The assumption limc→c U(c) = −∞ ensures that actions of the form

{ce, c} yield negative utility for all types and so are not in Ȳ. Then, since a reduction in

cu raises vi(y) and lowers ui(y), and is feasible for all y ∈ Ȳ, A2 is satisfied. To verify

A3, consider an incremental increase in ce to ce + dce and an incremental reduction in cu

to cu − dcu for some dce > 0 and dcu > 0. For a type i worker, this raises utility by

approximately piu
′(ce)dce − (1 − pi)u

′(cu)dcu, which is positive if and only if

dce

dcu

>
1 − pi

pi

u′(cu)

u′(ce)
.

Since (1 − pi)/pi is decreasing in i, an appropriate choice of dce/dcu yields an increase in

utility if and only if j ≥ i, which verifies A3.

Finally, assume p1 ≤ k < pI , which ensures that there are no gains from employing the

11Again, we frame the discussion in terms of labor markets, rather than general insurance, because it
seems more reasonable to assume an employer can only hire a fraction of the available workforce than to
assume an insurance company can only serve a fraction of its potential customers.
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lowest type, even in the absence of asymmetric information, but there may be gains from

trade for higher types, say by setting ce = cu = pI − k > 0. Let i∗ denote the lowest type

without gains from trade, so pi∗ ≤ k < pi∗+1 (the results extend to the case k < p1 by

defining i∗ = 0).

6.2 Equilibrium

We can again characterize equilibrium using (P), leading to:

Result 4 There exists a competitive search equilibrium where for all i ≤ i∗, Ūi = 0; and for

all i > i∗, θi = 1, Ūi > 0, and ce,i > ce,i−1 and cu,i < cu,i−1 are the unique solution to

pi(1 − ce,i) − (1 − pi)cu,i = k

and pi−1U(ce,i) + (1 − pi−1)U(cu,i) = pi−1U(ce,i−1) + (1 − pi−1)U(cu,i−1),

where ce,i∗ = cu,i∗ = 0.

One interesting feature of equilibrium here is that cu,i < 0 for all i > i∗, and therefore a

worker is worse off when he matches and turns out to be unproductive than when he does

not match in the first place. If one interprets a bad match as a layoff, contracts give laid-off

workers less utility than those who never match, because this keeps inferior workers from

applying for the job.12

6.3 Efficiency

Again we show equilibrium may not be efficient. First note that a worker with pi close to 1

suffers little from the distortions introduced by the information problem. At the extreme, if

pI = 1, cu,I = c excludes other workers without distorting the type I contract at all. Gener-

ally, adverse selection has the biggest impact on the utility of workers with an intermediate

value of pi. We show that a Pareto improvement may result from partial pooling. Consider

p1 = 1/4, p2 = 1/2, and p3 = 3/4 and suppose there are equal numbers of type 1 and 3,

so that half of all matches are productive. Set U(c) = log(1 + c) and k = 3/8. Then in

equilibrium, Ū1 = 0; ce,2 = 0.344, cu,2 = −0.094, and Ū2 = U(0.104); and ce,3 = 0.576,

cu,3 = −0.227, and Ū3 = U(0.319).

Pooling all three types, the best incentive-feasible allocation involves ce = cu = 1/8 and

Ūi = U(1/8). Compared to the equilibrium, this raises the utility of type 1 and type 2

12To interpret a bad match as a layoff, it might help to imagine that an agent actually must work for some
time before productivity is realized, as in Jovanovic (1979).
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workers, but reduces the utility of type 3 workers. Now consider an allocation that pools

types 1 and 2. If there are sufficiently few type 1 workers, it is feasible to set ce = cu > 0.104,

delivering utility greater to types 1 and 2. For example, suppose π1 = π3 = 0.01 and

π2 = 0.98. Then the utility of types 1 and 2 rises to U(0.122). By raising the utility of type

2, it is easier to exclude them from type 3 contracts, reducing the requisite inefficiency of

those contracts. This raises the utility of type 3, in this case, to U(0.325).

6.4 Relationship to Rothschild-Stiglitz

Rothschild and Stiglitz (1976, p. 630) “consider an individual who will have income of size

W if he is lucky enough to avoid accident. In the event an accident occurs, his income will

be only W − d. The individual can insure against this accident by paying to an insurance

company a premium α1 in return for which he will be paid α̂2 if an accident occurs. Without

insurance his income in the two states, ‘accident,’ ‘no accident,’ was (W, W − d); with

insurance it is now (W − α1, W − d + α2) where α2 = α̂2 − α1.”

We can normalize the utility of an uninsured individual to zero and express the utility of

one who anticipates an accident with probability pi as

ui(α1, α2) = piU(W − α1) + (1 − pi)U(W − d + α2) − κi,

where κi ≡ piU(W ) + (1 − pi)U(W − d). Setting W = d = 1 and defining ce = 1 − α1

and cu = α2, this is equivalent to our example. Our results apply to their setup, with one

wrinkle: our fixed cost of posting contracts.

Rothschild and Stiglitz (1976) show that in any equilibrium, principals who attract type

i agents, i > 1, offer incomplete insurance to deter type i − 1 agents, which is of course

very similar to our finding. Under some conditions, however, their equilibrium does not

exist. Starting from a configuration of separating contracts, suppose one principal deviates

by offering a pooling contract to attract multiple types. In their setup, this is profitable if the

least-cost separating contract is Pareto inefficient. But such a deviation is never profitable

in our environment.

The key difference is that in the original model a deviating principal can capture all

the agents in the economy, or at least a representative cross-section, while in our model a

principal cannot serve all the agents who are potentially attracted to a contract. Instead,

agents are rationed thorough the endogenous movement in market tightness θ. Whether

such a deviation is profitable depends on which agents are most willing to accept a decline

in θ. What we find is that high types are the first to give up on the pooling contract

when applications get crowded by low types. A lower type, with an inferior outside option
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Ūi−1 < Ūi, is more inclined to stick it out. Hence, a principal who tries to offer a pooling

contract will end up with a long queue of type 1 agents—the worst possible outcome. For this

reason, a deviation to a pooling contract is not profitable, and equilibrium with separating

contracts always exists.

