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1 Introduction

Between 1952 and 1965, the annual average U.S. inflation rate ranged between zero
and four percent. Over the next fifteen years, it rose systematically and substantially,
twice peaking above 10 percent in 1975 and 1980.
What economic forces led to this increase? Any explanation of inflation dynamics

must involve an understanding of how a central bank interacts with the private econ-
omy and the real shocks that hit it. We use two basic ideas about Federal Reserve
behavior — that the U.S. central bank, like others around the world, was concerned
with smoothing the path of short-term nominal interest rates and with maintaining a
relatively small output gap — to explain why a time-varying inflation trend would have
become part of the U.S. inflation process during this period and, more specifically,
why there would have been a rise in trend inflation.
In adopting this approach, we abstain from incorporating other forces that ar-

guably may be very important for the Great Inflation in the U.S. and other coun-
tries. First, we assume that there is a Phillips Curve which is vertical in the long
run and that the central bank understands this structural feature of the economy as
well as the level of capacity output at each point in time. Second, we assume that
private agents understand the nature of the central bank’s decision rules and the con-
sequences that they have for the inflation process. Third, we assume that the central
bank adopts fully credible policies. Other accounts of the rise of inflation in the U.S.
highlight departures from these assumptions and, indeed, our prior investigation of
the Volcker disinflation stressed the role of imperfect credibility and private sector
learning during that episode.1

In constructing our model and interpreting history, we view the U.S. central bank
as typically giving prominence to two objectives, stabilization of economic activity
and avoidance of large period-to-period changes in short-term interest rates. We
portray the FRS as maintaining these objectives in the face of real developments that
affected the level of output and the level of the real interest rate, thus making inflation
variable. We show that a very simple modern macroeconomic model, which we take
as embodying key elements in many contemporary models, makes the prediction that
inflation contains a "stochastic trend component" in the language of modern time
series econometrics. Thus, the upward drift in U.S. inflation from 1966 through 1979
arises as a consequence of a series of adverse real shocks hitting the macroeconomy
and the central bank allowing inflation to randomly walk upward. This viewpoint
explains, in one sense, how there would come to be no "nominal anchor" for U.S.
monetary policy by August 1979 when Paul Volcker became Chairman of the Federal
Reserve Board.
Since our model has a very simple form for trend inflation and since this form is

one that has been long used to forecast inflation (Nelson and Schwert (1977)) and has
recently been found to be quite successful vis-a-vis competitors (Stock and Watson

1Goodfriend and King (2005).
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(2007)), we are able to produce a detailed link between our theory and empirical
work on inflation. We also see the inflation process as at times more complicated
than our simple trend model, during intervals in which there is inflation-fighting by
the central bank, and we discuss these in detail below. The idea that there are episodic
components of inflation that are not described by the stochastic trend model, during
which there are forecastable linkages between inflation and real activity, accords with
further recent empirical work by Stock and Watson (2008).
The organization of the paper is as follows. In section 2, we describe the com-

ponents of the model. In Section 3, we discuss monetary policy and motivate the
inclination of central banks to pursue what we call "business as usual"—the stabiliza-
tion of output at capacity and a continuity of the short-term nominal interest rate. In
section 4, we derive equilibrium outcomes and show how "business as usual" gives rise
to a stochastic inflation trend. In section 5, we discuss how alternative central bank
operating rules could bring about "business as usual" outcomes. In section 6, we list
the empirical implications of our hypothesis, and then turn to a detailed evaluation
of the Great Inflation from the perspective of our model in section 7. A final section
provides a brief conclusion.

2 Model Components

We work with a simple linear model that incorporates five components from modern
macroeconomics: new Keynesian pricing, a real business cycle core, a Fisher equation,
an Euler equation, and the term structure of interest rates.

2.1 New Keynesian Pricing

New Keynesian macroeconomics has developed a battery of models to explain price
setting by forward-looking firms. The simplest of these models, embedding price
adjustment opportunities along the lines of Calvo (1983), leads to a “new Keynesian
pricing" equation that links inflation (πt) and real output (yt),

πt = βEtπt+1 + h (yt − y∗t ). (1)

In this expression, y∗t is a measure of capacity output, so that yt− y∗t is a measure of
the output gap, and Etπt+1 is the expected inflation rate. The parameter h can be
related to structural features such as the frequency of price adjustment, the elasticity
of marginal cost with respect to output, and so forth.
As has been much stressed in the recent literature,2 the new Keynesian approach

indicates that the relevant measure of capacity output is the level of output that
would prevail if nominal prices were flexible. That is, it is a level of output which
can be modeled along the lines of real business cycle analysis and that therefore is

2See Goodfriend and King (1997), Goodfriend (2002), and Woodford (2003).
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expected to fluctuate through time in response to a range of macroeconomic shocks,
including productivity, government expenditures, tax rates, and energy prices.
We use a version of this model due toWoodford (2008) that allows for time-varying

trend inflation, so that the inflation dynamics are written as

πt = πt + βEt[πt+1 − πt+1] + h (yt − y∗t ) (2)

where πt is a time-varying trend rate of inflation, which satisfies

πt = limk→∞Etπt+k. (3)

That is, πt is the stochastic trend rate of inflation in the sense of Beveridge and
Nelson (1981).
This specification of new Keynesian pricing exhibits a short-run Phillips curve

relationship, so that a monetary stimulus raises both inflation and real variables such
as output and employment, if there are no changes in expected inflation.3 But, at
the same time, there is no long-run Phillips curve relationship, so that a permanent
increase in money growth and in inflation has no quantitatively significant effect on
employment or output.

2.2 The Real Business Cycle Core

The model has a "real business cycle" core, in which macroeconomic activity would
respond to a variety of real shocks in the absence of nominal frictions. Such a com-
ponent is critical, we believe, on both the short-run and long-run fronts. Quarter-to-
quarter, there are many changes in current and prospective real conditions that are
important for output and the real interest rate. In the longer term, the evolution of
economic activity is dominated by growth in productivity.
To model the RBC core of the economy, we assume that "capacity output" evolves

according to
∆y∗t = ρ∆y∗t−1 + νt (4)

which is a simple difference stationary stochastic process of the form estimated by
Nelson and Plosser (1982), which allows for shocks to the level of economic activity
and also to the expected growth rate.4 This simple specification cannot adequately
capture the changes in trend productivity growth which we believe to have occurred

3The results on interest rate smoothing, output stabilization, and trend inflation variability also
hold under two alternative specifications as originally derived in our November 2004 Carnegie-
Rochester paper. These are a standard Calvo model with β = 1 and a model with lags as well as
leads of inflation, in the style of Fuhrer and Moore, that involves no long-run inflation and output
tradeoff. We use the specification in the main text as a third simple and modern specification that
makes clear the richness of the connection.

