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1 Introduction

A prominent feature of financial markets is infrequent but large price movements
(jumps). 1 In this paper, we develop a model in which income and dividends have
smooth Gaussian dynamics, however, asset prices are subject to large infrequent
jumps. In our model, large moves in asset prices obtain from the actions of the
representative agent to acquire more information about the unobserved state of the
economy for a cost. We show that the optimal decision to incur a cost and learn
the true economic state is directly related to the level of uncertainty in the economy.
This implies that aggregate economic volatility, as well as market volatility, should
predict jumps in returns. We show that indeed in the data, consistent with the model,
return jumps are predicted by consumption volatility (market volatility). Further, the
implied asset-price implications from our model are consistent with the key findings
from parametric models about frequency and predictability of jumps as discussed
in Singleton (2006) as well as nonparametric jump-detection analysis of Barndorff-
Nielsen and Shephard (2006). Based on our evidence, we argue that our structural
model provides an economic basis for realistic reduced-form models of stock price
dynamics with time-varying volatility and jumps.

We rely on the long-run risks model of Bansal and Yaron (2004), which key in-
gredients are a small and persistent low-frequency expected growth component, time-
varying income volatility, and recursive utility of Epstein and Zin (1989) and Weil
(1989). The expected growth is unobserved and has to be estimated from the history
of the data; in addition, the representative agent also has an option to incur a cost
and learn the true economic state. This setup is designed to capture the intuition that
some of the key aspects of the economy are not directly observable, but the agents
can learn more about them through additional costly exploration. We show that the
optimal decision to pay a cost and observe the true state endogenously depends on
the aggregate volatility, the variance of the filtering error and agent’s preferences. In
particular, with preference for early resolution of uncertainty, the optimal frequency
of learning about the true state after incurring a cost increases when consumption
volatility rises. On the other hand, with expected utility, the agent has no incentive to
learn the true state even if costs are zero. Learning about the true state may lead to
large revisions in expectations about future income, which translate into large moves
in asset prices. These large moves in asset prices obtain even though the underlying
income in the economy is smooth and has no jumps. Such asset-price moves, we show,
do not occur in economies where an option to learn about the true expected growth
for a cost is absent.

1 Jump-diffusion models are considered in Merton (1976), Naik and Lee (1990), Bates (1991),
Bakshi, Cao, and Chen (1997), Pan (2002), Eraker, Johannes, and Polson (2003), Eraker (2004),
Liu, Pan, and Wang (2005), Broadie, Chernov, and Johannes (2007). For a high-frequency analysis
of intra-day data, refer also to Barndorff-Nielsen and Shephard (2006) and Andersen, Bollerslev,
Diebold, and Vega (2003).
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Earlier studies, such as Gennotte (1986), David (1997), Veronesi (1999) and Ai
(2007) feature Kalman filter learning about the unobserved states to derive implica-
tions about the asset valuations in the economy. Veldkamp (2006) and Van Nieuwer-
burgh and Veldkamp (2006) specify a learning model where the endogenous infor-
mation flow varies with the level of economic activity. Hansen and Sargent (2006)
consider alternative approach to learning, which captures investors’ concerns about
robustness and potential model misspecification. In our approach, we modify stan-
dard Kalman filtering problem to account for endogenous learning about the true
state after paying a cost. The endogeneity of agent’s information set changes the
sources and prices of risks relative to standard models; in particular, the actions of
investors to learn about the true state alter asset valuations and can lead to asset-price
jumps.

One of the key implications of the model is that the income volatility predicts
future large moves in returns. We provide empirical support that large moves in the
stock market can be predicted by volatility measures in the economy. Specifically,
we document a positive correlation of return jump-indicator with lags of conditional
variance of consumption. On annual frequency, the volatility of annual consumption
significantly predicts next year large moves in market returns with an R2 of 9%, which
we show using two alternative measures of consumption volatility, including the usual
GARCH model. Further, in the data there is no evidence for predictability of large
moves in returns by the levels of the real aggregate variables. We show that the
model can match both of these novel and important data features. Earlier evidence
in Bates (2000), Pan (2002) and Eraker (2004) documents that market volatility also
predicts jumps. In our structural model, market variance is related to aggregate
income volatility, which consequently enables us to match this data feature as well
and provide an economic motivation for this empirical finding.

Our target is to match the key evidence on frequency, magnitude and predictability
of jumps in the data. In the data we identify 24 years with at least one significant
price move (i.e. jump) in daily return for the 80 year period from 1926 to 2006; hence,
the frequency of jump-years is one every 3.4 years2. In our sample, we find that the
relative contribution of jumps to the total return variance is 7.5%, which is consistent
with the evidence in Huang and Tauchen (2005) and other studies. We calibrate the
model so we can match these dimensions along with other key asset-market facts. We
use standard calibrations of income and preference parameters, while our calibration
of learning costs is similar to observation and transactions costs in Abel, Eberly,
and Panageas (2007a, b).3 We show that at the calibrated value of learning cost
parameters, investors optimally choose to observe the true state about once every one

2This provides a conservative estimate for the frequency of return jumps in the data, as there
can be more than 1 jump in daily returns on a given year.

3Rational inattention channel is also used to explain infrequent adjustments of stock portfolio
(Duffie and Sun 1990) or the consumption and saving plans of investors (Reis, 2006) .
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and a half year, and the per annum expenditure on costly learning is merely 0.02%
of the aggregate income. The model with constant aggregate volatility delivers the
average frequency of jump-years once every 4.5 years, and the contribution of jumps
to return variance of 7.7%. When we allow for time-varying aggregate volatility, the
average frequency of jump-years increases to once every 4 years, while the relative
contribution of jumps — to 9.5%. In standard models with no option to learn the true
state for a cost, asset prices do no exhibit jumps. Further, we show that the model
with costly learning delivers positive and significant correlation of large return move
indicator with endowment and return variances and zero correlation with endowment
growth. The magnitudes of the correlation coefficients are comparable to the data.

The rest of the paper is organized as follows. In the next section we review the
empirical evidence on large infrequent movements in asset valuations in the data. In
Section 3 we set up a model and describe preference, information structure and in-
come dynamics in the economy. In Section 4 we characterize solutions to the optimal
learning policy and equilibrium asset valuations. Finally, in Section 5 we use nu-
merical calibrations to quantify model implications for asset-price jumps. Conclusion
follows.

2 Evidence on Asset Price Jumps

Empirical evidence suggests that asset prices display infrequent large movements
which are too big to be Gaussian shocks. In the first panel of Figure 1 we plot
the time-series of daily inflation-adjusted returns on a broad market index for the
period of 1926-20064. Occasional large spikes in the series suggest presence of large
moves (jumps). Indeed, the empirical quantiles plot on Figure 2 indicates that there
are substantial deviations in the distribution of market returns from Normality, with
a number of observations falling far in the tails. Consistent with this evidence, the
kurtosis of market returns is 21, relative to 3 for Normal distribution, as shown in
the first panel of Table 1.

For further evidence on large movements in asset prices, we apply non-parametric
jump-detection methods (see Barndorff-Nielsen and Shephard, 2006), used in a stream
of papers in financial econometrics. This approach allows us to identify years with
one or more large price moves in daily returns.