7 Application III: Asset Markets

A feature of the previous two examples is that market tightness is not distorted: θi is at

its full-information level for all i. We now present a model where tightness can be used to

screen bad types. Although the results hold more generally, to stress the point, we again

abstract from traditional search frictions and assume µ(θ) = min{θ, 1}, so that matching is

determined by the short side of the market and η̄ = 1.

7.1 Setup

Consider an asset market with lemons, in the sense of Akerlof (1970). Buyers (principals)

always value an asset more than sellers (agents) value it, but some assets are better than

others and their values are private information to the seller. Market tightness, or probabilistic

trading, seems in principle a good way to screen out low quality asset holders, since sellers

with more valuable assets are more willing to accept a low probability of trade at any given

price. This model shows how an illiquid asset market may have a useful role as a screening

device.

Each type i seller is endowed with one indivisible asset, which call an apple, of type

i, with value aS
i > 0 to the seller and aB

i > 0 to the buyer, both expressed in units of a

numeraire good. An action for type i sellers is a pair {αi, ti}, where αi is the probability

that the seller gives the buyer the apple and ti is the transfer of the numeraire to the seller.13

The payoff of a matched type i seller who reports type j is

ui(αj, tj) = tj − αja
S
i ,

13Given that apples are indivisible, it may be efficient to use lotteries, with α the probability apples change
hands, as e.g. in Prescott and Townsend (1984) and Rogerson (1988). Nosal and Wallace (2007) provide a
related model of an asset (money) market where probabilistic trade is useful due to private information, but
they use random and not directed search, leading to quite different results. It would actually be equivalent
here to assume apples are perfectly divisible and preferences are linear, with α reinterpreted as the fraction
traded, but we like the indivisibility since it allows us to contrast our results with models that use lotteries.
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while the payoff of a buyer matched with a type i seller who reports truthfully is

vi(αi, ti) = αia
B
i − ti.

Note that we have normalized the no-trade payoff to 0.

We set I = 2 and impose a number of restrictions on payoffs. First, both buyers and

sellers prefer type 2 apples and both types of agents like apples:

aS
2 > aS

1 > 0 and aB
2 > aB

1 > 0.

Second, there would gains from trade, including the cost k of posting, if the buyer were sure

to trade:

aS
i + k < aB

i for i = 1, 2.

The available actions are Y = [0, 1] × [0, 1], with Ȳi = {(α, t) ∈ Y|αaS
i ≤ t ≤ αaB

i − k}.
Using these restrictions, we verify our three assumptions. As a preliminary step, note that

(α, t) ∈ Ȳi implies α ≥ k/(aB
i − aS

i ) > 0 and t ≥ kaS
i /(aB

i − aS
i ) > 0, so in any equilibrium

contract, trades are bounded away from zero.

Since α > 0 whenever (α, t) ∈ Ȳi, the restriction aB
1 < aB

2 implies A1. Also, A2 holds

because for any (α, t) ∈ Ȳi, a movement to (α, t − ε) with ε > 0 is feasible and raises buyer

utility. The important assumption is again A3, which is here guaranteed by aS
1 < aS

2 . Fix

(α, t) ∈ Ȳ and ā ∈ (aS
1 , aS

2 ). For arbitrary δ > 0, consider (α′, t′) = (α − δ, t − āδ). This is

feasible for small δ because (α, t) ∈ Ȳ guarantees that α > 0 and t > 0. Then

u2(α
′, t′) − u2(α, t) = δ(aS

2 − ā) > 0

u1(α
′, t′) − u1(α, t) = δ(aS

1 − ā) < 0.

Now for fixed ε > 0, choose δ ≤ ε/
√

1 + ā2. This ensures (α′, t′) ∈ Bε(α, t), so A3 holds.

7.2 Equilibrium

We again use problem (P) to characterize the equilibrium.

Result 5 There exists a unique competitive search equilibrium with αi = 1, ti = aB
i − k,

θ1 = 1, Ū1 = aB
1 − aS

1 − k, θ2 =
aB

1 − aS
1 − k

aB
2 − aS

1 − k
< 1, and Ū2 = θ2(a

B
2 − aS

2 − k).

With full information, θ2 = 1 and Ū2 = aB
2 − aS

2 − k. Relative to this benchmark, buyers

post too few contracts designed to attract type 2 sellers, and hence too many of them fail to
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trade. Since type 2 sellers have better apples than type 1, they are more willing to accept this

in return for a better price when they do trade. Agents with inferior assets are less willing to

accept a low probability of trade because they do not want to be stuck with their own apple,

which is in fact a lemon. Note that the alternative of setting θ2 = 1 but rationing though the

probability of trade in a match, α2 < 1, wastes resources, because it involves posting more

contracts at cost k. In other words, reducing the matching rate is a cost-effective screening

device compared to lotteries.

7.3 Efficiency

Consider a pooling contract, with α1 = α2 = 1 and t1 = t2 = t. That is, Ȳ = {C},
where C = {(1, t), (1, t)}. Moreover, Θ̃(C) = 1, γ̃i(C) = πi, and λ({C}) = 1. Finally, set

t = π1a
B
1 + π2a

B
2 − k. The choice of t ensures that the resource constraint holds and the

choice of λ ensures that markets clear. All sellers apply and the contract is trivially incentive

compatible. The expected payoff for type i sellers is

Ūi = π1a
B
1 + π2a

B
2 − aS

i − k.

With this pooling allocation, type 1 sellers are always better off than they were in equi-

librium since aB
1 < aB

2 , and type 2 sellers are better off if and only if

π1a
B
1 + π2a

B
2 − aS

2 − k >
(aB

2 − aS
2 − k)(aB

1 − aS
1 − k)

aB
2 − aS

1 − k
.

Since π2 = 1 − π1, this reduces to

π1 <
aB

2 − aS
2 − k

aB
2 − aS

1 − k
=

Ū2

Ū1

.

Both the numerator and denominator are positive, but the numerator is smaller (gains from

trade are smaller for type 2 sellers) because aS
2 > aS

1 . Thus type 2 sellers prefer the pooling

allocation when there is not too much cross subsidization, or π1 is small, so that the cost of

subsidizing type 1 sellers is worth the increased efficiency of trade.

7.4 No Trade

So far, we have assumed there are gains from trade for both types of sellers. Now suppose

there are no gains from trade for type 1 apples, aB
1 ≤ aS

1 + k. Then not only will type 1

seller fail to trade, in equilibrium, the entire market will shut down:
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Result 6 If aB
1 ≤ aS

1 + k then, in any equilibrium, Ū1 = Ū2 = 0.

