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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models estimated with Bayesian methods

are increasingly used by central banks around the world as tools for projections and policy

analysis. Examples of such models are the small open economy model developed by the

Sveriges Riksbank (Adolfson, Laseen, Linde, and Villani, 2005 and 2008; Adolfson, An-

dersson, Linde, Villani, and Vredin, 2007), the New Area-Wide Model developed at the

European Central Bank (Coenen, McAdam, and Straub, 2008) and the Federal Reserve

Board’s new Estimated, Dynamic, Optimization-based model (Edge, Kiley, and Laforte,

2008). These models extend specifications studied by Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2003) to open economy and multisector settings. A com-

mon feature is that decision rules of economic agents are derived from assumptions about

preferences and technologies by solving intertemporal optimization problems.

Compared to previous generations of macroeconometric models, the DSGE paradigm

delivers empirical models with a strong degree of theoretical coherence. The costs asso-

ciated with this theoretical coherence are two-fold. First, tight cross-equation restrictions

potentially introduce misspecification problems that manifest themselves through inferior fit

compared to less-restrictive time series models (Del Negro, Schorfheide, Smets, and Wouters,

2007, henceforth DSSW). Second, it is more cumbersome than in a traditional system-of-

equations approach to incorporate variables other than a core set of macroeconomic aggre-

gates such as real gross domestic product (GDP), consumption, investment, wages, hours,

inflation, and interest rates. Nonetheless, in practical work at central banks it might be

important to also generate forecasts for economic variables that do not explicitly appear in

medium-scale DSGE models. Our paper focuses on the second problem.

There are in principle two options for generating forecasts for additional variables. First,

one could enlarge the structural model to incorporate these variables explicitly. The ad-

vantage of a larger model is its ability to deliver a coherent narrative that can accompany

the forecasts. The disadvantages are that identification problems are often exacerbated in

large-scale models, the numerical analysis, e.g., estimation procedures that utilize numerical

optimization or posterior simulation routines, becomes more tenuous, and the maintenance

of the model requires more staff resources. The second option is to develop a hybrid em-

pirical model that augments a medium-scale core DSGE model with auxiliary equations

that create a link between explicitly modelled variables and non-modelled variables. For

brevity we will refer to the latter as non-core variables. One could interpret these auxiliary
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equations as log-linear approximations of agents’ decision rules in a larger DSGE model.

This paper explores the second approach.

Recently, Boivin and Giannoni (2006, henceforth BG) integrated a medium-scale DSGE

model into a dynamic factor model for a large cross section of macroeconomic indicators,

thereby linking non-core variables to a DSGE model. We will refer to this hybrid model

as DSGE-DFM. The authors jointly estimated the DSGE model parameters as well as

the factor loadings for the non-core variables. Compared to the estimation of a “non-

structural” dynamic factor model, the BG approach leads to factor estimates that have a

clear economic interpretation. The joint estimation is conceptually very appealing, in part

because it exploits information that is contained in the non-core variables when making

inference about the state of the economy.1 The downside of the joint estimation is its

computational complexity, which makes it currently impractical for real time forecasting

applications.

Our paper proposes a simpler two-step estimation approach for an empirical model that

consists of a medium-scale DSGE model for a set of core macroeconomic variables and a

collection of measurement equations or auxiliary regressions that link the state variables

of the DSGE model with the non-core variables of interest to the analyst. In the first

step we estimate the DSGE model using the core variables as measurements. Based on

the DSGE model parameter estimates, we apply the Kalman filter to obtain estimates of

the latent state variables given the most recent information set. We then use the filtered

state variables as regressors to estimate simple linear measurement equations with serially

correlated idiosyncratic errors.

The advantage of our procedure is three-fold. First, since the DSGE model estimation is

fairly tedious and delicate, in real time applications the DSGE model could be re-estimated

infrequently, for instance, once a year. Second, the estimation of the measurement equations

is quick and can be easily repeated in real time as new information arrives or interest in

additional non-core variables arises. The estimated auxiliary regressions can then be used

to generate forecasts of the non-core variables. Third, our empirical model links the non-

core variables to the fundamental shocks that are the believed drivers of business cycle

fluctuations. In particular, the model allows monetary policy shocks and other structural

shocks to propagate through to non-core variables. This allows us to study the effect of

unanticipated changes in monetary policy on a broad set of economic variables.2

1Formally we mean by “state of the economy” information about the latent state variables that appear

in the DSGE model.
2The The goal of our analysis is distinctly different from recent work by Giannone, Monti, and Reichlin
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The remainder of the paper is organized as follows. The DSGE model used for the

empirical analysis is described in Section 2. We are using a variant of the Christiano,

Eichenbaum, and Evans (2005) and Smets and Wouters (2003) model, which is described in

detail in DSSW. Our econometric framework is presented in Section 3. Section 4 summarizes

the results of our empirical analysis. We estimate the DSGE model recursively based on

U.S. quarterly data starting with a sample from 1984:I to 2000:IV and generate estimates

of the latent states as well as pseudo-out-of-sample forecasts for a set of core variables, that

is comprised of the growth rates of output, consumption, investment, nominal wages, the

GDP deflator, as well as the levels of interest rates and hours worked. We then estimate

measurement equations for four additional variables: personal consumption expenditures

(PCE) inflation, core PCE inflation, the unemployment rate, and housing starts. We provide

pseudo-out-of-sample forecast error statistics for both the core and non-core variables using

our empirical model and compare them to simple AR(1) forecasts. Finally, we study the

propagation of monetary policy shocks to auxiliary variables as well as features of the joint

predictive distribution. Section 5 concludes and discusses future research. Details of the

Bayesian computations are relegated to the Appendix.

2 The DSGE Model

We use a medium-scale New Keynesian model with price and wage rigidities, capital ac-

cumulation, investment adjustment costs, variable capital utilization, and habit formation.

The model is based on the work of Smets and Wouters (2003) and Christiano, Eichenbaum,

and Evans (2005). The specific version is taken from DSSW. For brevity we only present

the log-linearized equilibrium conditions and refer the reader to the above-referenced papers

for the derivation of these conditions from assumptions on preferences and technologies.

The economy is populated by a continuum of firms that combine capital and labor

to produce differentiated intermediate goods. These firms have access to the same Cobb-

Douglas production function with capital elasticity α and total factor productivity At. Total

factor productivity is assumed to be non-stationary. We denote its growth rate by at =

ln(At/At−1), which is assumed to have mean γ. Output, consumption, investment, capital,

and the real wage can be detrended by At. In terms of the detrended variables the model

(2008), and Monti (2008) who develop state-space models that allow the analyst to use high frequency data

or professional forecasts to update or improve the DSGE-model based forecasts of the core variables.
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has a well-defined steady state. All variables that appear subsequently are expressed as

log-deviations from this steady state.

The intermediate goods producers hire labor and rent capital in competitive markets

and face identical real wages, wt, and rental rates for capital, rk
t . Cost minimization implies

that all firms produce with the same capital-labor ratio

kt − Lt = wt − rk
t (1)

and have marginal costs

mct = (1− α)wt + αrk
t . (2)

The intermediate goods producers sell their output to perfectly competitive final good

producers, which aggregate the inputs according to a CES function. Profit maximization of

the final good producers implies that

ŷt(j)− ŷt = −
(

1 +
1

λfe
eλf,t

)
(pt(j)− pt). (3)

Here ŷt(j)− ŷt and pt(j)−pt are quantity and price for good j relative to quantity and price

of the final good. The price pt of the final good is determined from a zero-profit condition

for the final good producers.

We assume that the price elasticity of the intermediate goods is time-varying. Since

this price elasticity affects the mark-up that intermediate goods producers can charge over

marginal costs, we refer to λ̃f,t as mark-up shock. Following Calvo (1983), we assume that

in every period a fraction of the intermediate goods producers ζp is unable to re-optimize

their prices. These firms adjust their prices mechanically according to steady state inflation

π∗. All other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the following equilibrium relationship, known as the New Keynesian Phillips

curve:

πt = βIEt[πt+1] +
(1− ζpβ)(1− ζp)

ζp
mct +

1
ζp
λf,t, (4)

where πt is inflation and β is the discount rate.3 Our assumption on the behavior of firms

that are unable to re-optimize their prices implies the absence of price dispersion in the

steady state. As a consequence, we obtain a log-linearized aggregate production function of

the form

ŷt = (1− α)Lt + αkt. (5)

3We used the following re-parameterization: λf,t = [(1− ζpβ)(1− ζp)λf /(1 + λf )]eλf,t, where λf is the

steady state of eλf,t.
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Equations (2), (1), and (5) imply that the labor share lsht equals marginal costs in terms

of log-deviations: lsht = mct.

There is a continuum of households with identical preferences, which are separable in

consumption, leisure, and real money balances. Households’ preferences display (internal)

habit formation in consumption captured by the parameter h. Period t utility is a function

of ln(Ct − hCt−1). Households supply monopolistically differentiated labor services. These

services are aggregated according to a CES function that leads to a demand elasticity 1 +

1/λw. The composite labor services are then supplied to the intermediate goods producers

at real wage wt. To introduce nominal wage rigidity, we assume that in each period a

fraction ζw of households is unable to re-optimize their wages. These households adjust

their nominal wage by steady state wage growth e(π∗+γ). All other households re-optimize

their wages. First-order conditions imply that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + at+1

]
+

1− ζwβ

1 + νl(1 + λw)/λw

(
νlLt − wt − ξt + b̃t +

1
1− ζwβ

φt

)
, (6)

where w̃t is the optimal real wage relative to the real wage for aggregate labor services, wt,

and νl would be the inverse Frisch labor supply elasticity in a model without wage rigidity

(ζw = 0) and differentiated labor. Moreover, b̃t is a shock to the household’s discount

factor4 and φt is a preference shock that affects the household’s intratemporal substitution

between consumption and leisure. The real wage paid by intermediate goods producers

evolves according to

wt = wt−1 − πt − at +
1− ζw
ζw

w̃t. (7)

Households are able to insure the idiosyncratic wage adjustment shocks with state con-

tingent claims. As a consequence they all share the same marginal utility of consumption

ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + at+1] + heγ(ct−1 − at) (8)

+eγ(eγ − h)b̃t − βh(eγ − h)IEt[b̃t+1],

where ct is consumption. In addition to state-contingent claims, households accumulate

three types of assets: one-period nominal bonds that yield the return Rt, capital k̄t, and

real money balances. Since preferences for real money balances are assumed to be additively

separable and monetary policy is conducted through a nominal interest rate feedback rule,

4For the estimation we re-parameterize the shock as follows: bt = eγ(eγ − h)/(e2γ + βh2)b̃t.
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money is block exogenous and we will not use the households’ money demand equation in

our empirical analysis.

