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1 Introduction

In partially identified models one can only bound, but not point-identify the structural

parameter vector of interest, θ. Such models arise in many areas of economics. Prominent

examples in macroeconomics are structural vector autoregressions (VARs) and dynamic

stochastic general equilibrium (DSGE) models. In the VAR literature the identification

problem has traditionally be addressed by imposing enough restrictions on the structural

form such that the mapping between one-step-ahead forecast errors and structural shocks

becomes one-to-one. More recently however, Canova and De Nicolo (2002) and Uhlig (2005)

have developed more agnostic identification schemes that only restrict the signs of a subset

of impulse responses in the initial periods after the impact of the shock, which leads to

partially identified structural VAR. In DSGE models partial identification arises for instance

if a subset of structural parameters guarantees the uniqueness of a rational expectations

equilibrium but does not affect the equilibrium law of motion, e.g., Lubik and Schorfheide

(2004).

Partially-identified models also percolate the microeconometric literature and include

censored sampling models and models for interval data, surveyed at length in Manski (2003).

Partial identification arises in models of industrial organization, for instance, in game-

theoretic models with multiple equilibria studied by Bresnahan and Reiss (1991), Berry

(1994), Halie and Tamer (2003), Pakes, Porter, Ho, and Ishi (2005), Bajari, Benkard, and

Levin (2007), and Ciliberto and Tamer (2007). Given the lack of point identification re-

searchers have rightly focused on set estimators for the parameter of interest. While the

macroeconometrics literature mostly applies Bayesian approaches, the microeconometric lit-

erature is dominated by frequentist procedures. The contribution of this paper is to compare

frequentist confidence sets and Bayesian credible sets, with a special focus on the properties

of Bayesian procedures.

Starting point of our analysis is a likelihood function indexed by a finite-dimensional,

identifiable reduced-form parameter vector φ. Reduced-form and structural parameter are

linked through a correspondence, which we express as φ = G(θ, α), where α ∈ Aθ. The

presence of the nuisance parameter α complicates the inference about θ. We present a large

sample approximation of the posterior distribution of θ. The approximation is based on an

insight that dates back at least to Kadane (1974) and has recently been utilized, for instance,

by Poirier (1998): beliefs about the reduced form parameter φ are updated through the

likelihood function, but the conditional distribution of θ given φ remains unchanged in view
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of new data. It is well known that under very general conditions the posterior distribution

of φ is asymptotically normal. We construct such a normal approximation for φ following

the analysis in Johnson (1970) and combine it with conditional prior distributions of θ given

φ to obtain our approximation of the posterior of θ. If H(φ, ξ) is the prior probability that

θ ∈ Tξ conditional on φ, then we show that under some regularity conditions an O(n−1/2)

accurate approximation of the posterior probability is given by H(φ̂n, ξ), where φ̂n is the

maximum likelihood estimator of φ. This approximation implies there exist asymptotically

valid Bayesian credible sets inside the identified set of θ parameters associated with φ̂n,

denoted by Θ(φ̂n).

There is a rapidly growing literature on the construction of asymptotically valid fre-

quentist confidence sets for θ, e.g. Manski and Tamer (2002), Imbens and Manski (2004),

Andrews, Berry, and Jia (2004), Pakes, Porter, Ho, and Ishi (2005), Rosen (2005), Galichon

and Henry (2006), Romano and Shaikh (2006), Woutersen (2006), Andrews and Guggen-

berger (2007), Andrews and Soares (2007), Canay (2007), Chernozhukov, Hong, and Tamer

(2007), Stoye (2007), and Beresteanu and Molinari (2008). The main challenge of this

literature is to obtain large sample approximations of the sampling distribution of an esti-

mation objective function or a test statistic that conditional on θ are uniformly valid for all

φ = G(θ, α), α ∈ Aθ. While we do not develop new methods to construct frequentist con-

fidence sets, we show that frequentist sets need to extend beyond the boundaries of Θ(φ̂n).

Thus, we can deduce that in partially identified models, Bayesian credible sets tend to be

smaller than frequentist confidence sets. This finding is in contrast with the regular point

identified case, in which Bayesian and frequentist sets coincide in large samples.

The remainder of the paper is organized as follows. In Section 2 we briefly review the

construction of Bayesian and frequentist set estimates for regular, point-identified models.

We then generalize the setup to models in which θ is set-identified and provide a simple

example of a partially identified model. The large sample approximation of the posterior of

θ and the construction of asymptotically valid credible sets for partially identified models

is presented in Section 3. In Section 4 we illustrate properties of the large sample approxi-

mation using simple moment inequality models. Section 5 provides a numerical illustration

in the context of an entry-game model and Section 6 concludes. Proofs are collected in an

Appendix.

A word on notation. We often use M to denote a generic finite constant. When X is a

matrix, ‖X‖ = (tr (X ′X))1/2 denotes the Euclidean norm of X. We use N (µ, σ2) to denote

a normal distribution with mean µ and variance σ2 and φN (·) and ΦN (·) the probability
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density (pdf) and cumulative density (cdf) functions of a vector of standard normal random

variables. Moreover, we denote the one-sided critical value for a standard normal random

variable by zτ = Φ−1
N (1− τ). U [a, b] denotes the uniform distribution on the interval [a, b].

We use P a
b to denote a probability distribution of a random variable a conditional on the

realization of a random variable b. I{X ≤ ξ} denotes the indicator function that is equal to

one if X ≤ ξ and zero otherwise. Finally, the notation ⊆ is used to denote weak inclusion

and ⊂ is used for strict inclusion.

2 Identified and Partially Identified Models

We begin with a heuristic comparison of large sample approximations of Bayesian posterior

distributions and the frequentist distribution of likelihood ratios in a point identified model

in which the likelihood function is locally approximately quadratic and the maximum like-

lihood estimator (MLE) has a Gaussian limit distribution. It is well known that in this

environment the Bayesian 1 − τ credible Highest Posterior Density (HPD) set is approxi-

mately a level set of the likelihood function and has a 1 − τ coverage probability from a

frequentist perspective. A formalization and refinement of the subsequent heuristics can be

found in Severini (1991), who derives asymptotic expansions for the posterior probability of

confidence regions based on the likelihood ratio statistic and for the (frequentist) coverage

probability of highest posterior density regions.

Suppose that a sequence of random variables Y n = {Yi}n
i=1 is characterized by a density

p(Y n|φ) with respect to a dominating measure µ, where φ ∈ Φ ⊆ RK . Let ln(φ) = ln p(Y n|φ)

be the log likelihood function and φ̂n denote the maximum likelihood estimator (MLE), that

is ln(φ̂n) ≥ ln(φ) for all φ ∈ Φ. A large sample approximation of the Bayesian posterior

density can be obtained from a second-order Taylor expansion of the log-posterior density

function around the MLE φ̂n. Let −Ĵn be the Hessian of the likelihood function evaluated

at the maximum φ̂n such that

ln(φ) = ln(φ̂n)− 1
2
(φ− φ̂n)′Ĵn(φ− φ̂n) +Rl(‖φ− φ̂n‖2). (1)

Similarly, let π(φ) = ln p(φ) be the log prior density and assume that one can approximate

the log prior with a first-order Taylor series expansion of the form

π(φ) = π(φ̂n) + π(1)(φ̂n)′(φ− φ̂n) +Rπ(‖φ− φ̂n‖).
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Now transform φ according to s = Ĵ
1/2
n (φ− φ̂n), such that

ln(φ̂n + Ĵ−1/2
n s)− ln(φ̂n) = −1

2
s′s +Rl(‖Ĵ−1/2

n s‖2)

π(φ̂n + Ĵ−1/2
n s)− π(φ̂n) = π(1)(φ̂n)′Ĵ−1/2

n s +Rπ(‖Ĵ−1/2
n s‖2).

If φ is identifiable, then the smallest eigenvalue of Jn is positive and increasing with the

sample size such that Ĵ
−1/2
n s tends to zero and the influence of the prior distribution on the

posterior vanishes as n −→∞. Hence,

ln p(φ̂n + Ĵ−1/2
n s|Y n)− ln p(φ̂n|Y n) ≈ ln(φ)− ln(φ̂n) ≈ −1

2
s′s,

that is, the posterior distribution of φ is approximately normal. Under suitable regularity

conditions, it can be deduced that∣∣∣∣Pφ
Y n{2[ln(φ)− ln(φ̂n)] ≥ −cτ} − P{Z ′Z ≤ cτ}

∣∣∣∣ −→ 0, (2)

where Z ∼ N (0, I). If one chooses cτ such that P{Z ′Z ≤ cτ} = 1− τ , then our heuristics

imply that the level set

CSφ =
{

φ

∣∣∣∣ 2[ln(φ)− ln(φ̂n)] ≥ −cτ

}
(3)

provides a large sample approximation to the HPD set that is 1− τ credible.