4Our model does not distinguish between consumption and investment, a key aspect of RBC
models.
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over the post-war period, but it has the desirable property that it does let us approx-
imate the comovement of output and the real interest rate in response to permanent
shocks to the level of productivity within a more fully articulated model.

2.3 The Fisher Equation

There is a Fisherian relationship in the model that links the nominal interest rate
(Rt) to the real interest rate (rt) and expected inflation (Etπt+1). Such a specification
is critical to understanding the evolution of the nominal interest rate in the U.S. and
other countries. The Fisher equation is

Rt = rt +Etπt+1. (5)

In our study, this linkage will play a key role.

2.4 The Euler Equation

There is a transmission mechanism between real interest rates and real economic ac-
tivity that includes additional expectational elements, because optimizing theories of
consumption and investment suggest the importance of this feature and because both
consumption and investment appear to be substantially influenced by expectations
in the U.S. economy. Expectations are important determinants of aggregate demand
and output in a model with Keynesian features, such as ours. According to modern
consumption theory, the expected growth rate of consumption should be related to
the real interest rate, which we write as

rt = σ(Etyt+1 − yt) + r, (6)

where r > 0 represents positive time preference. The "natural rate of interest" is
defined as

r∗t = σ(Ety
∗
t+1 − y∗t ) + r (7)

The capacity output process implies that the "natural rate of interest" evolves as

r∗t = σρ∆y∗t + r (8)

so that we have built in a positive comovement of the real interest rate and output
growth present in studies of RBC models with stochastic productivity trends.

2.5 The Term Structure of Interest Rates

The model contains the expectations theory of the term structure. While it has
been criticized as an incomplete description of long-term yields, we think that the
expectations theory nevertheless contains the essential features of bond-pricing for our
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purposes. In our model, we include specifications of the real and nominal returns on a
long-term discount bond, i.e., one with L periods to maturity. The first specification
governs the real term structure,

rLt =
1

L

L−1X
j=0

Etrt+j + (rL − r) = σ
1

L
(Etyt+L − yt) + rL (9)

and the second specification governs the nominal term structure,

RLt =
1

L

L−1X
j=0

EtRt+j = rLt +
1

L

LX
j=1

Etπt+j (10)

It is important to stress that longer-term yields reflect permanent variations, as these
are dominant in such an expected future average. Accordingly, we will frequently em-
ploy the idea that variations in long-term nominal yields are dominated by "expected
inflation trends."

3 Monetary Policy

We must specify the objectives of monetary policy in order to close the model. In
this regard, Section 2A of the Federal Reserve Act says that "The Board of Gover-
nors of the Federal Reserve System and the Federal Open Market Committee shall
maintain long run growth of the monetary and credit aggregates commensurate with
the economy’s long run potential to increase production, so as to promote effectively
the goals of maximum employment, stable prices, and moderate long-term interest
rates." In terms of our model, we translate the above-mentioned goals into an "out-
put gap stabilization objective" yt = y∗t , and "a low inflation objective" πt = π ≈ 0,
noting that the low inflation objective takes care of the low long-term interest rate
objective.
Interestingly enough, the original Federal Reserve Act of 1913 specified a different

set of objectives: "to furnish an elastic currency, to afford a means of rediscounting
commercial paper, and to establish a more effective supervision of banking in the
United States." At the time, the United States was on the gold standard which itself
maintained price stability, and the Federal Reserve was set up to provide financial
stability. This it did, by improving banking supervision and by smoothing short-
term interest rates. The period between the Civil War and the founding of the
Federal Reserve was marked by a number of recessions associated with sudden, sharp,
and sustained spikes in short-term interest rates. Interest rate spikes of over 10
percentage points occurred on eight occasions, four of which were associated with
major banking panics in 1873, 1884, 1893, and 1907. By providing currency and bank
reserves through its discount window or by buying securities in the open market,
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the Fed introduced a degree of continuity into short-term nominal interest rates and
eliminated the kind of interest rate spikes seen earlier. Between 1890 and 1910,
the three-month nominal rate was quickly mean-reverting and highly seasonal. By
contrast, between 1920 and 1933, the three-month nominal rate was close to a random
walk.5

"Continuity of the short rate" quickly became and has remained a routine feature
of monetary policy. Short rate continuity is today reflected in the Fed’s use of an
interest rate policy instrument rather than a bank reserves policy instrument, and in
the fact that the Fed likes to prepare markets for federal funds rate target changes.
Interest rate continuity is reinforced by the fact that maintaining a given policy stance
often means keeping the federal funds rate target fixed for months at a time.6 Interest
rate continuity is not mentioned explicity, or even implicitly anymore, as an objective
of the Federal Reserve partly because it is so widely accepted, and partly because
until 1994 the Federal Reserve deliberately obscured its management of short-term
interest rates to deflect public criticism for high interest rates produced periodically to
control inflation.7 Nevertheless, the Federal Reserve maintains a degree of short rate
continuity as a matter of routine practice. The "interest rate continuity objective" in
our model is an attenuation by the central bank of one-period-ahead forecast errors
in the short-term nominal interest rate, Rt −Et−1Rt.
To sum up, we think of the central bank as having three fundamental objectives:

output gap stabilization, interest rate continuity, and low inflation. Parallel advances
in the theory and practice of central banking, including important lessons from the
Great Inflation, teach that monetary policy best stabilizes the output gap, maintains
low and stable interest rates, and sustains low inflation by putting a priority on price
stability. However, that lesson was not understood before the Great Inflation. Our
contention is that the failure of monetary policy in the Great Inflation was due,
in part, to the inclination of central banks including the Federal Reserve to put
stabilization of the output gap and continuity of the short-term interest rate ahead
of price stability. This was understandable. Prior to the Great Inflation, inflation
in the United States was relatively low. Protracted inflation had never before been
a problem in the United States in peacetime. The importance of monetary policy
for inflation and inflation expectations was not then recognized fully. And later, the
Fed lacked confidence that tight monetary policy could bring inflation down at any
politically acceptable cost. We denote "business as usual" as the inclination of central
banks to pursue output gap stabilization and interest rate continuity. We work out
the implications of business-as-usual monetary policy for understanding the Great
Inflation in the balance of the paper.