Let rT stand for a total return from time T − 1 to T, and denote rT,j the jth
intra-period return from T − 1 + (j − 1)/M to T − 1 + j/M, for j = 1, 2, . . . , M. The

4We prorate monthly inflation rate to daily frequency to obtain inflation-adjusted returns from
nominal ones. The results for the nominal returns are very similar.
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two common measures which capture the variation in returns over the period are the
Realized Variation, given by the sum of squared intra-period returns,

RVT =
M∑

j=1

r2
T,j (2.1)

and the Bipower Variation, which is defined as the sum of the cross-products of
current absolute return and its lag:

BVT =
π

2

(
M

M − 1

) M∑

j=2

|rT,j−1||rT,j|. (2.2)

When the underlying asset-price dynamics is a general jump-diffusion process, for
finely sampled intra-period returns the Realized Variation RVT measures the total
variation coming both from Gaussian and jump components of the price, while the
Bipower Variation BVT captures the contribution of a smooth Gaussian component
only (see, e.g. Barndorff-Nielsen and Shephard, 2006).5 Hence, these two measures
reveal the magnitudes of smooth and jump components in the total variation of
returns. A scaled difference between these two measures (Relative Jump statistics)
provides a direct estimate of the percentage contribution of jumps to the total price
variance:

RJT =
RVT − BVT

RVT
. (2.3)

Under the assumption of no jump and some regularity conditions, Barndorff-
Nielsen and Shephard (2006) show that the joint asymptotic distribution of the two
variation measures is conditionally Normal. This allows us compute a t-type statistics
to test for abnormally large price movements, which are indicative of jumps. A
popular version of this statistics is

zT =
RVT − BVT√((

π
2

)2
+ π − 5

)
1
M

TPt

, (2.4)

5More precisely, under some technical conditions,

lim
M→∞

RVT =

∫ T

T−1

σ2

p(s)ds +

NT∑

j=1

k2

T,j , lim
M→∞

BVT =

∫ T

T−1

σ2

p(s)ds,

where σp(s) is the instantaneous volatility of the Brownian motion component of the price, kT,j is
the jump size and NT is the number of jumps within the period T.
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where the jump-robust Tri-Power Quarticity measure TPt estimates the scale of the
variation measures and is defined as

TPT =

(
M2

M − 2

)(
E(|N(0, 1)|4/3)

)
−3

M∑

j=3

|rT,j−2|4/3|rT,j−1|4/3|rT,j|4/3. (2.5)

Under the null hypothesis of no jumps and conditional on the sample path, the
jump-detection statistics zT is asymptotically standard Normal. Thus, if the value of
zT is higher than the cut-off corresponding to the chosen significance level, then the
test detects at least one large price move during the period T.

To calculate the jump-detection statistics over a year, we use the data on 266
daily returns, on average6. M = 266 is a typical number in high-frequency studies,
where it roughly corresponds to using 5-minutes returns to compute daily (24 hours)
statistics. Huang and Tauchen (2005) discuss the performance of the tests in finite
samples.

On Figure 1 we plot daily inflation-adjusted market returns and the corresponding
years detected by jump-detection statistic for the period of 1927 - 2006. At 1%
significance level, we flag 24 years with at least one significant move in daily asset
prices. The relative contribution of large movements to the total return variation,
as measured by the average relative jump measure RJ, is 7.5%. This estimate is
consistent with other studies.

Naturally, the detection of jump-years depends on the chosen significance level of
the test. When the significance level drops, the cut-off value for the jump statistics in
equation (2.4) increases, so that only larger jumps get flagged. On Figure 3 we plot the
average frequency of detected jump-years in the data for a range of significance levels
from 0.5% to 5%. As the significance level increases, the detected frequency of jump
periods increases from one every 4 years to one every 2.5 years. In subsequent analysis,
we fix the significance level to 1% – the results for other values are qualitatively very
similar.

2.1 Predictability of Large Price Moves

In this section, we provide empirical evidence that fundamental macroeconomic volatil-
ity and variance of market returns can predict future large moves in asset prices in
the data. On the other hand, there is no consistent evidence in the data for the link
between large moves in returns and the levels of aggregate macro variables. That is,

6For predictability regressions, we construct similar measures on monthly and quarterly frequen-
cies.
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at the considered frequencies of large moves in returns, jumps in asset prices are not
predicted by the variations in the level of real economy.

On the top panel of Figure 5 we plot the correlations of jump year indicator with
annual consumption growth rate, its conditional variance and the conditional variance
of market returns up to 5 year leads and lags (conditional variance calculations are
based on AR(1)-GARCH(1) fit). The correlations of large move indicator with lagged
aggregate volatility are all positive and are within 0.2-0.3 range. Similarly, positive
market variance positively predicts future jump years 1 to 4 years ahead, with the
correlation coefficient of about 0.1. As for the level of consumption growth, while the
correlation coefficients are negative for 1 and 2 year lags and around -0.1, they turn
positive at 3 year lag.

The predictability patterns are stronger at quarterly and monthly frequencies,
as the persistence of variance measure and the frequency of detected jump periods
increase. As consumption data is not available at such frequencies for a long historical
sample, we use the industrial production index growth, whose monthly and quarterly
observations are available from 1930s.7 On the bottom panels of Figure 5 we plot
the lead-lag correlations of the jump indicator with levels and conditional volatilities
of industrial production growth rate and variance of market return at quarterly and
monthly frequency. The results present a robust evidence for positive correlations of
future large move indicators with variance measures and no consistent link with the
level of the real economy.

To sharpen quantitative results, we construct a measure of macroeconomic volatil-
ity based on the financial markets data. We regress annual consumption growth on
its own lag, the lags of market price-dividend ratio and junk bond spread and extract
consumption innovation. The square of this innovation is further projected on the
price-dividend ratio and junk bond spread, so that the fitted value σ̂2

T captures the
level of ex-ante aggregate volatility in the economy. The results of the two projec-
tions are summarized in the top panel Table 2. The R2s are in excess of 20%, and
the signs of the slope coefficients are economically intuitive: low asset valuations and
high bond spreads predict low expected growth and high uncertainty.

We use the extracted factor σ̂2 to forecast next year jump indicator statistic. The
probit regression of the next-period jump indicator on current measure of macroeco-
nomic volatility yields a statistically significant coefficient on σ̂2

T with a t-statistics in
excess of 3, and R2 of 9%. Specifically,

P̂ r(JumpIndicatorT+1) = Φ

(
−0.95
(0.22)

+ 1411.35
(469.35)

σ̂2
T

)
,

7On annual frequency, the correlation of growth rates in consumption and industrial production
is 0.55, while the correlation of their conditional variances is 0.84.
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where JumpIndicatorT is equal to 1 if year T is flagged as a jump-year and 0 other-
wise. On Figure 4 we plot the jump-detection statistics zT itself and the fitted proba-
bility of contemporaneous jump. The spikes in fitted probabilities broadly agree with
large values of the jump statistics, even for the 1955-1980 period when no significant
price moves were detected.

For robustness, we also check the results using GARCH measure of annual con-
sumption volatility in the data. The bottom panel of Table 2 shows that the estimated
aggregate consumption volatility is very persistent in the data. The probit estimation
of predictability of future jump-year indicator is given by,

P̂ r(JumpIndicatorT+1) = Φ

(
−0.80
(0.21)

+ 899.23
(395.68)

σ̂2
T

)
,

so that the consumption volatility is statistically significant predictor of future jump
years with t−statistics of 2.3, and the R2 of 6%.