For a frequentist analysis it is convenient to approximate the likelihood function around

the probability limit φ0 of the maximum likelihood estimator:

ln(φ) = ln(φ0) + Z ′n,0(φ− φ0)−
1
2
(φ− φ0)′Jn,0(φ− φ0) +R(‖φ− φ0‖2). (4)

Here, Zn,0 and Jn,0 are the matrices of first and second derivatives of the log-likelihood

function evaluated at φ0. Now let s = J
1/2
n,0 (φ− φ0) and write

ln(φ) = ln(φ0)−
1
2
(s− J

−1/2
n,0 Zn,0)′(s− J

−1/2
n,0 Zn,0) +

1
2
Z ′n,0J

−1
n,0Zn,0 +R(‖J−1/2

n,0 s‖2).

In “regular”1 models 1
nJn,0

p−→ J0 and J
−1/2
n,0 Zn,0 =⇒ Z uniformly in φ0, where Z ∼

N (0, I). Under suitable regularity conditions one can show that

ln(φ0)− ln(φ̂n) = −1
2
(s− J

−1/2
n,0 Zn,0)′(s− J

−1/2
n,0 Zn,0) + op(1)

and deduce

sup
φ∈Φ

∣∣∣∣PY n

φ {2[ln(φ)− ln(φ̂n)] ≥ −cτ} − P{Z ′Z ≤ cτ}
∣∣∣∣ −→ 0. (5)

1An important and widely studied irregular model in the econometrics literature is the autoregressive

model yt = φyt−1+εt, where φ ∈ [0, 1], see Sims and Uhlig (1991). Here the convergence of Jn(φ)−1/2Zn(φ)

to a limit distribution is not uniform in φ and Bayesian and frequentist interval estimates differ.
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Thus, the set CSφ in (3) is also a uniformly valid frequentist confidence set.

The above analysis remains essentially unchanged if one uses a smooth one-to-one func-

tion φ = G(θ) to re-parameterize the problem in terms of a structural parameter of interest

θ. The set

CSθ =
{

θ

∣∣∣∣ 2[ln(G(θ))− ln(φ̂n)] ≥ −cτ

}
is (asymptotically) a 1 − τ credible set for a Bayesian and a 1 − τ confidence set for a

frequentist econometrician. The point of departure in this paper is to replace the function

G(θ) by a correspondence. Each value of the reduced form parameter φ ∈ Φ is associated

with a set of structural form parameters. This set is typically referred to as the identified set

and will be denoted by Θ(φ). Likewise, each structural parameter is potentially associated

with multiple reduced form parameters, which we collect in the set Φ(θ).

Example 1: Moment Inequalities. Consider the simple location model Yi = φ + Ui,

where Ui is iid with some probability density function f(u). Suppose that the relationship

between the location parameter φ ∈ Φ ⊆ R and the structural parameter of interest is given

by the inequalities

θ − λ ≤ φ ≤ θ,

where λ is a known constant that determines the length of the identified set. The model

specification is similar to the simple treatment effect model, in which observations are miss-

ing with a known probability, analyzed in Imbens and Manski (2004). In this example

Θ(φ) = [φ, φ + λ] and Φ(θ) = [θ − λ, θ]. �

To study inference with respect to the partially identified parameter θ we express the

correspondence Φ(θ) in terms of a functional relationship between φ, θ, and an auxiliary

parameter α such that

φ = G(θ, α).

We assume that for each φ there exists a suitable domain Aθ such that

Φ(θ) =
{

φ
∣∣ φ = G(θ, α) for some α ∈ Aθ

}
.

In the moment inequality example we can choose2 G(θ, α) = θ−α andAθ = [0, λ]. Replacing

the reduced form parameter in the likelihood function leads to the following log-likelihood

ratio:

ln(G(θ, α))− ln(φ̂n).

From the perspective of inference about θ the auxiliary parameter α is a nuisance parameter.
2The choice of G(θ, α) is not unique, because one can express α through arbitrary functions that map

into the unit interval.
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3 Large Sample Analysis

We now derive a large sample approximation of the posterior distribution of a parameter

θ ∈ Θ ⊆ Rk in a partially identified model in which the identifiable reduced form parameter

φ ∈ Φ ⊆ RK is linked to θ through a correspondence that takes the form φ = G(θ, α),

α ∈ Aθ. We use the approximation to compare Bayesian credible sets and frequentist

confidence intervals in partially identified models.

3.1 Bayesian Analysis

In many applications Bayesian analysis can be conveniently implemented by combining

ln(G(θ, α)) with a prior distribution for θ and α. One can use numerical methods such

as importance sampling or Markov-Chain Monte Carlo algorithms to approximate finite-

sample moments of the posterior distribution of θ. For a theoretical analysis, on the other

hand, it is more convenient to work with the joint distribution of φ and θ, decomposed into

the marginal distribution of φ, Pφ, and the conditional distribution of θ given φ, P θ
φ .

As emphasized by Kadane (1974), the derivation of the posterior distribution can be

done on the space of the reduced form parameter φ. Let T be a measurable subset of Θ.

Then

P θ
Y n{θ ∈ T } =

∫
Φ

∫
Θ(φ)

I{θ ∈ T } exp[ln(φ)]dP θ
φdPφ∫

Φ

∫
Θ(φ)

exp[ln(φ)]dP θ
φdPφ

(6)

=
∫

Φ

[ ∫
Θ(φ)

I{θ ∈ T }dP θ
φ

]
exp[ln(φ)]∫

Φ
exp[ln(φ)]dPφ

dPφ

=
∫

Φ

P θ
φ{θ ∈ T }dPφ

Y n .

Since conditional on φ the structural parameter θ does not enter the likelihood function the

prior distribution of θ given φ, P θ
φ , is not updated in view of the data Y n. This point also

has been emphasized by Poirier (1998). To obtain a large sample distribution of P θ
Y n , we will

replace Pφ
Y n in (6) by a Gaussian approximation. There exists a long literature on normal

approximations of posterior distributions in identified models, including Bernstein (1934),

LeCam (1953), von Mises (1965). Our subsequent expansion of the posterior distribution of

φ follows work by Johnson (1970). Unlike Johnson, who provides higher-order expansions

of posterior distribution, we will only derive a first-order expansion. Rather starting from

low-level assumptions that guarantee the existence of a maximum likelihood estimate, we

begin by directly assuming the almost-sure convergence of the MLE.
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Assumption 1 (i) The MLE φ̂n exists and φ̂n −→ φ0 [PY n

φ0
] almost surely.

(ii) For any δ > 0, lim supn→∞ sup‖φ−φ0‖≥δ
1
n [ln (φ0)− ln (φ)] > 0 [PY n

φ0
] almost surely.

In order to construct a normal approximation of the posterior distribution of φ, we need

to make a few additional assumptions that guarantee the smoothness of the log likelihood

function.

Assumption 2 (i) Φ is a compact subset in RK and φ0 ∈ int (Φ) .

(ii) For n sufficiently large, p(Y n|φ) is twice continuously differentiable with respect to φ.

(iii) 1
nJn,0 −→ J0 [PY n

φ0
] almost surely and Jn is well-defined and negative definite.

(iv) There exists a δ > 0 and a finite constant M such that ‖φ1 − φ2‖ implies that
1
n ‖Jn(φ1)− Jn(φ2)‖ ≤ M‖φ1 − φ2‖, [PY n

φ0
] almost surely.

Under Assumption 2, the log likelihood is continuous over a compact set, therefore the

MLE φ̂n is well defined. Under Assumption 2(ii), the log likelihood function is twice con-

tinuously differentiable. As in the previous Section, we use −Jn(φ) to denote the matrix

of second derivatives of the log-likelihood function around φ. We continue to use the ab-

breviations Jn,0 = Jn(φ0) and Ĵn = Jn(φ̂n). Assumptions 1 and 2 cover models with iid

observations as well as time series models for weakly dependent data without trends. Large

sample approximations of posterior distributions for non-stationary time series models can

be found in Phillips and Ploberger (1996) and Kim (1998).