5See Mankiw, Miron, and Weil (1987).
6See Goodfriend (1991), Meltzer (2003), and Poole (1991).
7Goodfriend (2003) and Meltzer (2003).
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4 Equilibrium Outcomes with "Business as Usual"

In this section we characterize the equilibrium behavior of inflation, output, and in-
terest rates in a macromodel that combines new Keynesian pricing, the real business
cycle core, the Fisher equation, the Euler equation, the term structure of interest
rates, and business-as-usual monetary policy. The macroeconomic model that we
develop gives rise to a time-varying trend rate of inflation, a "stochastic trend" com-
ponent to inflation in the language of modern time series econometrics.

4.1 Trend Inflation Variability

To analyze the evolution of trend inflation, we begin by noting that the "law of
iterated expectations" implies that

πt = Etπt+1 (11)

since Etπt+1 = Et[limk→∞Et+1πt+1+k] = [limk→∞Etπt+1+k] = πt. This is a useful
observation, as it allows us to write (2) as

πt = (1− β)πt + βEtπt+1 + h (yt − y∗t ) (12)

Hence, with a fixed or slowly evolving inflation trend, inflation at each point in time
should resemble that under (1). For example, inflation should depend importantly
on expected future output gaps, as stressed in much recent literature,

πt = πt + h
∞X
j=0

βjEt(yt+j − y∗t+j) (13)

Yet, as we look across various periods of high and low inflation, the general level of
inflation would be fully explained by the trend.
To explore the origins of the inflation trend, suppose that the central bank fully

stabilizes the output gap as part of its business-as-usual practices. Zero output gaps
at all dates imply that

πt − πt = β(Etπt+1 −Etπt+1) (14)

mechanically from (2). However, since πt = Etπt+1, this condition is equivalently
that

πt = Etπt+1 = πt (15)

A striking feature of this simple model is that inflation is only the stochastic trend.
We add a transitory component in Section 7.1 below. The simple model serves to
stress that output stabilization delivers a stochastic trend in inflation.
Further, a well-known property of stochastic inflation trends is that their changes

are unpredictable,
πt = πt−1 + εt (16)
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with εt being a random shock — to be determined below — with the property that
Et−1εt = 0. In terms of the model characteristics which we stressed above, we note
that the absence of a long-run trade-off means that a zero output gap is consistent
with stochastically evolving trend inflation. Of course, zero trend inflation, or any
other constant inflation trend, would imply a zero output gap. This would be the
special case in which εt was always zero.

4.2 Innovations to the Inflation Trend

According to the derivation above, output gap stabilization makes trend inflation
variability possible. The variability of innovations to trend inflation, however, is
governed by the other half of "business as usual," the degree of interest rate continuity.
To see why, define the central bank’s "interest rate continuity" parameter φ, where
0 < φ < 1 so that the degree of continuity increases with φ. Full stabilization of the
output gap implies that rt = r∗t = σρ∆y∗t + r according to (8). We can write the
consequences for the one-period-ahead forecast error for the nominal interest rate in
terms of the forecast error in the natural rate of interest as

Rt = Et−1Rt + (1− φ)(r∗t −Et−1r
∗
t ) (17)

Fisher equation (5) and random walk inflation then imply that

Etπt+1 −Et−1πt+1 = −φ(r∗t −Et−1r
∗
t ) (18)

Hence, the innovation εt in the stochastic inflation trend evolves as

εt = −φσρνt (19)

where σρνt is the forecast error in the natural rate of interest, and φ controls the
influence of shocks to capacity output νt on trend inflation. For instance, without
any interest rate continuity (φ = 0), there are no innovations to trend inflation and
nominal interest rate forecast errors fully reflect forecast errors in the natural rate
of interest. In this case trend inflation is constant over time at a level determined
by historical conditions. With full interest rate continuity (φ = 1), one-period-ahead
nominal interest rate forecast errors are eliminated completely, since the εt innovation
to expected inflation is the negative of the σρνt innovation to the natural interest rate.
In ways that are reminiscent of Goodfriend (1987) and Barro and Broadbent

(1997), the central bank’s concern for smoothing the nominal interest rate produces
nonstationarity in a nominal variable. However, in our context this nominal variable
is the inflation rate rather than the price level. With output always at capacity and
short-term nominal interest rate forecast errors at least somewhat attenuated, the
central bank gives up control of long run inflation, allowing trend inflation to evolve
through time as a random walk.
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4.3 Comovement of Short-term Interest and Inflation

Under the inflation process derived above, the effect of a real interest rate innovation
on the path of the nominal interest rate is given by

EtRt+j −Et−1Rt+j (20)

= [Etr
∗
t+j −Et−1r

∗
t+j] + [Etπt+j −Et−1πt+j]

= [ρj − φ]ρσνt

for j = 0, 1, 2, 3, ...and 0 < ρ < 1, with the coefficient [ρj − φ]ρσ combining both real
rate and expected inflation effects.
With full interest rate continuity (φ = 1) a surprise increase in the current real

interest rate is matched by an offsetting decrease in trend inflation which leaves the
current nominal short term interest rate unchanged. Future nominal short rates then
move gradually lower as the real natural interest rate returns asymptotically to its
steady state r and the nominal interest rate moves permanently lower by ρσνt.With
partial interest rate continuity (0 < φ < 1), a rise in the real rate can lead nearby
nominal rates to rise while far away nominal rates fall.8

As long as "business as usual" pursues some degree of interest rate continuity,
trend inflation should rise in periods when the real interest rate is surprisingly low.
For example, surprisingly low productivity growth typically lowers real interest rates,
employment and output in real business cycle models. More generally, many different
kinds of real shocks could affect the real interest rate: according to our model such
shocks would contribute to the variability of trend inflation.