Predictability of future jumps by the consumption variance is a novel dimension
of this paper. Predictability of future return jumps by market variance is consistent
with the evidence in earlier studies which estimate parametric models of asset-price
dynamics, see Bakshi et al. (1997), Bates (2000), Pan (2002), Eraker (2004) and
Singleton (2006).

3 Model Setup

Our model builds on the long-run risks framework developed in Bansal and Yaron
(2004), where the investor has a full information about the economy. In contrast, we
assume that investors do not observe all the relevant state variables, and hence there
is an important role for learning about the true underlying state of the economy. In
the model we show that the actions of the agents to learn the unobserved states can
lead to asset-price dynamics which exhibits jumps.

3.1 Preferences and Information

Denote It the beginning-of-period information set of the agent, which includes cur-
rent and past observed variables. The information set by the end of the period is
endogenous and depends on the decision of investors to learn about the true state.
Let us introduce a binary choice indicator st ∈ {0, 1}, which is equal to one if the
agent learns about the true state for a cost in period t, and zero otherwise. Let It(st)
be the time-t (end-of-period) information set following a choice st. With no learn-
ing about the true state (st = 0), the end-of-period information set coincides with

7



that in the beginning of the period: It(0) ≡ It. On the other hand, when st = 1,
investors acquire new information during the day which enriches their information
set: It(1) ⊃ It. Further, let Et denote the conditional expectation with respect to
the information set It, while denote Est

t the conditional expectation based on the
information following a binary choice st : Est

t (.) ≡ E[.|It(st)].

We consider recursive preferences of Epstein and Zin (1989) over the uncertain
consumption stream, with the intertemporal elasticity of substitution parameter set
to one:

Ut = C1−β
t (Jst

t (Ut+1))
β , (3.1)

Jst

t (Ut+1) =
(
Est

t U1−γ
t+1

) 1

1−γ . (3.2)

Ct denotes consumption of the agent and Jst(Ut+1) is the certainty equivalent function
which formalizes how the agent evaluates uncertainty across the states. Parameter β
is the subjective discount factor, and γ is the risk-aversion coefficient of the agent.
Note that certainty equivalent function depends on the choice indicator st ∈ {0, 1},
as the information set of the agent is different whether the investors learn about the
true state (st = 1) or not (st = 0).

To solve the model, we consider an optimization problem of the social planner,
who wants to optimally allocate the exogenous output stream between consumption
and learning expenditures. The solution to the social planner problem can then be
decentralized in the competitive markets, which we verify by solving the representative
agent problem directly.

3.2 Social Planner Problem

Consider the life-time utility of the agent Ut(st) for a given learning choice of the
social planner st ∈ {0, 1} :

Ut(st) = Ct(st)
1−β (Jst

t (Ut+1))
β , (3.3)

where Ut+1 is the optimal utility tomorrow, and Ct(st) denotes a choice specific con-
sumption of the agent. The risk-sensitive certainty equivalent operator Jst

t (Ut+1) is
specified in equation (3.2).

The objective of the social planner is to maximize the certainty equivalent of the
life-time utility of the agent Ut(st) with respect to the beginning-of-period information
set It by choosing whether or not to learn about the true state for a cost:

s∗t = arg max
st

{Jt(Ut(st))} . (3.4)
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The true value of the state is not known to the planner in the beginning of the period.
As the agents are risk-sensitive to the new information about the state, the planner
chooses to learn about the state for a cost if the certainty equivalent of agent’s life-time
utility with learning is bigger than the life-time utility without learning. Following
a decision to learn, the social planner then uses part of the endowment to pay the
learning cost.

Define Yt the aggregate income process. Then, the budget constraint of the social
planner states that the aggregate income is equal to consumption and learning cost
expenditures:

Yt = Ct(st) + stξt. (3.5)

The learning cost ξt represents the resources required to acquire and process the new
information about the underlying economic state. It is similar to costs of observing
the value of wealth and costs of transferring assets and rebalancing the portfolio
featured in rational inattention literature, see Abel, Eberly, and Panageas (2007a, b).
For analytical tractability, we make ξt proportional to the aggregate income:

ξt = χYt, (3.6)

for 0 ≤ χ < 1. This specification preserves the homogeneity of the problem and
simplifies the solution of the model.

In Appendix A.1 we show that in equilibrium, the life-time utility of investors
following learning choice st are proportional to the level of income,

Ut(st) = φt(st)Yt, for st ∈ {0, 1}. (3.7)

where the utility per income ratio φt(st) satisfies the following recursive equation:

φt(st) = (1 − stχ)1−β

(
Est

t

[
φt+1

Yt+1

Yt

]1−γ
) β

1−γ

. (3.8)

Learning about the true state has two opposite effects on the utility of investors.
First, the agent’s consumption drops as part of the aggregate endowment is sacrificed
to cover the learning costs. This decreases the agent’s utility, as evident from exam-
ining the first bracket in the expression above. On the other hand, learning enriches
the information set of investors, and the ensuing reduction in the uncertainty about
future economy may increase their utility (second part of the expression (3.8)). The
net effect depends on the attitude of investors to the timing of resolution of uncer-
tainty and the magnitude of learning costs. For example, in Appendix A.2 we show
that with expected utility, the agent never learns about the true state even at zero
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costs, as there is no preference for early resolution of uncertainty. On the other hand,
if investors have preference for early resolution of uncertainty, they will choose to
learn for a cost if the the cost is small enough.

The decentralization of the social planner problem leads to the usual equilibrium
Euler equation

E
s∗t
t [Mt+1Ri,t+1] = 1, (3.9)

where Ri,t+1 is the return on any asset traded in the economy. The expression for the
discount factor Mt+1 is also standard, safe for an endogenous information set which
depends on the optimal choice indicator s∗t :

Mt+1 = β

(
Yt+1

Yt

)
−1 U1−γ

t+1

E
s∗t
t (U1−γ

t+1 )
. (3.10)

3.3 Income Dynamics

The log income growth rate process incorporates a time-varying mean xt and stochas-
tic volatility σ2

t :

∆yt+1 = µ + xt + σtηt+1, (3.11)

xt+1 = ρxt + ϕeσtǫt+1, (3.12)

σ2
t+1 = σ2

0 + ν(σ2
t − σ2

0) + σwσtwt+1. (3.13)

where ηt, ǫt and wt are independent standard Normal innovations. Parameters ρ and
ν determine the persistence of the mean and variance of the income growth rate,
respectively, while ϕe and σw govern their scale. The empirical motivation for the
time-variation in the conditional moments of the income process comes from the long-
run risks literature, see e.g. Bansal and Yaron (2004), Hansen, Heaton, and Li (2008)
and Bansal and Shaliastovich (2007).