Assumption 3 (i) The prior density p(φ) is uniformly bounded in φ ∈ Φ and continuously

differentiable in a neighborhood around φ0.

(ii) There exists a δp > 0 such that inf‖φ−φ0‖≤δp
p(φ) > 0 and sup‖φ−φ0‖≤δp

∥∥p(1)(φ)
∥∥ ≤ M

for some finite constant M.

According to Assumption 3 the parameter φ0 is drawn from the prior distribution Pφ

whose density function is p(φ). When p(φ) is differentiable, we denote p(1)(φ) to be its first

derivative. We use s to denote the re-scaled parameter vector Ĵ
1/2
n (φ − φ̂n). Based on the

above assumption we obtain the following approximation to the posterior distribution of φ.

Theorem 1 Suppose Assumptions 1 – 3 are satisfied. Let Y n be in the sure set of Assump-

tions 1 and 2.
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(i) There exist finite constants M and N such that whenever n ≥ N we have for any sequence

of bounded functions |Hn(φ, ξ)| < MH∣∣∣∣ ∫
φ∈Φ

Hn (φ, ξ) dPφ
Y n −

∫
Rk

Hn

(
φ̂n + Ĵ−1/2

n s, ξ
)

dΦN (s)
∣∣∣∣ ≤ M√

n
.

(ii) There exist finite constants M and N such that whenever n ≥ N

sup
ξ∈RK

∣∣∣∣Pφ
Y n{Ĵ1/2

n (φ− φ̂n) ≤ ξ} − ΦN (ξ)
∣∣∣∣ ≤ M√

n
.

Part (i) of Theorem 1 is proved in the Appendix. Part (ii) follows directly from Part

(i) by setting Hn(φ, ξ) = I{Ĵ1/2
n (φ− φ̂n) ≤ ξ} and provides a normal approximation of the

posterior distribution of φ = φ̂n + Ĵ
−1/2
n s. The constant M in Theorem 1 depends on the

function H(·) only through the bound MH .

The remainder of the paper focuses on the characterization of the posterior distribution

of θ and the posterior probability of subsets of Θ. Let Tξ,n ⊆ Θ be a sequence of subsets of

the structural parameter space, indexed my a finite-dimensional vector ξ. Moreover, define

Hn (φ, ξ) = P θ
φ{θ ∈ Tξ,n}. (7)

If Tξ,n = {θ ≤ ξ} then Hn (φ, ξ) is the prior (and posterior) cdf of θ given φ and does not

depend on n. If θ = [θ′1, θ
′
2]
′ and Tξ,n = {θ1 ≤ ξ} then Hn (φ, ξ) is the cdf of the sub-vector

θ1 conditional on φ. In the context of Example 1 we will be interested in the posterior

probability of the sequence of sets Tn,ξ = [φ̂n +λξ, φ̂n +λ(1−ξ)], which can be expressed as∫
Φ

Hn (φ, ξ) dPφ
Y n . Some of our subsequent results require that Hn(φ, ξ) satisfies a Lipschitz

condition.

Assumption 4 The sequence of functions Hn(φ, ξ) defined in (7) is Lipschitz in φ, that is,

|Hn(φ1, ξ)−Hn(φ2, ξ)| ≤ M(ξ)‖φ1 − φ2‖, where M(ξ) is a constant that depends on ξ.

Since we are interested in using large sample approximations of posterior distributions

to characterize asymptotically valid credible sets, we provide the following formal definition.

Definition 1 A sequence of sets CSθ
B,τ (Y n) is asymptotically 1 − τ credible if P θ

Y n{θ ∈

CSθ
B,τ (Y n)} −→ 1− τ .

Combining (6) and Theorem 1 we obtain the following approximation to the posterior

probability that {θ ∈ Tξ,n}:
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Corollary 1 Suppose Assumptions 1 – 3 are satisfied. Let Y n be in the sure set of As-

sumptions 1 and 2. The function Hn (φ, ξ) is defined in (7).

(i) There exist finite constants M and N such that whenever n ≥ N∣∣∣∣P θ
Y n{θ ∈ Tξ,n} −

∫
RK

Hn(φ̂n + Ĵ−1/2
n s, ξ)φN (s)ds

∣∣∣∣ ≤ M√
n

.

(ii) If the sequence of functions Hn(φ, ξ) satisfies Assumption 4, then there exist finite

constants M(ξ) and N such that whenever n ≥ N∣∣∣P θ
Y n{θ ∈ Tξ,n} −Hn(φ̂n, ξ)

∣∣∣ ≤ M(ξ)√
n

.

(iii) If the sequence of functions Hn(φ, ξ) satisfies Assumption 4 and for every φ ∈ Φ and

τ ≥ ξ > 0 there is a set Tξ(φ) ⊂ Θ(φ) such that P θ
φ{θ ∈ Tξ(φ)} ≥ 1− ξ, then there exists a

sequence of sets CSθ
B,τ (Y n) ⊆ Tξ(φ̂n) ⊂ Θ(φ̂n) that is asymptotically 1− τ credible.

Part (i) of Corollary 1 is a direct consequence of Theorem 1. Part (ii) is proved in

the Appendix and implies that an O(n−1/2) accurate approximation of the posterior dis-

tribution of θ can be calculated from the conditional prior distribution P θ
φ̂n

, provided that

Hn(φ, ξ) satisfies the Lipschitz condition. For instance, the Lipschitz condition is satisfied

in Example 1, if P θ
φ is U [φ, φ + λ] and Tξ,n = {θ ≤ ξ}. According to Corollary 1(iii) one

can construct asymptotically valid credible sets as subsets of Tξ(φ̂n). By construction, these

sets lie strictly inside of the identified set Θ(φ̂n).

3.2 Frequentist Analysis

Starting point for our frequentist analysis is the log likelihood ratio ln(G(θ, α)) − ln(φ̂n).

We begin by concentrating out the nuisance parameter α. Let

α̂(θ) = argmaxα∈Aθ
ln(G(θ, α))

and define the profile objective function

Qn(θ) = 2[ln(G(θ, α̂(θ)))− ln(φ̂n)]. (8)

We consider consider confidence intervals that are of the form

CSθ
F,τ = {Qn(θ) ≥ −cτ (θ)}. (9)

If the critical value function cτ (θ) is constant, then the confidence interval is a level set of

the profile objective function Qn(θ). For CSθ
F,τ to be a confidence set that is uniformly
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valid asymptotically the following condition has to be satisfied:

lim
n−→∞

inf
φ∈Φ

inf
θ∈Θ(φ)

PY n

φ {Qn(θ) ≥ −cτ (θ)} ≥ 1− τ. (10)

Constructing a critical value function such that (10) holds with equality can be challeng-

ing and is the subject of a number of recent papers, including Imbens and Manski (2004),

Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2005), Andrews and Guggen-

berger (2007), and Andrews and Soares (2007). For the remainder of this section we will

assume that such a critical value function is available and we will conduct a comparison

between Bayesian and frequentist confidence sets.

Since the objective function Qn(θ) = 0 if θ ∈ Θ(φ̂n) we can deduce immediately that

the frequentist confidence interval contains Θ(φ̂n): Θ(φ̂n) ⊆ CSθ
F,τ . We now proceed by

providing some conditions under which Θ(φ̂n) ⊂ CSθ
F,τ . Suppose to the contrary that

Θ(φ̂n) = CSθ
F,τ . As long as the likelihood function has a unique maximum φ̂n, Qn(θ) = 0

if and only if θ ∈ Θ(φ̂n). Using our definition of Φ(θ) notice that

PY n

φ {Qn(θ) = 0} = PY n

φ {φ̂n ∈ Φ(θ)}.

Now consider

inf
θ∈Θ(φ)

PY n

φ {φ̂n ∈ Φ(θ)} = inf
θ∈Θ(φ)

PY n

φ {
√

n(φ̂n − φ) ∈
√

n(Φ(θ)− φ)}.

Let θ̃ be such that φ is on the boundary of Φ(θ̃). Moreover, assume that
√

n(Φ(θ̃)− φ) can

be covered with a convex cone C that is centered at φ. Then we obtain

inf
θ∈Θ(φ)

PY n

φ {
√

n(φ̂n − φ) ∈
√

n(Φ(θ)− φ)} ≤ PY n

φ {
√

n(φ̂n − φ) ∈ C}.

