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1 Introduction

In the presence of external financing costs, corporate investment, risk management, and financing

decisions are closely intertwined. Corporations can create value by managing their cash holdings

and by hedging their underlying earnings risk (see e.g. Smith and Stulz (1985) and Graham and

Smith (1999)). As Froot, Scharfstein, and Stein (1993) and Kim, Mauer and Sherman (1998)

have emphasized, corporate risk management can reduce firms’ costs of financing investments by

transferring internal funds and structuring external financing so that enough cash is available in the

states of nature where investment is most valuable. While this general principle and characterization

of the main role of corporate risk management is increasingly well understood, how to translate this

prescription into day-to-day risk management policies still remains largely undetermined. Simple

questions such as when/how corporations should reduce their cash holdings, or when/how they

should replenish their dwindling cash inventory are still not precisely understood. Similarly, the

questions of which risks the corporation should hedge and by how much, or whether the firm

should undertake an enterprise-wide risk management approach or a piecemeal approach of hedging

individual risks, are not well understood.

Our goal is to propose the first elements of a tractable dynamic economic framework, in which

optimal corporate investment, asset sales, cash inventory, and risk management policies are easily

and precisely characterized. The key building block of our model is the neoclassical q theory

of investment, which features a constant returns to scale (AK) production technology, convex

adjustment costs (á la Hayashi (1982)), and earnings shocks that are independently and identically

distributed (i.i.d.).

We add to this model a deadweight external financing cost plus an opportunity cost of hoarding

cash, and proceed to derive the firm’s optimal cash-inventory, external financing, payout, investment

and hedging policies as functions of the firm’s underlying risk-return characteristics, investment ad-

justment technology, and the different financing costs it faces. Although we make the somewhat
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strong assumption that productivity shocks are i.i.d., both investment and cash holdings are nev-

ertheless highly persistent due to the firm’s constrained optimal investment decisions in response

to these shocks.

Importantly, with external financial costs, the firm’s investment is no longer determined by

equating the marginal cost of investing with marginal q as in the neoclassical model under Modigliani-

Miller neutrality (even in the absence of fixed costs of investing).1 Instead, corporate investment

is determined by the following modified investment Euler equation:

marginal cost of investing =
marginal q

marginal cost of financing
.

In other words, the investment Euler equation for a financially constrained firm links investment

to the ratio of marginal q to the marginal cost of financing. When firms are flush with cash, the

marginal cost of financing is approximately one, so that this Euler equation is then approximately

the same as the classical Euler equation. But when firms have low cash holdings or are close to

financial distress, the marginal cost of financing may be much larger than one and can substan-

tially modify the classical investment Euler equation. More interestingly, when credit line is the

firm’s marginal source of financing, marginal q increases with the firm’s leverage, while investment

decreases with its leverage. That is, marginal q and investment move in opposite directions.

The logic behind this result is the following. First, an increase in investment helps relax the

firm’s future borrowing constraint by adding capital that may be pledged as collateral. This explains

why marginal q increases with its leverage. Second, the more debt (through credit line) the firm

has, the more it wants to move away from the external financing region by engaging in aggressive

asset sales. The two effects explain why we may simultaneously observe an increasing marginal

q schedule and a decreasing investment schedule as the firm uses more credit (i.e., takes on more

1See Abel and Eberly (1994) for a general specification of the q theory of investment under the neoclassic setting
with both fixed and variable costs. Their analysis builds on the classical theory of investment of Jorgensen (1963),
Lucas and Prescott (1971), and Hayashi (1982). Irreversible fixed costs of investment in particular give rise to
‘inaction’ regions and generate real options for the firm as in McDonald and Siegel (1986) and Dixit and Pindyck
(1994). We do not consider fixed costs of investing in this paper. The standard investment Euler equation may not
hold in the presence of fixed costs. See Caballero and Leahy (1996).
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leverage).

Another novel economic insight emerging from our analysis concerns the behavior of a financially

constrained firm’s equity beta in terms of its cash holdings. One would expect equity beta to be

higher for a financially constrained firm, as it reflects the firm’s exposure to both idiosyncratic

and systematic risk, whereas the equity beta of an unconstrained (first-best) firm reflects only the

firm’s exposure to systematic risk. This intuition is broadly valid in a static setting. However, in

a dynamic setting where firms actively manage their cash holdings, a financially constrained firm

can have a lower equity beta than an unconstrained firm. The reason is that such a firm is likely

to hold a significant proportion of its assets in cash, which has a zero beta, while an unconstrained

firm does not hold any cash. In addition, our model shows that returns on real investments depend

on the financing constraints. Our model thus provides guidance on how to extend the neoclassical

production based asset pricing framework (see Cochrane (1991)) and how to conduct asset pricing

tests using investment returns of financially constrained firms.

Much of the empirical literature on firms’ cash holdings tries to identify a target cash-inventory

for a firm by weighing the costs and benefits of holding cash. 2 The implicit idea in this literature is

that this target level helps determine when a firm should increase its cash savings and when it should

dissave.3 Our analysis, however, suggests that the notion of a target cash level, or target cash-

capital ratio, is too narrow. Instead, a firm’s optimal cash inventory policy is better described by a

double-barrier policy similar to the Baumol-Tobin theory of an individual household’s transactions

demand for money (Baumol (1952) and Tobin (1956)) and Miller and Orr (1966) theory of firms’

demand for money. When the cash-capital ratio hits an endogenous upper barrier, it is optimal for

the firm to pay out cash. When the firm runs out of cash, it either closes down or raises outside

funds, depending on whether the liquidation value exceeds the continuation value. The firm never

2See Almeida, Campello, and Weisbach (2004, 2008), Faulkender and Wang (2006), Khurana, Martin, and Pereira
(2006), and Dittmar and Mahrt-Smith (2007).

3Recent empirical studies have found that corporations tend to hold more cash when their underlying earnings
risk is higher or when they have higher growth opportunities (see e.g. Opler, Pinkowitz, Stulz, and Williamson (1999)
and Bates, Kahle, and Stulz (2008)).
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issues external equity before depleting its cash reserve. By deferring issuance it postpones incurring

external financing costs, yet it can still finance its desired level of investment via internal funds.

Thus, our model generates a simple dynamic pecking order of financing where first internal funds

are used and external equity issues are a last resort source of funding. In between these two barriers

the firm does not sit still but continuously manages its cash reserves by adjusting its investment

policy and by dynamically hedging its earnings risk.

When cash holdings are higher, the firm invests more ceteris paribus, because the marginal value

of cash is smaller. When the firm is approaching the point where its cash reserves are depleted, it

optimally scales down its investment and may even engage in asset sales. This way the firm can

avoid or postpone raising costly external financing.

In addition to these cash management instruments, the firm can also benefit by hedging its

earnings risk and investing in financial assets that are correlated with its underlying earnings

risk. The benefit from such hedging is to reduce the volatility of the firm’s net earnings and

thus to reduce the need for the firm to hold costly cash inventory. Derivatives and cash thus play

complementary roles in risk management. Derivatives allow firms to exploit the covariation between

the firm’s earnings and derivative returns, while cash is a non-state-contingent risk management

tool. Derivatives (such as oil or currency futures) help reducing the firm’s systematic risk exposure,

while cash can also help smooth idiosyncratic risk. Finally, asset sales are also an important tool in

managing risk. However, as investment distortions can be very costly, the firm only actively resorts

to asset sales in times of distress when replenishing liquidity is very valuable.

Despite the potential technical complications from introducing external financing costs in the

neoclassical dynamic model of investment, we are able to characterize the solution via an analyti-

cally tractable one-dimensional dynamic optimization problem where the key state variable is the

firm’s cash-capital ratio. We are also able to give concrete and detailed prescriptions for how a firm

should manage its cash reserves and choose its investment and payout policies, given its underlying
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production technology, investment opportunities, investment adjustment costs, financing costs, and

market interest rates. In particular, we provide comparative statics results for our baseline model

and show that when expected profitability is low or when the costs of external financing are high,

the firm does not raise new external funds when it runs out of cash, but chooses to liquidate instead.

In contrast, for higher expected profitability or lower costs of external financing, the firm prefers

raising new costly external funds. For each of these cases we show how the firm’s cash-inventory

and investment policies vary with earnings volatility and transaction costs.

Through simulations we can also compute the stationary distributions for the firm’s cash-capital,

investment-capital ratios, firm value-capital ratio as well as the marginal value of financing. Re-

markably, we find that under the stationary distribution, firms are most likely to hold sufficient

cash to be close to their payout boundary. As a result, average marginal cost of financing is close

to unity, even for firms with large external financing costs that result in substantial financing con-

straints. However, firms respond to these constraints by optimally managing their cash holdings so

as to be able to stay away most of the time from financial distress situations where they may need

to raise more external funds.

There is only a handful of theoretical analyses of firms’ optimal cash, investment and risk man-

agement policies. A key first contribution is by Froot, Scharfstein, and Stein (1993), who develop a

static model of a firm facing external financing costs and risky investment opportunities. Another

more recent contribution by Almeida, Campello, and Weisbach (2008) extends the Hart and Moore

(1994) theory of optimal cash holdings by introducing cash-flow and investment uncertainty in a

three-period model. The contributions most closely related to ours are:

1. Hennessy and Whited (2005, 2007), who also consider dynamic models of investment for

financially constrained firms. The key differences with our setup are that they do not model

the firm’s cash accumulation process and they explore a model with decreasing returns to

scale, which is not as tractable as our constant returns to scale specification. Moreover, they

5



do not explore the interaction between corporate risk management and investment. Recently,

Gamba and Triantis (2008) have extended Hennessy and Whited (2007) to introduce issuance

costs of debt and thus explain why firms may simultaneously issue debt and hold cash.

2. Hennessy, Levy, and Whited (2007), who also characterize the investment Euler equation for

a financially constrained firm at the payout and equity issuance boundaries. However, they do

not integrate the firm’s cash and risk management policies with its investment and financing

policies.

3. Riddick and Whited (2008), who explore a discrete-time model with decreasing returns to

scale, an AR(1) process in logs for earnings, and quadratic investment adjustment costs.

They also analyze the firm’s optimal cash inventory and investment policy when the firm faces

external costs of financing. While their model is more flexible than ours, we are able to exploit

the continuous-time and constant returns to scale structure to obtain a more operational

characterization of the firm’s optimal policy. We also characterize the firm’s dynamic hedging

policy and its use of credit lines.