4.4 Term Structure Implications

The nominal long-bond rate would reflect the inflation effects more promptly than
the short-rate. According to (10), the response of the L period long rate is

RLt −Et−1RLt =
1

L

L−1X
j=0

[EtRt+j −Et−1Rt+j] (21)

=
1

L

L−1X
j=0

{[Etr
∗
t+j −Et−1r

∗
t+j] + [Etπt+j −Et−1πt+j]} (22)

=
1

L

L−1X
j=0

[ρj − φ]ρσνt = [
1

L

1− ρL

1− ρ
− φ]ρσνt

8Gurkaynak, Sack, and Swanson (2005) find empirical support for this possibility with regard to
U.S. monetary policy in the period from 1990 to 2002. They report that forward rates at the short
end of the yield curve increase following a surprise tightening of the federal funds rate (and decrease
following a surprise easing). At longer horizons, however, they report that forward rates actually
move in the direction opposite to that of the policy surprise, i.e., a surprise policy tightening actually
causes long-term forward rates to fall.
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The long-term interest rate would be a better indicator of movements in trend infla-
tion than the short-term interest rate, with RLt −Et−1RLt approximately −φρσνt =
πt − πt−1 for very long-term instruments.

5 Implementing "Business as Usual"

The consequences for inflation, output, and interest rates of "business as usual" were
characterized in Section 4 without saying anything about how the central bank’s
priorities for output gap stabilization and interest rate continuity could be achieved.
We have four objectives in this section. First, we want to understand how business-
as-usual priorities might be implemented with an interest rate rule. Second, we want
to understand implementation in terms of a money growth rule. Third, we want to
explain how a central bank, unaware of the effect of its business-as-usual priorities
on trend inflation, could produce inadvertantly the rational expectations equilibrium
characterized in Section 4. Fourth, we want to point out that business-as-usual
practices are susceptible to sudden, severe inflation surges capable of subordinating
output gap stability and interest rate continuity to a priority for stabilizing inflation.

5.1 Implementation with an Interest Rate Rule

The interest rate rule

Rt = πt + r∗t + Ω(πt − πt) (23)

can deliver business-as-usual outcomes under the "Taylor principle" condition Ω >>
1, as follows. The rule says that the central bank adjusts its nominal interest rate
policy instrument Rt so that the real interest rate Rt−πt responds to the gap between
actual inflation and what is, in effect, a time-varying inflation target πt. In addition,
the central bank adjusts Rt−πt one-for-one with fluctuations in the natural real rate
of interest r∗t .
We start by describing how this rule might work practically in response to a

change in economic conditions. Suppose a negative shock to capacity output νt < 0
in equation (4) causes r∗t to fall in equation (8). In order to implement interest rate
continuity and attenuate the incipient fall in Rt, the central bank must increase πt
somewhat. The required increase in πt will vary from σρνt to zero as the central
bank’s interest-rate-continuity parameter φ varies from unity to zero. The increase
in πt makes the inflation gap negative at the initial πt. If the response coefficient Ω is
sufficiently large, so that Rt−πt is very sensitive to the inflation gap, then equilibrium
interest rate policy will push πt arbitrarily close to πt. In fact, in this case the
central bank responds to deviations of inflation from its time-varying inflation target
sufficiently aggressively that these never take place. Instead, equilibrium inflation πt
jumps immediately and permanently by πt −Et−1πt = −φσρνt. It follows from (23)
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that Rt−πt = r∗t . Since inflation is a random walk in this case, Etπt+1 = πt, we have
that Rt − Etπt+1 = r∗t and the real interest rate shadows perfectly the underlying
natural real rate of interest so that yt = y∗t and the output gap is stabilized fully.
Interest rate rule (23) is consistent with a unique, stable rational expectations

equilibrium that we described above. Formally, combining interest rate rule (23) and
Fisher equation (5), using the fact that πt = Etπt+1, we find that Etπt+1 −Etπt+1 =
Ω(πt−πt). Then, the stable forward-looking solution is πt = πt, the business-as-usual
equilibrium we derived in Section 4.

5.2 Implementation with a Money Growth Rule

The money growth rule

∆mS
t = (α− φσρ)νt + αρ∆y∗t−1 + πt−1 (24)

delivers business-as-usual objectives in a model that includes equations (2) through
(7) augmented to include money demand function ∆mD

t = α∆yt+πt, money growth
rule (24), and a money market equilibrium condition ∆mD

t = ∆mS
t .

Suppose initially that the central bank wishes only to stabilize the output gap
and sets φ = 0. To do so, the central bank would move the current money stock
with ανt so that money market clearing makes current aggregate demand yt conform
to movements in capacity output y∗t at the going inflation rate. To stabilize the
output gap in the future, the central bank must make future money growth conform
to future movements in money demand at capacity output and initial trend inflation.
The required future money growth is reflected in the αρ∆y∗t−1 term in (24). Future
money growth would mirror the return of capacity output to its long run growth path
scaled by the income elasticity of money demand, α. In this case, the nominal interest
rate would shadow the real natural rate associated with the shock νt.Monetary policy
would stabilize the output gap fully and perpetuate the initial inflation trend.
If the central bank also seeks to implement interest rate continuity with 0 < φ < 1,

it must attenuate one-period-ahead forecast errors in the nominal interest rate by
making expected inflation covary negatively with the shock to capacity output νt.This
the central bank can do by promising to make future money growth covary negatively
with νt. Consider a negative shock to νt. Seeing higher money growth coming, firms
expect inflation to rise, and higher expected inflation stabilizes the short nominal
rate against the negative shock to the real rate. Let the money growth rule continue
to make yt conform to y∗t as discussed above. In this equilibrium, firms pass higher
expected inflation through one-for-one to current inflation. The pass-through shows
up as the −φσρνt term in (24), which reflects the natural real interest rate innovation,
σρνt multiplied by the central bank’s interest-rate-continuity parameter φ. This term
reflects the effect of higher πt on current money demand that the central bank must
accommodate to continue to stabilize yt at y∗t . The lagged πt−1 term present in the
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money growth rule is there so that money growth in period t +1 and thereafter
perpetuates the elevated period t inflation trend required to stabilize the output gap.

