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What istherisk of stock market crashes? Answering this question is complicated by two features
of stock market returns. the fact that conditional volatility evolves over time, and the fat-tailed
nature of daily stock market returns. Each issue affects the other. What we identify as outliers
depends upon that day’ s assessment of conditional volatility. Conversely, our estimates of current
volatility from past returns can be disproportionately affected by outliers such as the 1987 crash.
In standard GARCH specifications, for instance, a 10% daily change in the stock market has 100

times the impact on conditional variance revisions of amore typical 1% move.

This paper explores whether recently proposed continuous-time specifications of time-
changed L évy processes are a useful way to capture the twin properties of stochastic volatility and
fat tails. The use of Lévy processes to capture outliers dates back at least to Mandelbrot’s (1963)
use of the stable Paretian distribution, and there have been many specifications proposed; e.g.,
Merton’ s(1976) jump-diffusion, Madan and Seneta’ s(1990) variance gamma; Eberlein, Keller and
Prause’ s (1998) hyperbolic Lévy; and Carr, Madan, Geman and Y or’s (2002) CGMY process. As
all of these distributions assume identical and independently distributed returns, however, they are

unable to capture stochastic volatility.

Morerecently, Carr, Geman, Madan and Y or (2003) and Carr and Wu (2004) have proposed
combining Lévy processes with a subordinated time process. The idea of randomizing time dates
back to at least to Clark (1973). Itsappeal in conjunctionwith Lévy processesreflectstheincreasing
focus in finance — especially in option pricing — on representing probability distributions by their
associated characteristic functions. Lévy processes havelog characteristic functionsthat are linear
intime. If thetimerandomization dependson underlying variablesthat have an analytic conditional
characteristic function, the resulting conditional characteristic function of time-changed Lévy
processesisalsoanalytic. Conditional probability densities, distributions, and option pricescanthen
be numerically computed by Fourier inversion of simplefunctional transformsof thischaracteristic

function.

Thus far, empirical research on the relevance of time-changed Lévy processes for stock

market returns has largely been limited to the special cases of time-changed versions of Brownian
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motion and Merton’s (1976) jump-diffusion. Furthermore, there has been virtually no estimation
of newly proposed time-changed L évy processes solely from time seriesdata.' Papers such as Carr
et al (2003) and Carr and Wu (2004) have relied on option pricing evidence to provide empirical
support for their approach, rather than providing direct time seriesevidence. Therelianceon options
datais understandable. Since the state variables driving the time randomization are not directly
observable, time-changed Lévy processes are hidden Markov models — a challenging problem in
time series econometrics. Using option prices potentially identifiesrealizations of those latent state
variables, converting the estimation problem into the substantially more tractable problem of

estimating state space models with observable state variables.

Whileoptions-influenced parameter and state variabl e estimates shoul d beinformative under
the hypothesis of correct model specification, the objective of the paper isto provide estimates of
crash risk based solely upon time series analysis. Such estimates are of interest in their own right,
and can exploit alonger history of extreme stock market movements than can studies constrained
by the availability of optionsdataonly sincethe1980’s. For instance, the -20% stock market crash
of October 19, 1987 wasthe only daily stock market movement over 1945-2006 to exceed 10% in
magnitude, whereas there were seven such movements over 1929-32. Furthermore, time-series
based estimates can berelevant even for testing option pricing hypotheses. For instance, it hasbeen
asserted that deep OTM index put options appear overpriced, based on their surprisingly large
negative returns since the ‘87 crash. But all such testsrequire reliable estimates of downside risk;
and it can be difficult to establish whether puts are indeed overpriced based only on the limited
amount of datasincethe 1987 crash.? Time seriesestimates can exploit alonger history of downside
risk, and can be used to generate estimates of option prices that can be compared with observed

option prices.

Li, Wells and Yu (2008) use MCMC methods to estimate some models in which Lévy
shocks are added to various stochastic volatility models. However, the additional L évy shocks are
i.i.d., rather than time-changed.

?See Broadie, Chernov, and Johannes (2006) for aMonte Carlo study of unhedged 1-month
excessreturnsfor putson S& P 500 futures over August 1987 to June 2005. They find excessreturn
estimates often lack statistical significance, especially when volatility is stochastic.
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This paper provides direct time series estimates of some proposed time-changed Lévy
processes, using the Bates (2006) approximate maximum likelihood (AML) methodology. AML is
a filtration methodology that recursively updates conditional characteristic functions of latent
variables over time given observed data. Filtered estimates of the latent variables are directly
provided as a by-product, given the close link between moments and characteristic functions. The
paper primarily focuses on the time-changed CGMY process, which nests various other processes
as specia cases. The approach will aso be compared to the time-changed jump-diffusions
previously estimated in Bates (2006).

A concernwith any extended data set isthe possibility that the data generating process may
not be stable over time. Indeed, this paper identifies a major instability in the autocorrelation of
daily stock market returns. Autocorrelation estimates appear to be nonstationary, and peaked at the
extraordinarily high level of 35% in 1971, before trending downwards to the near-zero values
observed since the 1980's. Theinstability is addressed directly, by treating the autocorrelation as
another latent state variable to be estimated from observed stock market returns. The paper also
findsapparent instabilitiesor specificationissuesinthe 1-factor volatility processused, and explores

the implications for volatility filtration and option pricing.

Overall, the time-changed CGMY process is found to be a slightly more parsimonious
alternative to the Bates (2006) approach of using finite-activity stochastic-intensity jumps drawn
from amixture of normals, although the fits of the two approaches are not dramatically different.
Interestingly, one cannot reject the hypothesis that stock market crash risk is adequately captured
by atime-changed version of the Carr-Wu (2003) log-stable process. That model’ simplicationsfor
upsiderisk, however, are strongly rejected, with the model severely underpredicting the frequency

of large positive outliers.

Section | of the paper progressively builds up the time series model used in estimation.
Section 1.1 discusses basic Lévy processes and describes the processes considered in this paper.
Section 1.2 discusses time changes and the equivalence with stochastic volatility. Section 1.3
contains further modifications of the model to capture leverage effects, time-varying
autocorrelations, and day-of-the-week effects. Section 1.4 describes how the model is estimated,
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using the Bates (2006) AML estimation methodology for hidden Markov models.

Section Il describes the data on excess stock market returns over 1926-2006, and presents
parameter estimates, diagnostics, and and filtered estimates of |atent autocorrelation and volatility.

Section |11 examines option pricing implications, while Section IV concludes.

|. Time-changed L évy processes

|.1 L évy processes

A Lévy process L(7) isaninfinitely divisible stochastic process; i.e., one that has independent and
identically distributed increments over non-overlapping time intervals of equal length. The Lévy
processes most commonly used in finance have been Brownian motion and the jump-diffusion
process of Merton (1976), but there are many others. All Lévy processes without a Brownian
motion component are pure jump processes. Such processes are characterized by their Lévy density
k(x), which gives the intensity (or frequency) of jumps of size x. Alternatively and equivalently,

L évy processes can be described by their generalized Fourier transform

F(u) = Ee*™® = exp[tf,(u)], u € D, c C (1)

where u is a complex-valued element of the set D, for which (1) is well-defined. If @ isred,
F(i®)isthe characteristic function of L(¢), while £, (®) isthe cumulant generating function of
L(). Its linearity in time follows from the fact that Lévy processes have i.i.d. increments.
Following Wu (2006), the function £, () will be called the cumulant exponent of L(7) .°

The Lévy-Khintchine formula gives the mapping between jump intensities k(x) and the
cumulant exponent for arbitrary » € D, . Lévy processesin finance are typically specified for the
log asset price, and then exponentiated: S(f) = exp[L(#)]. For such specifications, itisconvenient
to write the L évy-Khintchine formulain the form

= ol -u(e*-1 dx,
fa@ =up + [ e u(e* - 1)1k(x) @

where p = £, (1) isthe continuously-compounded expected return on the asset:

*Carretal (2003) call £, (i®@) the“ unittimelog characteristicfunction.” Bertoin (1996) uses
the characteristic exponent, which takes the form ¥(®) = -f, (i®).



ES(t) = Eel® = e at = gut (3)

Pure-jump Lévy processes can be thought of asadrift term plusaninfinitesum L(¢) = [L (f) dx of

independent point processes, each drift-adjusted to make exp[L ()] amartingale:
dL. = xdN_ - (e* - 1)k(x)dt, (4)

where N_ is an integer-valued Poisson counter with intensity k(x) that counts the occurrence of
jumpsof fixed sizex. Thelog characteristic function of asum of independent point processesisthe
sum of the log characteristic functions of the point processes, yielding equation (2). Exponential
martingale processes of theform L(#) = [L (¢) dx for L definedin (4) will betermed compensated

Lévy processes, as will also diffusions of the form oW, - Yho?t.

Asdiscussed in Carr et a (2002), Lévy processes are finite-activity if fk(x)dx < o, and
infinite-activity otherwise. Finite-activity jumpsimply thereisanon-zero probability that no jumps
will be observed within a given time interval. Lévy processes are finite-variation if
f x| k(x)dx < o, and infinite-variation otherwise. An infinite-variation process has sample paths
of infinite length — a property also of Brownian motion. All Lévy processes must have finite
fmin(xz, 1) k(x)dx , in order to be well-behaved, but need not have finite variance fx2 k(x)dx —
the stabl e distribution being an counterexample. A priori, al financial pricesmust befinite-activity
processes, since price changes reflect afinite (but large) number of market transactions. However,
finite-activity processescan bewell approximated by infinite-activity processes, andviceversa; e.g.,
the Cox, Ross and Rubinstein (1979) finite-activity binomial approximation to Brownian motion.
Activity and variation will therefore be treated as empirical specification issues concerned with
identifying which functional form k(x) for jump intensities best fits daily stock market excess

returns.

| will consider two particular underlying Lévy processes for log asset prices. Thefirstis

Merton (1976)’ scombination of aBrownian motion plusfinite-activity normally distributed jumps:

dinS, = pdt + (cdW, - 20*dt) + (ydN, - Akdr) (5)

where W, isaWiener process,
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N, is aPoisson counter with intensity 4,
Y ~ My, 8% isthe normally distributed jump conditional upon ajump occurring, and
k=e?*% _ 1 isthe expected percentage jump size conditional upon ajump.

The associated intensity of jumps of sizex is

I S I 2%
k) = — o<1 (6)

while the cumulant exponent takes the form
Frtorion®@ = B + 20> ? -u) + Ale™ s _ uk).

The approach can be generalized to allow alternate distributions for y—in particular, a mixture of

normals:

A, :
k(x) = E exp|- . ©)

Second, | will consider the generalized CGMY process of Carr, Madan, Geman and Y or
(2003), which has a L évy density of the form

C e CM |x|_1_Y" for x <0
k(x) = )

Cpe'M|"| x| for x > 0
where C,, Cp, G, M>0and Y,Y, < 2. The associated cumulant exponent is
Y

G- - G™ (O’ - M
Y,(Y,-1)G"? Y, (Y, - )M

fCGMy(u) = (L-w)u + an 9
where o isamean-normalizing constant determined by f,» (1) = |;

V isthe variance per unit time, and

w,, isthe fraction of variance attributable to the downward-jump component.