This argument proves the following theorem.

Theorem 2 Suppose there exists a pair θ̃ and φ̃ such that (i) φ̃ is a boundary point of Φ(θ̃),

(ii)
√

n(Φ(θ̃)− φ̃) can be covered with a convex cone C, and (iii) P{Z ∈ C} ≤ 1− τ . Then

Θ(φ̂n) ⊂ CSθ
F,τ .

The set CSθ
F,τ is a confidence set for the entire parameter vector θ. To conduct inference

for a subset of parameters θ1, one could project CSθ
F,τ onto the relevant subspace of Θ. In

this case, it is still true that the projection of Θ(φ̂n) is a strict subset of the projection of

CSθ
F,τ .
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3.3 Bayesian versus Frequentist Sets

According to Theorem 2 an asymptotically valid frequentist confidence set for θ extends

beyond Θ(φ̂n), whereas Corollary 1(iii) implies that asymptotically valid Bayesian credible

sets can be constructed as subsets of Θ(φ̂n). Thus, unlike in the identified case discussed in

Section 2, frequentist and Bayesian set estimates are numerically different in large samples

if a model is partially identified. In particular, one can obtain Bayesian credible sets that

are strict subsets frequentist confidence sets.

The frequentist literature on partially identified models is also concerned about esti-

mates of the identified set Θ(φ). Imbens and Manski (2004) highlight that confidence sets

for the set Θ(φ) tend to be larger than confidence sets for an element θ ∈ Θ(φ). The exist-

ing literature is not very clear about the instances in which an empirical researcher might

prefer an a confidence set for Θ(φ) over a confidence set for θ ∈ Θ(φ). A loose argument for

reporting an estimate of Θ(φ) is that the econometrician’s audience might be interested in

solving a minimax decision problem of the form3

min
δ(Y n)∈D

max
φ∈Φ, θ∈Θ(φ)

PY n

φ [L(δ(Y n), θ)] (11)

by replacing Θ(φ) in (11) with a confidence set that covers Θ(φ). Here δ(Y n) is a decision

function and L(δ, θ) a loss function. In a Bayesian framework, the natural approach for the

econometrician would be to compute the posterior distribution for θ and solve the decision

problem by minimizing posterior expected loss

min
δ(Y n)∈D

P θ
Y n [L(δ(Y n), θ)],

which does not require a credible set for Θ(φ). Nonetheless, a posterior credible set could

be obtained, for instance, by taking unions of Θ(φ) for values of φ in a set CSφ
τ :

CS∗τ =
⋃

φ∈CSφ
τ

Θ(φ).

By construction, I{Θ(φ) ⊆ CS∗τ} ≥ I{φ ∈ CSφ
τ }. If CSφ

τ is both a valid frequentist

confidence set as well as a valid Bayesian credible set (see Section 2) we can deduce that

CS∗τ is a valid set estimate for Θ(φ) from both the Bayesian and the frequentist perspective.

3As an alternative to the expected loss one could consider the regret L(δ(Y n), θ)− L(δopt, θ).
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4 Illustrations

The large sample approximations obtained in the previous section are now applied to several

specific examples, beginning with the moment inequality example presented in Section 2.

With our extensions of Example 1, we illustrate that Bayesian credible sets are asymptoti-

cally located inside Θ(φ̂n), whereas frequentist confidence sets extend beyond the boundaries

of Θ(φ̂n) (Section 4.1). This result also holds if frequentist inference is based on an inte-

grated instead of a profile likelihood function (Section 4.2, Example 1 continued). Our large

sample Bayesian inference can be extended to cover the models in which the volume of the

identified set depends on an estimable parameters and is potentially zero. We show how

to modify the approximation of the posterior to allow for reduced form parameters that lie

on the boundary of Φ (Section 4.2, Example 2). Finally, we consider a model in which the

reduced form parameter is uniquely determined by the structural parameter, but not vice

versa. If inference is conducted for the entire parameter vector θ (instead of a subset of θ),

then certain Bayesian 1 − τ credible sets are in fact valid 1 − τ frequentist confidence sets

(Section 4.2, Example 3).

4.1 Moment Inequalities, Part I

Consider Example 1 of Section 2: Yi = φ + Ui, Ui is iid with pdf f(u), and θ − λ ≤ φ ≤ θ,

where λ is known. Assume that the density function f(u) satisfies Assumptions 1 and 2 with

J0 = 1. Moreover, assume that the prior density p(φ, α) = p(φ)p(α) where p(φ) satisfies

Assumption 3 and the prior on the auxiliary parameter α = θ−φ is uniform on the interval

[0, λ]. To obtain a large sample approximation of the posterior cdf of θ, let Tξ,n = {θ ≤ ξ}.

Thus, the function Hn(φ, ξ) is the cdf of a U [φ, φ + λ] random variable and of the form

Hn(φ, ξ) = P θ
φ{θ ≤ ξ} =


0 if ξ < φ

(φ− ξ)/λ if φ ≤ ξ ≤ φ + λ

1 otherwise

. (12)

If λ > 0 the function Hn(φ, ξ) in (12) satisfies the Lipschitz condition in Assumption 4 and

we obtain the following two approximations of the posterior probability θ ≤ ξ:

P̂ θ
Y n(i){θ ≤ ξ} =

1
λ

(ξ − φ̂n)ΦN (
√

n(ξ − φ̂n)) (13)

− 1
λ

(ξ − (φ̂n + λ))ΦN (
√

n(ξ − (φ̂n + λ)))

+
1

λ
√

n

[
φN (

√
n(ξ − φ̂n))− φN (

√
n(ξ − (φ̂n + λ)))

]
,

P̂ θ
Y n(ii){θ ≤ ξ} = Hn(φ̂n, ξ). (14)
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The posterior density associated with approximation (i) can be obtained by differentiating

the cdf P̂ θ
Y n(i){θ ≤ ξ} with respect to θ:

p̂(i)(θ|Y n) =
1
λ

[
ΦN (

√
n(θ − φ̂n))− ΦN (

√
n(θ − (φ̂n + λ)))

]
. (15)

Since ΦN (x) = 1 − ΦN (−x), it is straightforward to verify that the approximate posterior

density p̂(i)(θ|Y n) is symmetric around the mode θ̂n = φ̂n + λ/2. For large values of n

p̂(i)(θ|Y n) approaches the density function associated with P̂ θ
Y n(ii): it jumps from 0 to 1/λ

at θ = φ̂n, stays constant, and drops back to zero around θ = φ̂n + λ.

According to P̂ θ
Y n(ii) the posterior distribution of θ is uniform on the Θ(φ̂n) asymptot-

ically. This suggests that the set

CSθ
B,ξ(Y

n) = [φ̂n + ξλ/2, φ̂n + λ− ξλ/2] ⊂ Θ(φ̂n)

is an asymptotically valid 1 − ξ credible interval for θ. To verify this claim, let Tξ,n =

CSθ
B,ξ(Y

n) and define

Hn(φ, ξ) = P θ
φ{θ ∈ Tξ,n}. (16)

This function is piecewise linear with a Lipschitz constant of 1/λ (see Assumption 4). Thus,

provided that λ > 0, the posterior probability P θ
Y n{θ ∈ CSθ

B,ξ(Y
n)} can according to

Corollary 1 be approximated by Hn(φ̂n, ξ) = 1 − ξ in (16), which verifies the claim. If

λ = 0 and θ is point identified, the Lipschitz condition is violated and the asymptotic

approximation of the posterior cdf is of the form P̂ θ
Y n(i){θ ≤ ξ} = ΦN (ξ), which leads to

the “standard” interval φ̂n ± zτ/2/
√

n.