4. Decamps, Mariotti, Rochet, and Villeneuve (2006), who also explore a continuous-time model

of a firm facing external financing costs. Unlike our set-up, their firm only has a single

infinitely-lived project of fixed size, so that they cannot consider the interaction of the firm’s

real and financial policies. Our model also relates to DeMarzo, Fishman, He, and Wang

(2008) which integrate dynamic agency with the q theory of investment (á la Hayashi (1982))

in a continuous-time dynamic optimal contracting framework. Dynamic agency conflicts

generate an endogenous financial constraint and induce underinvestment and liquidation in

their model.

In contrast to the somewhat thin theoretical literature on corporate risk management, there is

a much larger empirical literature exploring the determinants of firms’ cash holdings. Much of that
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literature focuses on the link between weak corporate governance and firms’ excess cash inventories,

in particular Pinkowitz, Stulz and Williamson (2006) and Dittmar and Mahrt-Smith (2007) (see

Dittmar (2008) for a survey of this literature).

As always with corporate financial decisions, an important determinant of firms’ cash inventory

policies is taxes. The effect of corporate taxes on firms’ payout decisions is explored in Desai,

Foley, and Hines (2001) and Foley, Harzell, Titman, and Twite (2007). There is also a large body

of empirical research focusing on firms’ share repurchase decisions (see again Dittmar (2008) for a

survey of the literature on share repurchases that is most relevant to firms’ cash inventory policy).

Finally, corporate cash policy may also be driven by more strategic considerations, such as building

a war-chest to improve the firm’s competitive position in product markets (see Haushalter, Klasa,

and Maxwell (2007)) or to facilitate corporate acquisitions (see Harford (1999)).

The remainder of the paper proceeds as follows. Section 2 sets up our baseline model. Section

3 proceeds with model solution and qualitative analysis. Section 4 continues with quantitative

analysis. Section 5 discusses our model’s implication for risks and returns. Section 6 deals with

financial hedging and Section 7 extends the baseline model of Section 2 to incorporate credit line

financing. Section 8 offer concluding comments.

2 Model Setup

We begin by describing the firm’s physical production and investment technology and its objective

function. We then introduce the firm’s external financing costs and its opportunity cost of holding

cash.

2.1 Production technology

The firm employs only capital as an input for production. The price of capital is normalized to

unity. We denote by K and I respectively the level of the capital stock and gross investment. As
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is standard in capital accumulation models, the firm’s capital stock K evolves according to:

dKt = (It − δKt) dt, t ≥ 0, (1)

where δ ≥ 0 is the rate of depreciation.

The firm’s operating revenue at time t is proportional to its capital stock Kt, and is given by

KtdAt, where dAt is the firm’s revenue or productivity shock over time increment dt. We assume

that the firm’s cumulative productivity after accounting for systematic risk4 evolves according to:

dAt = µdt+ σdZt, t ≥ 0, (2)

where Z is a standard Brownian motion. The parameters µ > 0 and σ > 0 are the mean and

volatility of the productivity shock dAt. Thus, the revenue shock dA is assumed to be independently

and identically distributed (i.i.d.). This production specification is often refereed to as the “AK”

technology in the macroeconomics literature.5

The firm’s incremental operating profit dYt over time increment dt is then given by:

dYt = KtdAt − Itdt−G(It,Kt)dt, t ≥ 0, (3)

where I is the cost of the investment and G(I,K) is the additional adjustment cost that the firm

incurs in the investment process. Following the neoclassical investment literature (Hayashi (1982)),

we assume that the firm’s adjustment cost is homogeneous of degree one in I and K. In other

words, the adjustment cost takes the homogeneous form G(I,K) = g(i)K, where i is the firm’s

investment capital ratio (i = I/K), and g(i) is an increasing and convex function. Our analyses do

not depend on the specific functional form of g(i), and to simplify we assume that g(i) is quadratic:

g (i) =
θi2

2
, (4)

where the parameter θ measures the degree of the adjustment cost.

4We leave the details about the risk adjustment to the Appendix.
5Cox, Ingersoll, and Ross (1985) develop an equilibrium production economy with the “AK” technology. See

Jones and Manuelli (2005) for a recent survey in macro.
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Finally, we assume that the firm can liquidate its assets at any time. The liquidation value Lt

is proportional to the firm’s capital, Lt = lKt, where l > 0.

The homogeneity assumption embedded in the adjustment cost and the “AK” production tech-

nology allows us to deliver our key results in a parsimonious and analytically tractable way. Ad-

justment costs may not always be convex and the production technology may exhibit decreasing

returns to scale in practice, but these functional forms substantially complicate the formal analy-

sis of dynamic investment models and do not permit a closed-form characterization of investment

and financing policies (see Hennessy and Whited (2005, 2007)). As will become clear below, the

homogeneity of our model in K allows us to reduce the dynamics to a one-dimensional equation,

which is straightforward to solve. See Eberly, Rebelo, and Vincent (2008) for empirical evidence in

support of Hayashi homogeneity settings.

2.2 Financing costs

Neoclassical investment models (á la Hayashi (1982)) assume that the firm faces frictionless capital

markets and that the Modigliani and Miller (1958) theorem holds. However, in reality, firms

face important financing frictions due to incentive, information asymmetry, and transaction cost

reasons.6 Our model incorporates a number of financing costs that firms face in practice and that

empirical research has identified, while retaining an analytically tractable setting. The firm may

choose to use external financing at any point in time. We assume that the firm incurs a fixed cost

of issuing external equity φK, which for tractability we take to be proportional to firm size as

measured by the capital stock K. This form of fixed costs assumption ensures that the firm does

not grow out of the fixed costs. The firm also incurs a proportional issuance cost γ for each unit

of external funds it raises. That is, for each incremental dollar the firm raises, it pays γ > 0. Let

H denote the process for the firm’s cumulative external financing and hence dHt the incremental

external financing over time dt.

6See Jensen and Meckling (1976), Leland and Pyle (1977), and Myers and Majluf (1984), for example.
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Let W denote the process for the firm’s cash inventory. If the firm runs out of cash (Wt = 0),

it needs to either raise external funds to continue operating, or liquidate its assets at value lK.7

If the firm chooses to raise new external funds to continue operating, it must pay the financing

costs specified above. The firm may prefer liquidation if the cost of financing is too high relative

to the continuation value (when the firm is not productive, e.g., µ is low). Let τ denote the firm’s

(stochastic) liquidation time, then τ =∞ means that the firm never chooses to liquidate.

The rate of return that the firm earns on its cash inventory is the risk-free rate r minus a spread

λ > 0 that reflects the fact that retaining cash within the firm is costly. The cost of carrying cash

may arise from an agency problem or from tax distortions. Cash retentions are tax disadvantaged

because the associated tax rates generally exceed those on interest income (Graham (2000)). Since

there is a cost of hoarding cash (λ > 0), the firm may find it optimal to distribute cash back to

shareholders when its cash inventory grows too large.8

Let U denote the firm’s cumulative non-decreasing payout process to shareholders, and dUt the

incremental payout over time dt. Distributing cash to shareholders may take the form of a special

dividend payment or a share repurchase.9 The benefit of a payout is that shareholders can invest

at the risk-free rate r, which is higher than (r − λ) the net rate of return on cash within the firm.

However, paying out cash also reduces the firm’s cash balance, which potentially exposes the firm

to current and future under-investment and future external financing costs.

Combining cash flow from operations dYt given in (3), with the firm’s financing policy given by

the cumulative payout process U and the cumulative external financing process H, the firm’s cash

7We extend this specification in Section 7 by allowing the firm to draw on a credit line. In that specification, the
firm issues equity or liquidate after it has drawn down its credit line.

8If λ = 0, the firm has no incentives to pay out cash since keeping cash inside the firm does not have any
disadvantages, but still has the benefits of relaxing financing constraints. We could also imagine that there are
settings under which λ ≤ 0. For example, if we think that the firm may have “better” investment opportunities than
investors do, we can think of λ as an excess return. We do not explore this case in this paper as we are interested in
a trade-off model for cash holdings.

9We cannot distinguish between a special dividend and a share repurchase as we exclude taxes. Note, however,
that a commitment to regular dividend payments is suboptimal in our model. We also exclude any fixed or variable
payout costs so as not to overburden the model. These can be added to the analysis.
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inventory W then evolves according to:

dWt = dYt + (r − λ) Wtdt + dHt − dUt, (5)

where the second term is the interest income (net of the carry cost λ), the third term dHt is the

cash inflow from external financing, and the last term dUt is the cash outflow to investors, so that

(dHt − dUt) is the net cash flow from financing. Note that this is a completely general financial

accounting equation where dHt and dUt are endogenously determined by the firm.

Firm optimality The firm chooses its investment I, its cumulative payout policy U , its cumu-

lative external financing H, and its liquidation time τ to maximize firm value defined below:

E

[∫ τ

0

e−rt (dUt − dHt) + e−rτ (lKτ +Wτ )

]
. (6)

The expectation is taken under the risk-adjusted probability. The first term is the discounted value

of payouts to shareholders and the second term is the discounted value upon liquidation. Note that

optimality may imply that the firm never liquidates. In that case, we simply have τ = ∞. We

impose the usual regularity conditions to ensure that the optimization problem is well posed. See

the appendix for details.

3 Model Solution

We first describe the firm’s optimal investment policy and firm value under the neoclassical bench-

mark with no capital market frictions. We then characterize the firm’s optimal dynamic investment

and financing decisions in the presence of external financing and payout costs.

3.1 A neoclassical benchmark

In the absence of costly financing, our model specializes to the neoclassical model of investment

with convex adjustment costs. To ensure that the first-best investment policy is well defined, we
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assume that the following parameter condition holds:

(r + δ)2 − 2 (µ− (r + δ)) /θ > 0.

Then, under perfect capital markets (when the Modigliani-Miller theorem holds), the firm’s first-

best investment policy is given by IFB = iFBK, where

iFB = r + δ −

√
(r + δ)2 − 2 (µ− (r + δ)) /θ. (7)

The value of the firm’s capital stock is qFBK, where qFB is Tobin’ s q given by:

qFB = 1 + θiFB . (8)

First, the volatility of the productivity shocks σ has no direct impact on the firm’s investment

decision and firm value (as seen from (7)). However, σ can have an indirect effect on investment since

higher systematic volatility increases the cost of capital. More interestingly, even the idiosyncratic

component of volatility affects investment and firm value due to its effect via the financing constraint

channel, as we will show.