The corresponding intensity parameters C,, Cp in(8) are



w,V 1-w)V
C" - Y-2° CP - Y-2 (10)
I'e - Y)G" I'e - Yp)M 4

where I'(z) isthe gammafunction.

Asdiscussedin Carr et al (2002), the Y parametersarekey in controlling jump activity near
0, inadditionto their influence over tail events. The process hasfiniteactivity for Y,Y, <0, finite
variation for Y, Y, <1, but infinite activity or variation if min(Y,, ¥,) isgreater or equal to O or
1, respectively. The model conveniently nests many models considered elsewhere. For instance,
Y, =Y, =-1 Is the finite-activity double exponential jump model of Kou (2002), while
Y, =Y, =0 includes the variance gamma model of Madan and Seneta (1990). As Y, and Y,
approach 2, the CGMY process convergesto a diffusion, and the cumulant exponent converges to

the corresponding quadratic form

Jear @) = pu + VBV (u? - u). (11)

As G and M approach O (for arbitrary Y,Y, and fixed C,, Cp), the Lévy density (8)
approachestheinfinite-variancelog stable process advocated by Mandel brot (1963), with a* power
law” property for asymptotic tail probabilities. The log-stable special case proposed by Carr and
Wu (2003) isthe limiting case with only negativejumps(Cp = 0). Whileinfinite-variancefor log
returns, percentage returns have finite mean and variance under the log-stable specification. For
daily stock market returns of less than 25% in magnitude, the log-stable process is well
approximated by a finite-variance CGMY process with minimal exponential dampening; e.g.,
G =.001.

The cumulant exponent of any finite-variance Lévy process can written in the form
Ju W) = Vg, u) (12)
where V' = sz(O) is variance per unit time and g, («) is a standardized cumulant exponent with

unitary variance. One can also combine Lévy processes, to nest alternative specificationswithin a

broader specification. Any linear combination w, k,(x) + w,k,(x) of Lévy densitiesfor nonnegative
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weights that sum to one is also avalid Lévy density, and generates an associated standardized
weighted cumulant exponent of the form w, g,(u) + w,g,(«), where g,(u) is the standardized
cumulant exponent associated with k(x) for i = 1,2. The various g, («) specifications that will

be considered in this paper are listed in Table 1.

|.2 Time-changed L évy processes and stochastic volatility

Time-changed Lévy processes generate stochastic volatility by randomizing time in equation (1).
Since the log transform (1) can be written as InF(u) = g, (1) V¢, randomizing time is funda-
mentally equivalent to randomizing variance. As the connection between time changes and
stochastic volatility becomeslesstransparent once*leverage” effectsareadded, | will useanexplicit

stochastic volatility (or stochastic intensity) representation of stochastic processes.

The leverage effect, or correlation between asset returns and conditional variance
innovations, is captured by directly specifying shocks common to both. | will initially assume that
the log asset price s, = InS, follows a process of the form

ds, = (W + |, V,)dt + (pw\/thWt - %pithdt) +dL,
(13)
dv, = (a -BV)dt + o,[V,dw,
The log increment ds, consists of the continuously-compounded return, plus increments to two
exponential martingales. dW, isaWiener increment, while dL, istheincrement to acompensated
Lévy process, with finite instantaneous variance (1 - piv) V. dt. Further refinementswill be added

below, to match properties of stock market returns more closely.

This specification has various features or implicit assumptions. First, the approach allows
considerable flexibility regarding the distribution of the instantaneous shock dL, to asset returns,
which can be Wiener, compound Poisson, or any other fat-tailed distribution. Three underlying
L évy processes are considered:

1) asecond diffusion with variance (1 - pf,v) V, that isindependent of W, (Heston, 1993);
2) finite-activity jumps drawn from anormal distribution or a mixture of normals; and
3) the generalized CGMY (2003) Lévy process from (8) above.

Combinations of these processes will also be considered, to nest the alternatives.
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Second, the specification assumesasingleunderlying variancestatevariable 7, that follows
an affine diffusion, and which directly determines the variance of diffusion and jump components.
This approach generalizes the stochastic jump intensity model of Bates (2000, 2006) to arbitrary

Lévy processes.

Two alternate specificationsarenot considered, for different reasons. First, | do not consider
the approach of Li, Wells and Y u (2008), who model log-differenced asset prices as the sum of a
Heston (1993) stochastic volatility process and a constant-intensity fat-tailed Lévy process that
capturesoutliers. Bates (2006, Table 7) found the stochastic-intensity jump model fits S& P returns
better than the constant-intensity specification, when jumps are drawn from afinite-activity normal
distribution or mixtureof normals. Second, thediffusionassumptionfor ¥, rulesout volatility-jump
models, such as the exponentia-jump model proposed by Duffie, Pan and Singleton (2000) and
estimated by Eraker, Johannes and Polson (2003). Estimation on simulated data indicates that the
AML filtration methodology described below has difficulty identifying whether there are jumpsin

an underlying conditional variance state variable that is not directly observed.

Define y, = g ds, asthediscrete-timereturn observed over horizon © = T-¢, and define
Su@) = (1- piv) v, gr;(u) as the cumulant exponent of dL, conditional upon knowing 7,. By
construction, g () isastandardized cumulant exponent, with g ,(1) = 0 andvariance géz(O) =1.
A key property of affine models is the ability to compute the conditional generalized Fourier
transform of (y,, ¥;). This can be done by iterated expectations, conditioning initially on the

future variance path:

F(®, ¢ |V, = E(e‘I’yT+1|JVT|I/t)

2
{E{ Dyt + fr:@[(ul = Yap )V, dr +pg, [V, AW, + dL,] + YV,
e -

_E |{V,},L]| V,}

14
Dpgr+ [T [ @ + (@ - ©) + (1 - 0@ o + ¥y } (14)
t

E

e

e

Ddp,t + h(@)fr:Vrdr + wVT| v }
t

for h(®@) = p,®@ + %p>, (B - @) + (1 - p2)g,,(®). Thisisthe generalized Fourier transform of

thefuturespot variance ¥, andtheaveragefuturevariance 7, , = = r V.dr.Thisisawell-known

TJr=t
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problem (see, e.g., Bakshi and Madan, 2000), with an analytic solution if ¥, follows an affine
process. For the affine diffusion above, F(s |V,, t) solves the Feynman-Kac partial differential

equation
-F_ + (@ -BV)F, + %0*VF,, = -[®u, + H(B)V,]F (15)
subject to the boundary condition F(®, ¢ |V, 0) = exp(¢V). Thesolutionis
F(®,¥|V,,7) = exp[C(1; ®,¥) + D(v; ®,¥)7,] (16)

where

C(t; ®, 0, &) = p, &t - %(pwoé—ﬁ—v)

T (17)
29 11+ hpo@-p-y) L€ | - 2% m[1 - K@)y]
o’ Y o?
+p? 2 _ + - p?
D(c: ®, . E) - 2p, @ psvf D) +2(1 - p5)8a(®) | 1A(§))q>¢ .
e+1+B‘Pw°@ - K@)y (18)
e’" -1
Y = {(@,0® - B)? - 20%[u,® + %p,, (B2 - @) + (1 - p}) g, (®)] (19)
- 2
=
A@) - et -1 . (20)
e’™+1  B-pod
[e”—l Y ]
K@ - — &
el 5 oo (21)
e’ -1

The specifications of g, () considered in this paper are listed abovein Table 1.

|.3 Autocorrelations and other refinements
That stock indexes do not follow a random walk was recognized explicitly by Lo and MacKinlay

(1988), and implicitly by earlier practices in variance and covariance estimation designed to cope
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with autocorrelated returns; e.g., Dimson (1979)’s lead/lag approach to beta estimation. The
positiveautocorrel ationstypically estimated for stock index returnsarecommonly attributed to stale
pricesin the stocks underlying theindex. A standard practiceintime seriesanaysisisto pre-filter
the data by fitting an ARMA specification; see, e.g., Jukivuolle (1995). Andersen, Benzoni and
Lund (2002), for instance, useasimple MA (1) specification to remove autocorrel ationsin S& P 500
returns over 1953-96; a data set subsequently used by Bates (2006).

Prefiltering the datawas considered unappealing in thisstudy, for several reasons. First, the
1926-2006 interval used here is long, with considerable variation over time in market trading
activity and transactions costs, and structural shifts in the data generating process are probable.
Indeed, Andersen et al (2002, Table 1) find autocorrel ation estimatesfromtheir full 1953-96 sample
diverge from estimates for a 1980-96 subsample. Second, ARMA packages use a mean squared
error criterion that is not robust to the fat tails observed in stock market returns.  Finally, explicit
consideration of autocorrelation is needed when assessing the variance of relevance to option

pricing.

Consequently, autocorrel ationsweretreated as an additional latent variable, to be estimated
as part of the overal time series model. | will explore below two aternate models for daily log-

differenced stock index excessreturns y,:

yt+1 = ptyt + nt+1 (Model 1) (22)
or
Vit = Py, + (1-p)N,,; (Model 2) (23)
where
t+‘E'

nt+1 = /;=t dSr
Via = Vi ¥ t”'dVr (24)

r=t

Pt = P * €.y &, ~ NO,0,) and iid.

1, is the effective length of a business day,p, determines is the daily autocorrelation, ds, is the
instantaneous intradaily underlying shock to log asset prices, and V,dt = Var,(ds,) is the

instantaneous conditional varianceof ds,. Theintradaily shocks (ds,, dV,) aregivenby (13) above.
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Both models add an autocorrelation state variable p, that captures the fact that auto-
correlations of stock market returns are not constant over time.* Following the literature on time-
varying coefficient models, the autocorrelation is modeled as a simple random walk, to avoid
constraining estimatesof p,. Estimation of theautocorrelation volatility parameter o, endogenously
determines the appropriate degree of smoothing to use when filtering the current autocorrelation

value p, from past data.

The two models differ in ease of use, in their implications for the interaction between
volatility and autocorrelation, and in the pricing of risks. Model 1 assumesthe stock market excess
returnresidua m,,, = y,,, - p,y, isstationary (i.e., with astationary conditional variance process),
andthat the current value of p, affectsonly the conditional meanof y,,,. Autocorrelation filtration
in the model is consequently closer to standard autocorrel ation estimation, and becomes identical
when 7, isi.i.d. Gaussian and the autocorrel ation is constant (op =0). Model 1isalso somewhat
more convenient for estimation, inthat it hasa® semi-affine” structurethat can bedirectly estimated
using the methodol ogy of Bates (2006).

In Model 2, n,,,isthe permanent impact of daily shocks to stock index excess returns, and
is again assumed stationary. The model assumes that infrequent trading in the component stocks
(proxied by p,) slows the incorporation of such shocksinto the observed stock index, but that the
index ultimately respondsfully once all stocks havetraded.”> Unlike Model 1, Model 2 isconsistent
with LeBaron’s (1992) observation that annual estimates of daily stock market volatility and
autocorrelation appear inversely related. Higher autocorrelations smooth shocks across periods,
reducing observed market volatility. Furthermore, the model is more suitable for pricing risks; i.e.,
identifying the equity premium, or the (affine) risk-neutral process underlying option prices. The

current value of p, affects both the conditional mean and higher moments of y,,,, resulting in a

‘See, eg., Andersen, Benzoni and Lund (2002, Table 1), who estimate different
autocorrelations for 1953-96 and 1980-96.