Notice that the market shuts down here even if there are still gains from trade in good

apples, aB
2 > aS

2 + k. Intuitively, it is only possible to keep bad apples out of the market

by reducing the probability of trade in good apples. If there is no market in bad apples,

however, agents holding them would accept any probability of trade. Hence we cannot screen

out bad apples, and this renders the good apple market inoperative. Whether this is related

to the recent collapse in asset-backed securities markets seems worth further exploration.

8 Conclusion

We have developed a tractable general framework to analyze adverse selection in competitive

search markets. Under our assumptions, there is a unique equilibrium, where principals post

separating contracts. We characterized the equilibrium as the solution to a set of constrained

optimization problems, and illustrated the use of the model through a series of examples.

We expect that one could extend the framework to dynamic situations, with repeated

rounds of posting and search, as seems relevant in many applications—including labor and

asset markets. It may also be interesting to study the case opposite to the one analyzed

here, where the informed instead of the uninformed parties post contracts. In standard

competitive search theory the outcome does not depend on who posts. With asymmetric

information, contract posting by informed parties may introduce multiplicity of equilibrium

through the usual signaling mechanism (see Delacroix and Shi (2007)). All of this is left for

future work.

APPENDIX

Proof of Lemma 1. In the first step, we prove that there exists a solution to (P). The

second and third steps establish the stated properties of the solution.

Step 1: Consider i = 1. If the constraint set in (P-1) is empty, set Ū1 = 0. Otherwise,

(P-1) is well-behaved, as the objective function is continuous and the constraint set compact.

Hence, (P-1) has a solution and a unique maximum m1. If m1 ≤ 0 set Ū1 = 0; otherwise set

Ū1 = m1 and let (θ1, y1) be one of the maximizers.

We now proceed by induction. Fix i > 1 and assume that we have found Ūj for all j < i

and (θj , yj) for all j ∈ I∗, j < i. Consider (P-i). If the constraint set is empty, set Ūi = 0.

Otherwise, (P-i) again has a solution and a unique maximum mi. If mi ≤ 0, set Ūi = 0;

otherwise let Ūi = mi and let (θi, yi) be one of the maximizers.
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Step 2: Suppose by way of contradiction that there exists i ∈ I
∗ such that (θi, yi) solves

(P-i) but η(θi)vi(yi) > k. This together with Ūi = µ(θi)ui(yi) > 0 implies that yi ∈ Ȳi and

µ(θi) > 0. Fix ε > 0 such that η(θi)vi(y) ≥ k for all y ∈ Bε(yi). Then A3 ensures there

exists a y′ ∈ Bε(yi) such that

uj(y
′) > uj(yi) for all j ≥ i,

uj(y
′) < uj(yi) for all j < i.

Then the pair (θi, y
′) satisfies all the constraints of problem (P-i):

1. η(θi)vi(y
′) ≥ k from the choice of ε;

2. µ(θi)uj(y
′) < µ(θi)uj(yi) ≤ Ūj for all j < i, where the first inequality is by construction

of y′ and µ(θi) > 0, while the second holds since (θi, yi) solves (P-i).

Now (θi, y
′) achieves a higher value than (θi, yi) for the objective function in (P-i), given

µ(θi)ui(y
′) > µ(θi)ui(yi). Hence, (θi, yi) does not solve (P-i), a contradiction.

Step 3: Fix i ∈ I∗ and suppose by way of contradiction that there exists j > i such that

µ(θi)uj(yi) > Ūj . Let h be the smallest such j. Since i ∈ I∗, µ(θi)ui(yi) = Ūi > 0, which

implies µ(θi) > 0 and ui(yi) > 0. Also, from the previous step (θi, yi) satisfies η(θi)vi(yi) = k,

which ensures η(θi) > 0 and vi(yi) > 0. In particular, this implies that yi ∈ Ȳi.

The pair (θi, yi) satisfies the constraints of (P-h) since

1. η(θi)vh(yi) ≥ η(θi)vi(yi) = k, where the first inequality holds by A1 given h > i and

yi ∈ Ȳi ⊂ Ȳ, and the second comes from the previous step;

2. µ(θi)ul(yi) ≤ Ūl for all l < h, which holds for

(a) l < i because (θi, yi) satisfy the constraints of (P-i),

(b) l = i because Ūi = µ(θi)ui(yi) since i ∈ I∗,

(c) i < l < h by the choice of h as the smallest violation of µ(θi)uj(yi) > Ūj .

Since µ(θi)uh(yi) > Ūh ≥ 0, (θi, yi) is in the constraint set of (P-h) and delivers a strictly

positive value for the objective function; hence h ∈ I∗. But then the fact that Ūh is not the

maximized value of (P-h) is a contradiction.

Proof of Proposition 1. We proceed by construction.

• The vector of expected utilities is Ū = {Ūi}i∈I.
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• The set of posted contracts is C̄ = {Ci}i∈I∗ where Ci ≡ (yi, . . . , yi).

• λ is such that λ({Ci}) = πiΘ(Ci) for any i ∈ I∗.

• For i ∈ I∗ and Ci = (yi, . . . , yi), Θ(Ci) = θi. Otherwise, for any incentive compatible

C ′ = {y′
1, . . . , y

′
I} ∈ C, let J(C ′) = {j|uj(y

′
j) > 0} denote the types that attain positive

utility from C ′. If J(C ′) 6= ∅ and minj∈J(C′){Ūj/uj(y
′
j)} < µ̄ then

µ(Θ(C ′)) = min
j∈J(C′)

Ūj

uj(y′
j)

.

If this equation is consistent with multiple values of Θ(C ′), pick the largest one. Oth-

erwise, if J(C ′) = ∅ or minj∈J(C′){Ūj/uj(y
′
j)} ≥ µ̄, then Θ(C ′) = ∞.

• For i ∈ I∗ and Ci = (yi, . . . , yi), let γi(Ci) = 1 and so γj(Ci) = 0 for j 6= i. For any

other C ′, define Γ(C ′) such that γh(C
′) > 0 only if h ∈ arg minj∈J(C′){Ūj/uj(y

′
j)}. If

there are multiple minimizers, let γh(C
′) = 1 for the smallest such h. If J(C ′) = ∅,

again choose Γ(C ′) arbitrarily, e.g. γ1(C
′) = 1.