The first order condition with respect to bond holdings delivers the standard Euler

equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[at+1]. (9)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)
[
k̄t−1 − at

]
+ (eγ + δ − 1)[it + (1 + β)S′′e2γµt], (10)

where it is investment, δ is the depreciation rate of capital, and µt can be interpreted as

an investment-specific technology shock. Investment in our model is subject to adjustment

costs, and S′′ denotes the second derivative of the investment adjustment cost function at

steady state. Optimal investment satisfies the following first-order condition:

it =
1

1 + β

[
it−1 − at

]
+

β

1 + β
IEt[it+1 + at+1] +

1
(1 + β)S′′e2γ

(ξk
t − ξt) + µt, (11)

where ξk
t is the value of installed capital, evolving according to:

ξk
t − ξt = βe−γ(1− δ)IEt

[
ξk
t+1 − ξt+1

]
+ IEt

[
(1− (1− δ)βe−γ)rk

t+1 − (Rt − πt+1)
]
. (12)

Capital utilization ut in our model is variable and rk
t in all previous equations represents the

rental rate of effective capital kt = ut+ k̄t−1. The optimal degree of utilization is determined

by

ut =
rk
∗
a′′
rk
t . (13)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at the steady

state utilization rate. The central bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2ŷt) + σRεR,t. (14)

where εR,t represents monetary policy shocks. The aggregate resource constraint is given

by:

ŷt = (1 + g∗)
[
c∗
y∗
ct +

i∗
y∗

(
it +

rk
∗

eγ − 1 + δ
ut

)]
+ gt. (15)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-output ratios,

respectively, and g∗/(1+ g∗) corresponds to the government share of aggregate output. The

process gt can be interpreted as exogenous government spending shock. It is assumed that

fiscal policy is passive in the sense that the government uses lump-sum taxes to satisfy its

period budget constraint.
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There are seven exogenous disturbances in the model and six of them are assumed to

follow AR(1) processes:

at = ρaat−1 + (1− ρa)γ + σaεa,t (16)

µt = ρµµt−1 + σµεµ,t

λf,t = ρλf
λf,t−1 + σλf

ελf

gt = ρggt−1 + σgεg,t

bt = ρbbt−1 + σbεb,t

φt = ρφφt−1 + σφεφ,t.

We assume that innovations of these exogenous processes as well as the monetary policy

shock εR,t are independent standard normal random variates and collect them in the vector

εt. We stack all the DSGE model parameters in the vector θ. The equations presented in

this section form a linear rational expectations system that can be solved numerically, for

instance with the method described in Sims (2002).

3 Econometric Methodology

Our econometric analysis proceeds in three steps. First, we use Bayesian methods to es-

timate the linearized DSGE model described in Section 2 on seven core macroeconomic

time series. Second, we estimate so-called auxiliary regression equations that link the state-

variables associated with the DSGE model to other macroeconomic variables that are of

interest to the analyst, but not explicitly included in the structural DSGE model (non-core

variables). Finally, we use the estimated DSGE model to forecast its state variables and

then map these state forecasts into predictions for the core and non-core variables.

3.1 DSGE Model Estimation

The solution of the linear rational expectations system characterized in Section 2 can be

expressed as a vector autoregressive law of motion for a vector of non-redundant state

variables st:

st = Φ1(θ)st−1 + Φε(θ)εt. (17)

The coefficients of the matrices Φ1 and Φε are functions of the DSGE model parameters θ

and the vector st is given by

st = [ct, it, k̄t, Rt, wt, at, φt, µt, bt, gt, λf,t]′.
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The variables ct, it, k̄t, Rt, and wt are endogenous state variables, whereas the remaining

elements of st are exogenous state variables. To estimate the DSGE model based on a

sequence of observations Y T = [yt, . . . , yT ], it is convenient to construct a state-space model

by specifying a system of measurement equations that link the observables yt to the states

st.

The vector yt used in our empirical analysis consists of quarter-to-quarter growth rates

(measured in percentages) of real GDP, consumption, investment, and nominal wages, as

well as a measure of hours worked, GDP deflator inflation, and the federal funds rate.

Since some of our observables include growth rates, we augment the set of model states

st by lagged values of output, consumption, investment, and real wages. More specifically,

notice that lagged consumption, investment, and real wages are elements of the vector st−1.

Moreover, according to the DSGE model solution, lagged output, ŷt−1, can be expressed as

a linear function of the elements of st−1. Thus, we can write

[ŷt−1, ct−1, it−1, wt−1]′ = Ms(θ)st−1

for a suitably chosen matrix Ms(θ) and define

ςt = [s′t, s
′
t−1M

′
s(θ)]

′. (18)

This allows us to express the set of measurement equations as

yt = A0(θ) +A1(θ)ςt. (19)

The state-space representation of the DSGE model is comprised of (17), (18), and (19).

Under the assumption that the innovations εt are normally distributed, the likelihood

function, denoted by p(Y T |θ), for the DSGE model can be evaluated with the Kalman filter.

The Kalman filter also generates a sequence of estimates of the state vector ςt:

ςt|t(θ) = IE[ςt|θ, Y t], (20)

where Y t = [y1, . . . , yt]. Our Bayesian estimation of the DSGE model combines a prior p(θ)

with the likelihood function p(Y T |θ) to obtain a joint probability density function for data

and parameters. The posterior distribution is given by

p(θ|Y T ) =
p(Y T |θ)p(θ)

p(Y )
, where p(Y T ) =

∫
p(Y T |θ)p(θ)dθ. (21)

We employ Markov-Chain-Monte-Carlo (MCMC) methods described in detail in An and

Schorfheide (2007) to implement the Bayesian inference. More specifically, a random-walk
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Metropolis algorithm is used to generate draws from the posterior distribution p(θ|Y T ) and

averages of these draws (and suitable transformations) serve as approximations for posterior

moments of interest.

3.2 Linking Model States to Non-Core Variables

Due to the general equilibrium structure the variables that are included in state-of-the-

art DSGE models are limited to a set of core macroeconomic indicators. However, in

practice an analyst might be interested in forecasting a broader set of time series. For

instance, the DSGE model described in Section 2 generates predictions for hours worked

but does not include unemployment as one of the model variables. We use zt to denote a

particular variable that is not included in the DSGE model but nonetheless is of interest

to the forecaster. We will express zt as a function of the DSGE model state variables st.

According to (18) one can easily recover st from the larger vector ςt using a selection matrix

M with the property st = Mςt. As discussed in the previous subsection, the Kalman filter

delivers a sequence ςt|t(θ), t = 1, . . . , T . We use ς̂t|t to denote an estimate of ςt|t(θ) that is

obtained by replacing θ with the posterior mean estimate θ̂T , define ŝt|t = Mς̂t|t, and let5

zt = α0 + ŝ′t|tα1 + ξt, ξt = ρξt−1 + ηt, ηt ∼ N (0, σ2
η). (22)

Moreover, ξt is a variable-specific noise process. The parameters of this auxiliary regression

are collected in the vector ψ = [α0, α
′
1, ρ, ση]′. As for the estimation of the DSGE model,

we use Bayesian methods for the estimation of the auxiliary regression (22).

A few remarks about our setup are in order. First, Equations (17), (18), (19), and (22)

can be interpreted as a factor model. The factors are given by the state variables of the

DSGE model, the measurement equation associated with the DSGE model describes how our

core macroeconomic variables load on the factors, and auxiliary regressions of the form (22)

describe how additional (non-core) macroeconomic variables load on the factors. The ran-

dom variable ξt in (22) plays the role of an idiosyncratic error term.

Second, our setup can be viewed as a simplified version of BG’s framework. Unlike BG,

we do not attempt to estimate the DSGE model and the auxiliary equations simultaneously.

While we are thereby ignoring information about st contained in the zt variables, our analysis

reduces the computational burden considerably and can be more easily used for real time

forecasting. The BG approach is computationally cumbersome. A Markov-Chain Monte
5At this point it is important that the state vector does not contain redundant elements. If it did, the

auxiliary regression (22) would suffer from perfect collinearity.
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Carlo algorithm has to iterate over the conditional distributions of θ, ψ, and the sequence

of states ST = [s1, . . . , sT ]. Drawing from the posterior of ST is computationally costly

because it requires forward and backward iterations of the Kalman filter. Drawing from the

distribution of θ requires a Metropolis-Hastings step and, unlike in a stand-alone estimation

of the DSGE model, the proposal density needs to be tailored as a function of ψ. In turn, it

is more difficult to ensure that the resulting Markov chain properly mixes and converges to

its ergodic distribution at a sufficiently fast rate. Our framework de-couples the estimation

of the DSGE model and the analysis of the auxiliary regressions. If needed, additional non-

core variables can be easily analyzed without having to re-estimate the DSGE model. We

view this as a useful feature in real-time applications.

Third, in addition to ignoring the information in the zt’s about the latent states we take

one more short-cut. Rather than using estimates of st|t that depend on θ, we condition on

the posterior mean of θ in our construction of ŝt|t. As a consequence our posterior draws of

DSGE and auxiliary model parameters are uncorrelated and we potentially understate the

posterior uncertainty about ψ. However, in practice we found that there are few gains to

using a more elaborate sampling procedure.

We proceed by re-writing (22) in quasi-differenced form as

z1 = α0 + ŝ′1|1α1 + ξ1 (23)

zt = ρzt−1 + α0(1− ρ) + [ŝ′t|t − ŝ′t−1|t−1ρ]α1 + ηt, t = 2, . . . , T.