>Jukivuolle (1995) distinguishesbetweenthe“ observed” and “true” stock index whentrading
isinfrequent, and proposes using astandard Beveridge-Nel son decomposition to identify the latter.
This paper differsin assuming that the parameters of the ARIMA process for the observed stock
index are not constant.
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significantly different filtration procedure for estimating p, from past excess returns. The time
series model is not semi-affine, but | develop below a transformation of variables that makes
filtration and estimation as tractable as for Model 1.

Both model s build upon previous time series and market microstructure research into stock
market returns. For instance, the effectivelength <, of abusinessday isallowed to vary based upon
various periodic effects. In particular, day-of-the-week effects, weekends, and holidays are
accommodated by estimated time dummiesthat allow day-specific variationin t,. Inaddition, time
dummies were estimated for the Saturday morning trading available over 1926-52, and for the
Wednesday exchange holidays in the second half of 1968 that are the focus of French and Roall
(1986).° Finally, the stock market closings during the “Bank Holiday” of March 3-15, 1933 and
following the September 11, 2001 attacks were treated as % and 3—25-year returns, respectively.

Treating the 1933 Bank Holiday as a 12-day interval substantially reduces the influence of its

+15.5% return on parameter estimation. September 17, 2001 saw a smaller movement, of -4.7%.

For Model 1, the cumulant generating function of future returns and state variable

realizations conditional upon current valuesis analytic, and of the semi-affine form

EI:e (I)yt+1 + 5pt+1 + ‘IJ Vt+1

111 yta pta I/t]
Cr; @,8¢) + E+@y)p, + D(z,; D, W)V,

InF(®,8, ¥ |y, p,V,) (25)

where C(t; €, @, §) = C(t; @, ¢) + %oi?, and C(t; @, ¥) and D(t; ®, §) aregivenin (17) and

(18) above. For model 2, the conditional cumulant generating function is of the non-affine form

nF(®,E W |y, p,, V) = Clt;(1-p)D,E W) + (€ +®y)p, + Dz, (1-p)D, ¥)V,, (26)

given the shocksto y,,, arescaled by (1-p,).’

®Gallant, Rossi and Tauchen (1992) use a similar approach, and also estimate monthly
seasonals.

"Dilip Madaninformsmethat practiti onersdisti nguish between time-scal ed and space-scaled
models of time-varying volatility. GARCH models aretypically space-scaled, whereasModel 1is
atime-scaled model of stochastic volatility. Model 2 contains both (stationary) time scaling via ¥,
and the time dummies, and (non-stationary) space scalingvia 1 - p,.
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|.4 Filtration and maximum likelihood estimation

If the state variables (p,, V,) were observed along with returns, it would in principle be possible to
evaluatethejoint transition densitiesof thedataand the state variable evolution by Fourier inversion
of thejoint conditional characteristicfunction F(i®, i, iy | y,, p,, V,) , andtousethisinamaximum
likelihood procedure to estimate the parameters of the stochastic process. However, since (p,, ¥,)
are latent rather than directly observed, thisis a hidden Markov model that must be estimated by

other means.

For Model 1, the assumption that the cumulant generating function (25) isaffineinthelatent
state variables (p,, ¥,) impliesthat the hidden Markov model can be filtered and estimated using
the approximate maximum likelihood (AML) methodology of Bates (2006). The AML procedure
is afiltration methodology that recursively updates the conditional characteristic functions of the
latent variables and future data conditional upon the latest datum. Define ¥, = {y,, »,,..., y,}as
the data observed up through period t, and define

Gt|t(iEa i) = E{eiEPtJrin | Yt] (27)

as the joint conditional characteristic function that summarizes what is known at time t about
(p,» V,). The density of the observation y,,, conditional upon ¥, can be computed by Fourier

inversion of its conditional characteristic function:

1 = . . C(x,; i®,0,0) - i®y,,
p(yt+1 | Yt) = Ef_ Gt|t[l¢yt> D(Tt; l@) O) ] e (t ) Y 'dd. (28)

Conversely, the joint conditional characteristic function Gt+1|t+1(i5, i) needed for the next

observation can be updated given y,,, by the characteristic-function equivalent of Bayes' rule:

. 1 = . T s T, i, &, i) - i@y,
G,y jyniCE, i) = ) [ Gy liE+ i®y,, D(; i@, )] e “Cr B E 0 4 o)

2np(y,,1Y,

The agorithm begins with an initial joint characteristic function Gm(-) and proceeds
recursively through the entire data set, generating thelog likelihood function X In p(y,,,|¥,) used
in maximum likelihood estimation. Filtered estimates of the latent variables can be computed from

derivativesof thejoint conditional moment generating function, as can higher conditional moments:
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am+nGt+1|t+1(E’ IIJ)‘
FE" AW |y o

Elpiy Vi 1Y = (30)

The above procedure, if implementable, would permit exact maximum likelihood function
estimation of parameters. However, the procedure would require storing and updating the entire
function Gt|t(-) based on point-by-point univariate numerical integrations. As such a procedure
would be slow, the AML methodology instead approximates Gt| () at each point in time by a
moment-matching joint characteristic function, and updates the approximation based upon updated
estimates of the moments of the latent variables. Given an approximate prior ét| () and adatum
¥,.1» (30) is used to compute the posterior moments of (p,,,, V,,,), which are then used to create
an approximate Gt+1| ++1()- The overall procedure is analogous to the Kalman filtration procedure
of updating conditional meansand variances of latent variables based upon observed data, under the
assumption that those variables and the data have a conditional normal distribution. However, the
equations (29) and (30) identify the optimal nonlinear moment updating rules for a given prior
G, ("), whereas standard Kalman filtration uses linear rules. It will be shown below that this
modification in filtration rules isimportant when estimating latent autocorrelations and variances
under fat-tailed L évy processes. Furthermore, Bates (2006) provesthat theiterative AML filtration
isnumerically stable, and showsthat it performs well in estimating parameters and latent variable

realizations.

Autocorrel ations can be negative or positive, while conditional variance must be positive.
Consequently, different two-parameter distributions were used to summarize conditional
distributions of the two latent variables: Gaussian for autocorrelations, gamma for variances.
Furthermore, sincevolatility estimates mean-revert within monthswhereasautocorrel ation estimates
evolveover years, realizations of thetwo latent variableswere assumed conditionally independent.

These assumptions resulted in an approximate conditional characteristic function of the form
InG,,E ¥) = [pE + VW, &1 - v,In(1 -x¥). (31)

The following summarizes key features of joint conditional distributions of the latent variables.
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Autocorrelation p, spot variance ¥,
Distribution P \Y, ~ N, > Wy,) VY, ~ t|,,Pt|t)
conditional lnE[eEp'|Yt] =pyE+% W, E lnE{ e |Y] -v,In(1 - %, )
cumulant kv, = A
generating function fe T o St
2

initial CGF p, ¥, ~ N(O, 10) k=2, v -2

2 o’

p,» V, | ¥, assumed independent for all t.

Initial variance was assumed drawn from its unconditional gamma distribution, with the
parameters (x;, v,) given above. Since autocorrelations were assumed nonstationary, no
unconditional distributionexists. Consequently, the AML algorithmfor Model 1 wasinitiated using
arelatively diffuse conditional distribution for theinitial autocorrelation —one much wider thanthe

plausible (-1, +1) range.

Theparameters 6, = (p,,, W, k,, v,) —or, equivalently themoments (p, ,, W,,,; Vt|t, P,)
— summarize what is known about the Iatent variables. These were updated daily using the latest
observation y,,; and equations (29) - (30). For each day, 5 univariate integrations were required:
1for thedensity evauationin (29), and 4 for themean and varianceeval uationsin (30). Anupper @
was computed for each integral which upper truncation error would belessthan 1071 in magnitude.
The integrands were then integrated over (-® .., ® . ) to a relative accuracy of 107, using
IMSL’s adaptive Gauss-Legendre quadrature routine DQDAG and exploiting the fact that the
integrands for negative ® are the complex conjugates of the integrands evaluated at positive ®.
On average between 234 and 448 evaluations of the integrand were required for each integration.®

The non-affine specification y,,, = p,y, + (1-p,)n,,, in Model 2 necessitates additional
restrictions upon the distribution of latent p,. In particular, it is desirable that the scaling factor

1 - p, be nonnegative, so that the lower tail properties of n,,, originating in the underlying L évy

8The FFT approach used in Carr et al (2002) uses 16,384 functional evaluations.
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specifications do not influence the upper tail properties of y,,,. Consequently, the distribution of
latent1 - p, for Model 2ismodeled asinverse Gaussian—aZ2-parameter unimodal distributionwith
conditional mean 1 - ¢, , and variance W,,. Appendix A derivesthe resultant filtration procedure
for this model, exploiting a useful change of variables procedure. The filtration is initiated at
p; ~ (0, .5%), and it isagain assumed that p, and ¥, are conditionally independent for all t.

II. Properties of U.S. stock market returns, 1926 - 2006

1.1 Data

Therearetwo readily availablevalue-weighted measures of the U.S. stock market: the CRSP value-
weighted index, and the S& P Composite Index. Thispaper will primarily focusupon theformer for
timeseriesanalysis, but will also consider thelatter when assessing optionson S& P500 futures. The
CRSP data consist of 21,519 daily cum-dividend returns over January 2, 1926 through December
29, 2006. CRSP daily returns for each month were converted to daily log excess returns using

Ibbotson and Associates’ data on monthly Treasury bill returns, and the formula

v, =In(1+R) - ;1—\/’_ln(1+ i) (32)

where R, isthe daily CRSP cum-dividend return;

i isthat month’sreturn on Treasury bills of at least 1 month to maturity;

N isthe number of calendar days spanned by the monthly Treasury bill return; and

n, isthe number of calendar days spanned by the “daily” return R, .
The monthly interest rate data were downloaded from Ken French’'s Web site, and extended
backwards through 1926 using data in Ibbotson and Associates SBBI Yearbook.

The Schwert (1990) data set of daily U.S. stock market returns provides cum-dividend
returns on the S& P Composite Index from January 4, 1928 onwards.” The S& P index was based
upon 90 stocks until March 4, 1957, and 500 stocks thereafter. | updated Schwert’ s data through
2006 using Schwert’s data methodology: ex-dividend daily S& P 500 returns from CRSP were
augmented by an average daily dividend yield computed from monthly S& P 500 dividend yields

® Schwert aso has daily data extending back to 1885, based on the (price-weighted) Dow
Jones Industrial Average.
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from Bloomberg. Cum-dividend returns were then converted into log excess returns using (32).
Furthermore, CRSP value-weighted returnswere used instead of the S& P 90 returns prior to March
5, 1957, for two reasons. Firgt, that delivers data over 1926 and 1927, which is important for
volatility assessment prior to the 1929 stock market crash. Second, the S& P Composite Index is
only reported to two decimal places, which creates significant rounding error issuesfor thelow S& P

index values (around 5) observed in the 1930’s.