We now verify that all of the equilibrium conditions hold.

Condition (i): For any i ∈ I∗, (θi, yi) solves (P-i), and Lemma 1 implies η(θi)vi(yi) = k.

Thus, profit maximization and free entry hold for any {Ci}i∈I∗. Now consider an arbitrary

incentive compatible contract; we claim that principals’ profit maximization and free-entry

condition is satisfied. Suppose, to the contrary, that there exists C ′ = (y′
1, . . . , y

′
I) ∈ C

with η(Θ(C ′))
∑

i γi(C
′)vi(y

′
i) > k. This implies η(Θ(C ′)) > 0, so Θ(C ′) < ∞, and there

exists some type j with γj(C
′) > 0 and η(Θ(C ′))vj(y

′
j) > k. Since γj(C

′) > 0 and

Θ(C ′) < ∞, our construction of Θ(C ′) and Γ(C ′) implies that j is the smallest solution

to minh∈J(C′){Ūh/uh(y
′
h)} and hence uj(y

′
j) > 0 and Ūj = µ(Θ(C ′))uj(y

′
j). So for all h < j

with uh(y
′
h) > 0,

Ūh > µ(Θ(C ′))uh(y
′
h) ≥ µ(Θ(C ′))uh(y

′
j),

where the first inequality is by construction and the second follows because C ′ is incentive

compatible. Moreover, if uh(y
′
h) ≤ 0, Ūh ≥ µ(Θ(C ′))uh(y

′
h) since Ūh ≥ 0. This proves

that (Θ(C ′), y′
j) satisfies the constraints of (P-j). Then, since η(Θ(C ′))vj(y

′
j) > k and

Ūh ≥ µ(Θ(C ′))uh(y
′
j) for all h < j, with strict inequality when uh(y

′
h) > 0, there exist a

θ > Θ(C ′) such that (θ, y′
j) satisfies all the constraints of (P-j) and achieves a higher value

than (Θ(C ′), y′
j). This implies Ūj is not the maximized value of (P-j), a contradiction.

Condition (ii): By construction, Θ and Γ ensure that Ūi ≥ µ(Θ(C ′))ui(y
′
i) for all contracts

C ′ = {y′
1, . . . , y

′
I}, with equality if Θ(C ′) < ∞ and γi(C

′) > 0. Moreover, for any i ∈ I∗,
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Ūi = µ(θi)ui(yi) > 0 where θi = Θ(Ci) and Ci = {yi, . . . , yi} is the equilibrium contract

offered to i. Finally, if ui(yi) < 0 so i /∈ J(C ′), either J(C ′) = ∅, in which case Θ(C ′) = ∞,

or J(C ′) 6= ∅, in which case γh(C
′) = 1 for some h ∈ J(C ′) and so γi(C

′) = 0.

Condition (iii): Market clearing obviously holds given the way we construct λ. Since all

the equilibrium conditions are satisfied the proof is complete.

Proof of Proposition 2. From equilibrium condition (i), any C ∈ C̄ has η(Θ(C)) > 0,

hence Θ(C) < ∞. From condition (iii), Ūi > 0 implies γi(C) > 0 for some C ∈ C̄. This

proves that for each i ∈ I∗, there exists a contract C ∈ C̄ with Θ(C) < ∞ and γi(C) > 0.

The remainder of the proof proceeds in five steps. The first four steps show that for any

i ∈ I∗ and Ci ∈ C̄ with θi = Θ(Ci) < ∞ and γi(Ci) > 0, (θi, yi) solves (P-i). First, we

prove that the constraint η(θi)vi(yi) ≥ k is satisfied. Second, we prove that the constraint

µ(θi)uj(yi) ≤ Ūj is satisfied for all j. Third, we prove that the pair (θi, yi) delivers Ūi to

type i. Fourth, we prove that (θi, yi) solves (P-i). The fifth and final step shows that for any

i /∈ I∗, either the constraint set of (P-i) is empty or the maximized value is nonpositive.

Step 1: Take i ∈ I∗ and Ci ∈ C̄ with θi = Θ(Ci) < ∞ and γi(Ci) > 0. We claim

the constraint η(θi)vi(yi) ≥ k is satisfied in (P-i). Note first that i ∈ I∗ implies Ūi > 0. By

equilibrium condition (ii), Ūi = µ(θi)ui(yi), and µ(θi) > 0. To derive a contradiction, assume

η(θi)vi(yi) < k. Equilibrium condition (i) implies η(θi)
∑

j γj(C)vj(yj) = k, so there is an

h with γh(C) > 0 and η(θi)vh(yh) > k. Since η(θi) ≤ η̄, η̄vh(yh) > k. Moreover, because

θi = Θ(C) < ∞ and γh(C) > 0, optimal search implies uh(yh) > 0. This proves yh ∈ Ȳh.

Next, fix ε > 0 such that η(θi)vh(y) > k for all y ∈ Bε(yh). Then A3 together with

yh ∈ Ȳ guarantees that there exists y′ ∈ Bε(yh) such that

uj(y
′) > uj(yh) for all j ≥ h,

uj(y
′) < uj(yh) for all j < h.

Notice that y′ ∈ Ȳh as well, given that uh(y
′) > uh(yh) > 0 and η̄vh(y

′) ≥ η(θi)vh(y
′) > k.

Now consider C ′ = {y′, . . . , y′} and θ′ ≡ Θ(C ′). Note that

µ(θ′)uh(y
′) ≤ Ūh = µ(θi)uh(yh) < µ(θi)uh(y

′),

where the weak inequality follows from optimal search, the equality holds because θi < ∞
and γh(C) > 0, and the strict inequality holds by the construction of y′, since µ(θi) > 0.

This implies µ(θ′) < µ(θi), and θ′ < θi. Next observe that for all j < h, either uj(y
′) < 0, in
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which case γj(C
′) = 0 by equilibrium condition (ii), or

µ(θ′)uj(y
′) < µ(θi)uj(yh) ≤ µ(θi)uj(uj) ≤ Ūj ,

where the first inequality uses µ(θ′) < µ(θi), the second uses incentive compatibility, and the

third follows from optimal search. Hence, γj(C
′) = 0 for all j < h.