5.3 How "Business as Usual" Creates Inflation Drift

Is it possible that a central bank in pursuit of output gap stabilization and interest
rate continuity could push an economy unknowingly into the equilibrium with sto-
chastic trend inflation characterized in Section 4? This is an important question to
ask because there is little evidence that central banks thought of themselves as delib-
erately managing inflation expectations with either an interest rate rule or a money
growth rule to implement business-as-usual objectives. We answer the question in
the affirmative below, showing how the public’s incentive to form inflation expec-
tations rationally acts in conjunction with the central bank’s pursuit of output gap
stabilization and interest rate continuity to push an economy inadvertently into the
equilibrium characterized in Section 4. In such an equilibrium, the public’s rational
expectations drives the stochastic trend in inflation which the central bank happily
accommodates in the pursuit of its business-as-usual priorities. The central bank
need not be aware of its own role in creating inflation drift, and yet monetary policy,
whether thought of as implemented with an interest rate rule or a money growth rule
as above, can be understood as if the central bank deliberately manages inflation
expectations to achieve its output gap and interest continuity objectives.
To understand how business-as-usual monetary policy inadvertently puts a sto-

chastic trend in the inflation rate, imagine that initially the inflation rate is low and
stable and is expected to remain so at Ebπ. Imagine also that the economy is subject
to shocks to capacity output. Initially, suppose that the sole objective of monetary
policy is to stabilize the output gap, i.e., φ = 0. In this case, the central bank would
not distinguish between nominal and real interest rates; it would regard its manage-
ment of the short term nominal rate as equivalent to management of the short term
real interest rate. With no continuity restrictions, the central bank would move Rt so
that Rt−Ebπ = r∗t at all times. For instance, the central bank would respond to a neg-
ative νt shock to capacity output by matching the initial fall in the real natural rate
r∗t with its nominal interest rate policy instrument Rt and shadowing the real natural
rate as it moved back gradually to its steady state level r, according to equations (4)
and (8). If the central bank focused exclusively on stabilizing the output gap, there
would be no reason for inflation to be destabilized. Inflation, inflation expectations,
and trend inflation all would remain firmly anchored at Ebπ. The long-term interest
rate would remain firmly anchored as well.
However, things change if in addition to stabilizing the output gap the central

bank pursues a degree of interest rate continuity, 0 < φ < 1. Now the central bank
would attenuate somewhat the initial response of Rt to νt. For instance, the central
bank would respond to a negative νt shock with an attenuated cut in Rt so that
Rt − Ebπ > r∗t . Interest continuity thereby would push current aggregate demand
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below current capacity output. To stabilize the output gap, the central bank would
compensate for the insufficient contemporaneous interest rate cut by steering interest
rate policy somewhat below real natural interest rates in the future. Doing that,
however, would push future aggregate demand above the path of future capacity
output.
All this presumes that inflation, expected inflation, and trend inflation remain

anchored at Ebπ. But there is a problem: steering future real interest rates below
real natural rates pushes future aggregate demand above capacity output. And new
Keynesian pricing implies that the prospect of negative expected future output gaps
would elevate future inflation. Hence, we would no longer have a rational expectations
equilibrium. The public would catch on to the fact that a negative shock to capacity
output would be followed by higher inflation. And rationally expected future inflation
would rise with negative shocks to capacity output.
But this is not the end of the story. Elevated expected inflation Etπt+1 in response

to νt < 0 would deepen the contemporaneous real interest rate cut rt = Rt−Etπt+1 <
Rt−Ebπ, for any given degree of interest rate continuity φ. A deeper real rate cut, in
turn, would allow the central bank to steer interest rate policy closer to real natural
rates in the future. In the limit, the economy converges to a rational expectations
equilibrium response in which expected inflation would rise enough to push the cur-
rent real interest rate all the way down to the current real natural interest rate. At
this point, the central bank would stabilize the output gap fully because its nominal
interest rate instrument (adjusted for elevated expected inflation) would perfectly
shadow the natural real interest rate. Moreover, with the output gap stabilized fully,
actual and expected rates of inflation would rise initially, identically, and permanently
in response to a shock to capacity output. So, we see how the central bank’s commit-
ment to business-as-usual priorities and the public’s incentive to form expectations
of inflation rationally push the economy into the equilibrium with stochastic trend
inflation characterized in Section 4.

5.4 From "Business as Usual" to "Fighting Inflation"

Our model suggests that business-as-usual monetary policy can be sustained indefi-
nitely with low and reasonably stable inflation if the shocks to capacity output are
small, especially if the central bank implements relatively little interest rate conti-
nuity so that φ is not too large. Nevertheless "business as usual" exposes inflation
to considerable variability if shocks to capacity output become large and happen to
cumulate in one direction or another for a period of time. The public can tolerate a
considerable range of inflation drift as long as it is relatively gradual and "orderly."
As an operational matter, the central bank can continue to pursue business-as-usual
objectives effectively as long as trend inflation does not drift too violently. However,
a particularly severe series of cumulative negative shocks to capacity output has the
potential to drive inflation, expected inflation, trend inflation, and the long-term in-
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terest rate all suddenly and sharply higher, even if all had been well-behaved for years.
If inflation drifts upward too far, too fast in a "disorderly" manner, then "business
as usual" may become unsustainable. The public may demand that inflation be con-
tained and the central bank may be unable to execute stabilization policy effectively
in the absence of a "nominal anchor."
When such developments cause output gap stability and interest rate continu-

ity to be subordinated to containing inflation, the central bank is forced to switch
from "business as usual" to "fighting inflation." The central bank fights inflation by
aggressively raising its nominal interest rate policy instrument above expected in-
flation in order to elevate longer-term real interest rates according to (9) to depress
aggregate demand below capacity. According to new Keynesian pricing, given the
expected rate of inflation, the central bank must sustain an output gap in order to
make progress against inflation.9 Once inflation is stabilized, even without much if
any reduction, pressure builds quickly for the central bank to revert to "business as
usual" in order to close the output gap and stabilize interest rates again. Thus, our
business-as-usual model of monetary policy predicts that a period of large, cumula-
tive negative shocks to capacity output is likely to precipitate a cycling of monetary
policy priorities with upward inflation drift interrupted periodically but temporarily
by deliberately contractionary monetary policy.