I1.2 Parameter estimates

Table 2 describes and provides estimates of the time dummies from the most general time-changed
CGMY model,* with Wednesday returns (Tuesday close to Wednesday close) arbitrarily selected
asthe benchmark day. Daily variancetended to be highest at the beginning of the week and decline
thereafter, but day-of-the-week effects do not appear to be especially pronounced. The major
exception is the Saturday morning (10 AM to noon) trading generally available over 1926-52.*
Saturdayswere effectively 43% aslong asthetypical Wednesday. Total weekend variance (Friday
close to Monday close) was (.43 + 1.05) / 1.10 - 1 = 34.5% higher when Saturday trading was
available (over 1926-52) than when it was not (over 1945-2006)."? Thisis qualitatively similar to
but less pronounced than the doubling of weekend variance found by Barclay, Litzenberger and
Warner (1990) in Japanese markets when Saturday half-day trading was feasible. Barclay et d

lucidly discuss market microstructure explanations for the increase in variance.

Holidays generally did not have a strong impact on the effective length of abusiness day —
with the exception of holiday weekends spanning 4 calendar days. Consistent with French and Roll
(1986), 2-day returns spanning the Wednesday exchange holidays in 1968 (Tuesday close to
Thursday close) had avariance not statistically different fromatypical 1-day Wednesday return, but

OEstimatesfrom other specificationswerevirtually identical, with estimatestypically within
+0.01 of the YY model’ s estimates.

HSaturday trading was standard before 1945. Over 1945-51, it wasincreasingly eliminated
in summer months, and was permanently eliminated on June 1, 1952.

2A s the time dummy estimates are estimated jointly with the volatility and autocorrelation
filtrations, the estimates of weekend variances with versus without Saturday trading control for
divergencesin volatility and autocorrelation levels in the two samples,
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substantially lessthan the 1 + .94 = 1.94 two-day variance observed for returnsfrom Tuesday close
to Thursday closein other years. Overall, thecommon practice of ignoring day-of-the-week effects,
weekends, and holidays when analyzing the time series properties of daily stock market returns

appears to be a reasonable approximation, provided the data exclude Saturday trading.

Tables 3A and 3B report estimates for various specificationslisted in Table 1, while Figure
1 presents associated normal probability plots for model 2. (The plotsfor Model 1 were similar.)
Asnoted above, all specifications capturethe leverage effect by acorrelation p_, withthediffusion
shock to conditional variance. The specificationsdivergeintheir modeling of the Lévy shocks dL,
orthogonal to the variance innovation. SV is the Heston model, while SVJ1 and SVJ2 have a
diffusion for small asset return shocks, plus finite-activity normally-distributed jumps to capture
outliers. The other models examine the generalized time-changed CGMY model, along with

specific parameter restrictions or relaxations.

Most specifications using either Model 1 or Model 2 have similar estimates for the
parameters determining the conditional mean and stochastic variance evolution. The evidence for
avariance-sensitive equity premium (i, > 0) isstronger for Model 2 specifications, but ., isnot
typically significantly different from zero for either model. Latent permanent variancein Model 2
mean-reverts towards an estimated average level around (.172)?, with ahalf-life about 1.6 months.
The SV and LS models are the outliers, with different estimates of the equity premiaand variance
process from other specifications. As discussed below in section 1.6, this reflects these two
specifications' substantially different approach to variancefiltration, given different assessments of
tail risk.

Thevariousspecificationsprimarily divergein how they capturetail risk. TheMerton-based
SVJland SV2resultsin Table 3B largely replicatethejump risk resultsin Bates (2006). The SVJ1
model has symmetric normally-distributed jumpswith standard deviation 3 - 3.4% and time-varying
jump intensities that occur on average A, (ae/B) = 3.3 - 3.7 jumps per year. Asshownin Figure 1,
thisjump risk assessment fails to capture the substantial 1987 crash. By contrast, the SV .J2 model
adds asecond jump component that directly capturesthe 1987 outlier. Theresultingincreaseinlog

likelihood fromis statistically significant under alikelihood ratio test, with amarginal significance
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level around 3% for Models 1 and 2.

The various CGMY models primarily diverge across the specification of the Y,Y,
parameters —whether they are set to specific levels, and whether they diverge for the intensities of
positiveversusnegativejumps. The DEXP model with Y,=Y, =-1 isconceptually similar tothe
jump-diffusion model SV J1, but uses instead a finite-activity double exponential distribution for
jumps. Despite the fatter-tailed specification, Figure 1 indicates the DEXP model has difficulties
comparableto SV J1in capturing the 1987 crash. TheV G model replacesthefinite-activity double
exponential distributionwith theinfinite-activity variance process(Yp =Y, = 0),anddoesslightly
better in fit. Both modelsinclude a diffusion component, which captures 73-74% of the variance

of the orthogonal Leévy shock dL, .

SpecificationsY, Y'Y, and L Sinvolve pure-jump processesfor the orthogonal L évy process
L,, without a diffusion component. Overall, higher values of Y fit the data better — especially the
1987 crash, which ceases to be an outlier under these specifications. Relaxing the restriction
Y, =7, leadsto someimprovement infit, with theincreaseinlog likelihood (Y'Y versusY) having
P-valuesof 1.8% and 0.8% for Models 1 and 2, respectively. Point estimatesof thejump parameters
(w,,G, Y ) governing downward jump intensities diverge sharply from the parameters
1-w,, M, Y) governing upward jump intensities when the Y, =7, restriction is relaxed,
although standard errorsarelarge. The dampening coefficient G isnot significantly different from
zero, implying one cannot reject the hypothesis that the downward-jump intensity is from a
stochastic-intensity version of the Carr-Wu (2003) log-stable process. By contrast, the upward
intensity is estimated as a finite-activity jump process — which, however, still overestimates the

frequency of big positive outliers (Figure 1, sixth panel).

Motivated by option pricing issues, Carr and Wu (2003) advocate using a log-stable
distribution with purely downward jumps. An approximation to this model generated by setting
G =.001 and w, = 1 fitsstock market returnsvery badly. The basic problemisthat whiletheL S
model does allow positive asset returns, it severely underestimates the frequency of large positive
returns. Thisleadsto abad fit for the upper tail (Figure 1, last panel). However, the YY estimates
indicate that the Carr-Wu specification can be auseful component of amodel, provided the upward
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jump intensity function is modeled separately.

Unrestricted CGMY models generate at least one Y parameter in the infinite-activity,
infinite-variation range [1, 2], and typically near the diffusion value of 2. This suggests that the
models may be trying to capture considerable near-zero activity. However, adding an additional
diffusion component to the time-changed Y'Y Lévy specification to capture that activity separately

(specification YY _D) led to no significant improvement in fit.

Overall, Figure 1 suggests the differences across the alternate fat-tailed specifications are
relatively minor, and fit the data similarly over most of the datarange (|z| < 3). Themodels SV,
SVJ1, DEXP, VG, and LS appear less desirable, given their failure to capture the largest outliers.
TheSVJ2,Y,and Y'Y specificationsappear tofit about the same. All modelsappear to haveasmall
amount of specificationerror (deviationsfromlinearity) inthe z € [-3.5, -2] rangeandintheupper
tail (z>3).

I1.3 Unconditional distributions

A further diagnostic of model specification is the models ability or inability to match the
unconditional distribution of returns—in particular, thetail propertiesof unconditional distributions.
Mandelbrot (1963) and Mandelbrot and Hudson (2004) argue that empirical tails satisfy a“ power
law:” tail probabilities plotted against absolute returns approach a straight line when plotted on a
log-log graph. This empirical regularity underlies Mandelbrot’s advocacy of the stable Paretian
distribution, which possesses this property and is nested within the CGMY model for G = M = 0.

Mandelbrot’ sargument is premised upon i.i.d. returns, but the argument can be extended to
time-changed L évy processes. Conditional Leévy densitiestime-average; if the conditional intensity
of moves of size x is (1- pf,v)Vtk(x), the unconditional frequency of moves of size x is
1- pf,v)E(Vt) k(x) . Since unconditional probability density functionsasymptotically approach the
unconditional Lévy densities for large |x|, while unconditional tail probabilities approach the
corresponding integral s of the unconditional Lévy densities, examining unconditional distributions

may still be useful.
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Figure 2aprovides estimates of unconditional probability density functions of stock market
excessreturnresiduals n,,; = y,,; - p, », for various specifications under Model 1, aswell asdata-
based estimates from a histogram of filtered residuals )., = y,.; ~ P, »,- Given the day-of-the-
week effects reported in Table 2, the unconditional density functions are a horizon-dependent
mixture of densities, with mixing weights set equal to the empirical frequencies. (The two shocks
spanning the market closingsin 1933 and 2001 were omitted.) The substantial impact of the 1987
crash outlier upon parameter estimatesis apparent. The SV J2 estimates treat that observation asa
unigue outlier, while the CGMY class of models progressively fatten the lower tail as greater
flexibility is permitted for the lower tail parameter Y,. Asnoted above, the lower tail approaches
the Carr-Wu (2003) log-stable (LS) estimate. However, the LS model is unable to capture the
frequency of large positive outliers, and behaves similarly to the SV model in the upper tail. All
models closely match the empirical unconditional density function in the +3% range where most
observationsoccur; and all model sunderestimate the unconditional frequency of movesof 3% - 7%

in magnitude.

Figure 2b provides similar estimates for unconditional lower and upper tail probabilities.
In addition, 1000 sample paths of stock market excess return residuals over 1926-2006 were
simulated via a Monte Carlo procedure using YY parameter estimates, in order to provide
confidence intervals on tail probability estimates.** Unsurprisingly, the confidence intervals on
extremetail eventsare quitewide. The underestimation of movesof 3% - 7% in magnitudeisagain
apparent, andisstatistically significant. Thisrejection of theY'Y model doesnot appear attributable
to misspecification of the Lévy density &(x), whichin Figure 1 captures conditional densities quite
well. Rather, the poor unconditional fit in Figures 2a and 2b appears due to misspecification of
volatility dynamics. Half of the 3-7% moves occurred over 1929 - 1935 — a prolonged high-
volatility period that simulated volatility realizationsfrom the 1-factor variance process of equation

(13) generally do not match.

Conditional variance sample paths were simulated using the approach of Bates (2006,
Appendix A.6), whileLévy shocks n,,, conditional uponintradaily averagevarianceand data-based
daily time horizons were generated via an inverse CDF methodology, with CDF s computed by
Fourier inversion. The two shocks spanning the market closingsin 1933 and 2001 were omitted.
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Figure 3 plots model-specific tail probability estimates for the YY model on the log-log
scalesadvocated by Mandel brot, along with data-specific quantilesfor 20,004 stock market residuals
that have roughly a 1-day estimated time horizon (+11%). The lower tail probability does indeed

converge to the unconditional tail intensity

K() = [*kxdx = C,G "T(-Y,, G|y) (36)

where C, = w,(1 - p2) Ta/[BLQ2 - ¥,)G " *] and I'(a, z) isthe incomplete gamma function.
Furthermore, given G estimates near 0, K(y) = C, y_Y"/Yn is roughly a power function iny,

implying near linearity when plotted on alog-log scale.