Instead of linking the distribution of ξ1 to the parameters ρ and σ2
η we assume that ξ1 ∼

N (0, τ2) and discuss the choice of τ below. A particular advantage of the Bayesian frame-

work is that we can use the DSGE model to derive a prior distribution for the α’s for

variables zt that are conceptually related to variables that appear in the DSGE model. Let

α = [α0, α
′
1]
′. Our prior takes the form

α ∼ N (µα,0, Vα,0), ρ ∼ U(−1, 1), ση ∼ IG(ν, τ), (24)

where N (µ, V ) denotes a normal distribution with mean µ and covariance matrix V , U(a, b)

is a uniform distribution on the interval (a, b), and IG(ν, s) signifies an Inverse Gamma

distribution with density pIG(σ|ν, s) ∝ σ−(ν+1)e−νs2/2σ2
. To avoid a proliferation of hyper-

parameters we use the same τ to characterize the standard deviation of ξ1 and the prior for

ση.

We choose the prior mean µα,0 based on the DSGE model implied factor loadings for a

model variable, say z†t , that is conceptually similar to zt. For concreteness, suppose that zt
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corresponds to PCE inflation. Since there is only one-type of final good, our DSGE model

does not distinguish between, say, the GDP deflator and a price index of consumption

expenditures. Hence, a natural candidate for z†t is final good inflation. Let IED
θ [·] denote

an expectation taken under the probability distribution generated by the DSGE model,

conditional on the parameter vector θ. We construct µα,0 by a population regression of the

form

µα,0 =
(
IED

θ [s̃ts̃
′
t]
)−1

IED
θ [s̃tz

†
t ], (25)

where s̃t = [1, s′t]
′ and θ is in practice replaced by its posterior mean θ̂T . If z†t is among

the observables, then this procedure recovers the corresponding rows of A0(θ) and A1(θ) in

the measurement equation (19). Details on the choice of z†t are provided in the empirical

section. Our prior covariance matrix is diagonal with the following elements

diag(Vα,0) =
[
λ0,

λ1

ω1
, . . . ,

λ1

ωJ

]
. (26)

Here λ0 and λ1 are hyperparameters that determine the degree of shrinkage for the intercept

α0 and the loadings α1 of the state variables. We scale the diagonal elements of Vα,0 by

ω−1
j , j = 1, . . . , J , where ωj denotes the DSGE model’s implied variance of the j’th element

of ŝt|t (evaluated at the posterior mean of θ).6 Draws from the posterior distribution can

be easily obtained with a Gibbs sampler described in Appendix A.

3.3 Forecasting

Suppose that the forecast origin coincides with the end of the estimation sample, denoted by

T . Forecasts from the DSGE model are generated by sampling from the posterior predictive

distribution of yT+h. For each posterior draw θ(i) we start from ς̂T |T (θ(i)) and draw a

random sequence {ε(i)T+1, . . . , ε
(i)
T+h}. We then iterate the state transition equation forward

to construct

s
(i)
T+h|T = Φ1(θ(i))s

(i)
T+h−1|T + Φε(θ(i))ε

(i)
T+h, h = 1, . . . ,H (27)

ς
(i)
T+h|T = [s(i)

′

T+h|T , s
(i)′

T+h−1|TM
′
s(θ

(i))]′.

Finally, we use the measurement equation to compute

y
(i)
T+h|T = A0(θ(i)) +A1(θ(i))ς

(i)
T+h|T . (28)

6Instead of assuming that the elements of α are independent, one could use the inverse of the covariance

matrix of ŝt|t to construct a non-diagonal prior covariance matrix for α. To the extent that some of the

elements of st are highly correlated such a prior will be highly non-informative in the corresponding directions

of the α parameter space. We found this feature unattractive and decided to proceed with a diagonal Vα,0.



12

The posterior mean forecast ŷT+h|T is obtained by averaging the y(i)
T+h|T ’s.

A draw from the posterior predictive distribution of a non-core variable zT+h is obtained

as follows. Using the sequence s(i)T+1|T , . . . , s
(i)
T+H|T constructed in (27), we iterate the quasi-

differenced version (23) of the auxiliary regression forward:

z
(i)
T+h|T = ρ(i)z

(i)
T+h−1 + α

(i)
0 (1− ρ(i)) + [s(i)

′

T+h|T − s
(i)′

T+h−1|T ρ
(i)]α(i)

1 + η
(i)
T+h,

where the superscript i for the parameters of (22) refers to the i’th draw from the posterior

distribution of ψ and η
(i)
T+h is a draw from a N (0, σ2(i)

η ). The point forecast ẑT+h|T is

obtained by averaging the z(i)
T+h|T ’s. While our draws from the posterior distribution of θ and

ψ are independent, we maintain much of the correlation in the joint predictive distribution

of yT+h and zT+h, because the i’th draw is computed from the same realization of the state

vector, s(i)T+h|T .

4 Empirical Application

We use post-1983 U.S. data to recursively estimate the DSGE model and the auxiliary

regression equations and to generate pseudo-out-of-sample forecasts. We begin with a de-

scription of our data set and the prior distribution for the DSGE model parameters. Second,

we discuss the estimates of the DSGE model parameters and its forecast performance for

the core variables. Third, we estimate the auxiliary regressions and examine their forecasts

of PCE inflation, core PCE inflation, the unemployment rate, and housing starts. Finally,

we explore multivariate aspects of the predictive distribution generated by our model. We

report conditional forecast error statistics and illustrate the joint predictive distribution as

well as the propagation of a monetary policy shock to the core and non-core variables.

4.1 Data and Priors

Seven series are included in the vector of core variables yt that is used for the estimation

of the DSGE model: the growth rates of output, consumption, investment, and nominal

wages, as well as the levels of hours worked, inflation, and the nominal interest rate. These

series are obtained from Haver Analytics (Haver mnemonics are in italics). Real output is

computed by dividing the nominal series (GDP) by population 16 years and older (LN16N)

as well as the chained-price GDP deflator (JGDP). Consumption is defined as nominal

personal consumption expenditures (C) less consumption of durables (CD). We divide by
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LN16N and deflate using JGDP. Investment is defined as CD plus nominal gross private

domestic investment (I). It is similarly converted to real per-capita terms. We compute

quarter-to-quarter growth rates as log difference of real per capita variables and multiply

the growth rates by 100 to convert them into percentages.

Our measure of hours worked is computed by taking non-farm business sector hours

of all persons (LXNFH), dividing it by LN16N, and then scaling to get mean quarterly

average hours to about 257. We then take the log of the series multiplied by 100 so that

all figures can be interpreted as percentage deviations from the mean. Nominal wages

are computed by dividing total compensation of employees (YCOMP) by the product of

LN16N and our measure of average hours. Inflation rates are defined as log differences of

the GDP deflator and converted into percentages. The nominal interest rate corresponds to

the average effective federal funds rate (FFED) over the quarter and is annualized.

Observations for the non-core variables are also obtained from Haver Analytics. We

consider PCE-inflation, core PCE inflation, the unemployment rate, and housing starts

as candidates for zt in this paper. We extract quarterly data on the chain price index

for personal consumption expenditures (JC) and personal consumption expenditures less

food and energy (JCXF). Inflation rates are calculated as 100 times the log difference of

the series. The unemployment rate measure is the civilian unemployment rate for ages 16

years and older (LR). Finally, housing starts are defined as millions of new privately owned

housing units started (HST). We use quarterly averages of seasonally adjusted monthly data,

converted to an annual rate.

Our choice of prior distribution for the DSGE model parameters follows DSSW and the

specification of what is called a “standard” prior in Del Negro and Schorfheide (2008). The

prior is summarized in the first four columns of Table 1. To make this paper self-contained we

briefly review some of the details of the prior elicitation. Priors for parameters that affect the

steady state relationships, e.g., the capital share α in the Cobb-Douglas production function

or the capital depreciation rate are chosen to be commensurable with pre-sample (1955 to

1983) averages in U.S. data. Priors for the parameters of the exogenous shock processes are

chosen such that the implied variance and persistence of the endogenous model variables

is broadly consistent with the corresponding pre-sample moments. Our prior for the Calvo

parameters that control the degree of nominal rigidity are fairly agnostic and span values

that imply fairly flexible as well as fairly rigid prices and wages. Our prior for the central

bank’s responses to inflation and output movements is roughly centered at Taylor’s (1993)

values. The prior for the interest rate smoothing parameter ρR is almost uniform on the
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unit interval.

The 90% interval for the prior distribution on νl implies that the Frisch labor supply

elasticity lies between 0.3 and 1.3, reflecting the micro-level estimates at the lower end, and

the estimates of Kimball and Shapiro (2003) and Chang and Kim (2006) at the upper end.

The density for the adjustment cost parameter S′′ spans values that Christiano, Eichenbaum,

and Evans (2005) find when matching DSGE and vector autoregression (VAR) impulse

response functions. The density for the habit persistence parameter h is centered at 0.7,

which is the value used by Boldrin, Christiano, and Fisher (2001). These authors find that

h = 0.7 enhances the ability of a standard DSGE model to account for key asset market

statistics. The density for a′′ implies that in response to a 1% increase in the return to

capital, utilization rates rise by 0.1 to 0.3%.

4.2 DSGE Model Estimation and Forecasting of Core Variables

The first step of our empirical analysis is to estimate the DSGE model. While we estimate

the model recursively, starting with the sample 1984:I to 2000:IV and ending with the

sample 1984:I to 2007:III, we will focus our discussion of the parameter estimates on the

final estimation sample. Summary statistics for the posterior distribution (means and 90%

probability intervals) are provided in Table 1. For long horizon forecasts, the most important

parameters are γ, π∗, and β. Our estimate of the average technology growth rate implies

that output, consumption, and investment grow at an annualized rate of 1.6%. According

to our estimates of π∗ and β the target inflation rate is 2.9% and the long-run nominal

interest rate is 5.5%. The cross-equation restrictions of our model generate a nominal wage

growth of about 4.5%.