Finally, profits from posting C ′ are

η(θ′)

I
∑

j=1

γj(C
′)vj(y

′) ≥ η(θ′)vh(y
′) ≥ η(θi)vh(y

′) > k.

The first inequality follows because γj(C
′) = 0 if j < h and vh(y

′) is nondecreasing in h by

A1 together with y′ ∈ Ȳh ⊂ Ȳ, the second follows because θ′ < θi, and the last inequality

uses the construction of ε. Posting C ′ is therefore strictly profitable, which is a contradiction,

and this completes Step 1.

Step 2: Again take i ∈ I∗ and Ci ∈ C̄ with θi = Θ(Ci) < ∞ and γi(Ci) > 0. Equilibrium

condition (ii) implies µ(θi)uj(yj) ≤ Ūj for all j while incentive compatibility implies uj(yi) ≤
uj(yj). Hence the constraint µ(θi)uj(yi) ≤ Ūj in (P-i) is satisfied for all j.

Step 3: Again take i ∈ I∗ and Ci ∈ C̄ with θi = Θ(Ci) < ∞ and γi(Ci) > 0. Equilibrium

condition (ii) implies Ūi = µ(θi)ui(yi), since θi < ∞ and γi(Ci) > 0. Hence(θi, yi) delivers Ūi

to type i.

Step 4: Again take i ∈ I∗ and Ci =∈ C̄ with θi = Θ(Ci) < ∞ and γi(Ci) > 0. To find a

contradiction, suppose there exists (θ′, y′) that satisfies the constraints of (P-i) but delivers

higher utility. That is, η(θ′)vi(y
′) ≥ k, µ(θ′)uj(y

′) ≤ Ūj for all j < i, and µ(θ′)ui(y
′) > Ūi.

We now use A2. Note that µ(θ′)ui(y
′) > Ūi > 0 implies µ(θ′) > 0 and ui(y

′) > 0, while

η(θ′)vi(y
′) ≥ k implies vi(y

′) > 0 and so η̄vi(y
′) ≥ k. In particular, y′ ∈ Ȳi. We can therefore

fix ε′ > 0 such that for all y ∈ Bε′(y
′), µ(θ′)ui(y) > Ūi, and then choose y′′ ∈ Bε′(y

′)

such that vi(y
′′) > vi(y

′) and uj(y
′′) ≤ uj(y

′) for all j < i. This ensures η(θ′)vi(y
′′) > k,

µ(θ′)uj(y
′′) ≤ Ūj for all j < i, and µ(θ′)ui(y

′′) > Ūi. Note that we still have y′′ ∈ Ȳi.

We now use A3. Fix ε′′ > 0 such that for all y ∈ Bε′′(y
′′), η(θ′)vi(y) > k and µ(θ′)ui(y) >

Ūi. Choose y′′′ ∈ Bε′′(y
′′) such that

uj(y
′′′) > uj(y

′′) for all j ≥ i,

uj(y
′′′) < uj(y

′′) for all j < i.

This ensures η(θ′)vi(y
′′′) > k, µ(θ′)uj(y

′′′) < Ūj for all j < i, and µ(θ′)ui(y
′′′) > Ūi. Note

that we still have y′′′ ∈ Ȳi.
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Now consider C ′′′ ≡ {y′′′, . . . , y′′′}. From equilibrium condition (ii), µ(θ′)ui(y
′′′) > Ūi

implies that µ(θ′) > µ(Θ(C ′′′)), which guarantees η(Θ(C ′′′))vi(y
′′′) > k. This also implies

Θ(C ′′′) < ∞.

We next claim γj(y
′′′) = 0 for all j < i. Suppose γj(y

′′′) > 0 for j < i. Since Θ(C ′′′) <

∞, equilibrium condition (ii) implies uj(y
′′′) ≥ 0. We have already shown that µ(θ′) >

µ(Θ(C ′′′)), and uj(y
′′) > uj(y

′′′) by construction. Thus µ(θ′)uj(y
′′) > µ(Θ(C ′′′))uj(y

′′′). The

result follows from equilibrium condition (ii) and Ūj ≥ µ(θ′)uj(y
′′); i.e., Ūj > µ(Θ(C ′′′))uj(y

′′′)

and Θ(C ′′′) < ∞ implies γj(C
′′′) = 0, a contradiction.

The profit from offering this contract is

η(Θ(C ′′′))

I
∑

j=1

γj(C
′′′)vj(y

′′′) ≥ η(Θ(C ′′′))vi(y
′′′) > k,

where the first inequality uses γj(C
′′′) = 0 for j < i and A1. This contradicts the first

condition in the definition of equilibrium, and proves (θi, yi) solves (P-i).

Step 5: Suppose there is an i /∈ I
∗ for which the constraint set of (P-i) is nonempty and the

maximized value is positive. That is, suppose there exists (θ′, y′) such that η(θ′)vi(y
′) ≥ k,

µ(θ′)uj(y
′) ≤ Ūj for all j < i, and µ(θ′)ui(y

′) > Ūi = 0. Replicating step 4, we can first find

y′′ such that η(θ′)vi(y
′′) > k, µ(θ′)uj(y

′′) ≤ Ūj for all j < i, and µ(θ′)ui(y
′′) > 0. Then we

find y′′′ such that η(θ′)vi(y
′′′) > k, uj(y

′′) > uj(y
′′′) for j < i, and uj(y

′′) < uj(y
′′′) for j ≥ i.

Finally, C ′′′ = {y′′′, . . . , y′′′} only attracts type i or higher and hence must be profitable and

deliver positive utility, a contradiction.

Proof of Proposition 3. By Lemma 1 there is a solution to (P). Proposition 1 shows

that if I∗, {Ūi}i∈I, {θi}i∈I∗ , and {yi}i∈I∗ solve (P), there is an equilibrium {Ū , λ, C̄, Θ, Γ} with

the same Ū , C̄ = {Ci}i∈I∗ , where Ci = (yi, . . . , yi), Θ(Ci) = θi, and γi(Ci) = 1. This proves

existence. Proposition 2 shows that in any equilibrium {Ū , λ, C̄, Θ, Γ}, Ūi is the maximum

value of (P-i) for all i ∈ I
∗, and Ūi = 0 otherwise. Lemma 1 shows there is a unique maximum

value Ūi for (P-i) for all i ∈ I∗. This proves that the equilibrium Ū is unique.