To illustrate the frequentist analysis we assume that f(u) = φN (u). Hence the profile

objective function is given by

−Qn(θ) =


n(φ̂n − θ)2 if θ ≤ φ̂n

0 if φ̂n < θ < φ̂n + λ

n(φ̂n − θ + λ)2 if φ̂n + λ ≤ θ

. (17)

The finite-sample distribution of the maximum likelihood estimator is
√

n(φ̂n − φ) ∼ Z,

where Z is a standard normal random variable. It is convenient to re-scale θ according

to sθ =
√

n(θ − φ). In terms of the sθ transform, the identified set Θ(φ) is given by

0 ≤ sθ ≤
√

nλ. We can now characterize the distribution of the profile objective function as

−Qn(φ + n−1/2sθ) ∼


(Z − sθ)2 if sθ ≤ Z

0 if Z < sθ < Z +
√

nλ

(Z − sθ +
√

nλ)2 if Z +
√

nλ ≤ sθ

. (18)
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Now suppose that the critical value cτ solves the following equation:

ΦN (
√

nλ +
√

cτ )− ΦN (−
√

cτ ) = 1− τ. (19)

In view of (18), we deduce

inf
φ∈Φ

inf
θ∈Θ(φ)

PY n

φ {Qn(θ) ≥ −cτ}

= inf
0≤sθ≤

√
nλ

P{sθ −
√

nλ−
√

cτ ≤ Z ≤ sθ +
√

cτ}

= inf
0≤sθ≤

√
nλ

ΦN (sθ +
√

cτ )− ΦN (sθ −
√

nλ−
√

cτ )

= 1− τ,

where the last line follows since the infimum is achieved at sθ = 0 or sθ =
√

nλ and by the

definition of cτ in (19) . Therefore, the resulting confidence interval is of the form

CSθ
F,τ (Y n) =

[
φ̂n −

√
cτ/n, φ̂n + λ +

√
cτ/n

]
. (20)

As pointed out by Imbens and Manski (2004), if the re-scaled length of the identified set is

large, then a 1−τ confidence set for the parameter θ is obtained by expanding the boundaries

of the interval Θ(φ̂n) using a one sided critical value
√

cτ ≈ zτ . If, on the other hand, the

length of the identified set is zero (exact identification) or
√

nλ is close to zero, then the

boundaries of Θ(φ̂n) have to be expanded by a two-sided critical value
√

cτ ≈ zτ/2.

A comparison of the frequentist and the Bayesian interval leads to the relationship

CSθ
B,τ ⊂ Θ(φ̂n) ⊂ CSθ

F,τ , as postulated in Corollary 1(iii) and Theorem 2. To see that

the conditions of Theorem 2 are satisfied, choose, for instance, θ̃ = 0, φ̃ = −λ. Hence

Φ(θ̃) − φ̃ = [0, λ], which expands to C = R+ if scaled by
√

n. Since P{Z ∈ R+} = 1/2, a

confidence set with coverage probability greater than 50% has to extend beyond Θ(φ̂n).

A graphical comparison of the frequentist confidence intervals and Bayesian credible

intervals is provided in Figure 1, assuming that f(u) = φN (u). The two panels of the Figure

are drawn for a data set in which φ̂n = 0. We overlay sample sizes n = 5 and n = 500. The

top panel depicts posterior densities p(θ|Y n) = p̂(i)(θ|Y n) given in (15) and exact 90% HPD

intervals, calculated numerically. The bottom panel depicts the standardized frequentist

objective function 1
nQn(θ) from Equation (18), the critical values −cτ/n that solve (19),

and 90% frequentist confidence intervals.

4.2 Moment Inequalities, Part II

Example 1 (continued): Frequentist Analysis with Integrated Likelihood. Pre-

viously, our frequentist analysis was based on a profile likelihood function, whereas the
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Bayesian inference was based on an integrated likelihood function in which the nuisance pa-

rameter α was integrated out with respect to the prior distribution. We will now construct

a frequentist confidence interval for θ based on the integrated objective function obtained

with a prior (or weight function) α ∼ U [0, λ]:

ln,int(θ) = ln
∫

α∈Aθ

exp[ln(G(θ, α))]dα.

If f(u) = φN (u) then ln,int(θ) = ln p̂(i)(θ|Y n) defined in (15). Now consider the distribution

of exp[ln,int(θ)] near the boundaries of the identified set Θ(φ) = [φ, φ + λ]. If λ > 0 and the

sample size is sufficiently large, then

P

{
ln,int(θ) ≤ ln t

}
≈


ΦN

(
Φ−1
N (λt)−

√
n(θ − φ0)

)
for small |θ − φ0|

ΦN

(
Φ−1
N (λt)−

√
n(θ − (φ0 + λ))

)
for small |θ − (φ0 + λ)|

.

Thus, we obtain the following approximation for level sets:

CSθ
F,τ =

{
θ

∣∣∣∣ ln,int(θ) ≤ ln(τ/λ)
}

=
[
φ̂n − zτ/

√
n , φ̂n + λ + zτ/

√
n

]
, (21)

where zτ = Φ−1
N (1− τ). From a comparison of (20) and (21) we deduce that the frequentist

intervals constructed from the profile and the integrated likelihood function are approxi-

mately the same. In particular, the interval obtained from the profile likelihood function

also has the property that it extends beyond Θ(φ̂n). Thus, it is not the absence of a dis-

tribution over the identified set Θ(φ), but rather the requirement that the 1 − τ coverage

probability is guaranteed for all θ ∈ Θ(φ) that leads to frequentist set to be larger than the

Bayesian set.

Example 2: Unknown Length of Identified Set. We previously assumed that the

length of the identified set is known and made a distinction between identified intervals

of length zero and length greater than zero. Now suppose that the length itself depends

on an unknown but estimable reduced form parameter φ2 ≥ 0: θ − φ2 ≤ φ1 ≤ θ and

Θ(φ) = [φ1, φ1 + φ2]. This modified version of the inequality moment example is a stylized

representation of the treatment effect model studied by Imbens and Manski (2004). The

problem has been recently analyzed from a frequentist perspective in Stoye (2007). Let

φ = [φ1, φ2] and assume that the prior distribution for θ given φ is uniform on Θ(φ).

We previously derived the approximation of the posterior distribution under the as-

sumption that the “true” reduced form parameter lies in the interior of the domain Φ. This

assumption guaranteed that φ̂n is also in the interior and the score Ẑn = l
(1)
n (φ̂n) = 0 even-

tually. To accommodate reduced form parameters on the boundary of Φ, that is φ2 = 0 in
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this example, the approximation in Theorem 1 can be modified as follows:∣∣∣∣ ∫
Ĵ

1/2
n (Φ−φ̂n)

H
(
φ̂n + Ĵ−1/2

n s, ξ
)

dP s
Y n (22)

−
∫

Ĵ
1/2
n (Φ−φ̂n)

H
(
φ̂n + Ĵ−1/2

n s, ξ
) φN (s− Ĵ

−1/2
n Ẑn)∫

Ĵ
1/2
n (Φ−φ̂n)

φN (s− Ĵ
−1/2
n Ẑn)ds

ds

∣∣∣∣ = op(n−1/2).

If the score Ẑn is non-zero and the Hessian −Ĵn is negative definite, the normal approxi-

mation of s has to be centered at Ĵ
−1/2
n Ẑn instead of zero. Moreover, the distribution of

s is restricted to the set Ĵ
−1/2
n (Φ− φ̂n), which guarantees that the resulting posterior of φ

has support on the domain Φ. The above approximation requires an additional assumption

that guarantees that Ĵ
−1/2
n Ẑn is stochastically bounded.4 Due to the behavior of the score

Ẑn, the bound is only valid with probability approaching one, rather than almost surely. If

we let H(φ, ξ) = P θ
φ{θ ≤ ξ}, which is given by

H(φ, ξ) =

 H0(φ, ξ) if φ2 = 0

H+(φ, ξ) if φ2 > 0
,

where

H0(φ, ξ) =

 0 if ξ < φ1

1 if φ1 ≤ ξ
, H+(φ, ξ) =


0 if ξ < φ1

φ1−ξ
φ2

φ1 ≤ ξ ≤ φ1 + φ2

1 otherwise

,

then (22) provides a large sample approximation to the posterior of θ that is valid regardless

of whether the identified set has zero or non-zero length.

Example 3: Singleton Φ(θ). In some models the set of structural parameters uniquely

determines the reduced form parameters, that is Φ(θ) is a singleton, while Θ(φ) is set-valued.

An example of such a model is a structural vector autoregression, in which φ corresponds

to the regression coefficients and the non-redundant elements of the variance-covariance

matrix of the one-step-ahead forecast errors. The vector θ corresponds to a collection of

structural impulse response functions. These impulse responses depend in addition to φ on

a non-identifiable orthonormal matrix that rotates orthogonalized one-step-ahead forecast

errors into a vector of structural shocks.