However, thegraphindicatesthat the convergenceof tail probabilitiestothetail intensity X( y)
occursonly for observationsin excess of 5% in magnitude—roughly 5 standard deviations. Asthis
is outside the range of almost all data, it does not appear that log-log scales provide a useful
diagnostic of model specification and tail propertiesfor daily data. Thisis partly dueto stochastic
volatility, which significantly slows the asymptotic convergence of unconditional tail probabilities
to K(y) for large |y|. Absent stochastic volatility (o = 0), the tail probabilities of ani.i.d. YY
Lévy process convergeto K( y) for observationsroughly in excess of 3% in magnitude (3 standard

deviations).

No power law propertiesareobserved for upper tail probabilities, given substantial estimated
exponential dampening. The failure of both lower and upper unconditional tail probabilities to

capturethefreguency of movesof 3-7% in magnitudeisagain apparent, and statistically significant.

I1.4 Subsample estimates
Table 4 provides estimates for data subsamples, as atest of the stability of the time series process.
The mean, stochastic volatility and jump parameterswere allowed to differ before and after March

5,1957.** Thetime dummies (similar to thosein Table 2) that capture day-of-the-week effectswere

“Thedatasplit was chosen so that the second subsampl €' s estimates could be compared with
estimates from S& P 500 returns, as well as with other studies that use data starting in the 1950’s
(Andersen et a (2002), Bates (2006), Chernov et al (2003)).
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kept common across subsamples; but some of those dummies also capture subsample-specific
phenomena (Saturday trading before 1953; exchange holidays in 1968). The estimation and
filtration over the two subsamples nest the full-sample estimates of Table 3, so that standard
likelihood ratio tests can be used to test whether the divergence in subsample parameter estimates
are statistically significant.

Parameter estimates diverge strongly across subsamples, with P-valueslessthan 10716, but
in different fashionsfor the SVJ1 and YY models. For the SVJ1 model, the major divergence was
clearly in the estimated volatility process. The 1926-57 period includesthe highly volatile 1930's,
yieldinganoverall averagevarianceof (.202)? over 1926-57, asopposed to (.149)? over 1957-2006.
The volatility dynamics also diverge, with volatility more volatile and with faster mean reversion
over 1926-57 than over 1957-2006. Jump risk estimates also diverge, with more frequent but
smaller jumpsinthefirst half thaninthesecond half. Progressively relaxing full-sample constraints
on parameter categories(mean; o o stochastic volatility parameters; jump parameters) indicatesthat
between 71% and 86% of the subsample improvement in log likelihood comes from using
subsample stochastic volatility parameters. Between 8% and 22% of the change in log likelihood
comes from using subsample jump parameters, depending on whether stochastic volatility or jump

parameters are relaxed first.

The 1957-2006 subsampleestimatesfor the Y'Y model aremoreheavily affected by the 1987
crash than are the full-sample estimates. The parameter G approaches its lower bound of zero,
implying that the lower tail density isapproaching thetime-changed version of theinfinite-variance
log-stable distribution. Correspondingly, the subsample estimate of unconditional variance o/
=.3652 becomes substantially meaningless, and cannot be compared with estimates from other
modelsor other periods. By contrast, the estimatesover 1926-57 arestrictly finite-variance. Given
strong interactions between stochastic volatility and jump parameters, it is not clear whichis more

responsible for the strong rejections of parameter stability across subsamples.

I1.5 Autocorrelation filtration
Given that the prior distribution p,|¥, is assumed N(p,,, W,,), it can be shown that the

autocorrelation filtration algorithm (30) for Model 1 updates conditional moments via the robust
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Kaman filtration approach of Masreliez (1975):

onp(y,,|Y,)

33
.. (33)
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(34)

If v,,,|Y, were conditionally normal, the log density would be quadraticin y,,,, and (33) would
be the linear updating of standard Kalman filtration. More generaly, the conditionally fat-tailed
propertiesof y,., areexplicitly recognizedinthefiltration."> Thepartial derivativesof log densities

can be computed numerically by Fourier inversion.

Figure4illustratestheautocorrel ationfiltrations estimated under variousmodels. For model
1, theautocorrelation revision isfairly similar to standard Kalman filtration for observationswithin
a +£2% range — which captures most observations, given a unconditional daily standard deviation
around 1%. However, the optimal filtration for fat-tailed distributions is to downweight the
information from returns larger than 2% in magnitude. The exceptions are the stochastic volatility
(SV) and Carr-Wu log-stable (LS) specifications. Those specifications do not particularly

downweight outliers occurring in non-fat tails. in both tailsfor SV, in the upper tail for LS.

The autocorrelation filtration under Model 2 isdifferent. Since y,,, = p, + (1-p,)n,,, iN
that model, large observations of y,,, are attributable either to large values of 1 - p, (small values
of p,), or tolarge values of the Lévy shocks captured by m,,,. Theresulting filtration illustrated in
the lower panels of Figure 2 is consequently sensitive to medium-size movements in a fashion

substantially different from the Model 1 specifications.

Figure 5 presents filtered estimates of the daily autocorrelation from the YY model. The
most striking result is the extraordinarily pronounced increase in autocorrelation estimates from
1941 - 1971, with a peak of 35% reached in June 1971. Estimates from other models give

See Schick and Mitter (1994) for aliterature review of robust Kalman filtration.
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comparable results, as do crude sample autocorrelation estimates using a 1- or 2-year moving
window.'® After 1971, autocorrel ation estimates fell steadily, and became insignificantly different
from zero after 2002. Thisbroad pattern is observed both for Models 1 and 2, although the precise
estimates diverge given the different filtration methodologies. Filtered autocorrelation estimates
appear inversely related to measures of annual stock turnover computed by French (2008), attaining
valuescloser to zero in the high-turnover periodsbefore 1933 and after 1982. Thisisconsistent with

the standard stale-price explanation of autocorrelation in stock index returns.

Figure5 alsoindicatesthat the estimates of daily autocorrelation arevirtually nonstationary,
indicating that fitting ARMA processes with time-invariant parameters to stock market excess
returns is fundamentally pointless. The conditional standard deviation asymptotes at about 4%2%,

implying a 95% confidence interval of £9% for the autocorrelation estimates.

[1.6 Volatility filtration

When returns follow an autocorrelated process with i.i.d. shocks of the form

— 2
yt+1 = pyt + ut+1’ ut+1 - (u’ ou) (35)
there are various ways of measuring variance:

Conditional (or residual) variance: ~ Var[y,.,|y,] = o>

2
u o
Unconditiona variance of returns.  Var| y,,,]1 = Var [ S u
1 - pL 1 — p2
) 2
- . ut+1 o'u
Conditional permanent variance: Va{z Vil V| = Va,[ _
T=1 1- p (1 _ p)2

whereL isthelag operator. These measure of variance are al so approximately relevant in the above
models with stochastic conditional volatility and slow-moving autocorrelation. The o/ values
in Table 3A are estimates of the average level of residual variance for model 1, but estimates of

average permanent variance for model 2; hencethe higher estimatesfor thelatter. Furthermore, the

1See L eBaron (1992, Figure 1) for annual estimates of the daily autocorrelation of S&P
composite index returns over 1928-1990.
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ratio of return varianceto permanent varianceis (1 - p)?/(1 - p?) = (1 - p)/(1 + p), whichisless
than 1 for p>0 and is monotonically decreasing in p. If permanent conditional variance is
stationary and autocorrel ation evolvesindependently of permanent variance, asisassumed in model
2, periods of high autocorrelation will generate periods of low observed variance of returns — a
property consistent with the inverse rel ationship between annual estimates of daily autocorrelation
and volatility over 1928-1990 reported in LeBaron (1992).

The left panel of Figure 6 illustrates how the estimated conditional volatility E,,,,/V,,, is
updated for the various specifications under model 1. The conditional volatility revisions use
median parameter values (x,, v,) = (.00294, 5.85) fortheprior gammadistributionof V,,implying
a conditional mean x,v, = (.131) that is close to the (.129)* median value observed for 7,
estimatesfromthe Y'Y model.'” For comparability with GARCH analysessuch asHentschel (1995),
Figure 4 shows the “news impact curve,” or revision in conditional volatility estimates upon

observing a given excess return, using the methodology of Bates (2006, pp.931-2).

All newsimpact curves aretilted, with negative returns having alarger impact on volatility
assessmentsthan positivereturns. Thisreflectstheleverageeffect, or estimated negative correlation
between asset returns and volatility shocks. All specifications process the information in small-
magnitude asset returns similarly. Furthermore, almost all specifications truncate the information
from returns larger than 3 standard deviations. Thiswas also found in Bates (2006, Figure 1) for
the SV J1 model, indicating such truncation appears to be generally optimal for arbitrary fat-tailed
Lévy processes. The SV and LS exceptions support thisrule. The LS model has afat lower tail but
not an especially fat upper tail, and truncates the volatility impact of large negative returns but not
of large positive returns. The fact that volatility revisions are not monotonic in the magnitude of
asset returnsis perhapsthe greatest divergence of these model sfrom GARCH model's, which almost

invariably specify a monotonic relationship.’® However, since moves in excess of +3 standard

YAs V,, estimates have substantial positive skewness, the median s substantially below the
mean estimate of (.159)? reported in Table 3A.

1A n exceptionisMaheu and M cCurdy (2004), who put ajump filter sensitiveto outliersinto
a GARCH model. They find that the sensitivity of variance updating to the latest squared return
should be reduced for outliers, for both stock and stock index returns.
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deviationsarerare, all specificationswill generate similar volatility estimates most of thetime. The
volatility filtrations for model 2 shownintheright panel of Figure 6 for median parameters (x,, v,)
= (.00385, 6.01) are qualitatively similar to those for model 1.

Figure 7 presentsthefiltered estimates of conditional annualized permanent volatility over
1926-2006 from the YY model 2, as well as the associated conditional standard deviation.”
Volatility estimatesfrom other models (except SV and L S) aresimilar —as, indeed, isto be expected
from the similar volatility updating rulesin Figure 4. The conditiona standard deviation is about
2.8%, indicating a 95% confidenceinterval of roughly +5%2% in the annualized vol atility estimates.
Because of the 81-year time scale, the graph actually showsthelonger-term volatility dynamicsnot
captured by themodel, as opposed to theintra-year volatility mean reversion with 2-month half-life
that is captured by the model. Most striking is, of course, the turbulent market conditions of the
1930's, unmatched by any comparable volatility in the post-1945 era. The graph indicates the 1-
factor stochastic variance model is too simple, and suggests that multifactor specifications of

variance evolution are worth exploring.®

The inset to Figure 5 compares adjusted filtered volatility estimates .8655 E, m over
1987-89withrealized volatility estimatescomputed daily fromintradaily 15-minutelog-differenced
S& P 500 futures prices. (Open-to-close futures returns were 86.55% as volatile as close-to-close
futuresreturnsover 1982-2001.) Theinset showsthat the AML filtration methodology using daily
datagenerally tracksrealized intradaily volatility quiteclosely. Thefiltered estimatesdo not capture
major realized volatility spikes—especially over October 19-28, 1987. Themodelsestimated inthis
paper interpret such spikes and the accompanying large daily stock market movements as stock

market jumps. However, the clustering of high intradaily volatility valuesisimportant time series

% Annualized” volatility refersto the choice of units. Sincetimeismeasuredinyears, 7,
is variance per year, while the daily volatility estimate for a Wednesday return with an estimated
length of 1/260 years (from Table 2) is approximately E,,/V,/260. Since variance mean-reverts
with an estimated half-life of roughly 2 months, it isnot appropriatetointerpret Figure 5 asshowing
the volatility estimate for a 1-year investment horizon.