Proof of Proposition 4. Consider i = 1. Fix y satisfying η̄v1(y) > k and u1(y) > 0.

Then fix θ > 0 satisfying η(θ)v1(y) = k. These points satisfy the constraints of (P-1) and

deliver utility µ(θ)u1(y) > 0. This proves Ū1 > 0. Now suppose Ūj > 0 for all j < i. We

claim Ūi > 0. Again fix y satisfying η̄vi(y) > k and ui(y) > 0. Then fix θ > 0 satisfying

η(θ)v1(y) ≥ k and µ(θ)uj(y) ≤ Ūj for all j < i; this is feasible since Ūj > 0 and µ(0) = 0.

These points satisfy the constraints of (P-i) and deliver utility µ(θ)ui(y) > 0, which proves
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Ūi > 0. By induction, the proof is complete.

Proof of Result 1. Using η(θ) = µ(θ)/θ, write (P-1) as

Ū1 = max
θ∈[0,∞],(t,x)∈Y

µ(θ)

(

t − x

a1

)

s.t.
µ(θ)

θ
(b1 − t) ≥ k.

By Lemma 1 the constraint is binding, so we can eliminate t and reduce the problem to

Ū1 = max
θ∈[0,∞],x∈[0,b2a2]

µ(θ)

(

b1 −
x

a1

)

− θk.

At the solution, x = 0 and θ = θ1 solves µ′(θ1)b1 = k. Using this to eliminate b1 from the

objective function delivers Ū1, and the constraint delivers t1.

Next, solve (P-2) using the Ū1 derived in the previous step:

Ū2 = max
θ∈[0,∞],(t,x)∈Y

µ(θ)

(

t − x

a2

)

s.t.
µ(θ)

θ
(b2 − t) ≥ k,

and µ(θ)

(

t − x

a1

)

≤
(

µ(θ1)

µ′(θ1)
− θ1

)

k.

Again we can eliminate t. It is easy to see that the second constraint binds, so we can

eliminate x and then check that at the solution x ≥ 0. Thus, the problem reduces to

Ū2 = max
θ∈[0,∞]

[

a1

a2

(

µ(θ1)

µ′(θ1)
− θ1

)

k +

(

1 − a1

a2

)

(µ(θ)b2 − θk)

]

.

Now θ = θ2 solves µ′(θ2)b2 = k, where the concavity of µ implies θ1 < θ2. Substituting into

the objective function gives Ū2. Then the constraints give t2 and x2. Concavity of µ ensures

that µ(θ)/µ′(θ) − θ is increasing in θ, which implies x2 > 0.

Proof of Result 2. Fix x1 ≤ a1(b2 − b1)(1 − π1)/π1. We now construct an equilibrium.

Assume C̄ = {C} where C = {(t + x1/a1, x1), (t, 0)}, and Ū1 = Ū2 = Ū = µ(θ)t, where t

and θ are defined above. Moreover, Θ(C) = θ, γi(C) = πi for i = 1, 2, and λ({C}) = θ. For

any other incentive compatible contract C ′ = {(t′1, x′
1), (t

′
2, x

′
2)} ∈ C, C ′ 6= C, suppose Θ(C ′)

solves

Ū = µ(Θ(C ′))

(

t′1 −
x′

1

a1

)

if this defines Θ(C ′) < ∞; if Ū ≥ µ̄(t′1 − x′
1/a1), Θ(C ′) = ∞. And suppose γ1(C

′) = 1 and

γ2(C
′) = 0 for all such contracts. By construction, profit maximization and free entry hold
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for C, with t chosen so that firms break even.

For any other incentive-compatible C ′ 6= C, profit maximization and free entry reduce to

η(Θ(C ′))(b1 − t′1) ≤ k.

Since η(∞) = 0, this holds if Θ(C ′) = ∞. Otherwise, use Θ(C ′) to eliminate t′1. We need to

show that

µ(Θ(C ′))

(

b1 −
x′

1

a1

)

− Θ(C ′)k ≤ Ū .

An upper bound on the left hand side is obtained setting x′
1 = 0 and choosing Θ(C ′)

to maximize µ′(Θ(C ′))b1 = k. The restriction x1 ≤ a1(b2 − b1)(1 − π1)/π1 implies that

b1 ≤ π1

(

b1 − x1

a1

)

+ π2b2, from which it follows that Θ(C ′) ≤ θ. That is,

µ(Θ(C ′))

(

b1 −
x′

1

a1

)

− Θ(C ′)k ≤
(

µ(Θ(C ′))

µ′(Θ(C ′))
− Θ(C ′)

)

k ≤
(

µ(θ)

µ′(θ)
− θ

)

k = Ū ,

where the first inequality uses the preceding discussion, the second inequality holds because

Θ(C ′) ≤ θ, and the third holds from the construction of Ū .

Next, optimal search holds by construction for type 1. For type 2, we need to verify

Ū ≥ µ(Θ(C ′))

(

t′2 −
x′

2

a2

)

.

To this end, note that t′1 − x′
1/a1 ≥ t′2 − x′

2/a1 ≥ t′2 − x′
2/a2, where the first inequality comes

from incentive compatibility of C ′ and the second from a1 ≥ a2 and x′
2 ≥ 0. This implies

the desired inequality:

µ(Θ(C ′))

(

t′2 −
x′

2

a2

)

≤ µ(Θ(C ′))

(

t′1 −
x′

1

a1

)

= Ū ,

Finally, market clearing holds by construction.

Proof of Result 3. Throughout this proof, we suppose there is an equilibrium character-

ized by the single incentive compatible contract C = {(t1, x1), (t2, x2)}. In the first step we

prove that x2 = 0 and in the second that t1 = t2 + x1/a1.

Step 1: Suppose x2 > 0. Given that γi(C) = πi > 0 for i = 1, 2 and Θ(C) < ∞, optimal

search requires

Ūi = µ(Θ(C))

(

ti −
xi

ai

)

,

for i = 1, 2. Now consider C ′ = {(t2 − x2/a2, 0), (t2 − x2/a2, 0)}. Optimal search by type 2
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requires

µ(Θ(C ′))

(

t2 −
x2

a2

)

≤ Ū2 = µ(Θ(C))

(

t2 −
x2

a2

)

,

which implies that Θ(C ′) ≤ Θ(C). Moreover, notice that

t1 −
x1

a1

≥ t2 −
x2

a1

> t2 −
x2

a2

,

where the first inequality follows from incentive compatibility and the second from a1 > a2

and x2 > 0.