We assume that the volatility σ2
t is known to the agent at time t, which can be

justified as the availability of high-frequency data allows for an accurate estimation
of the conditional volatility in the economy. On the other hand, the true expected
income state xt is not directly observable to the investors. The investors can learn
about the state from the observed data using standard filtering techniques, and they
also have an additional option to pay a cost to learn its true value. This setup is
designed to capture the intuition that some of the key aspects of the economy are not
directly observable, but the agents can learn more about them through additional
costly exploration. The learning costs in this paper are similar to the observation and
information costs in rational inattention literature; see Abel, Eberly, and Panageas
(2007a), Reis (2006) and Duffie and Sun (1990).
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We apply a separation principle and solve a filtering problem before the optimiza-
tion problem of the agent. Given the setup of the economy, the beginning-of-period
information set of the agent consists of the history of income growth, income volatility
and observed true states up to time t : It = {yτ , σ

2
τ , sτ−1xτ−1}t

τ=1 . If the agent does
not learn the true state in period t, the end-of-period information set is the same as
in the beginning of the period: It(0) = It. On the other hand, if the agent learns the
true value of the expected income state, the information set immediately adjusts to
include xt : It(1) = It ∪ xt. Define a filtered state x̂t(st), which gives the expectation
of the true state xt given the information set of the agent and the costly learning
decision st:

x̂t(st) = Est

t (xt), (3.14)

and denote ω2
t (st) the variance of the filtering error which corresponds to the estimate

x̂t(st) :
ω2

t (st) = Est

t (xt − x̂t(st))
2. (3.15)

If the agent chooses to learn about the true state, we obtain, naturally, that x̂t(1) = xt

and ω2
t (1) = 0.

Given the history of income, income volatility and past observed expected growth
states, the agent updates the beliefs about unobserved expected income state in a
Kalman filter manner. Indeed, as the income volatility is observable, evolution of
the system is conditionally Gaussian, so that the expected mean and variance of the
filtering error are the sufficient statistics to track the beliefs of the agent about the
economy next period. Specifically, for a given choice indicator st today, the evolution
of the states in the beginning of the next period follows from the one-step-ahead
innovation representation of the system (3.11)-(3.13):

∆yt+1 = µ + x̂t(st) + ut+1(st), (3.16)

x̂t+1(0) = ρx̂t(st) + Kt(st)ut+1(st), (3.17)

ω2
t+1(0) = σ2

t

(
ϕ2

e + ρ2 ω2
t (st)

ω2
t (st) + σ2

t

)
, (3.18)

where the gain of the filter is equal to

Kt(st) =
ρωt(st)

2

ωt(st)2 + σ2
t

. (3.19)

The filtered consumption innovation ut+1(st) = σtηt+1 + xt − x̂t(st) is learning
choice specific, and contains short-run consumption shock and filtering error. The
two cannot be separately identified unless the agent learns the true xt, in which
case the filtered consumption innovation is equal to the true consumption shock,
ut+1(1) = σtηt+1. The filtered consumption innovation is used to update the estimate
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of the expected growth x̂t+1(0), as shown in (3.17). This Kalman filter estimate is
known to the agent at the beginning of next period. If investors decide to pay the
cost to learn the true xt+1, the expected income and variance of the filtering error are
immediately adjusted to reflect the new information. We can then express the values
of the states tomorrow in the following way:

x̂t+1(st+1) = st+1xt+1 + (1 − st+1)x̂t+1(0), (3.20)

ω2
t+1(st+1) = (1 − st+1)ω

2
t+1(0). (3.21)

Recall that the variance shocks wt+1 are assumed to be independent from the
income innovations at all leads and lags. That is, future volatility shocks do not
help predict tomorrow’s expected income, and neither can learning about xt affect
the agent’s beliefs about future volatility. Therefore the dynamics of the income
volatility is independent of the learning choice of the agent and follows (3.13). If
income volatility is constant, we obtain a standard Kalman Filter result that the
variance of the filtering error ω2

t (0) increases in a deterministic fashion since the last
costly learning. On the other hand, when income volatility is stochastic, the variance
of the filtering error fluctuates and typically increases faster at times of heightened
aggregate volatility. Learning models considered by David (1997) and Veronesi (1999)
use regime-shift specification for expected growth component and feature alternative
time-varying dynamics of the filtering uncertainty.

We specified the evolution of the economy in the beginning of the next period
in (3.16)-(3.18), and instantaneous adjustments of the expected income and variance
of the filtering error when the agent chooses to learn the true state for a cost in
(3.20)-(3.21). The decision to learn is endogenous and is determined as a part of the
equilibrium solution of the model, which we discuss in the next section.

4 Model Solution

4.1 Optimal Costly Learning

The life-time utility of the agent depends on the beginning-of-period information and,
at times when the agent chooses to learn about the true state for a cost, on the true
value of the expected income growth. As the volatility and consumption shocks are
uncorrelated, we can separate the expected growth and volatility components in the
equilibrium utility per income ratio, which simplifies the solution to the model. In
Appendix A.3 we show that the life-time utility per income ratio can be written in
the following way:

φt(st) = eBx̂t(st)+f(st,σ2
t ,ω2

t (0)), (4.1)
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where the sensitivity of the utility to expected income growth is independent of the
costly learning choice and is given by

B =
β

1 − βρ
. (4.2)

The volatility function f(st, σ
2
t , ω

2
t (0)) depends on the learning choice st, the

volatility states σ2
t and ω2

t (0), as well as risk aversion of the agent γ and learning
cost parameter χ. It satisfies the recursive equation given in the Appendix (A.18).

The agent chooses to observe the true state if the ex-ante life-time utility with
learning exceeds the utility with no learning about the true state. Given the equi-
librium solution to the life-time utility per income ratio in (4.1), investor’s life-time
utility with no learning is

φt(0) = eBx̂t(0)+f(0,σ2
t ,ω2

t (0)), (4.3)

while the certainty equivalent of the life-time utility (per income) with costly learning
is

Jt(φt(1)) = eBx̂t(0)+
1

2
(1−γ)B2ω2

t (0)+ft(1,σ2
t ,ω2

t (0)). (4.4)

In our setup, the agent has recursive preferences when the risk-aversion coefficient
γ is different from 1; when γ = 1 preferences collapse to a standard expected log
utility case. The incentive to learn the unobserved state for a cost critically depends
on the recursive preferences of the agent. Indeed, when γ = 1, the volatility functions
f(st, σ

2
t , ω

2
t (0)) are constant and depend only on the learning choice st; moreover, the

level of life-time utility following a learning choice is smaller than the level of utility
without learning for any positive learning cost parameter χ. Hence, in expected util-
ity case, the agent never learns for a cost. On the other hand, with recursive utility,
the volatility functions f(st, σ

2
t , ω

2
t (0)) are time-varying, so that the ex-ante life-time

utilities of the agent with and without learning depend on the income volatility and
variance of the filtering error. Learning choice is optimally determined by the rela-
tive difference between these utilities. Given our distributional assumptions on the
economy, this difference depends only on volatility states w2

t (0) and σ2
t , but not on

the expected growth:

s∗t = 1[J0
t (φt(1)) > φt(0)]

= 1

[
1

2
(1 − γ)B2ω2

t (0) + ft(1, σ
2
t , ω

2
t (0)) > ft(0, σ

2
t , ω

2
t (0))

]
.

(4.5)

Hence, the optimal learning choice of the agent is governed by the income volatility,
variance of the filtering error and preference and learning cost parameters. In general,
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solutions for the volatility function f and the optimal learning choice s∗t are not
available in a closed form, so we have to solve for them numerically. In the case when
income shocks are homoscedastic, the variance of the filtering error is a deterministic
function of time since the last costly learning, so investors optimally learn about the
true state at constant time intervals. On the other hand, when income volatility is
time-varying, we show that the agent chooses to learn the true state when the filtering
variance gets too high relative to the underlying volatility of the income growth, so
that the utility benefits from reducing the uncertainty outweigh the learning costs.
Further, the frequency of costly learning increases at times of heightened income
volatility, as the filtering uncertainty accumulates faster when income volatility rises.