Second, due to the homogeneity property in production (the “AK” production specification

and the homogeneity of the adjustment cost function G(I,K) in I and K), marginal q is equal to

average (Tobin’s) q, as in Hayashi (1982).

Third, gross investment I is positive if and only if the expected productivity µ is higher than

r + δ, so we shall assume that µ > r + δ. Whenever investment is positive, Tobin’s q is greater

than unity and installed capital earns rents. Intuitively, when µ > r + δ, the installed capital is

more valuable than newly purchased capital. As is standard in the literature, Tobin’s q, the ratio

between the value of installed capital and that of newly purchased capital, is greater than unity

due to the adjustment cost.

We analyze next the firm’s optimal investment and financing decisions when it faces costly

external financing.
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3.2 Firm value P (K, W ) and the optimal investment-capital ratio

It is optimal for the firm (facing external financing costs) to hoard some cash to finance its in-

vestment and to lower its future financing costs. There are two natural state variables for the

firm’s optimization problem: the firm’s capital stock K and the firm’s cash inventory W . Let

P (K,W ) denote firm value. Then, using the standard principle of optimality, we obtain the fol-

lowing Hamilton-Jacobi-Bellman (HJB) equation for P (K,W ) in the interior region for W where

dHt = 0 and dUt = 0:

rP (K,W ) = max
I

(I − δK)PK + [(r − λ)W + µK − I −G(I,K)]PW +
σ2K2

2
PWW . (9)

The first term (the PK term) on the right side of (9) represents the marginal effect of net

investment (I − δK) on firm value P (K,W ). The second term (the PW term) represents the effect

of the firm’s expected saving on firm value, and the last term (the PWW term) captures the effects

of the volatility of cash holdings W on firm value.

The firm chooses investment I optimally to set the expected return of the firm equal to the

risk-free rate r. In the interior region, the firm finances its investment out of its cash inventory

only. The convexity of the physical adjustment cost implies that the investment decision in our

model admits an interior solution. The investment-capital ratio i = I/K then satisfies the following

first-order condition:

1 + θi =
PK(K,W )

PW (K,W )
. (10)

With frictionless capital markets (the Modigliani-Miller world) the marginal value of cash is

PW = 1, so that the neoclassical investment formula obtains: PK(K,W ) is the marginal q, which

at the optimum is equal to the marginal cost of adjusting the capital stock 1 + θi. With costly

external financing, on the other hand, the investment Euler equation (10) captures both real and

financial frictions. The marginal cost of adjusting physical capital (1 + θi) is now equal to the ratio

of marginal q, PK(K,W ), to the marginal cost of financing (or equivalently, the marginal value of
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cash), PW (K,W ). Thus, the more costly the external financing (the higher PW ) the less the firm

invests, ceteris paribus.

A key simplification in our setup is that the firm’s two-state optimization problem can be

reduced to a one-state problem by exploiting homogeneity. That is, we can write firm value as

P (K,W ) = K · p (w) , (11)

where w = W/K is the firm’s cash-capital ratio, and reduce the firm’s optimization problem to a

one-state problem in w. The dynamics of w can be written as:

dwt = ((r − λ)wt + µ− i(w) − g(i(w))) dt+ σdZt. (12)

Instead of solving for firm value P (K,W ), we shall instead solve for the firm’s value-capital

ratio p (w). Note that marginal q is then PK (K,W ) = p (w)−wp′ (w), the marginal value of cash

is PW (K,W ) = p′ (w), and PWW = p′′ (w) /K. Substituting these terms into (9) we then obtain

the following ordinary differential equation (ODE) for p (w):

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r − λ)w + µ− i(w) − g(i(w))) p′ (w) +

σ2

2
p′′ (w) . (13)

We also obtain an analog of the FOC (10) for the investment-capital ratio i(w) as follows:

i(w) =
1

θ

(
p(w)

p′(w)
− w − 1

)
. (14)

To completely characterize the solution for p(w), we must also determine the boundaries w at which

the firm raises new external funds (or closes down), how much to raise (the target cash-capital ratio

after issuance), and w at which the firm pays out cash to shareholders.

3.3 The impact of financing costs

In this subsection, we characterize the firm’s optimal policy and value. Depending on the parameter

values, the firm prefers either liquidation or refinancing by issuing new equity. Case I refers to the

setting where liquidation is optimal. In Case II, the cost of equity issuance is small enough that

the firm prefers to refinance than to liquidate when it runs out of cash.
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Case I: Optimal Liquidation. Recall that Tobin’s q under the frictionless first-best world is

higher than the liquidation value per unit of capital l, i.e., qFB > l.10 Under this assumption, it is

suboptimal for the firm to liquidate its asset provided that the firm has cash to operate its physical

asset. To formally illustrate this point, note that liquidation at any time yields lK+W = lK+wK,

the sum of the recovery value of the firm’s asset and the firm’s total cash inventory W that can

be distributed to shareholders at no cost. As the firm can always choose to disburse its cash at

any time, the value of cash cannot be lower than W , its value when paid out to shareholders. In

addition, by deferring liquidation and holding on to its cash the firm retains a valuable option to

finance future investment opportunities and to see its earnings potentially grow, which enhances

firm value. Therefore, the optimal liquidation boundary is given by w = 0. Firm value upon

liquidation is thus p(0)K = lK, implying that

p(0) = l. (15)

We now turn to the endogenous upper payout boundary w for the cash-capital ratio w. Intu-

itively, when the cash-capital ratio is very high (w > w), the firm is better off paying out the excess

cash (w − w) to shareholders. That is, it is optimal for the firm to distribute the excess cash as

a lump-sum and bring the cash-capital ratio w down to w. Since firm value must be continuous

before and after cash distribution, p(w) is then given by

p(w) = p(w) + (w − w) , w > w. (16)

Since the above equation also holds for w close to w, we may take the limit and obtain the

following condition for the endogenous upper boundary w:

p′ (w) = 1. (17)

At w the firm is indifferent between distributing and retaining one dollar, so that the marginal

value of cash must equal one, which is the marginal cost of cash to shareholders. Since the payout

10 Otherwise, the firm should never employ its physical production technology and instead liquidate its capital for
its higher value lK.
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boundary w is optimally chosen, we also have the following “super contact” condition (see, e.g.

Dumas (1991)):

p′′ (w) = 0. (18)

The Hamilton-Jacoby-Bellman equation (13), the investment-capital ratio equation (14), and

the associated liquidation boundary (15) and payout boundary conditions (17)-(18) then jointly

characterize the firm’s value-capital ratio p ( · ) and optimal dynamic investment and financing

decisions.

Case II: Optimal Refinancing. When the firm’s expected productivity µ is high and/or its cost

of external financing is low, the firm is better off raising costly external financing than liquidating

its assets when it runs out of cash. The endogenous upper boundary is determined in the same

way as in Case I. The lower boundary, however, is more interesting. First, although the firm can

choose to raise external funds at any time, it is optimal for the firm to wait until it runs out of

cash, so that w = 0. The reason is that cash within the firm earns a below-market interest rate

(r − λ) and there is a time value for the external financing costs. As long as it has cash, the firm

can always pay for any level of investment it desires to undertake with its cash. There is thus no

role for raising equity locally in our model given that investment is not lumpy. It is always better

to defer external financing as long as possible.11 Our argument highlights the robustness of the

pecking order between cash and external financing. That is, the cost of hoarding cash and the costs

of raising external funds imply that there is no need to raise external funds unless the firm has to.

This is a form of pecking order between internally generated funds and outside financing.

Second, fixed costs in raising equity (φ > 0) induce the firm to raise a lump-sum mK in cash,

where m > 0 is endogenously chosen. The reason is simply that it is cheaper to raise equity in

lumps (i.e. m > 0) to economize on the fixed costs.

11However, if the cost of financing varies over time particularly when the firm potentially faces stochastic arrival of
growth options, the firm may time the market by raising cash in times when financing is cheaper. See Bolton, Chen,
and Wang (2009).
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Since firm value is continuous before and after equity issuance, p(w) satisfies the following

condition when the firm issues equity (at the boundary w = 0):

p(0) = p(m)− φ− (1 + γ)m. (19)

The right side represents the value-capital ratio p(m) minus both the fixed and the proportional

costs of equity issuance, per unit of capital. Since m is optimally chosen, the marginal value of the

last dollar raised must equal the marginal cost of external financing, 1+γ. This gives the following

smoothing pasting boundary condition at m:

p′(m) = 1 + γ. (20)

Thus, when it is optimal for the firm to refinance rather than liquidate, the HJB equation

(13), the investment-capital ratio equation (14), the equity-issuance boundary condition (19), the

optimality condition for equity issuance (20), and the endogenous payout boundary conditions (17)-

(18) jointly characterize the firm’s dynamic investment and financing decisions. This is the global

solution for the firm whenever p(0) > l.

4 Quantitative Analysis

We now turn to quantitative analysis of our model. For the benchmark case, we set the riskfree

rate at r = 5% and adopt the technological parameter values that Eberly, Rebelo, and Vincent

(2008) suggest fit the US data for the neoclassical investment model with constant returns to scale

(Hayashi, 1982). The mean and volatility of the productivity shock are µ = 21% and σ = 11%,

respectively; the adjustment cost parameter is θ = 4, and the rate of depreciation is δ = 11%.

When applicable, these numbers are annualized. The implied first-best q in the neoclassical model

is then qFB = 1.54, and the corresponding first-best investment-capital ratio is iFB = 13.6%.

We then set the annual cash-carrying cost parameter at λ = 1.5%, the proportional financing

cost at γ = 6% (as suggested in Sufi (2009)) and the fixed cost of financing at φ = 5% (consistent
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Figure 1: Case I. Liquidation. This figure plots the solution in the case when the firm has to liquidate

when it runs out of cash (w = 0). The parameters are: riskfree rate r = 5%, the mean and volatility of

increment in productivity µ = 21% and σ = 11%, adjustment cost parameter θ = 4, capital depreciation

rate δ = 11%, cash-carrying cost λ = 1.5%, and liquidation value-capital ratio l = 0.9.

with the evidence of seasonal equity offerings in Altinkilic and Hansen (2000). Finally, for the

liquidation value we take l = 0.9 (as suggested in Hennessy and Whited (2007)).