Our policy rule estimates imply a strong response of the central bank to inflation

ψ̂1 = 3.05 and a tempered reaction to deviations of output from its long-run growth path

ψ̂2 = 0.06. As discussed in Del Negro and Schorfheide (2008), estimates of wage and price

stickiness based on aggregate price and wage inflation data tend to be somewhat fragile. We

obtain ζ̂p = 0.66 and ζ̂w = 0.25, which means that wages are nearly flexible and the price

stickiness is moderate. According to the estimated Calvo parameter, firms re-optimize their

prices every three quarters.

The technology growth shocks have very little serial correlation and the estimated in-

novation standard deviation is about 0.6%. These estimates are consistent with direct

calculations based on Solow residuals. At an annualized rate, the monetary policy shock
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has a standard deviation of 56 basis points. Both the government spending shock gt and the

labor supply shock φt have estimated autocorrelations near unity. The labor supply shock

captures much of the persistence in the hours series.

We proceed by plotting estimates of the exogenous shocks in Figure 1. These shocks

are included in the vector st = Mςt that is used as regressor in the auxiliary model (22).

Formally, we depict filtered latent variables, ŝj,t|t, conditional on the posterior mean θ̂T for

the period 1984:I to 2007:III. In line with the parameter estimates reported in Table 1, the

filtered technology growth process appears essentially iid. The processes gt and φt exhibit

long-lived deviations from zero and in part capture low frequency movements of exogenous

demand components and hours worked, respectively. µt is the investment-specific technology

shock. Its low frequency movements capture trend differentials in output, consumption, and

investment.

At this point a comparison between our estimates of the latent shock processes and the

estimates reported by BG is instructive. By construction, our filtered state variables ŝt|t are

moving averages of the observables yt. In contrast, BG’s estimates of the latent states are

functions not just of yt (in our notation), but also of all the other observables included in

their measurement equations, namely numerous measures of inflation as well as 25 principle

components constructed from about 70 macroeconomic time series. Due to differences in

model specification and data definitions, it is difficult to compare our estimates of the latent

states and those reported by BG directly. However, BG overlay smoothed states obtained

from the direct estimation of their DSGE model with estimates obtained from their DSGE-

DFM. The main difference between the estimated DSGE and DSGE-DFM states is that

some of the latter, namely productivity, preferences, and government spending, are a lot

smoother. The likely reason is that the DSGE-DFM measurement equations for the seven

core variables contain autoregressive measurement errors, which absorb some of the low

frequency movements in these series.

Table 2 summarizes pseudo-out-of-sample root-mean-squared error (RMSE) statistics

for the seven core variables that are used to estimate the DSGE model: the growth rates

of output, consumption, investment, and nominal wages, as well as log hours worked, GDP

deflator inflation, and the federal funds rate. We report RMSEs for horizons h = 1, h = 2,

h = 4, and h = 12 and compare the DSGE model forecasts to those from an AR(1) model,

which is recursively estimated by OLS.7 h-step ahead growth (inflation) rate forecasts refer

7The h-step forecast is generated by iterating one-step ahead predictions forward, ignoring parameter

uncertainty: ŷi,T+h|T = β̂0,OLS + β̂1,OLS ŷi,T+h−1|T , where the OLS estimators are obtained from the
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to percentage changes between period T + h− 1 and T + h. Boldface entries indicate that

the DSGE model attains a RMSE that is lower than that of the AR(1) model. We used the

Harvey, Leybourne, and Newbold (1998) version of the Diebold-Mariano (1995) test for equal

forecast accuracy of the DSGE and the AR(1) model, employing a quadratic loss function.

Due to the fairly short forecast period, most of the loss differentials are insignificant.

The RMSE for one-quarter-ahead forecasts of output and consumption obtained from

the estimated DSGE model is only slightly larger than the RMSE associated with the AR(1)

forecasts. The DSGE model generates a lower RMSE for investment and hours worked

forecasts. RMSEs for inflation rates rates are essentially identical across the two models.

The AR(1) model performs better than the DSGE model in forecasting nominal wage growth

and interest rates. The accuracy of long-run forecasts is sensitive to mean growth estimates,

which are restricted to be equal for output, consumption, and investment. Moreover, the

DSGE model implies that nominal wage growth equals output plus inflation growth in the

long-run.

In Table 3 we are comparing the pseudo-out-of-sample RMSEs obtained with our esti-

mated DSGE model to those reported in three other studies, namely (i) DSSW, (ii) Edge,

Kiley, and Laforte (EKL, 2008), and (iii) Smets and Wouters (2007). Since all studies differ

with respect to the forecast period, we report sample standard deviations over the respec-

tive forecast periods, computed from our data set. Unlike the other three studies, EKL use

real time data and report mean absolute errors instead of RMSEs. Overall, the RMSEs

reported in DSSW are slightly worse than those in the other three studies. This might be

due to the fact that DSSW use a rolling window of 120 observations to estimate their DSGE

model and start forecasting in the mid 1980s, whereas the other papers let the estimation

sample increase and start forecasting in the 1990s. Only EKL are able to attain an RMSE

for output growth that is lower than the sample standard deviation. The RMSEs for the

inflation forecasts range from 0.22 to 0.27 and are very similar across studies. They are only

slightly larger than the sample standard deviations. Finally, the interest rate RMSEs are

substantially lower than the sample standard deviations, because the forecasts are able to

exploit the high persistence of the interest rate series.

regression yi,t = β0 + β1yi,t−1 + ui,t.
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4.3 Forecasting Non-Core Variables with Auxiliary Regressions

We now turn to the estimation of the auxiliary regressions for PCE inflation, core PCE

inflation, the unemployment rate, and housing starts. The following elements are included

in the vector st that appears as regressor in (22):

st = Mςt = [ct, it, k̄t, Rt, wt, at, φt, µt, bt, gt, λf,t]′.

To construct a prior mean for α1, we link each zt with a conceptually related DSGE model

variable z†t and use (25). More specifically, we link the two measures of PCE inflation to the

final good inflation πt, the unemployment rate to a scaled version of log hours worked Lt,

and housing starts to scaled percentage deviations it of investment from its trend path, see

Table 4. Our DSGE model has only a single final good, which is domestically produced and

used for consumption and investment. Hence, using identical measurement equations for

inflation in consumption expenditures and GDP seems reasonable. Linking the unemploy-

ment rate with hours worked can be justified by the observation that most of the variation

of hours worked over the business cycle is due to changes in employment rather than vari-

ation along the intensive margin. Finally, housing starts can be viewed as a measure of

investment, namely investment in residential structures. Since the housing starts series has

no apparent trend, we link it to investment deviations from trend.

The four panels of Figure 2 depict the sample paths of the non-core variables zt and

the related DSGE model variables z†t . The GDP deflator and hours worked are directly

observable, while the investment series it is latent and obtained from ŝt|t. The inflation

measures are highly correlated. PCE inflation is more volatile and core PCE inflation is less

volatile than GDP deflator inflation. In the bottom left panel we re-scale and re-center log

hours such that it is commensurable with the unemployment rate. These two series are also

highly correlated. The bottom right panel shows that the DSGE model implied investment

series is somewhat smoother than the housing starts series. However, except for the period

from 2000 to 2002 the low frequency movements of the two series are at least qualitatively

similar.

To proceed with the Bayesian estimation of (23) we have to specify the hyperparameters.

In our framework τ can be interpreted as the prior standard deviation of the idiosyncratic

error ξ1. We set τ equal to 0.12 (PCE inflation), 0.11 (core PCE inflation), 0.40 (unemploy-

ment rate), and 0.10 (housing starts). These values imply that the prior variance of ξ1 is

about 15% to 20% of the sample variance of z1. We set the degrees of freedom parameter

ν of the inverted gamma prior for ση equal to 2, restrict λ0 = λ1 = λ, and consider three
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values: 1.00, 0.10, and 1E-5. The value 1E-5 corresponds to a dogmatic prior under which

posterior estimate and prior mean essentially coincide. As we increase λ, we allow the factor

loading coefficients α to differ from the prior mean.

The estimates of the auxiliary regressions are summarized in Table 5. Rather than

providing numerical values for the entire α vector, we focus on the persistence and the

standard deviation of the innovation to the idiosyncratic component. By construction,

ŝ′t|tµα1,0, where µα1,0 is the prior mean of α1, reproduces the time paths of the GDP deflator

inflation, log hours worked, and investment deviations from trend, respectively. Thus, for

1E-5 the idiosyncratic error term ξt essentially picks up the discrepancies between non-core

variables and the related DSGE model variables depicted in Figure 2. For the two inflation

series the estimate of ση falls as we increase the hyperparameter. The larger λ the more of

the variation in the variable is explained by ŝ′t|tα̂1, where α̂1 is the posterior mean of α1.

For instance, the variability of core PCE inflation captured by the factors is 5 times as large

as the variability due to the idiosyncratic disturbance ξt if the λ is equal to one. This factor

drops to 1.4 if the prior is tightened. For PCE inflation the idiosyncratic disturbance is

virtually serially uncorrelated, whereas for core PCE inflation the serial correlation ranges

from 0.2 (λ = 1) to 0.5 (λ = 1E-5).

For unemployment, setting λ = 1E-5 implies that the prior and posterior means of the

factor loadings α are essentially identical. Unemployment loads on ct, it, k̄t, µt, and gt. The

intuition is that output in our model can be obtained from consumption, investment, and

government spending (see Equation (15)) and hours worked can be determined from the

production function as a function of output and capital (see Equation (5)). If the hyper-

parameter is raised to 0.1 or 1.0 then unemployment also loads on the interest rate, wages,

and the shocks at and bt. However, in general we find it difficult to interpret the estimates

of particular elements of α1, because the some of the variables contained in the vector st

are endogenous equilibrium objects that in turn respond to the exogenous state variables.

Hence, we will focus on the estimate of ŝ′t|tα1 and the response of zt to structural shocks

below. The most striking feature of the unemployment estimates is the high persistence of

ξt, with ρξ estimates around 0.98.