4.2 Risk Compensation and Asset Prices

Using the solution to the equilibrium discount factor in (3.10), we can express the
equilibrium discount factor in terms of the underlying variables in the economy. The
conditional mean of the discount factor is equal to the negative of the expected income
growth plus the contribution of the income and filtering variance:

Est

t mt+1(st) = log β − µ − x̂t(st) −
1

2
(1 − γ)2(BKt(st) + 1)2(ω2

t (st) + σ2
t )

− (γ − 1)Est

t ft+1 − ln Est

t e(1−γ)[ft+1+
1

2
(1−γ)B2ω2

t+1
(0)s∗t+1].

(4.6)

The innovation into the log discount factor satisfies,

mt+1(st) − Est

t mt+1(st) = − (1 + (γ − 1)(1 + BKt(st))) ut+1(st)

− (γ − 1)Bs∗t+1(xt+1 − x̂t+1(0)) − (γ − 1)(ft+1 − Est

t ft+1).

(4.7)

If the expected endowment growth factor is observable by the agent, (e.g., the
information costs are zero), we obtain a standard long-run risks setup. The price of
a short-run consumption risk is then γ, and prices of long-run and volatility risks are
constant and provided in the above studies.

The option to learning about the true state for a cost changes the sources and
prices of risks relative to standard models. In our model, the price of immediate
consumption risk ut+1 is time-varying because the expected growth state is unob-
servable and has to be learned from the data. As the decision to learn about the
true state depends on income volatility, the pricing of income volatility shocks is also
more complicated, which is reflected in the non-linear volatility function ft+1. Finally,
while in the standard long-run risks model the agent fears the true innovations into
the expected growth, xt+1−Etxt+1, in our model its counterpart is the revision of the
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state, s∗t+1(xt+1 − x̂t+1(0)). Although both risks have the same market price (γ−1)B,
the amount of risk can be much higher in our case as the variance of the filtering error
can significantly exceed the conditional volatility of long-run risks shocks. Therefore,
the option to learn about the true state can have a considerable effect on the asset
valuations in the economy. In an alternative specification with robust control, Hansen
and Sargent (2006) show that the concerns of the agents about model misspecification
can also generate substantial magnification of the risk premia.

Consider an asset with a dividend stream proportional to income growth,

∆dt = µ + ϕd(∆yt − µ). (4.8)

Bansal and Yaron (2004) specify dividend dynamics which includes idiosyncratic
dividend shock. The specification above is simpler as it does not require extension of
the model to multivariate Kalman filter, but preserves model results and intuition.

Using the equilibrium solution to the discount factor in (4.6)-(4.7) and the Euler
condition (3.9), we can solve for the equilibrium log price-dividend ratio,

vt(st) = Hx̂t(st) + h(st, σ
2
t , ω

2
t (0)), (4.9)

where the solutions for H and h(st, σ
2
t , ω

2
t (0)) are given in Appendix A.4.

The asset valuations depend on filtered or, if st = 1, true expected income growth.
When investors learn about the true state, the equilibrium price-dividend ratio re-
sponds to the the revision in the expected income state magnified by H . For example,
as H is positive, when the true xt is lower than what the agent expected, asset prices
can fall sharply. The probability of costly learning, and consequently, large asset-price
moves depends on the volatility states in the economy. In particular, when aggregate
volatility is high, investors learn for a cost more often, which triggers more frequent
large moves in returns. As the volatility of equilibrium returns also increases in ag-
gregate volatility, the model can thus explain the predictability of future asset-price
jumps by macroeconomic and return variance. In Section 5 we calibrate the economy
and show that the model-implied jump implications are quantitatively consistent with
the data.
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5 Model Output

5.1 Model Calibration

The model is calibrated on daily frequency. The baseline calibration parameter values,
which are reported in Table 3, are similar to the ones used in standard long-run risks
literature ( see e.g. Bansal and Yaron, 2004), safe for an adjustment to daily frequency.
Specifically, we set the persistence in the expected income growth ρ at 0.9963. The
choice of ϕe and σ0 ensures that the model matches the annualized aggregate volatility
of about 2%, while the volatility persistence is set to ν = 0.99. To calibrate dividend
dynamics, we set the leverage parameter of the corporate sector ϕd to 5. We calibrate
the model on a daily frequency and then time-aggregate to annual horizon. Table 4
shows that we can successfully match the unconditional mean, volatility, and auto-
correlations of the endowment dynamics in the data.

As for the preference parameters, we let the subjective discount factor δ equal
0.9999 and set the risk aversion parameter at 10. The learning expenditure includes
the resources that the investors spend to acquire and process the information about
true value of the underlying economic state, which includes opportunity costs of time
and effort. We calibrate the cost parameter similar to observation and information
costs in rational inattention literature, see Abel, Eberly, and Panageas (2007a, b).
At this level of learning costs, investors are willing to optimally learn the true state
about once every one and a half year, so that expenditure on costly learning accounts
merely for 0.02% of annual aggregate income. The calibration of the learning cost
parameter is sensitive to the assumed values of other model parameters, such as risk
aversion and level of the volatility shocks. We discuss these issues later in the section.

5.2 Constant Volatility Case

First we consider a special case when income volatility is constant, that is, σt = σ0.
This provides a useful benchmark case as the numerical solution to the model is greatly
simplified. Indeed, in a standard homoscedastic Kalman Filter setup the variance of
the filtering error ω2

t is a deterministic function of time since the last learning about
the true state. Therefore, the optimal learning policy is purely time-dependent, so
that the agent chooses to learn every Nth period, where N depends on the preference
and income dynamics parameters of the model. We provide the details of the solution
to the model in Appendix A.5.

On Figure 6 we show the optimal length of the filtering period N as a function of
the cost parameter χ for risk aversion levels of 5, 10 and 15. When cost of learning
increases, the agent chooses to learn the true expected income state less frequently.
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This decision is also very sensitive to the risk attitude of the investors, so that more
risk-averse investors learn about the true state more often for any value of the learning
cost parameter. On the other hand, when the risk-aversion coefficient is less than or
equal to 1, the agent will never choose to learn the true state for a cost, as there is
no preference for early resolution of uncertainty.

Table 1 reports asset-pricing implications of the option to learn for a cost in the
model with constant income volatility. Simulated mean and volatility of returns are
7.9% and 15.3%, respectively, which match statistics in the data. On Figure 8 we
plot a typical simulation of the economy for 80 years. The log income growth is
conditionally Normal, and the filtered expected income state closely tracks the true
state with a correlation coefficient in excess of 0.7. About every 2 years the agent pays
the cost and learns the true state. The revision in expectations about future income
growth triggers proportional adjustments to the equilibrium asset prices, as can be
seen from equation (4.9). In presence of highly persistent long-run risks shocks,
asset prices are very sensitive changes in expected income state. Therefore, even
small deviations in the filtered state from the truth, when uncovered, can lead to
large changes in valuations that look like large price moves. Notably, although the
number of periods between successive days with costly learning is constant, the years
with flagged jumps do not have to occur at regular intervals, as shown on Figure 8.
Indeed, the jump-detection statistics is designed to pick out only large jumps, hence
the significance level of 1%, so that some of the smaller price adjustments remain
undetected.