6 Empirical Implications of "Business as Usual"

Our model of business-as-usual monetary policy has the following empirical implica-
tions that we put to work to help understand the Great Inflation in Section 7:

i) Inflation is a random walk with a transitory component.

ii) The random walk in inflation is driven by shocks to the growth of capacity
output.

iii) The variance of the permanent shock to inflation is directly related to the
degree of interest rate continuity pursued by the central bank, the serial correlation
in the growth of capacity output, and the variance of the shocks to capacity out-
put growth, and inversely related to the intertemporal elasticity of substitution in
consumption.

iv) Short-term interest continuity leads to long-term interest rate random walking.

v) Real interest rate and inflation rate innovations are negatively correlated due
to interest rate smoothing.

9Goodfriend and King (2005) analyze the mechanics of "fighting inflation" in a closely related
model.
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vi) Long-term interest rates lead short-term interest rates.

vii) In addition to sharply rising inflation, episodes of "inflation fighting" should
be preceded by 1) a series of particularly severe, cumulative negative shocks to the
growth of capacity output, 2) rising long-term interest rates, and 3) rising short-term
interest rates that lag the rise in long-term rates.

viii) "Inflation fighting" that makes progress against inflation should precipitate
a recession, after which pressure to return to "business as usual" should reverse these
gains quickly in the presence of ongoing negative shocks to capacity output. Episodes
of "inflation fighting" thereby contribute to the variability of the stochastic inflation
trend.

ix) The powerful incentive for a central bank to pursue business-as-usual priorities
when inflation is well behaved means that low inflation should inherit a stochastic
trend from shocks to capacity output, though the variance of the stochastic trend
may be small.

x) The marginal predictive content of the output gap for inflation should deteri-
orate in periods of low and stable inflation relative to periods of high and variable
inflation interrupted periodically by "inflation fighting."

7 Understanding the Great Inflation

We draw on a variety of evidence to understand the Great Inflation in terms of our
business-as-usual model of monetary policy. First, we show that the statistical time
series model of U.S. inflation identified and estimated by Stock and Watson (2007)
is predicted by our model. Second, we use a measure of aggregate technology change
for the United States constructed by Basu, Fernald, and Kimball (2006), together
with Romer and Romer (1989) inflation-fighting dates, and time series for inflation
and the term structure of interest rates, to show that these data behave as predicted
by our model preceding periods when the Federal Reserve made "inflation fighting" a
priority. Third, we emphasize that the attachment to "business as usual" predicts the
"stop and go" character of monetary policy during the Great Inflation documented
and studied by Shapiro (1994) in which the gains against inflation achieved during
periods of fighting inflation were short-lived. Fourth, we explain why our model of
monetary policy predicts the post-Great Inflation deterioration of predictive content
of the output gap for inflation found by Atkeson and Ohanian (2001) and confirmed
by Stock and Watson (2007).

16



7.1 A Statistical Time-Series Model of US Inflation

In their 2007 study of the statistical behavior of U.S. inflation from the 1950s to 2004,
Stock and Watson find that a "univariate inflation process is well described by an
unobserved component trend-cycle model with stochastic volatility or, equivalently,
an integrated moving average process with time-varying parameters."10 They report
that the model explains a variety of recent forecasting puzzles and begins to explain
some multivariate inflation forecasting puzzles as well. Their statistical model also
happens to be predicted by our business-as-usual model of monetary policy as follows.
For heuristic purposes we utilized the new Keynesian pricing equation (2) without

a shock term to highlight the random walk implication of our model: πt = πt and
πt = πt−1 + εt. However, standard practice is to add a white noise shock to the
inflation equation, say ηt. Then, since ηt is unforecastable, the inflation solution
becomes πt = πt + ηt, where πt = πt−1 + εt under business-as-usual assumptions of
output at capacity and interest rate continuity.
In purely statistical terms, the Stock and Watson findings of an apparent unit

root in πt, with negative first-order autocorrelations, and generally small higher-
order autocorrelations of ∆πt suggest that the inflation process is well described by
the IMA(1, 1) process

∆πt = (1− θB)at, (25)

where θ is positive, at is serially uncorrelated with mean zero and variance σ2a, and B
is a backshift operator.
Stock andWatson point out that the IMA(1, 1) statistical model is observationally

equivalent to an unobserved components model in which πt has a stochastic trend τ t
and a serially uncorrelated disturbance ηt :

πt = τ t + ηt, ηt serially uncorrelated (0, σ
2
η) (26)

τ t = τ t−1 + εt, εt serially uncorrelated (0, σ2ε), (27)

where cov (ηt, εj) = 0 for all j.
Thus, our theoretical model implies the statistical model of inflation identified by

Stock and Watson, and we can interpret aspects of their statistical analysis from the
perspective of our model.
Stock and Watson report IMA(1, 1) parameters and the implied unobservable

components parameters, as well as a variety of other statistics estimated using quar-
terly U.S. inflation data from the 1950s to 2004 for a variety of inflation indexes.
Broadly speaking, the findings are similar for all the indexes. For our purposes, the
main findings are these: (1) inflation is driven by a random walk component τ t plus a
transitory component ηt, (2) a time-varying estimate of the standard deviation of the
permanent innovation σε,t is 0.5 (percentage points at an annual rate) in the 1950s
through the mid-1960s, rises sharply to a peak of 1.4 in the mid-1970s, falls gradually

10Stock and Watson (2007), page 3.
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back below 0.5 by the mid-1980s, and settles below 0.2 after the mid-1990s, (3) a
time-varying estimate of the standard deviation of the transitory innovation ση,t is
around 0.5 from the 1950s to 2004.
>From this statistical perspective, the Great Inflation is a story about the "Great

Inflation Drift" in the sense that the elevated variance of inflation during the great
inflation period is entirely due to large increases in the variance of the innovation of the
stochastic trend component driving inflation. Importantly, Stock and Watson point
out that although the estimated variance of the permanent innovation in inflation
diminished in statistical and economic importance since the mid-1980s, it remains
nonzero in that confidence intervals for the largest AR root continue to include one.
Stock and Watson’s statistical model of the inflation process supports several em-

pirical predictions of our model listed in Section 6. First, U.S. inflation is character-
ized parsimoniously, and consistently as a random walk with a transitory component.
This is in keeping with our view that "business as usual" has been the predominant
mode of monetary policy behavior, and that it induces a stochastic trend in infla-
tion in the presence of shocks to capacity output. Second, the increased variability
of inflation during the Great Inflation shows up as an increase in the variability of
the innovation in the stochastic trend component, as our model of monetary policy
predicts. Third, inflation through 2004 still contains a small stochastic trend, which
our model predicts should reflect the Federal Reserve’s inclination to pursue business-
as-usual priorities for output gap stabilization and continuity of the short rate when
inflation is low.