“Theinadequaciesof AR(1) representationsof conditional variancearealready well-known
in volatility research, and have motivated research into long-memory processes.
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evidence against the models' diffusive-volatility assumption, and supports an alternate volatility-

jump specification.

Filtered volatility estimates do appear sensitive to the datainterval used in estimation, via
the underlying parameter estimates. For instance, the subsample SV J1 estimatesin Table 4 yield
filtered annualized \/ﬁt’s that are 1.86% higher on average over 1926-57 than the full-sample
estimates, and 1.29% lower over 1957-2006. A significant underlying factor is the estimate of
unconditional volatility y/e/B in Table 4, whichis higher in thefirst than in the second subsample,
andwhichsignificantly influencesvolatility filtration. A similar influenceof unconditional variance

estimates upon conditional volatility estimates is observed in GARCH models.?

[11. Option pricing implications

Do these alternative modelsimply different option prices? Exploring thisissuerequiresidentifying
the appropriate pricing of equity, jump, and stochastic volatility risks. Furthermore, the presence
of substantial and stochastic autocorrelation raises issues not previously considered when pricing
options. In particular, the observed stock index level underlying option prices can be stale, while
the relevant volatility measure over the option’ slifetime is also affected. The variance of the sum

of future stock market returns is not the sum of the variances when returns are autocorrel ated.

To examinetheseissues, | will focusupon Model 2, withitsinterpretationin equations(23) -
(24) of ds, asthe permanent shock to thelog stock market level. Furthermore, | will usethe myopic

power utility pricing kernel of Bates (2006) to price the various risks:

dinM =y, dt - Rds,. (36)

This pricing kernel constrains both the equity premium estimated under the objective time

seriesmodel, and the transformations of those estimatesinto the risk-neutral process appropriatefor

ZSee, e.g., Andersen et a (2005, p.7), who note that GARCH(1,1) models diverge from the
RiskMetrics approach in taking into account mean reversion of conditional variance towards the
unconditional variance. Thisimpliesthat GARCH conditional volatility estimates are affected by
sample-specific estimates of the unconditional variance.
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pricing options. In particular, the instantaneous equity premium is

(o + W V)dt = -E,le ®-1)(e ™ - 1) (37)
which implies
Bo =0
M7, = [Reg, + R 31~ Fiup 1V, = [ (% = 1)(e ™ - Dk(x) d (38)
~ RV,
where 1 - f, is the fraction of variance attributable to an orthogona diffusion term. The

Jjump
approximation followsfrom first-order Taylor expansions, and from the fact that jumps account for

afraction ];.ump a1 - piv) of overall variance V,. The equity premium (37) is well-defined for the
SVJland SVJ2models. FortheCGMY models, therestriction G > R isrequired for afiniteequity
premium; the intensity of downward jumps must fall off faster than an investor’srisk aversion to

such jumps. The log-stable processis inconsistent with afinite equity premium for R > 0.%

The change of measure from objective to risk-neutral jump intensities takes the form

k) = k(x)e R (39)

under a myopic power utility pricing kernel. This has assorted implications for parameter
transformations that depend upon the precise specification of the Lévy density k(x). For the SVJ
models, as discussed in Bates (2006), this modified jump intensity shiftsthe mean jump size y ; by
an amount —Réf , Whileleaving thejump standard deviation &, unchanged. For the CGMY model,
the risk adjustment replaces the downward and upward exponential dampening parameters G and
Mby G - R and M + R, respectively, while leaving the C and Y parameters unchanged.” These
risk adjustments ater the g, (®) and A(®) functionsin equation (14). Table 5 summarizes the

parameter transformations under the various models.

ZCarr and Wu (2003) specify a log-stable process for the risk-neutral process underlying
option prices. This can be generated from a CGMY process for the actua process with only
downward jumps, and with G = R.

Z\Wu (2006) discusses this transformation.
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Thekey risk aversion parameter R used for change of probability measure was estimated by
imposing the equity premium restrictions (37), and re-estimating all times series models. The
additional parameter restrictionG > R wasalsoimposed upon all CGMY models, and was binding
for the Y'Y model.** Parameter estimatesreported in Table 6 changed littlerelativeto thosein Table
3B, whilerisk aversion was estimated at roughly 2.5 for all models. Furthermore, the restriction of

apurely variance-sensitive equity premium (., = 0) was not rejected for any model.

| addressthe potential impact of autocorrel ations upon option prices by examining prices of
options on S& P 500 futures. | assume that stock index futures prices respond instantaneously and
fully tothearrival of news, whereaslack of trading intheunderlying stocksdelaystheincorporation
of that news into the reported S& P 500 stock index levels. Furthermore, | assume that index
arbitrageurs effectively eliminate any stale prices in the component stocks on days when futures
contracts expire, so that stale stock prices do not affect the cash settlement of stock index futures.

MacKinlay and Ramaswamy (1988) provide evidence supportive of both assumptions.

These assumptions have the following implications under Model 2 (equations 23 and 24):
1. the observed futures price F, underlying options on S& P 500 futuresis not stale;

2. log futures price innovations equal the intradaily innovations ds, of equation (13):

dInF, = ds,. (40)

Consequently, European options on stock index futures can be priced directly using arisk-neutral
version of (40) —whichisaffine, smplifying option evaluation considerably. Furthermore, option
pricesdo not depend upon p,, except indirectly through theimpact of autocorrel ationfiltration upon
the filtration of latent permanent variance V,. Following Bates (2006), European call prices on an

S& P 500 futures contract can be priced as

eF,,T,,;X|Y,) = E[(F,,V,, T, 1,; X)|¥,, F,]

| S &4 | SR S 4

. C*(i®, 0; T,) + g,l‘j[u *(i®, 0; T,)] - i®In(X/F,) (41)

i®(1 - i®) ’

-r.T, -r.T, 1 1 o
=e "'F,-e "'X|= + —
! 2 211:f—w

Wu (2006) proposes an alternate pricing kernel with negative risk aversion for downside
risk, thereby automatically imposing G > R.
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where C*(*) andD *(-) arerisk-neutral variants® of those in equations (17)-(21);
1, isthe effective maturity of the option, given individual days’ length from Table 2,
T, = n,/365 isthematurity associated with the continuously compounded Treasury bill yield
r,, given n, caendar days until option maturity; and
gtﬁ[qy] = -v,In(1 - k) isthefiltered cumulant generating functionof ¥, that summarizes
what is known about V, given past data ¥,.

The associated implicit standard deviations (ISD’s) for standardized maturity T, can then be

t
computed using the Black (1976) formula for European options on futures.

ThelSD’ sfromthevariousmodel saregraphed in Figure 8, and are compared with observed
ISD’ s computed from settlement prices for American options on S& P 500 futures with non-zero
trading volume on December 29, 2006. Figure 8 also shows 95% confidence intervals, computed
as in Bates (2006) based on parameter uncertainty alone, and on parameter and state uncertainty
associated with 7, estimation. All models, including the SV model, generate virtually identical
option prices at end-2006 over arange of +2 standard deviations — a range that contains the most
actively traded options. The estimated level of the ATM I1SD was roughly the same across all
specifications, reflecting an absence of recent major outliers that would induce divergences in
estimated volatility from different specifications. Thetilt of thevolatility smirk for near-the-money
options appears to be driven primarily by the “leverage effect,” or correlation between shocks to
variance and stock market returns. Only for deep out-of-the-money put options do the divergences
in estimated tail properties generate substantially different ISD patterns across models.®
Furthermore, those divergences across model sgenerally decrease at longer maturities, astheimpact
of jumpsfallsinimportancerelativeto the projected dynamicsof stochasticvolatility. Thematurity
profile of the YY model is the exception, reflecting the fact that the risk-neutral distribution is

amost infinite-variance.

*The parameters (i, 1, &, B) are replaced by (0, 0, a, f*), while the function g, (®)
isreplaced by arisk-adjusted function g, (®) givenin Table5 for specific modelsthat capturesthe
risk-adjusted jump intensities from (39).

%These results differ from Bates (2000, Table 3), who reports substantial divergences
between the SV and SV Jmodels based substantially upon implicit parameter estimation. 1t would
appear that implicit parameter estimates are strongly affected by the prices of deep OTM options.
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Figure 9 chronicles estimated and observed at-the-money 1SD’s over 1983-2006 for the
short-term optionswith maturities of 14 daysor more. Theoveral evolutionisbroadly comparable
to the estimates in Bates (2006, Figure 7). However, the |SD estimates are substantially closer to
observed |SD’ s, with average valuesover 1988-2006 of 15.8% and 16.8%, respectively. Theresults
differ from the larger divergences in Bates (2006), for two reasons. First, the earlier study used
Anderson, Benzoni and Lund’'s (2002) data, who prefiltered S&P returns over 1953-1996 by
estimating an MA(1), and then rescaled estimated residuals to match the mean and variance of the
original data. Prefiltration removes the autocorrelation structure of the data, and consequently
underestimates the average level «/p of permanent variance relevant for pricing options. Re-
estimating SVJ2 Model 2 on theraw S& P returns underlying the Anderson et al data over 1953-96
raises o/ P estimates from (.127)* to (.143)%.

Second, as shown abovein Table 6, «/B estimates are substantially higher when datafrom
thevolatile 1930'sareincluded: (.174)? over 1926-2006 for the SV.J2 model, as opposed to (.149)?
over 1957-2006. A higher o/ estimate affects | SD estimates at all maturities, through itsimpact
onthefiltration algorithm for estimating spot variance ¥, aswell asthrough itsimpact on forecasts
of future variance. For instance, some resulting filtered measures of risk-neutral volatility over

1988-2006 using the two sets of SV J2 parameter estimates are:

Average values over 1988-2006

_ 1-month 1-month difference
Estimation /B Ve ISD,,, ISDA™  inISD’s
1926-2006 18.7% 15.9% 15.8% 16.8% 1.0%
1957-2006 16.3% 14.4% 14.4% 16.8% 2.4%
difference 2.4% 1.5% 1.4%

Neverthel ess, the broad assessment of previous studiesappearsunchanged. ObservedISD’s
from optionsonindex futuresdo appear higher on average over the post-1987 period thanisjustified
by risk-adjusted valuations based upon time series analysis, even when volatility assessments
include data from the 1930's.