For housing starts, the measurement error process is slightly less persistent than for

unemployment, but the signal-to-noise ratio is generally low, which is not surprising in view

of the fairly large discrepancy between housing starts and it shown in the bottom right

panel of Figure 2. Unlike for the other three non-core series, the lowest signal-to-noise ratio

for housing starts is obtained for λ = 1. An increase of λ from 1E-5 to 1 decreases the
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variability of ŝ′t|tα̂1 by more than the variability of the measurement error process, as is

evident from the bottom right panel of Figure 3.

Figure 3 displays the time path of α̂0+ŝ′t|tα̂1 for different choices of the hyperparameter.

Consider the two inflation series. For λ = 1E-5 the factor predicted path for the two inflation

rates is essentially identical and reproduces the GDP deflator inflation. As the λ is increased

to one they more closely follow the two PCE inflation measures, which is consistent with the

estimates of ρ and ση reported in Table 5. The predicted paths for the unemployment rate

behave markedly different. If we set λ = 1, then the predicted path resembles the actual

path fairly closely, with the exception of the end of the sample. Hence, the implied ξt series

stays close to zero until about 2002 and then drops to about -2% between 2002 and 2006.

As we decrease λ to 1E-5, the predicted path shifts downward. The estimate of ξ1 is roughly

2% and ξt follows approximately a random walk process subsequently that captures the gap

between the path predicted with the factors and the actual unemployment series.

The last column of Table 5 contains log marginal likelihood values ln pλ(ZT ) for the four

auxiliary regression models as a function of the hyperparameter λ. These values can be used

for a data-driven hyperparameter choice that trades off in-sample fit against complexity of

the regression model.8 According to the marginal likelihoods, the preferred choice for λ

is 0.1 for core PCE inflation and the unemployment rate and 1E-5 for PCE inflation and

housing starts. The log marginal data density can also be interpreted as a one-step-ahead

predictive score:

ln pλ(ZT ) =
T−1∑
t=0

∫
p(zt+1|ψ,Zt)pλ(ψ|Zt)dψ. (29)

Thus, we would expect the λ rankings obtained from one-step-ahead pseudo-out-of-sample

forecast error statistics to be comparable to the rankings obtained from the marginal likeli-

hoods.

Forecast error statistics for the non-modelled variables are provided in Table 6. We

compare RMSEs of the forecasts generated with our auxiliary models to two alternative

models. First, as in Section 4.2 we consider an AR(1) model for zt that is estimated by

OLS and from which we generate h-step forecasts by iterating one-step ahead predictions

forward. Second, we consider multi-step least squares regressions of the form

zt = β0 + y′t−hβ1 + zt−hβ2 + ut, (30)

8A detailed discussion of hyperparameter selection based on marginal likelihoods can be found, for

instance, in DSSW.
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estimated for horizons h = 1, h = 2, h = 4, and h = 12. Recall that the filtered states

ŝt|t are essentially moving averages of yt and its lags. Hence, both (23) and (30) generate

predictions of zt+h as a function of zt as well as yt and its lags. However, the restrictions

imposed on the parameters of the implied prediction functions are very different. While our

least squares estimation of (30) leaves the coefficient vector β1 essentially unrestricted and

excludes additional lags of yt, the auxiliary regression model (23) tilts the estimates of α1

toward loadings derived from the DSGE model and additional lags of yt implicitly enter the

prediction through the filtered state vector.

Over short horizons, our auxiliary regression models attain a lower RMSE than the

AR(1) benchmark for PCE inflation, the unemployment rate, and housing starts. The im-

provements of the unemployment forecasts are significant. For one-step-ahead forecasts, the

preferred choice of λ is 1E-5. For PCE inflation and housing starts the value of λ that yields

the highest marginal likelihood also generates the lowest RMSE. For the unemployment rate

the marginal likelihoods for λ equals 0.1 and 1E-5 are very similar and so are the RMSE

statistics. The only discrepancy between RMSE and marginal likelihood ranking arises for

core PCE inflation. We conjecture that the different rankings could be in part due to the

persistent deviations of core PCE inflation from ŝ′t|tα̂1 at the beginning of the sample, as

evident from the top right panel of Figure 3. According to (29) predictive accuracy at the

beginning of the sample affects the marginal likelihood, but it does not enter our RMSE

statistics, which are computed from 2001 onward. Over a longer horizon, core PCE and un-

employment forecasts from our auxiliary regressions dominate the AR(1) forecasts, whereas

the PCE inflation and housing starts forecasts are slightly less precise. Except for short

to medium term core PCE inflation forecasts, our auxiliary regressions with λ = 1E-5 are

slightly better than the forecasts obtained from the simple predictive regression (30).

4.4 Multivariate Considerations

So far the analysis has focused on univariate measures of forecast accuracy. A conservative

interpretation of our findings and those reported elsewhere, e.g., Adolfson et al. (2005, 2007)

and Edge, Kiley, and Laforte (2008), is that by and large the univariate forecast performance

of DSGE models is not worse than that of competitive benchmark models, such as simple

AR(1) specifications or more sophisticated Bayesian VARs. The key advantage of DSGE

models and the reason that central banks are considering them for projections and policy

analysis, is that these models use modern macroeconomic theory to explain and predict

comovements of aggregate time series over the business cycle. Historical observations can
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be decomposed into the contributions of the underlying exogenous disturbances, such as

technology, preference, government spending, or monetary policy shocks. Future paths of

the endogenous variables can be constructed conditional on particular realizations of the

monetary policy shocks that reflect potential future nominal interest rate paths. While it is

difficult to quantify some of these desirable attributes of DSGE model forecasts and trade

them off against forecast accuracy in a RMSE sense, we will focus on three multivariate

aspects. First, we conduct posterior predictive checks for the correlation between core

and non-core variables captured by our framework. Second, we present impulse response

functions to a monetary policy shock and document how the shock transmits to the non-core

variables through our auxiliary regression equations. Third, we examine some features of the

predictive density that our empirical model generates for the core and non-core variables.

Posterior predictive checks for correlations between non-core and core variables are

summarized in Table 7 for λ = 1E-5, which is the value of λ that leads to the lowest

one-step-ahead forecast RMSE. Using the posterior draws for DSGE and auxiliary model

parameters we simulate a trajectory of 100 zt and yt observations and compute sample

correlations of interest. The posterior predictive distribution of these sample correlations

is then summarized by 90% credible intervals. Moreover, we report sample correlations

computed from U.S. data. The empirical model captures the correlations between non-core

and core variables well, if the actual sample correlations do not lie too far in the tails of

the corresponding posterior predictive distribution. With the exception of the correlations

between output growth and the unemployment rate all of the correlations computed from

U.S. data lie inside of the corresponding 90% credible sets.

An important aspect of monetary policy making is assessing the effect of changes in

the federal funds rate. In the DSGE model we represent these changes – unanticipated

deviations from the policy rule – as monetary policy shocks. An attractive feature of our

framework is that it generates a link between the structural shocks that drive the DSGE

model and other non-modeled variables through the auxiliary regressions. We can compute

impulse response functions of zt to a monetary policy shock as follows:

∂zt+h

∂εR,t
=
∂s′t+h

∂εR,t
α1,

where ∂s′t+h/∂εR,t is obtained from the DSGE model.

In Figure 4 we plot impulse responses of the four non-core variables (bottom panels) and

the four related DSGE model related variables (top panels: output, inflation, investment,

and hours) to a one-standard deviation monetary policy shock. The one standard deviation
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increase to the monetary policy shock translates into a 40 basis point increase in the funds

rate, measured at an annual rate. The estimated DSGE model predicts that output and

hours worked drop by 10 basis points in the first quarter and returns to its trend path after

seven quarters. Investment is more volatile and drops by about 19 basis points. Quarter-

to-quarter inflation falls by 10 basis points and returns to its steady state within two years.

Regardless of the choice of hyperparameter, the PCE inflation responses closely resemble

the GDP deflator inflation responses both qualitatively and quantitatively. The core PCE

inflation, unemployment, and housing starts responses are more sensitive to the choice of

hyperparameter. If λ is equal to 1E-5 and we force the factor loadings to match those of

hours worked, the unemployment rises by about 3.5 basis points one period after impact.

As we relax the hyperparameter, which worsens the RMSE of the unemployment forecast,

the initial effect of the monetary policy shock on unemployment is dampened. Likewise,

the core PCE response drops from 10 basis points to about 4 basis points. The annualized

number of housing starts drops by about 6,000 units for λ = 1E-5 and by 22,000 units if

λ = 1. Unlike for core PCE inflation, housing starts respond more strongly to a monetary

policy shock if the restrictions on the factor loadings are relaxed.

Our empirical model generates a joint density forecast for the core and non-core vari-

ables, which reflects uncertainty about both parameters and future realizations of shocks.

A number of different methods exist to evaluate multivariate predictive densities. To assess

whether the probability density forecasts are well calibrated, that is, are consistent with

empirical frequencies, one can construct the multivariate analog of a probability integral

transform of the actual observations and test whether these transforms are uniformly dis-

tributed and serially uncorrelated. A formalization of this idea is provided in Diebold, Hahn,

and Tay (1999).

We will subsequently focus on log predictive scores (Good, 1952). To fix ideas, consider

the following simple example. Let xt = [x1,t, x2,t]′ be a 2 × 1 vector and consider the

following two forecast models

M1 : xt ∼ N

 0

0

 ,
 1 0

0 1

 , M2 : xt ∼ N

 0

0

 ,
 1 ρ

ρ 1

 .

Under a quadratic loss function the two models deliver identical univariate forecasts for

each linear combination of the elements of xt. Nonetheless, the predictive distributions are

distinguishable. Let Σi be the covariance matrix of the predictive distribution associated

with model Mi. The log predictive score is defined as the log predictive density evaluated
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at a sequence of realizations of xt, t = 1, . . . , T :

LPSC(Mi) = −T
2
ln(2π)− T

2
ln |Σi| −

1
2

T∑
t

x′tΣ
−1
i xt.