For comparison, the last graph on Figure 8 depicts the equilibrium market returns
which would obtain in this economy if agent could not learn the true state for a cost
and have to exclusively rely on standard Kalman filtering. As can be seen in the
second panel of Table 1, the specification with no learning cannot deliver large price
movements observable before. The jump-detection statistics typically do not find
more than 2 or 3 instances of large price moves in 80 years of simulated daily data;
the detected jumps represent pure-chance large random draws in the simulation. On
the other hand, when agent can learn about the true state for a cost, the detected
jump frequency is about 4.5 years, and the contribution of jumps to the total return
variation is 7.7%. These numbers are consistent with the data (see first panel of Table
1).

Similar conclusions obtain from comparison of the unconditional distributions of
returns. When the agent has no option to learn the true state, the kurtosis of return
distribution is equal to 3, relative to 18 for the returns in the economy with learning,
and 21 for the data. As income volatility is kept constant, the heavy tails in the return
distribution are driven solely by the discrete adjustments to the asset valuations.

The constant-volatility case can deliver the key result that the equilibrium asset
prices can display infrequent large movements which cannot be explained by standard
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Gaussian shocks. However, when income shocks are homoscedastic, the decision to
learn is purely time-dependent, and volatilities of macroeconomic and financial vari-
ables are constant. We can address these issues by opening up stochastic volatility
channel, which we discuss in the next section.

5.3 Time-Varying Volatility Case

The asset-pricing implications of costly learning in a time-varying volatility setup
take into account state-dependence and time-variation of the optimal costly learning
rule. Indeed, as both aggregate volatility and filtering variance are now time-varying,
the optimal decision to learn about the true state is stochastic, as shown in income
dynamics simulation on Figure 9. We further characterize the dependence of optimal
costly learning on filtering and income volatilities on Figure 7, which depicts the
expected number of periods till next costly learning given current filtering variance
for high, medium and low values of aggregate volatility. Investors choose to learn for
a cost if the variance of the filtering error grows too high in the economy, so that it
is optimal to sacrifice part of the current endowment, pay learning cost and reduce
the amount of uncertainty. Costly learning is more frequent in high income volatility
states, as in those states the uncertainty about the filtered estimate accumulates
faster and is expected to reach the costly learning cut-off point sooner. These actions
of investors to learn about the underlying state can lead to large adjustments in
daily asset prices, detected as jumps by annual jump-detection statistics, as shown
in return simulation on Figure 10. Relative to constant volatility case, the detected
jump-years are more frequent, averaging one every 4 years, and contribute more to
the total variation in returns, 9.5% versus 7.5% in a constant-volatility case and in
the data (see Table 1). For robustness, on Figure 11 we also show the model-implied
jump-year frequency for a range of significance levels for the jump-detection test. As
the significance level increases, the null of no jumps is rejected more often, so that
the frequency of detected jump-years increases. As the Figure shows, the model can
broadly match the evidence on the average frequency of jump-years in the data, as
all the values are well within the 5% − 95% confidence band. These large moves in
returns cannot be obtained in economy without costly learning, as can be visually
seen on the time-series plot of returns on Figure 10. Without costly learning, the
average frequency of detected jump-years is less than 1 in 80 years, and the detected
”jumps” are merely pure-chance large random draws. The comparison of the fourth
moments of return distribution is revealing: without an option to learn, the kurtosis
of market returns is 3, and it reaches 35 when the agent can learn the true state for
a cost.

On Figure 11 we plot the unconditional distribution of the number of periods
between the detected jump-years based on long simulation from the full model with
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time-varying consumption volatility. In jump-diffusion models of asset prices with
constant arrival intensity of jumps, the number of periods between successive jumps
is exponential, so for comparison, we also provide an exponential fit to the jump-year
duration distribution in the model. The mean of the fitted exponential distribution is
3.6 years, which agrees with the estimate of the jump-year frequency reported in Table
1. While the exponential distribution generally fits the distribution of jump duration,
there is evidence for clustering of jumps – the unconditional distribution has heavier
left tale than exponential, so a jump-year is likely to follow another. Clustering and
predictability of jumps is an important aspect of our model, which we discuss in the
next section.

5.4 Predictability of Jumps

In the model with time-varying consumption volatility, the frequency of learning and
consequently, the likelihood of price jumps, is increasing with aggregate volatility,
so that returns jumps are more frequent at times of high aggregate volatility. As
discussed before in Section 2, the predictability of return jumps by the aggregate
volatility is an important feature of the data, and our model can capture this effect.
Furthermore, as the aggregate volatility also drives the variation in equilibrium market
returns, our model can provide an economic explanation for the predictability of large
asset-price moves by the variance of returns in the data. Finally, as in the data, the
levels of income does not predict future return jumps, as the optimal learning choice
depends only on the income volatility and variance of filtering error. This highlights
an important aspect of the model and the data that the second moments are critical
to forecast future jumps, while the movements in the level are not informative about
future jumps in returns.

The model can quantitatively reproduce the key features of predictability of return
jumps by consumption and market variance, and absence of predictability of future
jumps by the level of consumption. On Figure 12 we show model-implied lead-lag
correlations of jump indicator with endowment growth and conditional variance of
endowment growth and returns at monthly frequency, constructed in the same way
as the empirical counterparts on Figure 5. The model with costly learning delivers
positive and significant correlation of large return move indicator with endowment and
return variances and zero correlation with endowment growth. The magnitudes of the
correlation coefficients are comparable to the data. As shown on the bottom panel
of Figure 12, the model with no costly learning cannot account for the predictability
of return jumps in the data, as all the correlation coefficients are zero. Results on
quarterly and annual frequencies are very similar, and are omitted in the interest of
space.
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The predictability of large moves in returns that our model is able to capture is
consistent with the evidence from parametric models for asset prices, which feature
stochastic volatility and jumps in returns whose arrival intensity is increasing in mar-
ket variance; see examples in Bates (2000), Pan (2002), Eraker (2004) and Singleton
(2006). To further compare our model implications to the results from the para-
metric studies of return dynamics, we fit a discrete-time GARCH-jump specification
for returns, which feature autoregressive stochastic volatility and time-varying arrival
intensity of jumps in returns. In Appendix A.6 we discuss the estimation results in
the data and full model. The model can match quite well the dynamics of the time-
varying volatility of returns, as well as the key findings in the literature regarding
the frequency and predictability of jumps. In particular, the frequency of jumps is
positive and highly significant in the data and the model. The jumps explain 10%
of the variance of returns in the model and in the data, and the estimated frequency
of jumps is one every one and two years, respectively. Thus, the model can account
for the key features of the conditional distribution of returns in the data, so it can
serve as an economic basis for realistic reduced-form models of asset prices which
incorporate time-varying volatility and jump components.

6 Conclusion

We present a general equilibrium model which features smooth Gaussian dynamics of
income and dividends and large infrequent movements in asset prices (jumps). The
large moves in asset prices are triggered by the optimal actions of investors to learn
the unobserved expected growth. We show that the optimal decision to learn the true
state is stochastic and depends on the time-varying volatility of income growth and
the variance of the filtering error, as well as the preference parameters. The revisions
in the expected income due to costly learning lead to large moves in asset valuations
which look like jumps. These large price moves cannot be obtained in the economy
without costly learning of the true state, or in the economy with standard expected
utility.