V. Summary and Conclusions

This paper provides time series estimates of the time-changed CGMY (2003) Lévy process, and
compares them to the time-changed finite-activity jump-diffusions previously considered by Bates
(2006). Overall, while it is important to use adequately fat-tailed distributions when filtering
volatility and other latent variables, it does not seem especially important which fat-tailed
distribution one uses. Estimates of the volatility process and redizations are substantially
unchanged across most specifications, while the option pricing implications are virtually identical
for al but the deepest out-of-the-money options. The exceptions are Heston’s (1993) stochastic
volatility model, which underestimates upper and lower tail risk, and the log-stable model of Carr
and Wu (2003), which underestimates upper tail risk. This underestimation of tail risk makes
volatility estimates excessively sensitive to outliers, and also affects estimates of the volatility
process. Conditional upon similar volatility estimates, however, even the Heston model fitsoption
prices similarly to the fat-tailed distributions for all but deep OTM options. For these stochastic
volatility/stochastic intensity models, thetilt of thevolatility smirk for near-the-money options (+2

standard deviations) appears primarily driven by the “leverage” effect.

The paper also documents some structural shifts over time in the data generating process.
Most striking is the apparently nonstationary evolution of the first-order autocorrelation of daily
stock market returns, which rose from near-zero in the 1930'sto 35%in 1971, before drifting down
again to near-zero values after 1987. Autocorrelation estimates are inversely related to stock
turnover, and are of considerable importance when assessing stock market volatility. The paper
develops methods of dealing with time-varying autocorrelation, by treating it asan additional latent
state variable to be filtered from observed data. Longer-term trendsin volatility are also apparent

in the filtered estimates, suggesting a need for multifactor models of conditional variance.
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Appendix A. Filtration under Model 2
From equation (26), the cumulant generating function (CGF) for future {y,,., 0,.;» V.1 }
conditional upon knowing{y, p,, V,} is

InF(Q,E ¥ |y,p,, V) = Cl1;(1-p)D,E ) + E+Py)p, + Dt (1-p)D, ¥)V,. (A.1)

Thefiltered CGF conditional upononly observing past data ¥, can be computed by integrating over
the independent conditional distributions of the latent variables {p,, 7} :

A-p)®,*) + E+By,)p, + D((1-p)D,*)V,
F@,E | ¥) = [[700%)r Coon = D00 oy ¥ (e, |¥,) ¥, dp,

(A.2)
CA-p)®,*) + E+Dy)p, + g,,/D((1-p)D,*
:fe (A-p)®, %) + €+ Pyp, + g [D(1- Py )]p(ptuzt) db,

where & (¥) = -v,In(1 - %) isthe gamma conditional CGF for latent 7,. Under the change
of variables {z,x} = {(1-p,)®, 1-p,}, and under the assumption that the scaling term

x = 1-p,> 0, the Fourier inversion used in evaluating p(y,,,|¥,) from (A.2) becomes

1 © prl C((1-p)i®, ) + i®y,p, + g, [D(1 - p,)i®,*)]- i®y,,
(1Y) = —Re{f f o CL1=P)i®.2) + i®y, p, + g, [D(1- )i, )] - i@y, 1p(p,| ¥,) dp,d®
T ®=0Jp,=-

|
J

(A.3)
dz}

where Re{c} denotes the real component of complex-valued c, and the 1/x term in the integrand

_iz(yt+1 _yg)

= lRe{fw e C020.0)+ 8[DGz,0,0)] - iy,z (f‘” lefp(xuﬂ) dx
T z=0 x

=0 X

reflects the Jacobean from the change of variables.

It is convenient to use the two-parameter inverse Gaussian distribution to approximate
p(x|Y)):

A
px|¥) = | =" exp
27x

_AG-py
2u2x

, x>0 (A.4)

where p = E[x|¥,] and A = p3/Var[x|¥,] aret-dependent parameters that summarize what is
known about x (and about p,) at timet. Under this specification, the inner integration inside (A.3)
can be replaced by the analytic function
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a

M (a) = /:Ox'le;p(x|Yt)dx
(A.5)
_ Ao |, VMR -29) expl A JA(A - 2a)
(A -2a)’ b K

for a = -iz(y,,, -y,)= -izAy. Consequently, evaluating (A.3) involves only univariate

numerical integration.

Similar univariateintegrations are used for filtering 7,,, and p,,, conditional upon observing y, ;.

The noncentral posterior momentsof V,,, are given by

E(Viil|Y,,) =

M_(-izAy)dz} (A.6)

;Re fw o [e C(z,0,¥) + g,|,[D(z, 0,%)]- iy,z]
’J'I:p(yt+1| Yt) z=0 aqjm

y=0
where the derivatives with respect to { inside the integrand can be easily evaluated from the
specifications for C(+) andD(*) in equations (17) - (18) . The posterior moments of p,,; can be
computed by taking partials of (A.2) with respect to &, and then again using change of variablesto

reduce the Fourier inversion to aunivariate integration. The resulting posterior mean and variance

of p,,, are
A 1 o ((z0,0) + g, [D(z0,0)]-iy,z ) }
=1 - ————Re e At “ M(-izAy) dz
pt+1|t+1 np(yt+1 |Yt) {j;:o 0( y) (A?)
1 o C(20,0) + g,[D@0,0)]-iy,z . }
w =gl +— - Re e e " M(-izAy) dz
t+11+1 e (.. |Yt) {fzzo 1 ) (A.8)
where

A more “natural” choice would be to represent x by a beta distribution over the range [0, 2].
That would constrain |p,| <1, and results in an M_ (a) term that involves the confluent
hypergeometric U-function. However, | could not find a method for evaluating that function that
was fast, accurate, and robust to all parameter values.
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Ma) = [7 " plx|¥)dx = [ exp Vﬁfk ~29) (A.9)
and
M(a) = f;oxe;p(xwt)dx = pexp A - My‘ ~2a)| (A.10)

Finally, the conditional distribution function P(y) = Prob[y,,; <y|Y,] thatisusedin QQ plots

takes the form

P(y) =

_ iRe{ [ FC0.0  2lDEOON A oy dZ}- (A.11)
T z=0 |4

N | —



Tablel
Standar dized cumulant exponents(with unitary variance) for variouscompensated L évy specifications

diffusion: go(u) = Ya(u? - u)
¥+ 2 v +1 2
Normally distributed jumps: g () = L |eutarr®s g u(evi e _ 1)]
;8
T, YR
CGMY jump process: Cean®) = W, G-w" -G r(1-w )(M +u)’? " ou
Y, (Y,-1)G"’ Y (Y, -)M*
with o suchthat g, (1) = 0
- g - 2
General specification: g, W) = wg gg, ) + E W, 2,4 *+ Weary ooy @)
i=1
Weights
Parameter
Model Wsy Wy W ceomy restrictions
SV 1
SvJ1 1 : oo A (Y2 +8) o
a8 L2y (1} + 8) 2
SVJ2 1 )»(VZ + 5,2)
2
=X MY 8) L+ 30 4000+ 8)
DEXP L frump Fump Y, =Y, =-1
VG L frump Frump Y,=Y,=0
Y 1 Y, =7,
YY 1
LS 1 w, =1, G =.001
YY—D 1 _‘éumP -ﬂ'ump

For SVJ1 and SV J2, thefraction f of variance attributableto jumpsis w,, and w,, +w,,, respectively.



Table2: Effectivelength of abusinessday, relativeto 1-day Wednesday returns. 1926-2006. Estimatesfrom YY model. Estimatesfrom
other models are almost identical.

Model 1 Model 2
_ NOBS _ :

#days Description estimate  std. error  estimate  std. error
1 Monday close - Tuesday close 3831 1.02 (.04) 1.03 (.03)
1 Tuesday close - Wednesday close 4037 1 1
1 Wednesday - Thursday 3998 .94 (.03) 94 (.03)
1 Thursday - Friday 3924 93 (.03) 92 (.03)
1 Friday - Saturday (1926-52) 1141 43 (.02) 44 (.02)
2 Saturday close -~ Monday close (1926-52) 1120 1.05 (.05) 1.07 (.05)
2 Weekday holiday 341 1.25 (.12) 1.26 (.10)
2 Wednesday exchange holiday in 1968 22 73 (.33) 81 (.35)
3 Weekend and/or holiday?® 2755 1.10 (.04) 1.10 (.04)
4 Holiday weekend 343 1.58 (.14) 1.56 (.13)
5 Holiday weekend _ 6 1.31 (1.00) 1.25 (.93)

21518
Annualization factor: Wednesday - 259.8 (5.6) 260.3 (5.5

yearly

4 ncludes one weekday holiday (August 14 - 17, 1945)



Table 3A: Estimates of parameter s affecting the conditional means and volatilities. Data: daily CRSP value-weighted excess returns, 1926-
2006. See equations (6) - (10), (13), and (25) for definitions of parameters. Modelswith Sump <1 combine Lévy jump processes with an additional
independent diffusion, with variance proportions ( };

M ode€l

Svil
SVI2
DEXP
VG

YY
YY D
LS

Svil1
SVJ2
DEXP
VG

YY
YY_D
LS

InL

74,940.85
75,043.90
75,048.49
75,047.33
75,049.09
75,049.63
75,052.56
75,052.81
75,007.86

74,999.87
75,092.10
75,096.68
75,094.20
75,094.70
75,093.68
75,097.20
75,097.49
75,045.48

ump 1 _ﬁump

Model 1: Vi1 = PV, * Ny

Conditional mean

), respectively. Standard errors are in parentheses.

Stochastic volatility

Ko

.013 (.015)
.042 (.015)
.042 (.003)
.043 (.015)
.043 (.015)
.042 (.015)
.041 (.015)
042 (.015)
.018 (.015)

-.014 (.020)
.033 (.020)
.037 (.020)
034 (.020)
034 (.020)
036 (.021)
.033 (.020)
.035 (.020)
053 (.019)

b o2 JalB b
2.16 (.90) .029(.007) 153 (.004) 5.83(.44)
.91(.91) .030(.006) 155 (.005)  4.39 (.40)
.87(.76) .030 (.007) 155 (.007)  4.34(.37)
87 (.90) .031(.007) 155 (.005)  4.23(.38)
92(.91) .030(.006) 155 (.005)  4.22(.39)
.90 (.92) .030 (.006) 156 (.009) 3.89(.38)
87(.92) .030(.006) 158 (.009)  4.00(.38)
93(.91) .030(.006) 156 (.006)  3.99 (.38)
1.50(.73) .031 (.007) 171 (.006)  4.60 (.40)
MOdeI 2: yt+1 = ptyt + (1 - Pt)rlm
3.04 (.90) .043(.005) .170(.004)  8.01(.57)
1.69 (1.04) .036(.005) .171(.004)  5.80 (.49)
1.25 (.89) .036(.005)  .172(.004)  5.71(.49)
1.44 (.90) .036(.005)  .171(.004)  5.67 (.49)
1.42 (.90) .037(.005)  .171(.004)  5.56 (.48)
135 (90) .036(.005) .172(.007)  5.18(.46)
1.44 (.90) .036(.005)  .172(.006)  5.23(.47)
1.36 (.90) .036(.005)  .172(.005)  5.23(.47)
150 (.76) .031(.003)  .174(.005)  4.68(.41)

(0}

452 (.010)
374 (.011)
371 (.015)
368 (.012)
366 (.012)
351 (.020)
360 (.019)
355 (.013)
431 (.015)

562 (.015)
457 (.015)
456 (.015)
452 (.015)
447 (.016)
432 (.021)
437 (.018)
436 (.016)
436 (.015)

pSV

625 (.018)
-.641 (.020)
-.642 (.018)
-.587 (.020)
-.586 (.020)
-576 (.032)
-571(.031)
-579 (.021)
-.541 (.020)

-.658 (.017)
-.674 (.018)
-.673 (.018)
-.625 (.018)
-.623 (.018)
-.613 (.027)
-.613 (.022)
-.616 (.020)
-576 (.019)

HL
(mths)

1.4 (.1)
1.9(.2)
1.9(2)
2.0(.2)
2.0(.2)
2.1(.2)
2.1(.2)
2.1(.2)
1.8(.2)

1.0(.2)
1.4(.2)
1.4 (.2)
1.5(.1)
1.6 (.2)
1.6 (.2)
1.6 (.1)
1.6 (.1)
1.8(.2)



Table 3B: Estimates of jump parameters. Standard errors in parentheses.