Case I: Liquidation. Liquidation is optimal when either the firm’s expected productivity is low

(µ ≤ 15%) or when external financing costs are very high (φ ≥ 50%). Figure 1 plots the solution

under liquidation. In Panel A, the firm’s value-capital ratio p(w) starts at l (liquidation value)

when cash balances are equal to 0, is concave in the region between 0 and the endogenous payout

boundary w = 0.32, and becomes linear (with slope 1) beyond the payout boundary (w ≥ w). In

Section 3, we have argued that the firm will never liquidate before its cash balances hit 0. Panel A
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of Figure 1 provides a graphic illustration of this result, where the firm value p (w) lies above the

liquidation value l+w (both normalized by capital) for all w > 0 . In addition, the marginal value

of cash increases as the firm becomes more constrained (closer to liquidation), which is confirmed

by the concavity of p(w) for w < w (i.e. p′′(w) < 0).

Panel B of Figure 1 plots the marginal value of cash p′ (w) = PW (K,W ). It shows that the

value-capital ratio p(w) is concave. The external financing constraint makes the firm hoard cash

today in order to reduce the likelihood that it will be liquidated in the future. Consider the effect of

a mean-preserving spread of cash holdings on the firm’s investment policy. Intuitively, the marginal

cost from a smaller cash holding is higher than the marginal benefit from a larger cash holding

because the increase in the likelihood of liquidation outweighs the benefit from otherwise relaxing

the firm’s financial constraints. Observe also that the marginal value of cash reaches a staggering

value over 25 as w approaches 0. In other words, an extra dollar of cash is worth as high as $25 to

the firm in this region, because it helps keep the firm away from costly liquidation.

Panel C plots the investment-capital ratio i(w) and illustrates under-investment due to the

extreme external financing constraints. Optimal investment by a financially constrained firm is

always lower than first-best investment iFB = 0.14, especially when the firm’s cash inventory w is

low. Actually, when w is sufficiently low the firm will disinvest by selling assets to raise cash and

move away from the liquidation boundary. Note that disinvestment is costly not only because the

firm is underinvesting but also because it incurs physical adjustment costs in lowering its capital

stock. For the parameter values we use, asset sales (disinvestments) are at the annual rate of over

20% of the capital stock when w is close to zero! The firm tries very hard not to be forced into

liquidation, which would permanently eliminate the firm’s future growth opportunities. Note also

that even at the payout boundary, the investment-capital ratio is only i(w) = 0.1, about 29% lower

than the first best level iFB. Intuitively, the firm is trading off the cash-carrying costs with the

cost of underinvestment. It optimally chooses to hoard more cash and to invest more at the payout
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boundary when the cash-carrying cost λ is lower.

Next, consider the investment-cash sensitivity measured by i′(w). Observe that i(w) increases

with w; the investment-cash sensitivity i′(w) is positive and given by

i′(w) = −
1

θ

p(w)p′′(w)

p′ (w)2
> 0. (21)

Remarkably, while i(w) is monotonically increasing in w, the investment-cash sensitivity i′(w) is

not monotonic in w. Formally, the slope of i′(w) depends on the third derivative of p(w), for which

we do not have analytical results. Kaplan and Zingales (1997) have made similar observations on

the investment-cash sensitivity in a static setting.

Case II: Refinancing. Consider next the more interesting case of our model when it is optimal

for the firm to refinance.12 As we have argued in Section 3, the firm only uses external financing

when necessary, that is when it runs out of cash (w = 0). Observe that at the financing boundary

w = 0, the firm’s value-capital ratio p(w) is strictly higher than l, so that external equity financing

is preferred to liquidation in equilibrium.

Figure 2 displays the solutions for both the setting with fixed financing costs (φ = 5%) and the

case without fixed costs (φ = 0). Comparing with Case I, we find that the endogenous payout

boundary (marked by the solid vertical line on the right) is w = 0.27 when φ = 5%, lower than the

payout boundary for the case where the firm is liquidated (w = 0.32). Not surprisingly, firms are

more willing to pay out cash when they can raise new funds in the future. The firm’s optimal return

cash-capital ratio for our parameter values is m = 0.13, and is marked by the vertical line on the

left in Panel A. Without fixed cost (φ = 0), the payout boundary drops to w = 0.15, substantially

lower than the ones with the fixed costs and the liquidation case. In this case, the firm’s return

cash-capital ratio is zero. In other words, the firm raises just enough funds to keep w above 0. This

is consistent with the intuition that the higher the fixed cost parameter φ, the bigger the size of

12Throughout the remainder of this paper, we restrict attention to settings with parameters such that external
equity financing is preferred to liquidation in equilibrium.
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Figure 2: Case II. Optimal refinancing at w = 0. This figure plots the solution in the case of

refinancing. The parameters are: riskfree rate r = 5%, the mean and volatility of increment in productivity

µ = 21% and σ = 11%, adjustment cost parameter θ = 4, capital depreciation rate δ = 11%, cash-carrying

cost λ = 1.5%, proportional and fixed financing costs γ = 6%, φ = 5%.

refinancing (higher return cash-capital ratio m) each time the firm raises cash.

Panel B plots the marginal value of cash p′(w), which is positive and decreasing, confirming

that p(w) is strictly concave for w ≤ w. Conditional on issuing equity and having paid the fixed

financing cost, the firm optimally chooses the return cash-capital ratio m such that the marginal

value of cash p′(m) is equal to the marginal cost of issuance 1 + γ. To the left of the return cash-

capital ratio m, the marginal value of cash p′(w) lies above 1 + γ, reflecting the fact that the fixed

cost component in raising equity increases the marginal value of cash. When the firm runs out of

cash, the marginal value of cash is around 3, much higher than 1 + γ = 1.06.

As in the previous case, the investment-capital ratio i(w) is increasing in w. Higher fixed
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cost component effectively increases the severity of financing constraints, and therefore leads to

more underinvestment. This is particularly true in the region to the left of the return cash-capital

ratio m, where the investment-capital ratio i(w) drops rapidly and even involves asset sales (about

13% of total capital when w approaches 0). Note that asset sales go down quickly (i′(w) > 3)

when w is close to zero. This is because both asset sales and equity issuance are very costly. In

contrast, removing the fixed financing costs greatly alleviates the under-investment problem, and

the investment-capital ratio i(w) becomes essentially flat except for very low w.

Average q, marginal q, and investment. We now turn to the model’s predictions on average

and marginal q. We take the firm’s enterprise value – the value of all the firm’s marketable claims

minus cash, P (K,W ) −W – as our measure of the value of the firm’s capital stock. Average q,

denoted by qa(w), is then the firm’s enterprise value divided by its capital stock:

qa(w) =
P (K,W )−W

K
= p(w)− w. (22)

In our model where financing is costly, marginal q, denoted by qm(w), is given by

qm(w) =
d (P (K,W ) −W )

dK
= p(w)− wp′(w) = (p(w)− w)−

(
p′(w)− 1

)
w. (23)

Recall that in the neoclassical setting (Hayashi (1982)), average q equals marginal q. In our

model, average q differs from marginal q due to the external financing costs. An increase in the

capital stock K has two effects on the firm’s enterprise value. The first is captured by the term

(p(w)−w) and reflects the direct effect of an increase in capital on firm value, holding w fixed. This

term is equal to average q. The second term (p′(w)− 1)w reflects the effect of external financing

costs on firm value through w. Increasing the capital stock mechanically lowers the cash-capital

ratio w = W/K for a given cash inventory W . As a result, the firm’s financing constraint becomes

tighter and firm value drops, ceteris paribus.

Figure 3 plots the average and marginal q for the liquidation case, the refinancing case with no

fixed costs (φ = 0) and the refinancing cost with fixed costs (φ = 5%). The average and marginal
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Figure 3: Average q and marginal q. This figure plots the average q and marginal q from the three

special cases of the model. The parameters, when applicable, are: riskfree rate r = 5%, the mean and

volatility of increment in productivity µ = 21% and σ = 11%, adjustment cost parameter θ = 4, capital

depreciation rate δ = 11%, cash-carrying cost λ = 1.5%, proportional and fixed financing costs γ = 6%,

φ = 5%.

q are below the first best level, qFB = 1.54 in all three cases, and they become lower as external

financing becomes more costly. The marginal value of cash p′(w) is always larger than one due

to costly external financing. As a result, average q increases with w. Also, the concavity of p(w)

implies that marginal q increases with w. From (22) and (23), we see that p′(w) > 1 and w > 0

imply that qm(w) > qa(w), as displayed in Figure 3.

Stationary distributions of w, p(w), p′(w), i(w), average q, and marginal q. We next

investigate the stationary distributions for the key variables tied to optimal firm policies. To make

the distributions empirically relevant, we compute them under the physical probability measure.13

Figure 4 shows the distributions for the cash-capital ratio w, the value-capital ratio p (w), the

marginal value of cash p′ (w), and the investment-capital ratio i (w). Since p(w), p′(w), i(w) are all

monotonic in Case II, the densities for their stationary distributions are connected with that of w

through (the inverse of) their derivatives.

13The link between the physical and risk-adjusted measure is explained in the Appendix.
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Figure 4: Stationary distributions in the case of refinancing. This figure plots the stationary

distributions of 4 variables in Case II. The parameters are: risk free rate r = 5%, the mean and volatility

of increment in productivity µ = 21% and σ = 11%, adjustment cost parameter θ = 4, capital depreciation

rate δ = 11%, cash-carrying cost λ = 1.5%, proportional and fixed financing costs γ = 6%, and φ = 5%.

Strikingly, the cash holdings of a firm are relatively high most of the time, and hence the

probability mass for i(w) and p(w) is concentrated at the highest values in the relevant support of

w. The marginal value of cash p′(w) is therefore also mostly around unity. Thus, the firm’s optimal

cash management policies appear to be effective at shielding it from severe financing constraints

and underinvestment most of the time.

Table 1 reports the mean, median, standard deviation, skewness, and kurtosis for w, i(w), p(w),

p′(w), average q (qa(w)) and marginal q (qm(w)). Not surprisingly, all these variables have skewness.