A prominent feature of the model is that the frequency of costly learning, and
consequently, the likelihood of asset price jumps, increases in the income volatility
in the economy, so that returns jumps are more frequent at times of high aggregate
volatility. We show that predictability of returns jumps by consumption variance is
an important and novel aspect of the data. Furthermore, the model can provide an
economic explanation for the predictability of large asset-price moves by the variance
of returns, and lack of return jump predictability by the levels of income in the
data. This highlights an important aspect of the model and the data that the second
moments are critical to forecast future jumps, while the movements in the level are
not informative about future jumps in returns.
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Using calibrations, we find that the model can quantitatively reproduce the key
features of predictability of return jumps by consumption and market variance, and
absence of predictability of future jumps by the level of consumption. In addition,
the model can account for the frequency and magnitude of price jumps in the data,
fat-tail distribution of market returns, equity premium, and other asset-pricing fea-
tures. We argue that our structural model can serve as an economic basis for realistic
reduced-form models of asset prices which incorporate time-varying volatility and
jump components.
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A Model Solution

A.1 Social Planner’s Problem

The learning decision of the social planner maximizes the ex-ante utility of the agent:

s∗t = arg max
s

{Jt(Ut(s))} , (A.1)

subject to the resource constraint (3.5):

Yt = Ct(st) + stξt, (A.2)

where the learning cost ξt is proportional to the aggregate income Yt :

ξt = χYt, (A.3)

for 0 ≤ χ < 1. From the resource constraint, it immediately follows that

Ct(st) = Yt(1 − χst). (A.4)

Therefore, when the planner does not learn about the true state (st = 0), the agent’s
consumption is equal to the aggregate income. On the other hand, when the planer learns
about the true state, (st = 1), part of the endowment is sacrificed to cover the learning
cost.

Conjecture that the life-time utility functions are proportional to income:

Ut(st) = φt(st)Yt, (A.5)

for st ∈ {0, 1}. The optimal utility of the agent then is given by the learning choice specific
counterpart evaluated at the optimal indicator s∗t : Ut = Ut(s

∗

t ). The optimal utility next
period takes into account the optimal learning choice tomorrow and can be written as
Ut+1 = φt+1Yt+1, where to simplify the notations, we denote φt+1 ≡ φt+1(s

∗

t+1).

Substitute the conjecture for Ut(st) and Ut+1, and the consumption rule (A.4) into
the definition of the life-time utility of the agent in (3.3) to obtain the following recursive
formula for the utility per income φt(st) :

φt(st) = (1 − stχ)1−β

(
Est

t

[
φt+1

Yt+1

Yt

]1−γ
) β

1−γ

. (A.6)

22



As aggregate income Yt is known in the beginning-of-the period, it can be factored out
from the the optimal condition for learning (A.1). We can then rewrite it in the following
way:

s∗t = 1 if Jt(φt(1)) > Jt(φt(0))

= 0 if Jt(φt(1)) ≤ Jt(φt(0)).
(A.7)

A.2 Timing of Resolution of Uncertainty

The key aspect of our model is that the agent has a preference for a timing of the resolution
of uncertainty. With standard expected utility preferences, the agent is indifferent to the
timing of the resolution of uncertainty, and as a consequence, has no incentive to learn for
a cost. Indeed, consider a case when learning costs are zero, that is χ = 0. Then, the utility
of the agent corresponding to the indicator variable st ∈ {0, 1} satisfies

Ut(st) = Est
t

∞∑

j=0

βju(Yt+j). (A.8)

The optimal learning policy in the expected utility case is based on the ex-ante expected
utility given the beginning of period information. However, applying the law of iterated
expectations, we obtain that

EtUt(1) = Et



E1
t

∞∑

j=0

βju(Yt+j)



 = E0
t

∞∑

j=0

βju(Yt+j) = Ut(0). (A.9)

In expectation, new information does not increase the utility of the agent. Therefore, even
though the new information is costless, the agent has no incentive to learn it.

The results are very different when the agent has a preference for a timing of the
resolution of uncertainty. Using the recursive solution for the utility per income ratio in
(A.6), the solution to the optimal choice indicator above can be expanded in the following
way:

s∗t = 1


(1 − χ)1−β



Et

[
E1

t

(
φt+1

Yt+1

Yt

)1−γ
]β




1

1−γ

>

[
Et

(
φt+1

Yt+1

Yt

)1−γ
] β

1−γ


 .

(A.10)
In general, the equilibrium utility per income ratio φt depends on the whole history of choice
indicators (st, st−1, . . .). Let us make a simplifying assumption, which holds in the model
setup of this paper, that if the agent learns the state today, then all the past learned states
become irrelevant for the life-time utility of the agent. That is, φt(1) does not depend on
the variables observed before time t. Now consider a case when the agent has a preference
for early resolution of uncertainty, i.e. when the risk aversion parameter γ is greater than
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one. Conjecture that it is optimal to learn tomorrow, so that by assumption above, φt+1

does not depend on the current choice indicator st. Then, using Jensen’s inequality type
argument, it is easy to show that the agent learns the true state for a cost today if cost
parameter χ is 0. Therefore, for small information costs, it is always optimal to learn about
the underlying states if the agent prefers early resolution of uncertainty. On the other hand,
if information costs are large, (χ → 1), it is never optimal learn, so that st is fixed at 0 in
all time periods. For medium costs, the optimal solution to the choice indicator depends
on the underlying state variables in the economy.

A.3 Utility and Learning Choice

As the volatility and consumption shocks are uncorrelated, we can separate the expected
growth and volatility components in the equilibrium utility per income ratio, which simpli-
fies the solution to the fixed-point recursion in (3.8). In this section we consider a general
case with time-varying volatility, while in Appendix A.5 we show that the solution can be
simplified even further when the volatility is constant.

Conjecture that for each choice indicator st and corresponding states x̂t(st), ω
2
t (0) and

σ2
t today, the life-time utility per income ratio satisfies,

φ(st, x̂t(st), ω
2
t (0), σ

2
t ) = eBx̂t(st)+f(st,σ2

t ,ω2
t (0)), (A.11)

for some utility loading B and volatility function f(st, σ
2
t , ω

2
t (0)). Note that the variance of

the filtering error used in the value function is based on the beginning of period information;
the actual value ω2

t (st) depends deterministically on the beginning-of-period estimate ω2
t (0)

and learning choice st, see equation (3.21).

Let us fix the optimal choice s∗t+1 tomorrow. We conjecture that s∗t+1 depends only
on the income volatility and beginning-of-period variance of the filtering error, and not
on the expected income and dividend factors, i.e. s∗t+1 = s∗(σ2

t+1, ω
2
t+1(0)). Consider the

equilibrium life-time utility from next period onward:

φt+1 = φ(s∗t+1, x̂t+1(s
∗

t+1), ω
2
t+1(0), σ

2
t+1)

= eBx̂t+1(s∗t+1
)+ft+1 ,

(A.12)

where for notational simplicity, we define ft+1 = f(s∗t+1, σ
2
t+1, ω

2
t+1(0)). Now, using (3.20),

log

(
φt+1

Yt+1

Yt

)
= B

(
x̂t+1(0) + s∗t+1(xt+1 − x̂t+1(0))

)
+ ft+1 + ∆yt+1. (A.13)

Consider a recursive equation for the optimal utility per income ratio (A.6) for a given

choice indicator st today. To evaluate Est
t

(
φt+1

Yt+1

Yt

)1−γ
, we use the law of iterated ex-

pectations where we first condition on It+1. Then, ∆yt+1, σ
2
t+1 and therefore x̂t+1(0), s

∗

t+1
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and ft+1 are known, while the only random component is the true state xt+1. Due to the
Kalman filter procedure,

xt+1|It+1 ∼ N(x̂t+1(0), ω
2
t+1(0)), (A.14)

where x̂t+1(0) and ω2
t+1(0) satisfy (3.20) and (3.21). Therefore the right-hand side expec-

tation in the utility recursion (3.8) is equal to,

Est
t

(
φt+1

Yt+1

Yt

)1−γ

= Est
t e(1−γ)[Bx̂t+1(0)+ft+1+∆yt+1+

1

2
(1−γ)B2ω2

t+1
(0)s∗t+1]

= e(1−γ)(µ+(Bρ+1)x̂t(st))Est
t e(1−γ)[(BKt(st)+1)ut+1(st)+ft+1+

1

2
(1−γ)B2ω2

t+1
(0)s∗t+1].