7.2 Factors Precipitating "Inflation Fighting"

Romer and Romer (1989) document that since World War II the Federal Reserve
tightened monetary policy decisively to fight inflation on six occasions beginning
respectively in October 1947, September 1955, December 1968, April 1974, August
1978, and October 1979. Only two significant increases in unemployment were not
preceded by Fed action to fight inflation. One occurred in 1954 after the Korean War
and the second occurred in 1961, after the Fed tightened monetary policy to improve
the international balance of payments. The two earliest Romer dates were part of a
series of Fed policy actions through the mid-1960s that kept inflation relatively low
on average. We are interested in the remaining four Romer dates, those that occurred
during the Great Inflation.
We interpret Romer dates as instances when the Federal Reserve switched from

"business as usual" to "fighting inflation." Our model predicts that periods of "busi-
ness as usual" preceding Romer dates should exhibit (1) sharply rising inflation, (2)
a sequence of severe cumulative negative shocks to the growth of capacity output, (3)
rising long term interest rates, and (4) rising short-term interest rates lagging long
rates. To check whether the Romer dates are precipitated as predicted, we employ
an annual time series measure of technology change in the United States constructed
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by Basu, Fernald, and Kimball (2006) that controls for aggregation effects, varying
utilization of capital and labor, nonconstant returns, and imperfect competition. We
utilize the BFK series in conjunction with data on inflation and the term structure
of interest rates, all shown in Figures 1 through 5 at the back of the paper, to check
whether the evidence supports the predictions of our model for each of the Romer
dates in the Great Inflation. As discussed below, the evidence is broadly consistent
with the predictions of our model.

7.2.1 December 1968:

Inflation averaged about 1.5% at an annual rate in the first half of the 1960s, and
surged at the start of the Great Inflation in 1965 to around 3% in 1966. Inflation
stabilized briefly in the first half of 1967 after the Federal Reserve tightened monetary
policy briefly, but surged again to around 4.5% by the first Romer date of the Great
Inflation in December 1968. A number of explanations have been offered to explain
the start of the Great Inflation, e.g., excessive Federal spending to finance the Viet-
nam buildup, insufficient Federal Reserve independence, and a willingness to tolerate
higher inflation in the belief that it might bring unemployment down according to
the Phillips curve.11 Our interest, however, is to check whether the December 1968
switch to "fighting inflation" is preceded, in addition to the sharp rise in inflation, by
the three other factors identified by our business-as-usual model of monetary policy.
As predicted, BFK technology growth slows sharply and cumulatively in 1969. The
10 year government bond rate moved up from 4% in 1966 to nearly 6% in 1968, in-
dicating that 2 percentage points of the inflation surge prior to December 1968 was
regarded as permanent. Finally, starting at 4% at the end of 1966, the federal funds
rate clearly lagged the 10 year rate rise prior to December 1968.

7.2.2 April 1974:

Inflation rose sharply from around 3% in mid-1973 to nearly 10% by the April 1974
Romer date, exacerbated by the first oil shock and the relaxation of price controls.
Again, BFK technology growth slows sharply and cumulatively in the period preced-
ing the 1974 Romer date. The 10 year bond rate moved up from about 6% in late
1972 to around 7.5% in April 1974, reversing the decline achieved during the previ-
ous period of inflation fighting beginning in December 1968, indicating that only 2
percentage points of the surge in inflation was then regarded as permanent. Finally,
starting from around 4% in late 1972, the federal funds rate briefly lagged the 10 year
rate on the way up, but passed the bond rate in 1973 and reached around 10% by
April 1974.

11For instance, see Meltzer (2005) and references contained therein.
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7.2.3 August 1978:

In early 1977, inflation settled at around 6% as a result of the "inflation fighting"
begun in April 1974. Inflation began to move up once more in 1978, however, rising
to around 7% by the August 1978 Romer date. Once more, BFK technology growth
slows sharply and cumulatively in the period preceding the Romer date. The 10 year
bond rate fell back to around 7.5% in mid-1977 as a result of the "inflation fighting"
begun in April 1974. The 10 year rate then rose sharply by around 1 percentage point
to around 8.5% by the 1978 Romer date, indicating that 1 percentage point of the
upward inflation drift was regarded as permanent. Finally, starting from around 5%
in mid-1977, the federal funds rate lagged the rising long rate, and again caught up
around the Romer date.

7.2.4 October 1979:

The period from August 1978 to the Romer date of October 1979 saw inflation surge
from 7% to around 9.5%. And again, as predicted by our model, BFK technology
growth in 1979 was surprisingly weak, lengthening the period of surprisingly slow
growth of technology that preceded the August 1978 Romer date. The 10 year rate
moved up by another 1 percentage point to October 1979, indicating that 1 percentage
point of the inflation surge was regarded as permanent. In this case, however, starting
roughly in line with the 10 year rate in August 1979, the federal funds rate actually
led the long rate up as part of the inflation-fighting policy actions undertaken in the
wake of the August 1978 Romer date. Then, in October 1979 the Fed moved the
federal funds rate sharply higher than the long-term interest rate to 13.5%.

7.3 Stop and Go Monetary Policy

Looking at the record before and after Romer dates, there is a recurrent pattern
highlighted previously by Shapiro (1994). It is clear that the Romer dates initiate
periods of inflation fighting in that they are all preceded by sharply higher inflation
and followed by sharply higher short term interest rates engineered by the Fed relative
to long term interest rates. Nevertheless, within two or three years inflation is no lower
than when the period of "inflation fighting" began, indicating that these inflation-
fighting episodes were meant to contain inflation or that they were aborted attempts
at reducing the inflation rate. For instance, the pattern is evident with respect to
the inflation-fighting periods initiated by the December 1968 and April 1974 Romer
dates. The Fed initiated recessions in 1970 and 1973-75 as part of its inflation-fighting
actions. And these recessions brought down inflation, trend inflation, and long bond
rates. However, these gains were reversed within a few years.
Our model of monetary policy predicts that "stop and go" policy should be an

integral part of a period of protracted inflation driven by recurring cumulative neg-
ative shocks to technology such as we saw during the Great Inflation. According to
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the model, business-as-usual priorities exposed the U.S. economy to upward inflation
drift due to unexpectedly slow growth of technology during the Great Inflation years.
On a few occasions, a series of especially large, cumulative negative shocks to tech-
nology pushed inflation, expected inflation, and long-term interest rates up sharply
and precipitated a period of "inflation fighting." The model predicts that inflation,
inflation expectations, and long term interest rates could be brought down only by
creating a protracted recession, that is, by creating an output gap of enough size and
duration to induce a disinflation in line with new Keynesian pricing. Thus, the model
predicts that the stabilization of inflation would create pressure for monetary policy
to end the accompanying recession and return to "business as usual." The return to
"business as usual" would expose the economy once more to upward inflation drift in
the presence of unexpectedly slow growth of technology. Our view then is that the
attachment to business-as-usual priorities is central to understanding the tremendous
output and employment volatility of the Great Inflation.