Consider the following modification of Example 1: θ = [θ1, θ2]′, θ1 − λ ≤ φ ≤ θ1, and

θ2 = θ1 − φ. Notice that the slackness parameter α that arose in Example 1 is now called

4Classical analysis is typically based on the assumption that J
−1/2
n,0 Zn,0 = Op(1). Thus, stochastic

equicontinuity of the standardized score process J
−1/2
n (φ)l

(1)
n (φ) would suffice to ensure that Ĵ

−1/2
n Ẑn =

Op(1).
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θ2 and part of the structural parameter vector θ. Θ(φ) is located in a one-dimensional

subspace of Θ and remains set-valued, while Φ(θ) = θ1 − θ2 is a singleton. The projections

of the identified set Θ(φ) on the domains of θ1 and θ2 are given by Θ1(φ) = [φ, φ + λ] and

Θ2(φ) = [0, λ] We maintain that conditional on φ the prior for θ1 is U [φ, φ + λ], which

implies the prior on Θ2(φ) is also uniform.

Using the same arguments as for Example 1, replacing α by θ2, one can deduce that

the set

CSθ1
B,τ = [φ̂n + τλ/2, φ̂n + λ− τλ/2]

is an asymptotically valid 1− τ credible set for θ1. Similarly, CSθ2
B,τ = [τλ/2, λ− τλ/2] is

a 1− τ credible set for θ2. Likewise, the set characterized in (20) is a valid 1− τ frequentist

confidence set for θ1. Thus, the lessons learned from Example 1 still apply to inference

about the θ1 element of the θ vector.

More interestingly, we will now consider inference for the vector θ. Consider the follow-

ing subsets of Θ:

Tξ,n =
{

θ1, θ2

∣∣∣∣ φ̂n − ξ1/
√

n ≤ θ1 − θ2 ≤ φ̂n + ξ1/
√

n, λξ2/2 ≤ θ2 ≤ λ(1− ξ2)
}

(23)

and define

Hn(φ, ξ) = P θ
φ{θ ∈ Tξ,n} =

 1− ξ2 if φ̂n − ξ1/
√

n ≤ φ ≤ φ̂n + ξ1/
√

n

0 otherwise

Since the sequence of functions Hn(φ, ξ) does not satisfy the Lipschitz condition in Assump-

tion 4 we use the following approximation

P̂ θ
Y n(i){θ ∈ Tξ,n} = (1− ξ2)

∫ ξ1/
√

n

−ξ1/
√

n

φN (s)ds = (1− ξ2)(1− 2ΦN (ξ1)).

Thus, an asymptotically valid credible set can be obtained by choosing ξ1 ≥ 0 and 0 ≤ ξ2 ≤ 1

such that (1− ξ2)(1− 2ΦN (ξ1)) = 1− τ . It turns out that the volume of the 1− τ credible

set is minimized by setting ξ2 = 0 and ξ1 = zτ/2. The set Θ(φ̂n), which is obtained from

Tξ,n in (23) by setting ξ1 = 0 and ξ2 = 0, is not an asymptotically valid credible set – it

is too small. However, since one can construct valid credible sets with ξ2 > 0, it is not the

case that Θ(φ̂n) is nested in every asymptotically valid credible set. In this example Θ(φ̂n)

happens to be nested in the 1− τ credible set with the smallest volume among the Tξ,n sets.

Now consider the following construction of a frequentist confidence interval for θ. Since

Φ(θ) is a singleton, we can express φ = G(θ), without having to introduce an α. Moreover,
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the natural relationship between the domains Φ and Θ is: Φ = {φ | φ = G(θ), θ ∈ Θ}. Thus,

inf
φ∈Φ

inf
θ∈Θ(φ)

PY n

φ {2[ln(G(θ))− ln(φ̂n)] ≥ −cτ} (24)

= inf
θ∈Θ

inf
φ∈Φ(θ)

PY n

φ {2[ln(G(θ))− ln(φ̂n)] ≥ −cτ}

= inf
θ∈Θ

PY n

G(θ){2[ln(G(θ))− ln(φ̂n)] ≥ −cτ}

= inf
φ∈Φ

PY n

φ {2[ln(φ)− ln(φ̂n)] ≥ −cτ}

Using the large sample approximation described in Section 2 one can obtain an asymptoti-

cally valid confidence set CSφ that takes the form of the level set (3). In our example:

CSφ = [φ̂n − zτ/2/
√

n, φ̂n + zτ/2/
√

n].

According to (24) the corresponding confidence set for θ is given by CSθ
F,τ =

⋃
φ∈CSφ Θ(φ).

This set equals Tξ in (23) for ξ1 = zτ/2 and ξ2 = 0. Thus, the frequentist confidence set is

identical to Bayesian credible set that has the smallest volume among the Tξ sets.

5 A Numerical Example: Bayesian Analysis of a Two-

Player Entry Game

At last, we consider an example that has received a lot of attention in the microeconometric

literature on partially identified models: a two-player entry game, see for instance Bresnahan

and Reiss (1991), Berry (1994), Tamer (2003), and Ciliberto and Tamer (2007). Rather

than directly working with the asymptotic approximation derived in Section 3.1, we will use

Markov-Chain Monte Carlo techniques to generate posterior draws of θ for a small (n = 50)

and a large (n = 1, 000) sample. We will focus on a fairly simple version of the entry game

without firm-specific regressors. Depending on the entry decision of the second firm, Firm l

either does not enter market i, operates as monopolist, or operates as duopolist. Potential

monopoly (M) and duopoly (D) profits are given by

πM
i,l = x′iβl + εi,l, πD

i,l = x′iβl − γl + εi,l, l = 1, 2 i = 1, . . . , n (25)

The ε′i,ls capture latent profit components that are known to the two firms but unobserved

by the econometrician and xi is a vector of observable market characteristics. We assume

that the outcome of the entry game in each market is a pure strategy Nash equilibrium.

It is straightforward to verify that the Nash equilibrium is unique, except if both firms are

profitable as monopolist but not as duopolist. In the latter case, the model is silent about
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which firm actually enters the market. As a consequence, the model only delivers bounds

for the probability of observing a particular monopoly.

Suppose that εi,l ∼ iidN (0, 1) and let θ = [β′1, γ1, β
′
2, γ2]′. Using (25) it is straightfor-

ward to calculate probabilities that firm l is profitable as monopolist (duopolist) in market

i. For xi = x we denote these probabilities by µl(θ, x) and δl(θ, x), respectively. Moreover,

we use

φ(x) = [φ00(x), φ01(x), φ10(x), φ11(x)]′

to denote the reduced form probabilities of observing no entry, entry of Firm 1, entry of

Firm 2, or entry of both firms in a market with characteristics x. We observe no entry if

neither firm is profitable as monopolist, we observe a duopoly if both firms are profitable

as duopolists. An upper bound on the probability that Firm 1 operates as monopolist is

given by the probability that Firm 1 is profitable as monopolist and Firm 2 is not profitable

as duopolist. The lower bound is given by the sum of the probability that Firm 1 is prof-

itable as monopolist and Firm 2 is not profitable as monopolist and of the probability that

Firm 1 would be profitable as duopolist, but Firm 2 would only be profitable as monopolist.

Formally,

φ00(x) = (1− µ1(x))(1− µ2(x)) (26)

φ11(x) = δ1(x)δ2(x) (27)

φ10(x) ≤ µ1(x)(1− δ2(x)) (28)

φ10(x) ≥ µ1(x)(1− µ2(x)) + δ1(x)(µ2(x)− δ2(x)). (29)

It can be verified that the Nash equilibrium restriction for a Firm 2 monopoly does not add

any further restrictions on the reduced form probabilities.

In order to be able to uniquely determine the reduced form parameters as a function

of the probabilities µi and δi, we introduce for each x an auxiliary parameter α(x) ∈ [0, 1]

that captures the slackness in the inequality restrictions for φ10(x):

φ10(x) = µ1(x)(1−µ2(x))+δ1(x)(µ2(x)−δ2(x))+α(x)(µ1(x)−δ1(x))(µ2(x)−δ2(x)). (30)

The second term, which is pre-multiplied by α, can be interpreted as the probability that

both firms are profitable as monopolists but not as duopolists. Consequentially, the slack-

ness can be viewed as the probability of a sunspot shock that selects Firm 1 if the Nash

equilibrium is not unique. Equations (26), (27), and (30) define the function G(θ, α).