Other than the marginal value of cash p′(w), all remaining five variables have negative skewness

with medians larger than the respective means. The positive skewness for p′(w) is consistent with
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Table 1: Moments from the stationary distribution of the refinancing case

This table reports the population moments for cash-capital ratio (w), investment-capital ratio
(i(w)), marginal value of cash (p′(w)), average q (qa(w)), and marginal q (qm(w)) from the station-
ary distribution in Case II.

w i(w) p′(w) qa(w) qm(w)

mean 0.226 0.105 1.010 1.435 1.434
median 0.239 0.108 1.001 1.436 1.435

std 0.043 0.010 0.037 0.001 0.004
skewness -1.375 -7.289 15.129 -12.296 -5.011
kurtosis 4.778 86.061 416.580 253.866 40.499

the negative skewness of all the other five variables, as p′(w) is highest for low values of w due to

the concavity of p(w). Note also that all these variables have fat tails. Interestingly, the kurtosis

values for p′(w) and qa(w) are large, despite their small standard deviations and the small difference

between the mean and median values of both p′(w) and qa(w).

Existing empirical research on corporate cash inventory has mostly focused on firms’ average

holdings (the first entry in the first row of Table 1) and highlighted that average holdings have

increased in recent years. Our model gives a more complete picture of the dynamics of firm

capital expenditures and cash holdings. It provides predictions on the time series behavior of firm’s

investment and financing policies, their valuation, as well as the cross-sectional distribution of cash

holdings, and the joint distribution of cash holdings, investment, Tobin’ s q, and the frequency of

external financing.

As is apparent from Table 1, average cash holdings provide an incomplete and even misleading

picture of firms’ cash management, investment and valuation. Indeed, one observes that even

though the median and the mean of the firm’s marginal value of cash p′(w) is close to unity, with

only a standard deviation of 0.037, there is a huge kurtosis (416.5) indicating that firms are exposed

to potentially large financing costs even if their marginal value of cash is close to unity on average.14

14These findings may help explain why Gomes (2001) finds no cash-flow effect in his investment regressions based
on simulated data. If under the stationary distribution most firms’ cash holdings are bunched close to the payout
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Also, despite the tight distributions for average q and i(w), the mean and median of qa(w)

are 1.44, which is about 6.5% lower than qFB = 1.54, the average q for a firm without external

financing costs. Similarly, the mean and median of i(w) is 0.11, which is about 23% lower than

iFB = 0.14, the investment-capital ratio for a firm without external financing costs. Therefore,

simply looking at the difference between the mean and the median or even the standard deviation

for these variables, one can end up with a misleading description of firms’ financing constraints.

The observation that the ratio of the median to mean marginal value of cash p′(w) is close to unity,

in particular, does not imply that firm financing constraints are small. The endogeneity of firms’

cash holdings mitigates the time-varying impact of financing costs on investment, but the effects

remain large on average.

Comparative Statics We close this section with a comparative statics analysis of firm cash

holdings and investment for the following six parameters: µ, θ, r, σ, φ, λ. We divide these parameters

into two categories. The first three (µ, θ, r) are parameters on the physical side and have direct

effects on investment (see iFB in equation(7)); the rest (σ, φ, λ) only affect investment and firm

value through financing constraints. We examine the effects of these parameters through their

impact on the distributions of cash holdings and investment in Figure 5 and 6.

In Figure 5, the left panels (A, C, and E) plot the cumulative stationary distributions (CDF)

of the cash holdings w, and the right panels (B, D, and F) plot the cumulative distributions of firm

investments i. As panel A highlights, when mean productivity increases (from µ = 16% to µ = 21%)

firms tend to hold more cash. That is, the cumulative distributions of firms for higher values of µ

first-order stochastically dominate the distributions for lower values of µ. This is intuitive, since the

return on investment increases with µ so that the shadow value of cash increases. Still, one might

expect firms to spend their cash more quickly for higher µ as the value of investment opportunities

boundary then indeed one should not find a cash-flow effect on investment on average. Note also that the key variable
for investment of financially constrained firms is the firm’s cash-capital ratio and not the firm’s cash-flow.

26



0 0.1 0.2 0.3
0

0.5

1
A. CDF (w)

 

 
µ = 21%
µ = 18%
µ = 16%

−0.2 −0.1 0 0.1
0

0.5

1
B. CDF (i)

 

 
µ = 21%
µ = 18%
µ = 16%

0 0.1 0.2 0.3
0

0.5

1
C. CDF (w)

 

 
θ = 4
θ = 10
θ = 20

−0.2 −0.1 0 0.1
0

0.5

1
D. CDF (i)

 

 
θ = 4
θ = 10
θ = 20

0 0.1 0.2 0.3
0

0.5

1

cash-capital ratio: w

E. CDF (w)

 

 
r = 5%
r = 7%
r = 9%

−0.2 −0.1 0 0.1
0

0.5

1

investment-capital ratio: i(w)

F. CDF (i)

 

 
r = 5%
r = 7%
r = 9%

Figure 5: Comparative statics I: µ, θ, and r. This figure plots the cumulative distribution function

for the stationary distribution of cash-capital ratio (w) and investment-capital ratio (i(w)) for different values

of the mean of productivity shocks µ, investment adjustment cost θ, and interest rate r.

rises, so that the net effect on firm cash holdings is ambiguous a priori. In our baseline model, the

net effect on w of a higher µ is positive, because investment adjustment costs induce firms to only

gradually increase their investment outlays in response to an increase in µ.

The effect of an increase in µ on investment is highlighted in Panel B. Again, firms respond to an

increase in µ by increasing investment. At µ = 16% firms are disinvesting as i(w) is negative for all

firms. At µ = 18% nearly all firms are making positive investments, with most firms bunched at an

investment level of roughly i(w) = 0.03. Finally, for µ = 21% most firms are investing i(w) = 0.11.

The effects of an increase in investment adjustment cost θ and interest rate r on cash holdings
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Figure 6: Comparative statics II: σ, φ, and λ. This figure plots the cumulative distribution function

for the stationary distribution of cash-capital ratio (w) and investment-capital ratio (i(w)) for different values

of the volatility of productivity shocks σ, fixed costs of external financing φ, and carry cost of cash λ.

and investment are also quite intuitive. As panel D shows, an increase in θ has a negative effect

on investment. If firms invest less, one should expect their cash holdings to increase almost me-

chanically. However, this turns out not to be the case. Firms have a lower shadow value of cash

if they anticipate lower future investment outlays. Therefore they end up holding less cash, as is

illustrated in panel C. Similar comparative statics hold for increases in the risk-free rate r: with

higher interest rates firms invest less and therefore hold less cash. This is indeed the case, as is

illustrated in panels E and F.

The effects of an increase in the idiosyncratic volatility of productivity shocks are shown in
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panels A and B of Figure 6, where the stationary distribution is plotted for values of σ = 11%,

σ = 14% and σ = 17%. We change σ while holding systematic volatility fixed, so that the risk-

adjusted growth rate µ is unaffected. Again, it is intuitive that firms respond to greater underlying

volatility of productivity shocks by holding more cash. Higher cash reserves, in turn, tend to raise

the average cost of investment, so that one might expect a higher σ to induce firms to scale back

investment. Similarly, an increase in external costs of financing φ ought to induce firms to increase

their precautionary cash holdings and to scale back their capital expenditures. This is exactly

what our model predicts, as shown in panels C and D. The effect of an increase in the carry cost

λ ought to be to induce firms to spend their cash more readily, by disbursing it more frequently to

shareholders or investing more aggressively. Interestingly, although cash holdings decrease with λ,

as seen in panel E, the net effect on investment is negative, as panel F shows. A higher λ makes it

more expensive for firms to maintain its buffer-stock cash holdings and indirectly raises the cost of

investment.

Finally, one clear difference between Figure 5 and 6 is that, unlike the physical parameters,

the parameters σ, φ, λ have rather limited effects on investment. This result implies that firms can

effectively adjust their cash/payout/financing policies in response to changes in financing or cash

management costs, leaving little impact on the real side (investment).

5 Risk and Return

In this section, we investigate how the firm’s investment, financing, and cash management policies

affect the risk and return on the equity of the firm. In order to highlight the impact of financing

constraints on the firm’s risk and returns, we adopt the benchmark asset pricing model (CAPM),

which measures the riskiness of an asset with its market beta. Let rm and σm denote the expected

return and volatility of the market portfolio, and let ρ be the correlation coefficient between the

firm’s productivity process A and the returns of the market portfolio.
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Without financial frictions (the Modigliani-Miller world), the firm implements the first-best

investment policy. Its expected return is constant and given by the classical CAPM formula

µFB = r + βFB (rm − r) , (24)

where the firm’s constant equity beta reflects its exposure to systematic risk

βFB =
ρσ

σm

1

qFB
. (25)

We can derive an analogous conditional CAPM expression for the instantaneous risk-adjusted

return µr(w) of a financially constrained firm (that is, a firm facing external financing costs) by

applying Ito’s lemma (see e.g. Duffie (2001)):

µr(w) = r + β(w) (rm − r) , (26)

where

β(w) =
ρσ

σm

p′(w)

p(w)
(27)

is the financially constrained firm’s conditional beta, which reflects the firm’s exposure to both

systematic and idiosyncratic risk.

Indeed, equation (27) highlights the fact that the equity β for a financially constrained firm is

monotonically decreasing with its cash-capital ratio w. The cash-capital ratio w has two effects

on the conditional beta of a financially constrained firm: first, an increase in w relaxes the firm’s

financing constraint and reduces underinvestment. As a result, the risk of holding the firm’s equity

is lower. Second, the firm’s asset risk is also reduced as a result of the firm holding a greater share

of its assets in cash (whose beta is zero). Both channels imply that the conditional beta β(w) and

the required rate of return µr(w) decreases with w.

This is in contrast to the constant equity beta for an unconstrained firm (given in (25)). Im-

portantly, our analysis highlights how idiosyncratic risk is priced for a financially constrained firm.

Idiosyncratic risk, as much as systematic risk, exposes the firm to external financing costs. When
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the firm faces external financing costs, it effectively behaves like a risk-averse agent that requires

compensation for exposure to idiosyncratic risk.