Together with Θ(C ′) ≤ Θ(C), this implies

Ū1 = µ(Θ(C))

(

t1 −
x1

a1

)

> µ(Θ(C ′))

(

t2 −
x2

a2

)

.

Thus, γ1(C
′) = 0. Hence, given that Θ(C ′) ≤ Θ(C) < ∞, γ2(C

′) = 1 and Θ(C ′) = Θ(C).

Then expected profit for a firm posting C ′ is

η(Θ(C ′))

(

b2 − t2 +
x2

a2

)

> η(Θ(C))(π1(b1 − t1) + π2(b2 − t2)) = k.

The first inequality follows from b1 < b2, t1 > t2 − x2/a2 + x1/a1 ≥ t2 − x2/a2, and Θ(C ′) =

Θ(C), while the second follows from the fact that in the proposed equilibrium firms post C

and break even. Hence, C ′ represents a profitable deviation, a contradiction.

Step 2: Incentive compatibility and x2 = 0 imply that t1 − x1/a1 ≥ t2. By way of

contradiction, suppose t1 − x1/a1 > t2. Consider C ′ = {(t2 + x1/a1, x1), (t2, 0)}. Then

µ(Θ(C ′))t2 ≤ Ū2 = µ(Θ(C))t2,

where the first inequality follows from optimal search by type 2 for C ′ and the second from

optimal search for C together with γ2(C) = π2 > 0. This implies that Θ(C ′) ≤ Θ(C). Hence,

Ū1 = µ(Θ(C))

(

t1 −
x1

a1

)

> µ(Θ(C ′))t2,

where the first equality follows from optimal search by type 1 for C and γ1(C) = π1 > 0,

while the second comes from Θ(C ′) ≤ Θ(C) and t1 − x1/a1 > t2. Hence, γ1(C
′) = 0, and,

given that Θ(C ′) ≤ Θ(C) < ∞, γ2(C
′) = 1 and Θ(C ′) = Θ(C). So the expected profit from

C ′ is

η(Θ(C ′)))(b2 − t2) > η(Θ(C))(π1(b1 − t1) + π2(b2 − t2)) = k,
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given that Θ(C ′) = Θ(C) and b2 − t2 > b1 − (t1 − x1/a1) > b1 − t1. Hence C ′ represents a

profitable deviation, a contradiction.

Proof of Result 4. For i ≤ i∗, consider (P-i) without the constraint of keeping out lower

types. This relaxed problem should yield a higher payoff

Ūi ≤ max
θ∈[0,∞],(ce,cu)∈Y

min{θ, 1}
(

piU(ce) + (1 − pi)U(cu)
)

s.t. min{1, θ−1}(pi(1 − ce) − (1 − pi)cu) ≥ k.

At the solution, cu,i = ce,i = ci, so this reduces to

Ūi ≤ max
θ∈[0,∞],c≥c

min{θ, 1}U(c)

s.t. min{1, θ−1}(pi − c) ≥ k.

Either the constraint set is empty (if pi < k + c) or there are no points in the constraint set

that give positive utility (given that pi − k ≤ 0). In any case, this gives Ūi = 0.

Turn next to a typical problem (P-i), i > i∗:

Ūi = max
θ∈[0,∞],(ce,cu)∈Y

min{θ, 1}
(

piU(ce) + (1 − pi)U(cu)
)

s.t. min{1, θ−1}(pi(1 − ce) − (1 − pi)cu) ≥ k

and min{θ, 1}
(

pjU(ce) + (1 − pj)U(cu)
)

≤ Ūj for all j < i.

We claim the solution sets θi ≤ 1 (if θi > 1, reducing θi to 1 relaxes the first constraint

without otherwise affecting the problem). Hence, we can rewrite the problem as

Ūi = max
θ≤1,(ce,cu)∈Y

θ
(

piU(ce) + (1 − pi)U(cu)
)

s.t. pi(1 − ce) − (1 − pi)cu ≥ k

and θ
(

pjU(ce) + (1 − pj)U(cu)
)

≤ Ūj for all j < i.

Lemma 1 ensures the first constraint is binding, which proves pi(1 − ce,i) − (1 − pi)cu,i = k.

It remains to prove that θi = 1, ce,i > ce,i−1, cu,i < cu,i−1, and the constraint for j = i − 1

binds.

We start by establishing these claims for i = i∗ + 1. In this case, ce,i = cu,i = 0 satisfies

the constraints but leaves the first one slack. Lemma 1 implies that it is possible to do better,

which proves Ūi > 0. On the other hand, consider any (ce,i, cu,i) that delivers positive utility
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and satisfies the last constraint, so

piU(ce,i) + (1 − pi)U(cu,i) > 0 and pjU(ce,i) + (1 − pj)U(cu,i) ≤ 0

for all j < i. Subtracting inequalities gives

(pi − pj)(U(ce,i) − U(cu,i)) > 0,

which proves ce,i > cu,i. Now if ce,i > cu,i ≥ 0, pjU(ce,i) + (1 − pj)U(cu,i) > 0, so this is

infeasible. If 0 ≥ ce,i > cu,i, piU(ce,i)+ (1−pi)U(cu,i) < 0, so this is suboptimal. This proves

ce,i > 0 > cu,i when i = i∗ + 1. Finally, since pjU(ce,i) + (1 − pj)U(cu,i) ≤ 0 for all j < i,

setting θi = 1 raises the value of the objective function without affecting the constraints and

so is optimal.

We now proceed by induction. Fix i > i∗+1 and assume that for all j ∈ {i∗+1, . . . , i−1},
we have ce,j > ce,j−1, cu,j < cu,j−1, θj = 1, and

pj−1U(ce,j) + (1 − pj−1)U(cu,j) = pj−1U(ce,j−1) + (1 − pj−1)U(cu,j−1) = Ūj−1.

We establish the result for i. Setting ce,i = ce,i−1, cu,i = cu,i−1, and θi = 1 satisfies the

constraints in (P-i). Since it leaves the first constraint slack, Lemma 1 implies it is possible

to do better. Thus

θi

(

piU(ce,i) + (1 − pi)U(cu,i)
)

> piU(ce,i−1) + (1 − pi)U(cu,i−1).