For the large sample theory presented in Section 3 to be applicable to the entry game

we need to assume that the regressor x is discretized. The discretization ensures that the
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reduced-form parameter vector φ is finite dimensional and is not uncommon in the empirical

literature. These regressors are assumed to take only finitely many values. In the subsequent

numerical illustration we only use an intercept as regressor.

We proceed in several steps: (i) we specify a data generating process by choosing “true”

values of θ and α, which imply a “true” φ. (ii) Instead of specifying a prior distributions Pφ

and P θ
φ , we start from a prior on θ and α and generate draws from the implied distributions

Pφ and P θ
φ . (iii) Finally, will generate two samples of size n = 50 and n = 1, 000 and

compare the posterior distributions.

The parameterization of the data generating process is summarized in the second column

of Table 1. The probabilities of a a Firm 1 monopoly, and Firm 2 monopoly, and a duopoly

are 48%, 33%, and 12%, respectively. The third column of Table 1 specifies the prior

distributions. We use fairly diffuse Gaussian priors for the elements of the θ vector. The

distributions of γ1 and γ2 are truncated at zero to ensure that duopoly profits are less

than monopoly profits. The auxiliary parameter α has support on the unit interval. We

consider three different priors, centered at 0.2 (low α), 0.5 (Benchmark), and 0.8 (high α),

respectively. By evaluating the function G(θ, α) at random draws from the prior distribution

of θ and α we obtain draws from the prior distribution of φ. Means and standard deviation

are reported in the last four rows of Table 1 under the Benchmark prior for α.

According to our previous analysis the prior distribution of θ given φ plays an important

role in Bayesian inference for partially identified models. We depict unconditional prior

densities as well as prior densities conditional on the “true” value of φ in Figure 2. Except

for α, the unconditional prior densities are essentially invisible because they are very diffuse

compared to the conditional priors. While in a fully identified model the prior P θ
φ should be

a pointmass at the singleton θ(φ), the entry game model is partially identified and leads to

a non-degenerate P θ
φ . The prior distribution on α induces a prior distribution for the profit

function parameters given the reduced form entry probabilities. Figure 2 illustrates how P θ
φ

shifts as one changes the prior for α. While the prior for α could in principle be correlated

with the prior for θ, for instance to reflect the belief that the firm with higher expected

monopoly profits is more likely to enter the market if the equilibrium is not unique, we will

treat α and θ as independent.

We now generate samples of n = 50 and n = 1, 000 observations from the data generating

process and us a random-walk Metropolis Algorithm to generate draws from the posterior

of θ and α. Using the relationship φ = G(θ, α) we convert the θ-α draws into φ draws.

Figure 3 indicates that after 50 observations there is still substantial uncertainty about
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the reduced form parameters. Since we specified the prior distribution for φ implicitly

through a prior for θ and α, changes in the prior for α can in principle affect the prior and

posterior of φ. However, according to Figure 3 this effect is negligible in our illustration.

Figure 4 depicts posterior densities for the profit function parameters β and δ. While the

prior distribution of α and hence P θ
φ has some effect on the posterior, overall the posterior

distribution is dominated by the uncertainty about the reduced form parameter. Finally, the

two panels of Figure 5 show scatter plots of draws from the posterior distribution of β1 and

γ1. Moreover, we outline the projection of the identified set Θ(φ̂n) onto the domain of β1

and γ1. Here φ̂n is the posterior mean of the reduced form parameter vector φ. According to

our asymptotic theory, the posterior distribution concentrates near Θ(φ̂n), which is evident

from the posterior draws obtained with n = 1, 000.

6 Conclusion

We derived a large sample approximation for the posterior distribution of a structural param-

eter vector in a partially identified model to compare Bayesian credible sets and frequentist

confidence sets. Unlike in regular models, Bayesian and frequentist set estimates differ not

just with respect to their philosophical underpinnings. Frequentist confidence intervals have

to extend beyond the boundaries of the identified set (conditional on the estimated reduced

form parameter), whereas Bayesian credible sets can be be located in the interior of the

identified set asymptotically. The main challenge to frequentist inference is to establish the

uniform validity of the set estimate. The main challenge to Bayesian inference is to control

the shape of the prior distribution on the identified set conditional on the reduced form

parameter to avoid highly informative priors on the identified set induced by nonlinearities

of parameter transformations and to document the sensitivity of posterior inference to the

choice of prior even in large samples.
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Appendix

The proof of Theorem 1 will closely follow the arguments in Johnson (1970). We rewrite

the posterior density of φ as

qφ (φ|Y n) =


p(φ) exp[ln(φ)]

p(φ̂n) exp[ln(φ̂n)]
if φ ∈ Φ

0 otherwise

pφ (φ|Y n) =
qφ(φ|Y n)∫

RK qφ(φ|Y n)dφ
.

Define Σ̂n = n1/2Ĵ
−1/2
n and z = Σ̂−1

n (φ− φ̂n) ∈ Φz. Moreover, let qz(z|Y n) = qφ(φ̂n +Σ̂nz).

Then the posterior density of z can be expressed as

pz(z|Y n) =
qz(z|Y n)∫

RK qz(z|Y n)dz
.

Let Ω0 and Ω1 denote the sure sets for which Assumptions 1 and 2 hold, respectively. We

begin by introducing several Lemmas that are useful for the proof of the theorem.

Lemma 1 Suppose that Assumptions 1 – 2 hold. Fix a constant κ1 with 0 < κ1 < 1.

Then, one can choose a constant δ1 > 0 and, for each ω ∈ Ω1 a constant N1ω such that

the following statements hold: (a) If n ≥ N1ω and ‖φ− φ0‖ ≤ δ1, then there exists finite

constants Mmin and Mmax such that

0 < Mmin ≤ λmin(n−1Jn(φ)) ≤ λmax(n−1Jn(φ)) ≤ Mmax < ∞.

(b) If n ≥ N1ω, then

0 < Mmin ≤ λmin(n−1Ĵn) ≤ λmax(n−1Ĵn) ≤ Mmax < ∞

and (c)

0 < M−1
max ≤ λmin(n−1Ĵn) ≤ λmax(n−1Ĵn) ≤ M−1

min < ∞.

Lemma 2 (Lemma 2.2 in Johnson) Suppose that Assumptions 1 – 2 hold. Then, we

can choose a constant δ2 (0 < δ2 < 1), a constant κ2 < 1
2 , and, for each ω ∈ Ω1, a constant

N2ω (≥ N1ω) such that if n ≥ N2ω and ‖z‖ ≤ δ2, then

1
n

ln

(
φ̂n + Σ̂nz

)
− 1

n
ln

(
φ̂n

)
≤ −κ2 ‖z‖2 .

Lemma 3 (Lemma 2.3 in Johnson) Suppose that Assumptions 1 – 2 hold. Suppose that

δ > 0 is given. Then, we can choose a constant κ3 > 0 and, for each ω ∈ Ω1, a constant

N3ω (≥ N2ω) such that whenever n ≥ N3ω and ‖z‖ ≥ δ, we have

1
n

ln

(
φ̂n + Σ̂nz

)
− 1

n
ln

(
φ̂n

)
≤ −κ3.
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Now define (our definition differs from Johnson’s)

p1(φ− φ̂n; φ̂n) = 1 +
p(1)(φ̂n)′

p(φ̂n)
(φ− φ̂n).

Since φ̂n → φ0 a.s. and p(φ0) > 0, p(φ̂n) > 0 near φ0.

Lemma 4 (Lemma 2.4 in Johnson) Suppose that Assumptions 1 – 3 hold. Then, there

exists a constant δ4,a constant M, and, for each ω ∈ Ω0, a constant N4ω(> N3ω) such that

if n ≥ N4ω, then∫
‖z‖≤δ4

∣∣∣∣qz (z|Y n)− p1

(
Σ̂nz; φ̂n

)
exp

(
−1

2
nz′z

)∣∣∣∣ dz ≤ M

n
.

Lemma 5 Suppose Assumptions 1 – 3 are satisfied. Let Y n be in the sure set of Assump-

tions 1 and 2. Then, there exist a finite constant M and a finite constant N such that

whenever n ≥ N we have∣∣∣∣∫
RK

[
qz(z|Y n)− exp

(
−1

2
nz′z

)]
dz

∣∣∣∣ ≤ M

n
.