Interestingly, when w is sufficiently high, the beta for a firm facing external financing costs can

be even lower than the beta for the neoclassical firm (facing no financing costs). This can be seen

in Figure 7. We may also illustrate this point by rewriting the conditional beta as follows:

β(w) =
ρσ

σm

p′(w)

(p(w) − w) + w
=
ρσ

σm

p′(w)

qa(w) +w
, (28)

where qa(w) = p(w) − w is the firm’s average q (the ratio of the firm’s enterprise value and its

capital stock). Although qa(w) < qFB and p′(w) > 1, the second term, w, in the denominator of

β(w) can be so large that β(w) < βFB. Thus, as firms facing external financing costs engage in

optimal risk management by hoarding cash, the buffer stock of cash holdings can make them even

safer than neoclassical firms facing no financing costs and holding no cash.

Panel A of Figure 7 plots the firm’s value-capital ratio p(w) for three different levels of idiosyn-

cratic volatility (ξ = 5%, ξ = 15%, and ξ = 30%). The other parameter values for this calculation

are rm−rf = 6%, σm = 20%, and the systematic volatility is fixed at ρσ = 8.8% (assuming ρ = 0.8

when σ = 11%). As expected, it shows that firm value is higher and the payout boundary w is

lower for lower levels of idiosyncratic volatility.

Panel B of Figure 7 plots the marginal value of cash (p′(w)) for the same three levels of idiosyn-

cratic volatility. It shows, as expected, that p′(w) is decreasing in w for each level of idiosyncratic

volatility. The figure also reveals that for high values of w, the marginal value of cash (p′(w))

is higher for higher levels of idiosyncratic volatility. But, more surprisingly, for low values of w

the marginal value of cash is actually decreasing in idiosyncratic volatility. The reason is simply

that when the firm is close to financial distress, a dollar is more valuable for a firm with lower

idiosyncratic volatility.

Panel C plots the investment-capital ratio for the three different levels of idiosyncratic volatility.

We see again that for sufficiently high w, investment is decreasing in idiosyncratic volatility, whereas
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Figure 7: Idiosyncratic volatility, firm value, investment, and beta. Fixing all other parame-

ters, for three different levels of idiosyncratic volatility (5%, 15%, 30%), this figure plots the firm value-capital

ratio, marginal value of cash, investment-capital ratio, and the ratio of the conditional beta of a constrained

firm to that of an unconstrained firm (first best).

for low w, it is increasing. That is, when w is low, firms with low idiosyncratic volatility engage in

more asset sales. Again, this latter result is driven by the fact that a marginal dollar has a higher

value for a firm with lower idiosyncratic volatility. Therefore, such a firm will sell more assets to

replenish its cash holdings.

Panel D plots conditional betas normalized by the first-best equity beta: β(w)/βFB. At low

levels of w, the firm’s normalized beta β(w)/βFB can approach a value as high as 4 for idiosyncratic

volatility ξ = 5%. On the other hand, β(w) is actually lower than βFB for high w. As we have ex-

plained above, this is due to the fact that a financially constrained firm hoards significant amounts

of cash, a perfectly safe asset, so that the mix of a constrained firm’s assets may actually be safer
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than the asset mix of an unconstrained firm, which does not hoard any cash. The important empir-

ical implication that follows from these observations is that a constrained firm’s equity beta cannot

be unambiguously ranked relative to the equity beta of an unconstrained firm. It all depends on the

constrained firm’s cash holdings. The inverse relation between equity returns and corporate cash

holdings has been documented by Dittmar and Mahrt-Smith (2007) among others. Importantly,

our analysis points out that this inverse relation may not just be due to agency problems, as they

emphasize, but may also be driven by the changing asset risk composition of the firm.

Panel D also reveals important information about equity beta in the cross section. A constrained

firm’s equity beta is not monotonic in its underlying idiosyncratic volatility. For large cash-capital

ratio w, the equity beta is increasing in the idiosyncratic volatility. However, when the level of w is

low, firms with low idiosyncratic volatility actually have higher equity beta. The rankings of beta

are driven by the ratio p′(w)/p(w), which can be inferred from the top two panels. Finally, for a

cross-section of firms with heterogeneous production technologies and external financing costs, it

is crucial to take account of the endogeneity of cash holdings to understand the firm’s cash holding

choices. Indeed, a firm with high external financing costs is more likely to hold a lot of cash, but

its conditional beta (and expected return) may still be higher than for a firm with low financing

costs. Thus, a positive relation between equity returns and corporate cash holdings in the cross

section, although inconsistent with the within-firm predictions above, may still be consistent in a

richer formulation of our model with cross-sectional firm heterogeneity.

We close this section by briefly considering the implications of costly external financing for the

internal rate of return (IRR) of an investor who seeks to purchase shares in an all-equity firm for

a fixed buy-and-hold horizon T . We use the same parameter values as the beta calculation above,

except that we fix the total earnings volatility to σ = 11% (the benchmark value). Starting with

a given initial value w0 and fixing a holding period T , we simulate sample paths of productivity

shocks. On each path, we use the optimal decision rules to determine the dynamics of cash holdings,
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Figure 8: Conditional IRR. This figure plots the conditional internal rate of return from investing in

the firm in Case II over different horizons at different levels of cash-capital ratios w. These values of w

correspond to 5, 25, 50, 75th percentile of the stationary distribution.

investment, financing, and payout to shareholders and to compute the value of the firm at time T .

We then compute the IRR for the simulated cash flows from the investment. We report the IRR

solutions in Figure 8 for investment horizon (holding period) T ranging from 0 to 30 years and

for firms with initial w ranging from the 5% lowest to the 75% highest cash-holding firms in the

population (note that a firm among the 5% lowest cash inventory holders would have a cash-capital

ratio smaller than w = 0.14). For an investor with a very short investment horizon (say, less than

a year), buying shares in an all-equity firm among the 5% lowest holders of cash may require a

return as high as 8.4%, compared to 6.7% for an otherwise identical firm among the 25% highest

holders of cash.

6 Dynamic Hedging

In addition to cash inventory management, the firm can also reduce its cash-flow risk by investing

in financial assets (an aggregate market index, options, or futures contracts) which are correlated
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with its own business risk. Consider, for example, the firm’s hedging policy using market index

futures. Let F denote the futures price. Under the risk-adjusted probability, the futures price

evolves according to:

dFt = σmFtdBt, (29)

where σm is the volatility of the market portfolio, and B is a standard Brownian motion that is

partially correlated with Zt (the Brownian motion in (2)), E [dBtdZt] = ρdt.

Let ψt denote the fraction of total cash Wt that the firm invests in the futures contract. Futures

contracts often require that the investor hold cash in a margin account, and there is typically a cost

for holding cash in this account. Let κt denote the fraction of the firm’s cash Wt held in the margin

account (0 ≤ κt ≤ 1), and let ǫ denote the unit cost on cash held in the account. We assume that

the firm’s futures position (in absolute value) cannot exceed a constant multiple π of the amount

of cash κtWt in the margin account.15 That is, we require

|ψtWt| ≤ πκtWt. (30)

As the firm can costlessly reallocate cash between the margin account and its regular interest-

bearing account at any time, the firm will optimally hold the minimum amount of cash necessary

in the margin account to minimize the incremental interest cost ǫ. Therefore, optimality implies

that the inequality (30) holds as an equality. When the firm takes a hedging position in a futures

index, its cash-capital ratio then evolves as follows:

dWt = Kt (µdAt + σdZt)− (It +Gt) dt+ dHt − dUt + (r− λ)Wtdt− ǫκtWtdt+ ψtσmWtdBt. (31)

Before analyzing optimal firm hedging constrained by costly margin requirements, we first

investigate the case where there are no margin requirements for hedging.

15For simplicity, we abstract from any variation of margin requirement, so that π is constant.
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6.1 Optimal hedging with no frictions

With no margin requirement (π = ∞), the firm carries all its cash in the regular interest-bearing

account and is not constrained in the size of the futures positions ψ it can take. Firm value P (K,W )

then solves the following HJB equation:

rP (K,W ) = max
I,ψ

(I − δK)PK(K,W ) + ((r − λ)W + µK − I −G(I,K))PW (K,W )

+
1

2

(
σ2K2 + ψ2σ2

mW
2 + 2ρσmσψWK

)
PWW (K,W ) (32)

The only difference between (32) and the HJB equation (9) with no hedging is the coefficient of

the volatility term (the last term on the second line), which is now affected by hedging. Since firm

value P (K,W ) is concave in W , so that PWW < 0, the optimal hedging position ψ is determined

simply by minimizing that coefficient with respect to ψ. The FOC for ψ is:

(
ψσ2

mW
2 + ρσmσWK

)
PWW = 0.

Solving for ψ, we obtain the firm’s optimal hedging demand:

ψ∗(w) = −
ρσ

wσm
. (33)

Thus, controlling for size (capital K), the firm hedges more when its cash-capital ratio w is low.

Intuitively, the benefit of hedging is greater when the marginal value of cash p′(w) is high. Sub-

stituting ψ∗(w) into the HJB equation (32) and exploiting homogeneity, we obtain the following

ODE for the firm’s value-capital ratio under hedging:

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r − λ)w + µ− i(w) − g(i(w))) p′ (w) +

σ2
(
1− ρ2

)

2
p′′ (w) .

(34)

Note that the ODE above is the same as (13) in the case without hedging except for the variance

reduction from σ2 to σ2(1− ρ2).

In sum, the benefit of frictionless hedging is to reduce the volatility of the firm’s earnings.

Reducing the volatility lowers the likelihood that the firm will need to engage in costly external
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financing and thereby increases firm value. Through optimal hedging the firm effectively removes

its systematic shocks and thus lowers the volatility of its earnings. The remaining idiosyncratic

volatility is not hedgeable and hence continues to affect firm value via costly external financing.

6.2 Optimal hedging with margin requirements

Next, we consider the more realistic setting with a margin requirement given by (30). The firm

then faces both a cost of hedging and a constraint on the size of its hedging position. As a result,

the firm’s HJB equation now takes the following form:

rP (K,W ) = max
I,ψ,κ

(I − δK)PK(K,W ) + ((r − λ)W + µK − I −G(I,K) − ǫκW )PW (K,W )

+
1

2

(
σ2K2 + ψ2σ2

mW
2 + 2ρσmσψWK

)
PWW (K,W ) (35)

subject to:

κ = min

{
|ψ|

π
, 1

}
. (36)

Equation (36) indicates that there are two candidate solutions for κ (the fraction of cash in the

margin account): one interior and one corner. If the firm has sufficient cash, so that its hedging

choice ψ is not constrained by its cash holding, the firm sets κ = |ψ|/π. This choice of κ minimizes

the cost of the hedging position subject to meeting the margin requirement. Otherwise, when the

firm is short of cash, it sets κ = 1, thus putting all its cash in the margin account to take the

maximum feasible hedging position: |ψ| = π.