Roughly speaking, if the actual xt was deemed unlikely by Mi and falls in a low density

region (e.g., the tails) of the predictive distribution, then the score is low. Let Σ11, Σ12,

and Σ22 denote partitions of Σ that conform with the partitions of x. If we factorize the

joint predictive density of xt into a marginal and a conditional density, we can rewrite the

predictive score as

LPSC(Mi) = −T
2
ln(2π)− T

2
ln |Σi,11| −

1
2Σi,11

T∑
t=1

x2
1,t (31)

−T
2

ln |Σi,22|11| −
1

2Σi,22|11

T∑
t=1

(
x2,t − Σi,21Σ−1

i,11x1,t

)2

,

where

Σi,22|11 = Σ22 − Σi,21Σ−1
i,11Σi,12.

We can express the difference between log predictive scores for models M1 and M2 as

LPSC(M1)− LPSC(M2) =
T

2
ln |1− ρ2| − 1

2

T∑
t=1

x2
2,t +

1
2(1− ρ2)

T∑
t=1

(x2,t − ρx1,t)2.

Here the contribution of the marginal distribution of x1,t to the predictive scores cancels

out, because it is the same for M1 and M2. It is straightforward to verify that for large

T the predictive score will be negative if in fact the xt’s are generated from M2. In fact,

the log score differential has similar properties as a log likelihood ratio and is widely used

in the prequential theory discussed in Dawid (1992). Moreover, notice that 1
T

∑T
t=1(x2,t −

ρx1,t)2 can be interpreted as the mean-squared-error of a forecast of x2,t conditional on the

realization of x1,t. If x1,t and x2,t have non-zero correlation, the conditioning improves the

accuracy of the x2,t forecast. We will exploit this insight below.

Figure 5 depicts bivariate scatter plots generated from the joint predictive distribution

of core and non-core variables. The predictive distribution captures both parameter uncer-

tainty as well as shock uncertainty. We focus on one-step-ahead predictions for 2001:IV and

2006:III. We use filled circles to indicate the actual values (small, light blue), the uncondi-

tional mean predictions (medium, yellow), and the conditional means of ouput growth, PCE

inflation, and unemployment given the actual realization of the nominal interest rate. We

approximate the predictive distributions by student t distributions with mean µ, variance
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Σ, and ν degrees of freedom.9 We replace µ and Σ by the sample means and covariance ma-

trices computed from the draws from the predictive distributions. Regardless of the degrees

of freedom ν the conditional mean of x2 given the realization of x1 is given by:

x̂2|1 = µ2 + Σ21Σ−1
11 (x1 − µ1). (32)

In Figure 5 the nominal interest rate plays the role of the conditioning variable x1.

First, consider the predictive distribution for output growth and interest rates in 2001:IV.

The predictive distribution is centered at an interest rate of 4% and output growth of about

0%. The actual interest rate turned out to be 2% and output grew at about 20 basis points

over the quarter. Since the predictive distribution exhibits a negative correlation between

interest rates and output growth, conditioning on the actual realization of the interest rate

leads to an upward revision of the output growth forecast to about 30 basis points. In

2006:III the actual interest rate exceeds the mean of the predictive distribution, and hence

conditioning reduces the output growth forecast.

PCE inflation (λ = 1E-5) and the interest rate are strongly positively correlated and the

conditioning leads to a downward revision of the inflation forecast in 2001:IV and an upward

revision in 2006:III. Our estimation procedure is set up in a way that leaves the coefficients

of the auxiliary regression uncorrelated with the DSGE model parameters. Hence, all the

correlation in the predictive distribution is generated by shock uncertainty and the fact that

the auxiliary regression links the non-core variable to the DSGE model states. Finally, we

turn to the joint predictive distribution of unemployment (λ = 1E-5) and interest rates.

Since the idiosyncratic shock ξt plays an important role for the unemployment dynamics

according to our estimates and it is assumed to be independent of the DSGE model shocks,

the predictive distribution exhibits very little correlation. In this case, conditioning hardly

affects the unemployment forecast.

Figure 5 focuses on two particular time periods. More generally, if the family of t-

distributions provides a good approximation to the predictive distribution, and our model

captures the comovements between interest rates and the other variables, then we should

be able to reduce the RMSE of the output, unemployment, and inflation forecasts by con-

ditioning on the interest rate. Tables 8 and 9 provide RMSE ratios of conditional and

unconditional forecasts. To put these numbers into perspective we also report the ratio of

the conditional versus the unconditional variance computed from a t distribution with ν = 5
9Under this parameterization, the density of a m-variate t distribution is proportional to [1+ (ν− 2)(x−

µ)′Σ−1(x− µ)]−(ν+m)/2.
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degrees of freedom and a normal distribution (ν = ∞). Using the subscript j to index the

pseudo-out-of-sample forecasts, we define the average theoretical RMSE ratio:

R(ν) =
1
J

J∑
j=1

√√√√ ν−2
ν

(
1 + 1

ν−2 (x1,j − µ1,j)′Σ−1
11,j(x1,j − µ1,j)

)
(Σ22,j − Σ21,jΣ−1

11,jΣ12,j)

Σ22,j
.

(33)

The results obtained when conditioning on the interest rate, reported in Table 8, are

somewhat disappointing. Although, except for housing starts, the bivariate correlations

between the interest rate and the other variables are non-zero and would imply a potential

RMSE reduction between 1% and 12%, the RMSE obtained from the conditional forecasts

exceeds that from the unconditional forecasts.10 If we condition on the realization of the

GDP deflator inflation (Table 9), then the results improve and we observe a RMSE reduction

at least for output growth and PCE inflation, although not as large as predicted by R(ν).

These last results have to be interpreted carefully. It is important to keep in mind

that we are examining particular dimensions of the joint predictive density generated by

our model. While in the past, researchers have reported log predictive scores and predictive

likelihood ratios for DSGE model predictions, these summary statistics make it difficult to

disentangle in which dimensions the predictive distributions are well calibrated. We de-

cided to focus on bivariate distributions, trying to assess whether the DSGE model and the

auxiliary regressions capture the comovements of, say, interest rates with output growth,

inflation, and unemployment. Our results were mixed: bivariate distributions that involved

the interest rate were not well calibrated in view of the actual realizations; bivariate dis-

tributions that involved the GDP deflator were somewhat more successful capturing the

uncertainty about future pairwise realizations. An examination of the sequences of predic-

tive densities and realizations – a few of them were displayed in Figure 5 – suggested to us

that the high RMSEs of the conditional forecasts were often caused by a small number of

outliers, that is, actual observations that fall far into the tails of the predictive distribution.

This suggests that more elaborate distributions for the structural DSGE model shocks might

provide a remedy.
102001:IV and 2006:III are not representative, since conditioning in these periods leads to a reduction of

the forecast error.



26

5 Conclusion

This paper has developed a framework to generate DSGE model-based forecasts for eco-

nomic variables that are not explicitly modelled but that are of interest to the forecaster.

Our framework can be viewed as a simplified version of the DSGE model based factor model

proposed by BG. We first estimate the DSGE model on a set of core variables, extract the

latent state variables, and then estimate auxiliary regressions that relate non-modelled vari-

ables to the model-implied state variables. We compare the forecast performance of our

model with that of a collection of AR(1) models based on pseudo-out-of-sample RMSEs.

While our approach does not lead to a dramatic reduction in the forecast errors, the fore-

casts are by and large competitive with those of the statistical benchmark model. We

also examined bivariate predictive distributions generated from our empirical model. Our

framework inherits the two key advantages of DSGE model based forecasting: it delivers an

interpretation of the predicted trajectories in light of modern macroeconomic theory and it

enables the forecaster to conduct a coherent policy analysis.
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 1)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Household

h B 0.70 0.05 0.65 [ 0.58 , 0.72 ]

a′′ G 0.20 0.10 0.30 [ 0.13 , 0.47 ]

νl G 2.00 0.75 2.29 [ 1.33 , 3.28 ]

ζw B 0.60 0.20 0.25 [ 0.15 , 0.35 ]

400(1/β − 1) G 2.00 1.00 1.034 [ 0.45 , 1.60 ]

Firms

α B 0.33 0.10 0.20 [ 0.15 , 0.24 ]

ζp B 0.60 0.20 0.66 [ 0.53 , 0.84 ]

S′′ G 4.00 1.50 2.29 [ 0.84 , 3.91 ]

λf G 0.15 0.10 0.14 [ 0.01 , 0.26 ]

Monetary Policy

400π∗ N 3.00 1.50 2.94 [ 2.08 , 3.78 ]

ψ1 G 1.50 0.40 3.05 [ 2.43 , 3.68 ]

ψ2 G 0.20 0.10 0.06 [ 0.03 , 0.10 ]

ρR B 0.50 0.20 0.86 [ 0.83 , 0.89 ]
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 2)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Shocks

400γ G 2.00 1.00 1.57 [ 1.13 , 2.02 ]

g∗ G 0.30 0.10 0.29 [ 0.13 , 0.43 ]

ρa B 0.20 0.10 0.19 [ 0.10 , 0.29 ]

ρµ B 0.80 0.05 0.80 [ 0.74 , 0.87 ]

ρλf
B 0.60 0.20 0.67 [ 0.30 , 0.94 ]

ρg B 0.80 0.05 0.96 [ 0.95 , 0.98 ]

ρb B 0.60 0.20 0.85 [ 0.78 , 0.93 ]

ρφ B 0.60 0.20 0.98 [ 0.96 , 0.99 ]

σa IG 0.75 2.00 0.62 [ 0.54 , 0.69 ]

σµ IG 0.75 2.00 0.53 [ 0.38 , 0.68 ]

σλf
IG 0.75 2.00 0.18 [ 0.15 , 0.21 ]

σg IG 0.75 2.00 0.33 [ 0.29 , 0.37 ]

σb IG 0.75 2.00 0.36 [ 0.28 , 0.45 ]

σφ IG 4.00 2.00 2.90 [ 1.99 , 3.80 ]

σR IG 0.20 2.00 0.14 [ 0.12 , 0.16 ]

Notes: Para (1) and Para (2) list the means and the standard deviations for the Beta (B),