On the other hand, incentive compatibility implies,

θi

(

pi−1U(ce,i) + (1 − pi−1)U(cu,i)
)

≤ Ūi−1 = pi−1U(ce,i−1) + (1 − pi−1)U(cu,i−1).

Subtracting inequalities gives (pi − pi−1)
(

θiU(ce,i) − U(ce,i−1) − θiU(cu,i) + U(cu,i−1)
)

>

0. Using pi > pi−1, this implies θiU(ce,i) − U(ce,i−1) > θiU(cu,i) − U(cu,i−1). As before,

we can rule out the possibility that θiU(cu,i) ≥ U(cu,i−1), because this is infeasible. We

can rule out the possibility that θiU(ce,i) ≤ U(ce,i−1), because this is suboptimal. Hence

θiU(ce,i) − U(ce,i−1) > 0 > θiU(cu,i) − U(cu,i−1). Now since U(ce,i−1) > 0 and θi ∈ [0, 1],

the first inequality implies ce,i > ce,i−1. Since U(cu,i−1) < 0, the second inequality implies

cu,i < cu,i−1.

Next suppose θi < 1 and consider the following variation: raise θi to 1 and increase ce

and reduce cu while keeping both θ
(

piU(ce)+(1−pi)U(cu)
)

and pice +(1−pi)cu unchanged;
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i.e. set ce > ce,i and cu < cu,i so that

θi

(

piU(ce,i) + (1 − pi)U(cu,i)
)

= piU(ce) + (1 − pi)U(cu)

and pice,i + (1 − pi)cu,i = pice + (1 − pi)cu.

For all j < i, (pj − pi)
(

θiU(ce,i)− U(ce) + U(cu) − θiU(cu,i)
)

> 0 since pj < pi, 0 < ce,i < ce,

cu < cu,i < 0, and θi < 1. Add this to θi

(

piU(ce,i)+(1−pi)U(cu,i)
)

= piU(ce)+(1−pi)U(cu) to

obtain θi(pjU(ce,i)+(1−pj)U(cu,i)) > pjU(cu)+(1−pj)U(ce). This implies the perturbation

relaxes the remaining constraints and so is feasible. This proves θi = 1.

Finally, we prove that the constraints for j < i − 1 are slack. If not then

pjU(ce,i) + (1 − pj)U(cu,i) = Ūj ≥ pjU(ce,i−1) + (1 − pj)U(cu,i−1),

where the inequality uses the constraints in problem (P-(i − 1)). On the other hand,

pi−1U(ce,i) + (1 − pi−1)U(cu,i) ≤ Ūi−1 = pi−1U(ce,i−1) + (1 − pi−1)U(cu,i−1),

where the inequality is a constraint in (P-i) and the equality is the definition of Ūi−1. Sub-

tracting these equations, (pi−1 − pj)
(

U(ce,i−1) − U(ce,i) + U(cu,i) − U(cu,i−1)
)

≥ 0. Since

pi−1 > pj , ce,i > ce,i−1, and cu,i < cu,i−1, we have a contradiction. The constraints for all

j < i−1 are slack, while the constraint for i−1 binds, otherwise the solution to (P-i) would

have ce,i = cu,i = pi − k.

Proof of Result 5. Write (P-1) as

Ū1 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(

t − αaS
1

)

s.t. min{1, θ−1}
(

αaB
1 − t

)

≥ k.

By Lemma 1 we can rewrite the problem as

Ū1 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(

aB
1 − aS

1

)

− θk.

Since aB
1 > aS

1 + k, it is optimal to set α = θ = 1. It follows that Ū1 = aB
1 − aS

1 − k.

33



Now consider (P-2)

Ū2 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(

t − αaS
2

)

s.t. min{1, θ−1}
(

αaB
2 − t

)

≥ k

min{θ, 1}
(

t − αaS
1

)

≤ aB
1 − aS

1 − k.

Again, we can eliminate t using the first constraint to write

Ū2 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(

aB
2 − aS

2

)

− θk

s.t. min{θ, 1}α
(

aB
2 − aS

1

)

− θk = aB
1 − aS

1 − k.

Then use the last constraint to eliminate α and write

Ū2 = max
θ∈[0,∞]

aB
1 − aS

1 − (1 − θ)k

aB
2 − aS

1

(

aB
2 − aS

2

)

− θk

s.t.
aB

1 − aS
1 − (1 − θ)k

min{θ, 1}(aB
2 − aS

1 )
∈ [0, 1],

where the constraint here ensures that α is a probability. Since aS
1 < aS

2 < aB
2 , the objective

function is decreasing in θ, and we set it to the smallest value consistent with the constraints:

θ2 =
aB

1 − aS
1 − k

aB
2 − aS

1 − k
< 1.

This implies α2 = 1, so the constraint binds. Then Ū2 is easy to compute.

Proof of Result 6. Write problem (P-1) as

Ū1 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(

t − αaS
1

)

s.t. min{1, θ−1}
(

αaB
1 − t

)

≥ k.

Again we can eliminate t and rewrite this as

Ū1 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(

aB
1 − aS

1

)

− θk.

Since aB
1 ≤ aS

1 + k, Ū1 = 0, which is attained by θ = 0.
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Now consider (P-2):

Ū2 = max
θ∈[0,∞],(α,t)∈Y

min{θ, 1}
(

t − αaS
2

)

s.t. min{1, θ−1}
(

αaB
2 − t

)

≥ k

min{θ, 1}
(

t − αaS
1

)

≤ 0.

Eliminating t using the first constraint gives

Ū2 = max
θ∈[0,∞],α∈[0,1]

min{θ, 1}α
(

aB
2 − aS

2

)

− θk

s.t. min{θ, 1}α
(

aB
2 − aS

1

)

− θk = 0.

Eliminating α using the last constraint gives

Ū2 = max
θ∈[0,∞]

aS
1 − aS

2

aB
2 − aS

1

θk

s.t.
θk

min{θ, 1}(aB
2 − aS

1 )
∈ [0, 1].

Since aB
2 > aS

2 > aS
1 , the fraction in the objective function is negative. Hence θ = 0 and

Ū2 = 0.
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