M odel

Sval
SVI2

DEXP
VG

YY
YY D
LS

Sval
SVJ2

DEXP
VG

YY
YY D
LS

Syamp

150 (.017)
156 (.054)

253 (.027)
272 (.030)
1
1
436
1

133 (.015)
140 (.015)

236 (.026)
257 (.030)

1
1

380 (.158)

1

Model 1: Vg = PY, + My

CGMY parameters

Merton parameters

49 (.01)

52 (.07)

59 (.06)

88 (.03)

72 (.15)
1

.53 (.06)
54.(.07)
59 (.05)
.89 (.03)
.90 (.30)

1

66.1 (6.0)

41.1 (5.4)
7.0 (4.6)
1.6 (4.5)
6.9 (9.0)
001

Model 2: y,,,

55.4 (5.4)
41.1(4.9)
6.8 (4.2)
2.6 (4.1)
8.1(8.7)
001

M

45.4( 8.4)
31.6 (9.1)
2.3 (7.3)
40.1 (31.3)
49.2 (34.9)

50.0 (4.8)
31.6 (10.7)
3.2(8.2)
71.1(57.8)
51.8 (51.7)

1.965 (.006)

Y Y, A, y 0
142.7(22.7)  .000(.002) .032(.002)
162.9(30.9) .000(.002) .029(.002)
05 (1.6) -.189(.094) .005(.189)
-1
0
1.87 (.03)
194(01) -.24(1.36)
171(35) -72(L57)
1.96 (.01)
= ptyt * (1 - pt)nt+1
1141(19.2)  -001(003) .034(.002)
126.4(23.7)  .000(.002) .031(.002)
041(04)  -198(.022) .010(.046)
-1
0
1.87 (.03)
1.935(.014) -1.96 (2.62)
1619 (403) -1.08 (2.36)



Table4: Subsampleestimatesfor Model 2. Estimates*“w/o Oct’ 87" exclude daily data observed in October 1987, but include the full month’ sreturn
of -20.6%. Split-sample estimates involve different parameter values before/after March 5, 1957, apart from time dummies. Standard errors are in

parentheses.

Model Period

Sval full

Sval 1926 - 1957
1957 - 2006

YY full

YY w/o Oct '87

YY 1926 - 1957
1957 - 2006

M od€

Sval full

Sval 1926 - 1956
1957 - 2006

YY full

YY w/o Oct '87

YY 1926 - 1957
1957 - 2006

InL

75,092.10
}75,183.99

75,097.20
75,065.01

}75,196.14

 jump

133 (.015)

167 (.015)
.093 (.020)

1

1
1
1

Conditional mean

Stochastic volatility

6.0 (13.4)

Ko Ky 0,252 Ja/B B o Pe HL
(mths)
.033(.020) 1.69(1.04) .036(.005) .171(.004) 5.80(.49)  .457(.015) -.674(.018) 1.4(.1)
.051(.034) 135(1.38) .050(.009) .202(.007) 8.82(1.03) .678(.035) -.661(.027) 0.9(.1)
.003(.027) 290(1.61) .027(.005) .149(.005) 4.93(0.60) .314(.015) -.725(.023) 1.7(.2
.033(.020) 1.44(90) .036(.005) .172(.006) 5.23(.47) .437(.018) -.613(.022) 1.6(.1)
.036(.020) 1.37(91) .035(.005) .170(.005) 5.12(.46) .427(.016) -.620(.019) 1.6(.1)
.056 (.034) 1.03(1.15) .051(.009) .201(.008) 6.81(.88) .657(.033) -.585(.026) 1.2(.2)
.012 (.027) 35 (.67) .025(.005) .365(.320) 4.89(.56) .404(.026) -.281(.247) 1.7(.2
CGMY parameters Merton parameters
w, G M f i A, Y )
114.1 (19.2) -.001 (.003) .034 (.002)
216.8 (54.9) .000 (.003) .028 (.003)
49.5(12.0) -.003(.007) .043(.004)
.89 (.03) 26(41) 711(57.8) 194(.01) -1.96(2.6)
.89 (.03) 56(5.3) 72.0(60.8) 1.93(.02) -1.76(2.6)
86(04) 207(79 978 1.82(.05) -3.1(4.5)
.92 (.15) 0.0(0.0) (107.2) 154 (41) 1.94(.03)



Table 5: Change of parameter s (obj ective versusrisk-neutral) under a myopic power utility
pricingkernel dinM = p,dt - Rds.

Objective Risk-neutral
Equity premium
Bo + 1V, By =0, p; = R 0
General jump intensity kx)V, )V, = [k(x)e ®]7,
Variance process 7,
mean reversion B B* = B + Rop
UC mean o/P o/p*
Merton jump process
mean jump size v, Y =¥,-R&
jump SD 8, 8,
jump intensity AV, A7 = Aexp(-RYy, + %:R28])

%@ - @) + Y2, Af[eqﬁ:%@zﬁ’? C 1ol 1)}

1

1+ ?=1 A‘i(?? * 612)

gs*VJz @) =

CGMY jump process

G G* = G - R (must be >0)
M M*=M+R
Y,Y, Y,Y,

geomy (@) = Vo(1 - £, ) (@ - @)
G - - DG - 1)+ (@-1)(G*)"
fum n
¥ Y,(Y,-1)G"?
M*+®) - dM*+ D)P + (@-1)(M*)"
Y,(Y,-1HM"?’

‘é ump WI’



Table 6: Parameter estimates over 1926-2006 on spliced CRSP/S& P 500 data with constrained equity premium: p, =0, p; = R.

LR test of Conditional mean Stochastic volatility
M odel By =0
InL .
(p-value) R B 0,252 Jo/B B Y Py HL
(mths)

sV 74,028.53 .383 249 (.62) 249(.62) .043(.005) 172 (.004) 7.18(.48) .534(.014) -.649(.016) 1.2(.1)

SVJ1L  74,119.26 .265 244 (61) 244(61) .038(.005) 173 (.004) 5.76(.43) .448(.015) -.678(.017) 1.4(.1)

SV  74,125.33 507 243 (57) 2.44(.58) .037(.005) 174 (.004) 5.76(.42) .449(.015) -.679(.017) 14(1)

DEXP 75,121.73 247 244 (61) 244(61) .037(.005) 174 (.004) 5.68(.43) .444(.015) -.632(.017) 15(.1)

VG 74,122.51 .206 250(.61) 250(.61) .037(.005) 174 (.004) 5.62(.43) .441(.015) -.631(.017) 15(.1)

Y 74,122.19 185 242 (.61) 242(61) .037(.005) 174 (.006) 5.29(.41) .427(.018) -.623(.022) 1.6(.1)

Yy? 74,124.33 212 2.38 242 .037 75 5.26 429 -.621 1.6

Estimates on S& P 500 data over 1957-2006

SVJ2 43,707.25 297(.88) 2.98(.88) .026 (.006) 149 (.006) 3.97(.44) .289(.014) -.721.024) 21(.2

CGMY parameters Merton parameters
Model . —
ump w, G M Y, Y, A, v 5

SvVi1 126 (.015) 108.7 (18.2) -.001 (.003) .034 (.002)

SV 138 (.021) 122.7 (23.1) .000 (.002) .031 (.002)
0.43(.38) -.219 (.027) .003 (.150)

DEXP .228 (.026) .55 (.06) 51.6 (5.0) 53.9(12.7) -1

VG 247 (.028) .53 (.07) 35.9(4.6) 34.4(111) 0

Y 1 .58 (.05) 5.4 (4.0) 45 (8.7) 1.87 (.03)

Yy? 1 90 2.4 64.3 1.94 -1.29

Estimates on S& P 500 data over 1957-2006

SVJ2 .096 (.050) 81.0(30.1) .002 (.004) .030 (.005)
55 (1.32) -.213(.035) .003 (.020)

®Parameter constraintG > R was binding for the YY model; standard errors could not be computed.
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Figure 2a. Unconditional probability density functions from Model 1 specifications. Data-
based estimates are from a histogram of residuals (.25% cell width).
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Figure 2b. Unconditional tail probability estimates. The dotted lines give 95% confidence
intervals, based upon 1000 simulations of the 1926-2006 data set under Y'Y parameter estimates.
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Figure3. Unconditional tail probabilitiesand tail intensity functionsversus | y| . Log scalesonboth axes. Data-based estimatesfrom
excess returns' residuals for 20,004 business days with estimated time horizons of approximately 1 day (£11%). Dotted lines give 95%
confidence interval's, based upon 1000 simulated sample paths under YY parameter estimates.
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Figure 4: Autocorrelation revision p,,;,.., = ,, conditional on observing y,,,, and conditional
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Figure 5. Autocorrelation estimates and standard errorsfrom YY model, and stocks annual

turnover from French (2008).
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Figure 6: Newsimpact curvesfor various models
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Figure 7. Estimates of annualized permanent volatility (YY model 2) and standard errors.
Inset compares daily (open to close) filtered volatility estimates over 1987-89 with the realized
volatilities computed daily from 15-minute log-differenced S& P 500 futures prices, on alog scale.



Figure 8: Estimated and observed ISD’s for options on S&P 500 futures on December 29, 2006. Moneyness is measured in standard deviation units,
given the maturity-specific at-the-money ISD from options. 95% confidence intervals from the S\VJ2 model are shown for parameter uncertainty (dark
grey), and parameter and state uncertainty (light grey).
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Figure 9: Estimated and observed at-the-money 1SD’s, 1983-2006. Observed |SD’ s are from short-term options on S& P 500 futures
with at least 14 daysto maturity, while estimated | SD’ sare based on the SV J2 specification’ s parameter and volatility estimates. Thegrey
areaisthe 95% confidence interval for the difference, given both parameter and state uncertainty.