Gamma (G), and Normal (N ) distributions; the upper and lower bound of the support

for the Uniform (U) distribution; s and ν for the Inverse Gamma (IG) distribution, where

pIG(σ|ν, s) ∝ σ−(ν+1)e−νs2/2σ2
. The joint prior distribution is obtained as a product of the

marginal distributions tabulated in the table and truncating this product at the boundary of

the determinacy region. Posterior summary statistics are computed based on the output of

the posterior sampler. The following parameters are fixed: δ = 0.025, λw = 0.3. Estimation

sample: 1984:I to 2007:III.
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Table 2: RMSE Comparison: DSGE Model versus AR(1)

Series Model h = 1 h = 2 h = 4 h = 12

Output Growth (Q %) DSGE 0.51 0.50 0.41 0.36

AR(1) 0.50 0.49 0.44 0.37

Consumption Growth (Q %) DSGE 0.39 0.38 0.39 0.39

AR(1) 0.37 0.37 0.34 0.31

Investment Growth (Q %) DSGE 1.44 1.56 1.47∗∗ 1.52

AR(1) 1.56 1.67 1.60 1.60

Nominal Wage Growth (Q %) DSGE 0.67 0.70 0.66 0.56

AR(1) 0.59 0.59 0.59 0.56

100 × Log Hours DSGE 0.52∗∗ 0.88∗∗ 1.44∗∗ 2.07∗∗

AR(1) 0.66 1.20 2.08 3.40

Inflation (Q %) DSGE 0.22 0.23 0.19∗∗ 0.24

AR(1) 0.22 0.23 0.22 0.23

Interest Rates (A %) DSGE 0.71 1.34 2.13 2.25

AR(1) 0.54∗∗ 1.00∗∗ 1.73 2.93

Notes: We report RMSEs for DSGE and AR(1) models. Numbers in boldface indicate a

lower RMSE of the DSGE model. ∗ (∗∗) denotes 10% (5%) significance of the two-sided

modified Diebold-Mariano test of equal predictive accuracy under quadratic loss. The RM-

SEs are computed based on recursive estimates starting with the sample 1984:I to 2000:IV

and ending with the samples 1984:I to 2007:III (h=1), 1984:I to 2007:II (h=2), 1984:I to

2006:III (h=4), 1984:I to 2004:III (h=12), respectively. h-step ahead growth (inflation) rate

forecasts refer to percentage changes between period T + h− 1 and T + h.



32

Table 3: One-Step-Ahead Forecast Performance of DSGE Models

Study Forecast Period Output Growth Inflation Interest Rate

(Q %) (Q %) (A %)

Schorfheide, Sill, Kryshko 2001:I to 2007:IV 0.51 0.22 0.71

(0.47) (0.22) (1.68)

Del Negro et al. (2007) 1985:IV to 2000:I 0.73 0.27 0.87

(0.52) (0.25) (1.72)

Edge, Kiley, Laforte (2008) 1996:III to 2005:II 0.38 0.22 0.59

(0.57) (0.20) (1.96)

Smets, Wouters (2007) 1990:I to 2004:IV 0.57 0.24 0.43

(0.57) (0.22) (1.97)

Notes: Schorfheide, Sill, Kryshko: RMSEs, DSGE model is estimated recursively with data

starting in 1984:I. Del Negro et al. (2007, Table 2): RMSEs, VAR approximation of DSGE

model estimated based on rolling samples of 120 observations. Edge, Kiley, and Laforte

(2008, Table 4): Mean absolute errors, DSGE model is estimated recursively with data

starting in 1984:II. Smets and Wouters (2007, Table 3): RMSEs, DSGE model is estimated

recursively, starting with data from 1966:I. Numbers in parentheses are sample standard

deviations for forecast period, computed from the Schorfheide, Sill, Kryshko data set. Q %

is the quarter-to-quarter percentage change, and A % is an annualized rate.
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Table 4: Non-Modelled and Related DSGE Model Variables

Non-Modelled Variable DSGE Model Variable Transformation

PCE Inflation Final Good Inflation πt None

Core PCE Inflation Final Good Inflation πt None

Unemployment Rate Hours Worked Lt −0.31Lt

Housing Starts Investment it 0.033it

Notes: Here Lt and it are the DSGE model variables that appear in the model description

in Section 2.
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Table 5: Auxiliary Regression Estimates

ρ ση Signal/Noise

Series λ Mean 90% Intv Mean 90% Intv
ˆvar(ŝ′t|tα̂1)

ˆvar(ξ̂t)
ln pλ(ZT )

PCE Inflation 1.00 0.05 [ -0.14, 0.26 ] 0.03 [ 0.02, 0.03 ] 3.15 -0.03

0.10 0.05 [ -0.16, 0.25 ] 0.03 [ 0.02, 0.04 ] 2.62 4.82

1E-5 0.07 [ -0.11, 0.24 ] 0.04 [ 0.03, 0.05 ] 1.47 12.27

Core PCE Inflation 1.00 0.23 [ 0.03, 0.45 ] 0.01 [ 0.01, 0.02 ] 4.99 29.53

0.10 0.21 [ -0.02, 0.41 ] 0.01 [ 0.01, 0.02 ] 4.88 39.12

1E-5 0.53 [ 0.38, 0.68 ] 0.03 [ 0.02, 0.04 ] 1.35 22.58

Unemployment Rate 1.00 0.98 [ 0.96, 1.00 ] 0.019 [ 0.01, 0.02 ] 3.45 17.71

0.10 0.97 [ 0.95, 1.00 ] 0.019 [ 0.01, 0.02 ] 3.67 23.68

1E-5 0.98 [ 0.97, 1.00 ] 0.025 [ 0.02, 0.03 ] 1.91 22.78

Housing Starts 1.00 0.89 [ 0.76, 1.00 ] 0.007 [ 0.00, 0.01 ] 0.74 68.21

0.10 0.88 [ 0.74, 1.00 ] 0.007 [ 0.01, 0.01 ] 0.95 80.81

1E-5 0.96 [ 0.92, 1.00 ] 0.009 [ 0.01, 0.01 ] 0.88 82.64

Notes: The posterior summary statistics are computed based on the output of the Gibbs

sampler. The sample variance ratios are computed using the posterior mean estimate of α1.

Estimation sample: 1984:I to 2007:III.
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Table 6: RMSEs for Auxiliary Regressions [PARTIALLY UPDATED]

Series Model λ h = 1 h = 2 h = 4 h = 12

PCE Inflation (Q %) Aux 1.00 0.34 0.37 0.34 0.32

Aux 0.10 0.33 0.35 0.32 0.35

Aux 1E-5 0.32 0.34 0.30 0.33

Regr. 0.33 0.35 0.32 0.49

AR(1) 0.36 0.35 0.33 0.32

Core PCE Inflation (Q %) Aux 1.00 0.18 0.19 0.16 0.12

Aux 0.10 0.18 0.18 0.15 0.11

Aux 1E-5 0.16 0.20 0.18 0.15

Regr. 0.14 0.14 0.17 0.35

AR(1) 0.16 0.16 0.18 0.17

Unemployment Rate (%) Aux 1.00 0.16∗∗ 0.27 0.43 1.02

Aux 0.10 0.15∗∗ 0.24 0.39 0.97

Aux 1E-5 0.15∗∗ 0.23∗ 0.37 0.74

Regr. 0.20 0.37 0.72 1.39

AR(1) 0.21 0.37 0.63 1.01

Housing Starts (4 Million / Q) Aux 1.00 0.11 0.18 0.31 0.50

Aux 0.10 0.11 0.17 0.29 0.48

Aux 1E-5 0.10 0.16 0.27 0.45

Regr. 0.10 0.16 0.26 0.43

AR(1) 0.10 0.16 0.27 0.43

Notes: We report RMSEs for DSGE, AR(1), and regression models. Numbers in boldface

indicate that DSGE model attains lower RMSE than AR(1) model. ∗ (∗∗) denotes 10% (5%)

significance of the two-sided modified Diebold-Mariano test of equal predictive accuracy

under quadratic loss. The RMSEs are computed based on recursive estimates starting with

the sample 1984:I to 2000:IV and ending with the samples 1984:I to 2007:III (h=1), 1984:I

to 2007:II (h=2), 1984:I to 2006:III (h=4), 1984:I to 2004:III (h=12), respectively. h-step

ahead growth (inflation) rate forecasts refer to percentage changes between period T +h−1

and T + h.
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Table 7: Posterior Predictive Check: Cross-Correlations

Output Growth Inflation Interest Rates

PCE Inflation 90% Intv. [-0.46, 0.01] [0.50, 0.91] [ 0.11, 0.63]

λ = 1E-5 Data -0.07 0.75 0.42

Core PCE Inflation 90% Intv. [-0.47, 0.03] [0.50, 0.91] [ 0.07, 0.63]

λ = 1E-5 Data 0.01 0.68 0.61

Unemployment Rate 90% Intv. [-0.32, 0.09] [-0.26, 0.36] [-0.24, 0.63]

λ = 1E-5 Data 0.15 0.17 0.12

Housing Starts 90% Intv [-0.11, 0.33] [-0.26, 0.33] [-0.47, 0.43]

λ = 1E-5 Data 0.23 0.05 -0.22

Notes: We report 90% credible intervals of the posterior predictive distribution for the

sample correlations of non-modelled variables with core variables. The data entries refer to

sample correlations calculated from U.S. data.
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Table 8: RMSE Ratios: Conditional (on Interest Rates) versus Unconditional

Series h = 1 h = 2 h = 4 h = 12

Output Growth (Q %) 1.08 1.18 1.22 1.17

(0.93, 0.94) (0.91, 0.99) (0.93, 1.06) (0.97, 0.99)

100 × Log Hours 1.23 1.42 1.57 2.05

(0.96, 0.98) (0.91, 0.98) (0.93, 1.03) (0.96, 0.97)

Inflation (Q %) 1.14 1.18 1.86 2.02

(0.80, 0.81) (0.90, 0.97) (0.90, 1.01) (0.93, 0.94)

PCE Inflation (Q %) 0.95 1.01 1.40 1.69

λ = 1E-5 (0.90, 0.90) (0.90, 0.97) (0.90, 1.01) (0.90, 0.91)