7.4 Predictive Content of the Output Gap for Inflation

A striking statistical finding emphasized by Atkeson and Ohanian (2001) and con-
firmed by Stock and Watson (2007) is that the marginal predictive content of output-
gap variables for inflation has deteriorated dramatically since 1984. Specifically, Atke-
son and Ohanian compare the accuracy of inflation forecasts augmented with three
different output-gap variables to a naive forecast that at any date inflation will be the
same over the next year as it has been over the last year. They find that none of the
forecasts is more accurate than the naive forecast, which is essentially a random walk
forecast of inflation. Stock and Watson (2007) investigate the marginal predictive
content of output-gap variables for inflation in more detail by augmenting a bench-
mark univariate forecasting model with a variety of measures and specifications of
gap variables, and by comparing the marginal predictive content of the gap variables
for two sample periods–a Great Inflation sample period from 1970 to 1983, and a
Great Moderation sample period from 1984 to 2004.
Stock and Watson report that the relative performance of gap forecasts deteri-

orated substantially from the first period to the second. For example, during the
1970-1983 period at the four-quarter horizon, an inflation forecast augmented with
an unemployment rate gap outperformed a univariate inflation autoregression bench-
mark with a relative mean square forecast error of 0.88. But during the 1984-2004
period it performed worse than the benchmark with a relative MSFE of 1.48. Stock
and Watson report that the change in relative performance is even larger at the eight-
quarter horizon. The deterioration of output-gap forecasts is found for all activity
predictors examined. The poor performance of gap variables is not simply a conse-
quence of failing to allow for a time-varying NAIRU or time-varying potential GDP.
Finally, Stock and Watson report that the Atkeson and Ohanian naive (random walk)
forecast substantially improves upon the above-mentioned forecasts at the four- and
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eight-quarter horizons in the 1984-2004 period, but not at shorter horizons and not
in the first period.
We regard the changing informativeness of the output gap for future inflation as

important evidence in support of our business-as-usual model of monetary policy.
Given the incentive to pursue business-as-usual priorities when inflation is low and
stable, and to allow inflation to drift around, we would have expected the output gap
to have much less predictive content for inflation during the Great Moderation than
during the Great Inflation. Even though "business as usual" was also the predominant
mode of Federal Reserve behavior during the Great Inflation, the Fed was then forced
into "fighting inflation" on four Romer-date occasions. The output gap had great
predictive content for inflation during the "inflation fighting" episodes because the
Federal Reserve then deliberately created output gaps to contain inflation and bring
it down. Thus, on the basis of our theoretical model one would not be surprised to
learn that the Great Inflation sample period displays predictive content of output
gaps for inflation far in excess of that evident during the Great Moderation.

8 Conclusion

The Great Inflation in the United States can be characterized statistically as a pe-
riod in which a highly-volatile stochastic inflation trend exhibited fifteen years of
predominantly positive innovations. We showed that a simple textbook macroeco-
nomic model implies that a stochastic inflation trend arises if the central bank seeks
to maintain output at a capacity level which varies through time, and also places
weight on continuity of the short-term interest rate. Both of these features were,
we believe, important components of Federal Reserve behavior. In our model, rising
inflation results from a combination of "bad policy" and "bad luck". The presence of
stochastic trend inflation results from bad policy, which perpetuates inflation shocks.
Our model identifies the source of the shocks as surprisingly slow productivity growth
and, more generally, factors unexpectedly slowing the growth of capacity output. We
found evidence of bad luck in that productivity growth was indeed surprisingly and
especially slow during episodes of sharply rising inflation during the period.
One reason for studying the Great Inflation is to prevent its recurrence. Our

interpretation of the period suggests that a preoccupation with short-term interest
rates and with maintaining output at capacity would, in the presence of adverse real
shocks, combine to produce another period of inflation drift with similarly adverse
consequences for employment and output.
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Fig. 1: Personal Consumption Expenditures: Chain-type Price Index (PCEPI) and   

Consumption Expenditures: Chain-Type Price Index Less Food and Energy (PCEPILIFE)  
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* Notes: Vertical lines indicate "Romer dates".   
   Shaded areas indicate NBER recessions. 
   Dates are under 1st Month of Year; tick marks are every 3 months. 
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Fig. 2: Civilian Employment-Population Ratio (EMRATIO) 
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* Notes: Vertical lines indicate "Romer dates".   
   Shaded areas indicate NBER recessions. 
   Dates are under 1st Month of Year; tick marks are every 3 months. 
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Fig. 3: Effective Federal Funds Rate (FEDFUNDS) and 

10 Year Treasury Constant Maturity Rate (GS10) 
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* Notes: Vertical lines indicate "Romer dates".   
   Shaded areas indicate NBER recessions. 
   Dates are under 1st Month of Year; tick marks are every 3 months. 
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Fig. 4: 1 Year Treasury Constant Maturity Rate (GS1) and 

 10 Year  Treasury Constant Matrity Rate (GS10) 
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* Notes: Vertical lines indicate "Romer dates".   
   Shaded areas indicate NBER recessions. 
   Dates are under 1st Month of Year; tick marks are every 3 months. 
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Fig. 5: Productivity Growth Rates (PGR) 

PGR 

* Notes: Vertical lines indicate "Romer dates".   
   Shaded areas indicate NBER recessions. 
   Dates are under 1st Month of Year; tick marks are every 3 months. 