The direction of hedging (long (ψ > 0) or short (ψ < 0)) is determined by the correlation

between the firm’s business risk and futures return. With ρ > 0, the firm will only consider taking

a short position in futures as we have shown. If ρ < 0, the firm will only consider taking a long

position. Without loss of generality, we focus on the case where ρ > 0, so that ψ < 0.

First, consider the cash region with an interior solution for ψ (where the fraction of cash allocated

to the margin account is given by κ = −ψ/π < 1). The FOC with respect to ψ is:

ǫ

π
WPW +

(
σ2
mψW

2 + ρσmσWK
)
PWW = 0.
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Using homogeneity, we may simplify the above equation and obtain:

ψ∗(w) =
1

w

(
−ρσ

σs
−
ǫ

π

p′(w)

p′′(w)

1

σ2
s

)
. (37)

Consider next the cash region where w is small. The benefit of hedging is high in this region

(p′(w) is high when w is small). The constraint κ ≤ 1 is then binding, hence ψ∗(w) = −π for

w ≤ w−, where the endogenous cutoff point w− is the unique value satisfying ψ∗(w−) = −π in

(37).

Finally, when w is sufficiently high, the firm chooses not to hedge, as the net benefit of hedging

approaches zero while the cost of hedging remains bounded away from zero. More precisely, we have

ψ∗(w) = 0 for w ≥ w+, where the endogenous cutoff point w+ is the unique solution of ψ∗(w+) = 0

using (37).

In summary, there are three endogenously determined regions for optimal hedging. For suf-

ficiently low cash (w ≤ w−), the firm engages in maximum feasible hedging (ψ(w) = −π). All

the firm’s cash is in the margin account. In the (second) interior region w− ≤ w ≤ w+, the firm

chooses its hedge ratio ψ(w) according to equation (37) and puts up just enough cash in the margin

account to meet the requirements. For high cash holdings (w ≥ w+), the firm does not engage in

any hedging to avoid the hedging costs.

We now provide quantitative analysis of the impact of hedging on the firm’s decision rules and

firm value. We choose the following parameter values: ρ = 0.8, σm = 20% (the same as in Section

5); π = 5, corresponding to 20% margin requirement; ǫ = 0.5%; the remaining parameters are those

for the baseline case in Section 4.

In Figure 9, several striking observations emerge from the comparisons of the frictionless hedg-

ing, the hedging with costly margin requirements, and the no hedging solutions.

First, Panel A makes apparent the extent to which hedging may be constrained by the margin

requirements. On the one hand, when w > w+ = 0.16, the firm chooses not to hedge at all because

the benefits of hedging are smaller than the costs due to margin requirements. On the other hand,
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Figure 9: Optimal hedging. This figure plots the optimal hedging and investment policies, the firm

value-capital ratio, and the marginal value of cash for Case II with hedging (with or without margin require-

ments). In Panel A, the hedge ratio for the frictionless case is cut off at −7 for display.

it hits the maximum hedge ratio for w < w− = 0.08. Thus, just when hedging is most valuable,

the firm will be significantly constrained in its hedging capacity. As a result, the firm effectively

faces higher uncertainty under costly hedging than under frictionless hedging. It follows that the

firm chooses to postpone payouts to shareholders (the endogenous upper boundary w shifts from

0.14 to 0.18). The firm also optimally scales back its hedging position in the middle region due to

the costs of hedging.

Second, Panel B reveals the surprising result that for low cash-capital ratios, the firm may

underinvest even more when it is able to optimally hedge (whether with or without costly margin

requirements) than when it cannot hedge at all. This is surprising, as one would expect the firm’s
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underinvestment problem to be mitigated by hedging. After all, hedging reduces the firm’s earnings

volatility and thus should reduce the need for precautionary cash balances. This rough intuition

is partially correct as, indeed, the firm does invest more for sufficiently high values of w, when it

engages in hedging.

But why should the firm invest less or disinvest more for low values of w? The reason can be

found in Panels C and D. Panel C plots p(w) under the three settings and confirms the intuition

that hedging increases firm value. As expected, p(w) is highest under frictionless hedging and lowest

without hedging. However, remarkably, not only is p(w) higher with hedging, but the marginal

value of cash p′(w) is also higher, when w is low. Panel D plots the log marginal values of cash

under the three solutions. Observe that the marginal value of cash is actually higher for low values

of w, when the firm engages in hedging. With a higher marginal value of cash, it is then not

surprising that the firm sells its assets more aggressively and hedges its operation risk in order to

lower the likelihood of using costly external financing.

How much value does hedging add to the firm? We answer this question by computing the net

present value (NPV) of optimal hedging to the firm for the case with costly margin requirements.

The NPV of hedging is defined as follows. First, we compute the cost of external financing as the

difference in Tobin’s q under the first-best case and q under case II without hedging. Second, we

compute the loss in adjusted present value (APV), which is the difference in the Tobin’s q under

the first-best case and q under hedging with a costly margin. Then, the difference between the

costs of external financing and the loss in APV is simply the value created through hedging. On

average, when measured relative to Tobin’s q under hedging with a costly margin, the costs of

external financing is about 7%, the loss in APV is about 5%, so that the NPV of costly hedging is

of the order of 2%, a significant creation of value to say the least for a purely financial operation.
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7 Credit line

Our baseline model of Section 2 can be extended to allow the firm to draw down a credit line. This

is an important extension to consider, as many firms in practice are able to secure such lines, and

for these firms, access to a credit line is an important alternative source of liquidity than cash.16

We model the credit line as a source of funding the firm can draw on at any time it chooses up

to a limit. We set the credit limit to a maximum fraction of the firm’s capital stock, so that the

firm can borrow up to cK, where c > 0 is a constant. The logic behind this assumption is that the

firm must be able to post collateral to secure a credit line and the highest quality collateral does

not exceed the fraction c of the firm’s capital stock. We may thus interpret cK to be the firm’s

short-term debt capacity. We also assume that the firm pays a constant spread α over the risk-free

rate on the amount of credit it uses. That is, the firm pays interest on its credit at the rate r+ α.

Sufi (2009) shows that a firm on average pays 150 basis points over LIBOR on its credit lines. This

essentially completes the description of a credit line in our model. We leave other common clauses

of credit lines-such as commitment fees and covenants-as well as the endogenous determination of

the limit cK to future research.

Since the firm pays a spread α over the risk-free rate to access credit, it will optimally avoid

using its credit line or other costly external financing before exhausting its internal funds (cash)

to finance investment. The firm does not pay fixed costs in accessing the credit line, so it also

prefers to first draw on the line before tapping equity markets as long as the interest rate spread α

is not too high.17 Our model thus generates a pecking order among internal funds, credit lines and

external equity financing.

As in the baseline model of Section 3, in the cash region, the firm value-capital ratio p(w)

16In future work, we plan to add to the model the availability of long-term debt financing and study the interactions
between debt and cash.

17When α is high and equity financing costs (φ, γ) are low, the firm may not exhaust its credit line before accessing
external equity markets. However, for our parameter values, we find that the pecking order results apply between
the credit line and external equity.
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Figure 10: Credit line. This figure plots the model solution with credit line and external equity. Each

panel plots for two scenarios: one without credit line (c = 0) and the other with credit line (c = 20%). The

spread on the credit line is α = 1.5% over the risk-free rate r.

satisfies the ODE in (13), and has the same boundary conditions for payout (17-18). When credit

is the marginal source of financing (credit region), p(w) solves the following ODE:

rp(w) = (i(w) − δ)
(
p (w)− wp′ (w)

)
+ ((r + α)w + µ− i(w)− g(i(w))) p′ (w) +

σ2

2
p′′ (w) , w < 0

(38)

When the firm exhausts its credit line before issuing equity, the boundary conditions for the timing

and the amount of equity issuance are similar to the ones given in Section 3. That is, we have

p(−c) = p(m) − φ − (1 + γ)(m + c), and p′(m) = 1 + γ. Finally, p(w) is continuous and smooth

everywhere, including at w = 0, which gives two additional boundary conditions.

Figure 10 plots p(w), the marginal value of liquidity p′(w), the investment-capital ratio i(w),
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and the investment-cash sensitivity i′(w), when the firm has access to a credit line. As can be seen

from the figure, having access to a credit line increases the firm’s value-capital ratio p(w). This

is to be expected, as access to a credit line provides a cheaper source of external financing than

equity under our chosen parameter value for the spread on the credit line: α = 0.015. Second,

observe that with the credit line option the firm hoards significantly less cash, and the payout

boundary w drops from 0.27 to 0.13 when the credit line increases from c = 0 to c = 20% of the

firm’s capital stock. Third, without access to a credit line (c = 0), the firm raises lumpy amounts

of equity mK (with m = 0.13 for φ = 5%) when it runs out of cash. In contrast, when c = 20%,

the firm raises 0.17K in a new equity offering when it has exhausted its credit line, so as to pay off

most of the debt it has accumulated on its credit line. But, note that for our baseline parameter

choices, the firm still remains in debt after the equity issuance, as m = −0.03. Fourth, the credit

line substantially lowers the marginal value of liquidity. Without the credit line, the marginal value

of cash at w = 0 is p′(0) = 3.03, while with the credit line (c = 20%), the marginal value of cash

at w = 0 is p′(0) = 1.03, and the marginal value of cash at the point when the firm raises external

equity is p′(−c) = 2.43.

It follows that a credit line substantially mitigates the firm’s underinvestment problem as can

be seen in Panel C in Figure 10. Without a credit line (c = 0), the firm engages in significant asset

sales (i = −13.7%) when it is about to run out of cash. With a credit line, however (c = 20%),

the firm’s investment-capital ratio is i(0) = 10.9% when it runs out of cash (w = 0). Even when

the firm has exhausted its credit line (at w = −20%), it engages in much less costly asset sales

(i(−c) = −7.5%). Finally, observe that the investment-cash sensitivity is substantially lower when

the firm has access to a credit line. For example, when the firm runs out of cash, the investment-

cash sensitivity i′(0) = 0.2, much smaller than i′(0) = 3.3 when the firm has no credit line and has

to issue external equity to finance investment.