Proof of Lemma 5 For a given ω ∈ Ω0, choose Nω ≥ N4ω in Lemma 4 such that when

n ≥ N4ω, the statements of Lemmas 1, 2, 3, and 4 hold, and for the δp in Assumption 3,

‖φ̂n − φ0‖ ≤ δp by Lemma 1 in Wu (1981). We bound∫
RK

∣∣∣∣qz (z|Y n)− exp
(
−1

2
nz′z

)∣∣∣∣ dz

≤
∫

RK

∣∣∣∣qz (z|Y n)− p1

(
Σ̂nz; φ̂n

)
exp

(
−1

2
nz′z

)∣∣∣∣ dz

+
∫

RK

∣∣∣1− p1

(
Σ̂nz; φ̂n

)∣∣∣ exp
(
−1

2
nz′z

)
dz

= I + II

Term I can be bounded by

III + IV + IV =
∫
‖z‖≤δ4

∣∣∣∣qz (z|Xn)− p1

(
Σ̂nz; φ̂n

)
exp

(
−1

2
nz′z

)∣∣∣∣ dz

+
∫
‖z‖>δ4

qz (z|Y n) dz +
∫
‖z‖>δ4

∣∣∣p1

(
Σ̂nz; φ̂n

)∣∣∣ exp
(
−1

2
nz′z

)
dz,

where δ4 is defined in Lemma 4. The O(n−1) bound for III follows directly from Lemma

4. Now consider term IV :

IV =
∫
‖z‖>δ4

p(φ̂n + Σ̂nz)

p(φ̂n)
exp

(
ln(φ̂n + Σ̂nz)− ln(φ̂n)

)
dz

≤ M exp(−κ3n) ≤ M

n
.
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The bound follows from Assumption 3 and Lemma 3. Finally, to obtain a bound for term

V , by Assumption 3 with ‖φ̂n − φ0‖ ≤ δp and by Lemma 1(c), we can choose M such that

∣∣∣p1(Σ̂nz; φ̂n)
∣∣∣ ≤ 1 +

∥∥∥∥∥p(1)(φ̂n)

p(φ̂n)

∥∥∥∥∥∥∥∥Σ̂nz
∥∥∥ ≤ 1 + M ‖z‖ .

Then,

V ≤
∫
‖z‖>δ4

exp
(
−1

2
n ‖z‖2

)
dz + M

∫
‖z‖>δ4

‖z‖ exp
(
−1

2
n ‖z‖2

)
dz ≤ M

n
.

Combining the bounds for terms III, IV , and V, we have

I ≤ M

n
.

For the term II, from the definition p1

(
Σ̂nz; φ̂n

)
and (6) and by change of variable v =

√
n ‖z‖, we have

II ≤ M

∫
RK

‖z‖ exp
(
−1

2
n ‖z‖2

)
dz ≤ M

n

∫ ∞

0

exp
(
−1

2
v2

)
vKdv ≤ M

n
,

as required for the lemma. �

Proof of Theorem 1(i): For s =
√

nz ∈ Φs the posterior is ps(s|Y n) =
√

npz(
√

nz|Y n).

We now abbreviate H(φ̂n + Ĵ
−1/2
n s, ξ) = H(s, ξ). Then,∫

Φs

H(s, ξ)dP s
Y n −

∫
RK

H(s, ξ)dΦN (s) =
∫

RK

H(n1/2z, ξ)[pz(z|Y n)− n1/2φN (n1/2z)]dz.

To prove the theorem it suffices to show that√
2π

n

∣∣∣∣∫
RK

H(n1/2z, ξ)[pz(z|Y n)− n1/2φN (n1/2z)]dz

∣∣∣∣ ≤ M

n
.

Consider the following bound√
2π

n

∣∣∣∣∫
RK

H(n1/2z, ξ)
(
pz(z|Y n)− n1/2φN

(
n1/2z

))
dz

∣∣∣∣
=

∣∣∣∣∣
∫

RK

H(n1/2z, ξ)

(√
2π/n qz(z|Y n)∫

RK qz (z|Y n) dz
− exp

(
−1

2
nz′z

))
dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫

RK

H(n1/2z, ξ)qz (z|Y n)

(
1−

√
2π/n∫

RK qz (z|Y n) dz

)
dz

∣∣∣∣∣
+
∣∣∣∣∫

RK

H(n1/2z, ξ)
(

qz (z|Y n)− exp
(
−1

2
nz′z

))
dz

∣∣∣∣
= I + II, say.
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Since |H(n1/2z, ξ)| < MH , the first term can be bounded by

I ≤ MH

∣∣∣∣∣
∫

RK

qz (z|Y n) dz −
√

2π

n

∣∣∣∣∣
= MH

∣∣∣∣∫
RK

qz (z|Y n) dz −
∫

RK

exp
(
−1

2
nz′z

)
dz

∣∣∣∣
≤ MH

∫
RK

∣∣∣∣qz (z|Y n)− exp
(
−1

2
nz′z

)∣∣∣∣ dz

≤ M

n
.

The third inequality follows from Lemma 5. The bound for term II can be obtained in a

similar manner. �

Proof of Corollary 1(ii): Consider the following bound:∣∣∣P θ
Y n{θ ∈ Tξ,n} −Hn(φ̂n, ξ)

∣∣∣
≤

∣∣∣∣P θ
Y n{θ ∈ Tξ,n} −

∫
RK

Hn(φ̂n + Ĵ−1/2
n s, ξ)φN (s)ds

∣∣∣∣
+
∣∣∣∣∫

RK

[
Hn(φ̂n + Ĵ−1/2

n s, ξ)−Hn(φ̂n, ξ)
]
φN (s)ds

∣∣∣∣
= I + II, say.

Theorem 1 provides a bound for I. Using the Lipschitz assumption we deduce

II ≤ M∗(ξ)
∣∣∣∣∫

RK

‖Ĵ−1/2
n s‖φN (s)ds

∣∣∣∣ ≤ n−1/2M∗(ξ)
∣∣∣∣∫

RK

‖Σ̂n‖‖s‖φN (s)ds

∣∣∣∣ ≤ M(ξ)√
n

.

The last inequality is a consequence of Lemma 1. �
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Figure 1: Inference in the Inequality Condition Model, Known Length

Notes: The figures are drawn for φ̂n = 0 and overlay n = 5 and n = 500. The top panel

depicts posterior densities p(θ|Y n) and 90% credible intervals. The bottom panel depicts

the standardized frequentist objective function 1
nQn(θ), the cut-off value cτ/n for τ = 0.1,

and 90% frequentist confidence intervals.
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Table 1: Entry Game: “True” Parameters and Prior

Parameter True Value Prior Distribution

Structural Parameters θ

β1 0.7 N (0, 42)

γ1 1.0 N+(0, 42)

β2 0.5 N (0, 42)

γ2 1.0 N+(0, 42)

Auxiliary Parameter α

α 0.7 Benchmark: B(0.5, 0.22)

0.7 Low α: B(0.2, 0.12)

0.7 High α: B(0.8, 0.12)

Implied Reduced Form Parameters φ

φ00 0.07 µ00 = 0.25, σ00 = 0.37

φ10 0.48 µ10 = 0.31, σ10 = 0.40

φ01 0.33 µ01 = 0.31, σ01 = 0.40

φ11 0.12 µ11 = 0.13, σ11 = 0.28

Notes: for the prior distribution of the reduced form parameters we report means µ and

standard deviations σ under α ∼ B(0.5, 0.22). N (ν, σ2) and B(µ, σ2) refer to Normal and

Beta distributions with mean µ and variance σ2.
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Figure 2: Conditional Distribution of θ Given φ

Notes: Benchmark Prior (solid, green), Low α Prior (long dashes, red), High α Prior (short

dashes, blue). Each panel depicts 3 unconditional prior densities and 3 densities conditional

on the “true” φ. Except for α the unconditional prior densities appear invisible because

they are very diffuse compared to the conditional densities.
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Figure 3: Posterior Distribution of φ, n = 50

Notes: Benchmark Prior (solid, green), Low α Prior (long dashes, red), High α Prior (short

dashes, blue). Since the posterior of φ is insensitive to the prior on α the three densities

appear on top of each other.
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Figure 4: Posterior Distribution of θ, n = 50

Notes: Benchmark Prior (solid, green), Low α Prior (long dashes, red), High α Prior (short

dashes, blue).
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Figure 5: Posterior Distribution of β1 and γ1

Notes: The panels depict draws from the posterior distribution and an outline of the pro-

jection of Θ(φ̂n) onto the β1-γ1 space.