Core PCE Inflation (Q %) 0.99 1.05 1.91 3.26

λ = 1E-5 (0.88, 0.87) (0.89, 0.96) (0.90, 1.01) (0.91, 0.92)

Unemployment Rate (%) 1.16 1.43 1.60 1.45

λ = 1E-5 (0.98, 0.98) (0.97, 1.04) (0.96, 1.08) (0.93, 0.94)

Housing Starts (4 Million / Q) 1.01 1.00 0.99 1.00

λ = 1E-5 (1.00, 0.99) (1.00, 1.08) (1.00, 1.12) (1.00, 1.02)

Notes: Using the draws from the posterior predictive distribution of two variables x1 and

x2 we construct conditional mean forecasts for x2 given x1, assuming that the predictive

distribution is student-t with ν = 5 or ν = ∞ degrees of freedom. We report RMSE ratios

for conditional and unconditional recursive h-step ahead pseudo-out-of-sample forecast as

well as the theoretical reductions R(∞) and R(5) in parenthesis (see Equation (33) for a

definition).
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Table 9: RMSE Ratios: Conditional (on GDP Deflator Inflation) versus Un-

conditional

Series h = 1 h = 2 h = 4 h = 12

Output Growth (Q %) 0.94 0.91 0.94 1.04

(0.94, 0.88) (0.74, 0.69) (0.76, 0.68) (0.98, 0.90)

100 × Log Hours 1.01 1.03 1.06 0.92

(0.98, 0.92) (0.74, 0.69) (0.74, 0.66) (0.98, 0.90)

PCE Inflation (Q %) 0.71 0.68 0.83 0.83

λ = 1E-5 (0.69, 0.65) (0.68, 0.63) (0.67, 0.60) (0.67, 0.61)

Core PCE Inflation (Q %) 1.07 0.98 1.26 2.11

λ = 1E-5 (0.58, 0.55) (0.63, 0.59) (0.67, 0.60) (0.68, 0.62)

Unemployment Rate (%) 1.06 1.08 1.09 1.10

λ = 1E-5 (0.99, 0.92) (0.99, 0.92) (0.99, 0.89) (0.95, 0.86)

Housing Starts (4 Million / Q) 1.00 1.00 1.00 1.00

λ = 1E-5 (1.00, 0.93) (1.00, 0.93) (1.00, 0.90) (1.00, 0.91)

Notes: See Table 8.
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Figure 1: Latent State Variables of the DSGE Model
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Notes: The six panels of the figure depict time series of elements of ŝt|t. Estimation sample:

1984:I to 2007:III.
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Figure 2: Non-Core Variables and Related Model Variables
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Notes: The top two panels depict quarter-to-quarter inflation rates. In the bottom panels

we add constants to the scaled log of hours worked and investment deviations from trend

to match the means of the unemployment rate and housing starts over the period 1984:I to

2007:III.
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Figure 3: Non-Core Variables and Factors
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Notes: Figure depicts the actual (blue, solid) path of the non-core variables as well as the

factor predictions α̂0 + ŝ′t|tα̂1,T for λ = 1E-5 (light blue, dashed) and λ = 1 (red, dotted).
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Figure 4: Impulses Response to a Monetary Policy Shock

(i) Core Variables: Output, GDP Deflator Inflation, Hours, Investment
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(ii) Non-core Variables: PCE Inflation, core PCE Inflation, Unemployment, Housing Starts
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Notes: Non-core variables: we depict log level responses for output, hours, and investment.

(ii) Non-core variables: we overlay two responses, corresponding to the auxiliary regressions

estimated with λ = 1E-5 (red, solid), and λ = 1 (blue, dashed). Estimation sample: 1984:I

to 2007:III.
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Figure 5: Bivariate One-Step-Ahead Predictive Distributions
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Notes: The panels depict a scatter plot of draws from the one-step-ahead predictive distri-

bution. The three filled circles denote: the actual value (small, light blue), the unconditional

mean predictor (medium, yellow), and the conditional mean predictor (large, brown). We

set λ = 1E-5.
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A MCMC Implementation

DSGE model coefficients. The posterior sampler for the DSGE model is described in

An and Schorfheide (2007).

Gibbs sampler for the coefficients that appear in the measurement equations.

We will in turn derive the conditional distributions for a Gibbs sampler that iterates over

the conditional posteriors of α, ρ, and σ2
η. We will start from the quasi-differenced form (23)

of the auxiliary regression. τ , λ0, and λ1 are treated as hyperparameters and considered as

fixed in the description of the Gibbs sampler. Let L denote the lag operator.

Conditional posterior of α: The posterior density is of the form

p(α|ρ, σ2
η, Z

T , ST ) ∝ p(ZT |ST , α, ρ, σ2
η)p(α). (A.1)

Define

y1 =
ση

τ
z1, x′1 =

ση

τ
[1, ŝ′1|1]

yt = (1− ρL)zt, x′t = [1− ρ, (1− ρL)ŝ′t|t]
′, t = 2, . . . , T,

which implies that (23) can be expressed as linear regression

yt = x′tα+ ηt. (A.2)

If we let Y be a T × 1 matrix with rows yt and X be a T × k matrix with rows x′t, then we

can rewrite the regression in matrix form

Y = Xα+ E.

We deduce

p(α|ρ, σ2
η, Z

T , ST ) ∝ exp
{
− 1

2σ2
η

(α− α̂)′X ′X(α− α̂)
}

(A.3)

× exp
{
−1

2
(α− µα,0)′V −1

α,0 (α− µα,0)
}
,

where

α̂ = (X ′X)−1X ′Y.

Thus, the conditional posterior of α is N (µα,T , Vα,T ) with

µα,T = Vα,T

[
V −1

α,0µα,0 +
1
σ2

η

X ′Xα̂

]
Vα,T =

(
V −1

α,0 +
1
σ2

η

X ′X

)−1

.
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Conditional posterior of ρ: Given the U(−1, 1) prior for ρ, the posterior density is of

the form

p(ρ|α, σ2
η, Z

T , ST ) ∝ p(ZT |ST , α, ρ, σ2
η)I{|ρ| < 1}. (A.4)

We now define

yt = zt − α0 − ŝ′t|tα1, xt = zt−1 − α0 − ŝ′t−1|t−1α1.

Again, we can express (23) as linear regression model

yt = xtρ+ ηt. (A.5)

Using the same arguments as before we deduce that

p(ρ|α, σ2
η, Z

T , ST ) ∝ I{|ρ| < 1} exp
{
− 1

2σ2
η

(ρ− ρ̂)′X ′X(ρ− ρ̂)
}

(A.6)

with

ρ̂ = (X ′X)−1X ′Y.

Thus, the conditional posterior is truncated normal: I{|ρ| < 1}N (µρ,T , Vρ,T ) with

µρ,T = ρ̂, Vρ,T = σ2
η(X ′X)−1.

Conditional posterior of σ2
η: The posterior density is of the form

p(σ2
η|α, ρ, ZT , ST ) ∝ p(ZT |ST , α, ρ, σ2

η)p(σ2
η). (A.7)

Solve (23) for ηt:

ηt = (1− ρL)zt − (1− ρ)α0 − (1− ρL)ŝ′t|tα1. (A.8)

Now, notice that

p(σ2
η|α, ρ, ZT , ST ) ∝ (σ2

η)−(T+2)/2 exp
{
− 1

2σ2
η

∑
η2

t

}
. (A.9)

This implies that the conditional posterior of σ2
η is inverted Gamma with T degrees of

freedom and location parameter s2 =
∑
η2

t . To sample a σ2
η from this distribution generate

T random draws Z1, . . . , ZT from a N (0, 1/s2) and let σ̃2
η =

[∑T
j=1 Z

2
j

]−1

.

Marginal Data Density: Can be approximated using Chib’s (1995) method. Let α̂, ρ̂,

and σ̂2
η be the posterior mean estimates computed from the output of the Gibbs sampler.

According to Bayes Theorem,

p(Y ) =
p(Y |α̂, ρ̂, σ̂2

η)p(α̂)p(ρ̂)p(σ̂2
η)

p(α̂|ρ̂, σ̂2
η, Y )p(ρ̂|σ̂2

η, Y )p(σ̂2
η|Y )

(A.10)
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All but the following two terms are straightforward to evaluate. First, let α(i) and ρ(i)

denote the i’th draw from the Gibbs sampler. Then we can use the approximation:

p̂(σ̂2
η|Y ) =

1
n

n∑
i=1

p(σ̂2
η|α(i), ρ(i), Y ). (A.11)

Now consider a “reduced” run of the Gibbs sampler, in which we fix σ2
η = σ̂2

η and iterate over

p(α|ρ, σ̂2
η, Y ) and p(ρ|α, σ̂2

η, Y ) using the conditional densities in (A.3) and (A.6). Denote

the output of this Gibbs sampler by ρ(s) and α(s). Then,

p̂(ρ̂|σ̂2
η, Y ) =

1
m

m∑
s=1

p(ρ̂|α(s), σ̂
2
η, Y ). (A.12)

Generalization to AR(p): Let ρ(L) = 1−
∑p

j=1 ρpL
p, where L is the lag operator, then

we can express the auxiliary model as:

zt = α0 + ŝ′t|tα1 + ξt, t = 1, . . . , p

ρ(L)zt = ρ(1)α0 + ρ(L)ŝ′t|tα1 + ηt, t = p+ 1, . . . , T

where [ξ1, . . . , ξp]′ ∼ N (0, τ2Ω(ρ(L))) and Ω(ρ(L)) is the correlation matrix associated with

the stationary AR(p) specification of ξt. The conditional posteriors of α and σ2
η are ob-

tained from a straightforward generalization of (A.3) and (A.9). The conditional posterior

distribution of ρ1, . . . , ρp is now non-normal and requires a Metropolis step. A general-

ization of (A.6) can serve as proposal density. To conveniently enforce stationarity of the

autoregressive measurement error process it could be re-parameterized in terms of partial

autocorrelations as in Barndorff-Nielson and Schou (1973).