Next, we turn to the effect of liquidity (cash and credit) on marginal q and investment.
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Figure 11: Investment and q with credit line. The left panel plots the average q (qa) and marginal

q (qm) from the case with credit line (c = 0.2) and without credit line (c = 0). The right panel plots the

average q, marginal q, the ratio of marginal q to marginal value of liquidity (qm/p
′) on the left axis, and

investment-capital ratio (i) on the right axis. These results are for the case with credit line (c = 0.2).

The left panel of Figure 11 plots the firm’s marginal and average q for two identical firms: one

with a credit line (c = 20%), and the other without a credit line (c = 0). Recall that:

qm(w) = qa(w) − (p′(w)− 1)w. (39)

For a firm without a credit line, marginal q lies below average q, because p′(w) > 1 for w ∈ (0, w).

The intuition is that a unit increase in capital K lowers the firm’s cash-capital ratio w = W/K,

which makes the firm more financially constrained, thus lowering marginal q.

In contrast, when the firm has access to credit lines and is in the credit region (W < 0), marginal

q lies above average q. In this region, increasing K raises the firm’s debt capacity (credit line limit

cK) and lowers its book leverage, which relaxes the firm’s borrowing constraint, thus making the

value of marginal q higher. Formally, when w < 0, the second term in (39) is positive so that

qm > qa. Moreover, note that q′m(w) = −p′′(w)w < 0 in the credit region. Thus, marginal q is

decreasing in w when w ≤ 0, opposite to the case when w > 0.
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Remarkably, although average q is always below the first-best q, marginal q may exceed the

first-best marginal q when the firm is in the credit region, as can be seen in Figure 11. Moreover,

observe that the quantitative differences between average and marginal q are much larger in the

credit region than in the cash region.

A widely held belief in the empirical literature on corporate investment is that marginal q is a

more accurate measure than average q of the firm’s investment opportunities. This is indeed true

in the Modigliani-Miller world (without fixed costs of investment), but it is not generally valid in a

world where firms face financial constraints. The right panel of Figure 11 shows that although the

investment-capital ratio i(w) increases with w in the credit region, marginal q actually decreases

with w. As a result, marginal q and investment move in opposite directions in the credit region. To

understand this seemingly counterintuitive result, we must look at the investment Euler equation

for a firm facing financial constraints. It is clear from this equation that investment is driven by

the ratio of marginal q to the marginal value of liquidity p′(w). Now in the credit region, both the

marginal value of liquidity p′(w) and marginal q are high when the firm is close to its credit limit.

Indeed, the marginal value of liquidity p′(w) increases at a higher rate than marginal q when the

firm uses up more of its credit line (i.e. when we move to the left in the credit region), and as a

result, the investment-capital ratio falls when the firm uses more credit.

Finally, we turn to the analysis of the stationary distribution of firms, when firms have access

to a credit line. To understand the different behavior in the cash and the credit regions, we report

the first four moments of the distribution plus the medians of the variables of interests (w, i(w),

p′(w), qa(w), and qm(w)) for each region. The most significant observation is that the availability

of credit makes the firm’s stationary distribution for these variables much less skewed and fat-tailed

in the cash region. Because liquidity is more abundant with a credit line, the firm’s marginal value

of cash is effectively unity throughout the cash region. However, the skewness and fat-tails of the

distribution now appear in the credit region (note, for example, the high kurtosis (117) for marginal
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q in the credit region.) Although the firm has a credit line of up to 20% of its capital stock, it only

uses about 4% of its line on average. The reason is that the firm does not spend much time around

the credit line limit. The risk of facing a large fixed cost of equity induces the firm to immediately

move away from its credit limit.

The cash-capital ratio w, i(w), qa(w), and qm(w) are all skewed to the left in the cash region,

as in our baseline model without a credit line. The intuition is similar to the one provided in

the baseline model. Moreover, because of the firm’s optimal buffer-stock cash holding, there is

effectively no variation in the cash region for the firm’s investment and value. Note also that the

mean and median of marginal q and average q are all equal to 1.483, up to the third decimal point.

Even for the investment-capital ratio i(w), the difference between its median and mean values only

appear at the third decimal point.

Unlike in the cash region, not only is the marginal value of credit p′(w) skewed to the left, but

so is marginal q in the credit region. The left skewness of marginal q and p′(w) are both driven

by the fact that every so often the firm hits the credit limit and incurs large financing costs. In

other words, there is much more variation in the credit region than in the cash region for marginal

q and the marginal value of liquidity p′(w). As marginal q and the marginal value of liquidity move

in the same direction in the credit region, there is, however, much less variation in i(w), which is

monotonically related to the ratio qm(w)/p′(w).

8 Conclusion

We have shown how in the presence of external financing and payout costs the firm’s optimal

investment, financing and risk management policies are all interconnected. The firm’s optimal cash

inventory policy takes the form of a double-barrier policy where the firm raises new funds only when

its cash inventory is entirely depleted, and pays out cash to shareholders only when its cash-capital

ratio hits an endogenous upper barrier. In between these two barriers, the firm continuously adjusts
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Table 2: Conditional moments from the stationary distribution of the credit line

model

This table reports the population moments for cash-capital ratio (w), investment-capital ratio
(i(w)), marginal value of cash (p′(w)), average q (qa(w)), and marginal q (qm(w)) from the station-
ary distribution in the case with credit line.

w i(w) p′(w) qa(w) qm(w)

A. credit line region
mean -0.042 0.094 1.085 1.479 1.485

median -0.032 0.100 1.060 1.480 1.482
std 0.035 0.019 0.082 0.005 0.009

skewness -1.194 -2.912 5.049 -3.926 8.754
kurtosis 4.177 14.908 43.820 25.977 116.770

B. cash region
mean 0.087 0.119 1.005 1.483 1.483

median 0.095 0.120 1.001 1.483 1.483
std 0.034 0.003 0.007 0.000 0.000

skewness -0.724 -1.930 1.994 -2.540 -1.122
kurtosis 2.489 6.157 6.463 9.222 3.007

its investment to take account of positive or negative cash-flow shocks. In addition the firm also

hedges its earnings risk by investing in financial assets that are not perfectly correlated with its

underlying business risk. The benefit of such hedges is to reduce the volatility of the firm’s cash

inventory.

Our model of the firm’s optimal risk management policy is both tractable and operational, to

the extent that the firm’s policy can be tied down entirely to observable parameter values, such as

the volatility and growth of earnings, the costs of external financing and the opportunity cost of

hoarding cash. In a number of respects, though, our model is simple. It does not account for the

sudden arrival of investment opportunities or changes in the cost of external financing. Nor does it

include other risks that firms are exposed to in practice such as litigation risk. Our model also does

not have any endogenous leverage decision. Finally, our analysis only looks at risk management

from the shareholders’ perspective. In practice, however, risk management decisions are made by
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self-interested managers. We believe that all of these features can be incorporated into our basic

model while still retaining a tractable and operational model. We leave the incorporation of these

elements into a richer model to future research.
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Appendix

Boundary conditions We begin by showing that PW (K,W ) ≥ 1. The intuition is as follows.

The firm always can distribute cash to investors. Given P (K,W ), paying investors ζ > 0 in cash

changes firm value from P (K,W ) to P (K,W − ζ). Therefore, if the firm chooses not to distribute

cash to investors, firm value P (K,W ) must satisfy

P (K,W ) ≥ P (K,W − ζ) + ζ,

where the inequality describes the implication of the optimality condition. With differentiability, we

have PW (K,W ) ≥ 1 in the accumulation region. In other words, the marginal benefit of retaining

cash within the firm must be at least unity due to costly external financing. Let W (K) denote the

threshold level for cash holding, where W (K) solves

PW
(
K,W (K)

)
= 1. (40)

The above argument implies the following payout policy:

dUt = max{Wt −W (Kt) , 0},

where W (K) is the endogenously determined payout boundary. Note that paying cash to investors

reduces cash holding W and involves a linear cost. The following standard condition, known as

super contact condition, characterizes the endogenous upper cash payout boundary (see e.g. Dumas,

1991 or Dixit, 1993):

PWW (K,W (K)) = 0. (41)

When the firm’s cash balance is sufficiently low (W ≤W ), under-investment becomes too costly.

The firm may thus rationally increase its internal funds to the amount W by raising total amount

of external funds (1 + γ) (W −W ). Optimality implies that

P (K,W ) = P (K,W )− (1 + γ) (W −W ), W ≤W. (42)
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Taking the limit by letting W →W in (42), we have

PW (K,W (K)) = 1 + γ. (43)

Risk-neutral probability Assuming market completeness, the linkage between the physical

measure P and the risk-adjusted measure Q is determined by the stochastic discount factor Λt (see

e.g. Duffie (2001)). For simplicity, we assume that the CAPM holds, so that Λt follows

dΛt
Λt

= −rdt− ηdB̂t,

where B̂t is a standard Brownian motion under P and is the source of shocks to market returns,

and η is the Sharpe ratio of the market portfolio. Then, Bt is a standard Brownian motion under

Q satisfying dBt = dB̂t + ηdt. We calibrate the Sharpe ratio of the market portfolio η = 0.3, and

assume that the correlation between the technology shocks Zt and market returns is ρ = 0.8.

The stationary distributions of cash-capital ratio w in this paper are computed under the

physical measure. The dynamics of w under P is

dwt = ((r − λ)wt + µ+ ρησ − i(w) − g(i(w))) dt+ σdẐt, (44)

where Ẑt is a standard Brownian motion under P.

Numerical Procedure We use the following procedure to solve the free boundary problem

specified by ODE (13) and the boundary conditions associated with the different cases. First,

we postulate the value of the free (upper) boundary w̄, and solve the corresponding initial value

problem using the Runge-Kutta method. For each value of w̄ we can compute the value of p(w)

over the interval [0, w̄]. We can then search for the w̄ that will satisfy the boundary condition

for p at w = 0. In the cases with additional free boundaries, including Case III and the model

of hedging with margin requirements, we search for w̄ jointly with the other free boundaries by

imposing additional conditions at the free boundaries.
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