(A.15)

Now by conjecture, s∗t+1 and thus ft+1 and ωt+1(s
∗

t+1) are driven by income volatility
shocks, which are independent from income innovations and therefore, from the filtered
shock ut+1(st). Thus,

Est
t

(
φt+1

Yt+1

Yt

)1−γ

= e(1−γ)(µ+(Bρ+1)x̂t(st)+
1

2
(1−γ)(BKt(st)+1)2(ω2

t (st)+σ2
t ))

× Est
t e(1−γ)[ft+1+

1

2
(1−γ)B2ω2

t+1(0)s
∗

t+1]
(A.16)

Therefore, using the equilibrium utility recursion (A.6) and the conjectured solution
for the life-time utility of the agent (A.11) and matching the coefficients, we obtain that
loading on expected growth is equal to

B =
β

1 − βρ
, (A.17)

while the volatility function satisfies

f(st, σ
2
t , ω

2
t (0)) = (1 − β) ln(1 − stχ) + βµ

+ β
1

2
(1 − γ)(BKt(st) + 1)2(ω2

t (st) + σ2
t ) +

β

1 − γ
lnEst

t e(1−γ)[ft+1+
1

2
(1−γ)B2ω2

t+1
(0)s∗t+1].

(A.18)

Solution to B and f verifies the conjecture for the life-time utility of the agent.

Now, given the utility equation (A.11) and the dynamics of the factors, we can rewrite
the optimal condition for a learning choice (3.4). Notably, the expected growth component
drops out, so that the optimal choice indicator depends only on the learning and aggregate
variance:

s∗t = 1

[
1

2
(1 − γ)B2ω2

t (0) + ft(1, σ
2
t , ω2

t (0)) > ft(0, σ
2
t , ω

2
t (0))

]
. (A.19)

25



Using the optimal condition for s∗t+1 tomorrow to rewrite the recursive equation of the
volatility function (A.18) in the following way:

f(st, σ
2
t , ω

2
t (0)) = (1 − β) ln(1 − stχ) + βµ + β

1

2
(1 − γ)(BKt(st) + 1)2(ω2

t (st) + σ2
t )

+
β

1 − γ
ln Est

t e(1−γ) max[ 1

2
(1−γ)B2ω2

t+1(0)+ft+1(1,σ2
t+1,ω2

t+1(0)),ft+1(0,σ2
t+1,ω2

t+1(0))].

(A.20)

That is, the volatility function f can be obtained as fixed-point solution to the equation
above, given the evolution of the variance of the filtering error in (3.18) and (3.21).

A.4 Dividend Asset

Consider an asset with dividend stream ∆dt = µ + ϕd(∆yt − µ).

The equilibrium price-dividend ratio solves,

vt(st) = Hx̂t(st) + h(st, σ
2
t , ω2

t (0)), (A.21)

The log-linearized returns satisfy

rd,t+1 = κ0 + ϕdµ + (H(κ1ρ − 1) + ϕd)x̂t(st) − h(st, σ
2
t , ω

2
t (0))

+ (κ1HKt(st) + ϕd)ut+1(st) + κ1h(s∗t+1, σ
2
t+1, ω

2
t+1(0)) + κ1Hs∗t+1(xt+1 − x̂t+1(0)).

(A.22)

Using Euler conditions and the equilibrium solution for discount factor for the log-
linearized dividend return, we obtain that the loading H satisfies

H =
ϕd − 1

1 − κ1ρ
. (A.23)

The price-dividend levels are given recursively by

ht(st, σ
2
t , ω

2
t (0)) = ln β + κ0

+
1

2
(ϕd − 1 + κ1HKt(st))(ϕd − 1 + κ1HKt(st) − 2(γ − 1)(1 + BKt(st)))(σ

2
t + ω2

t (st))

+ ln Est
t eκ1ht+1+

1

2
(κ1H−(γ−1)B)2s∗t+1ω2

t+1(0)−(γ−1)ft+1

− ln Est
t e(1−γ)(ft+1+

1

2
(1−γ)B2s∗t+1

w2
t+1

(0)).

(A.24)

To solve for the approximating constants κ0 and κ1, we use the numerical procedure
discussed in Bansal, Kiku, and Yaron (2007), who develop a method to solve for the en-
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dogenous constants associated with each return and document that the numerical solution
to the model is accurate.

A.5 Constant Volatility Case

In the general case with time-varying volatility, we first solve the model numerically by
discretizing income and filtering volatility states and applying fixed-point iterations to the
volatility functions f(st, σ

2
t , ω

2
t (0)) and h(st, σ

2
t , ω

2
t (0)). We verify that the numerical solu-

tions to these functions are very close to being linear, so in calibrations we approximate
these function to be affine in the two volatilities, and solve for the loadings numerically.

When the income volatility is constant σt = σ2
0, the variance of the filtering error

becomes a deterministic function of time since the last learning about the true state. In
this case, the optimal learning decision is purely time-dependent, so that the investors
choose to learn about the underlying state if the last time they did so was N or more
periods ago.

Assume we know the optimal N, and consider the time interval from 1 to N. In equi-
librium, the agent starts filtering in period 1 and learns about the true state for a cost in
period N, afterwards the solution repeats itself.

The equilibrium volatility functions are non-random functions of time, so to simplify
the notations, denote them fi :

fi = f(0, σ2
0 , ω

2
i (0)), 1 ≤ i < N,

fN = f(1, σ2
0 , ω

2
N (0)).

Now we can rewrite the recursions in (A.18) as a system of linear equations (to simplify
the exposition, we consider the case N > 2):

f1 − βf2 = βµ +
1

2
β(1 − γ)(BK1(0) + 1)2(ω2

1(0) + σ2
0),

. . .

fi − βfi+1 = βµ +
1

2
β(1 − γ)(BKi(0) + 1)2(ω2

i (0) + σ2
0), 2 ≤ i < N − 1

fN−1 − βfN = βµ +
1

2
β(1 − γ)

(
(BKN−1(0) + 1)2(ω2

N−1(0) + σ2
0) + B2ω2

N(0)
)
,

fN − βf1 = (1 − β) ln(1 − χ) + βµ +
1

2
β(1 − γ)(BKN (1) + 1)2(ω2

N (1) + σ2
0).

(A.25)

This system can be easily solved for equilibrium volatility functions fi, i = 1, 2, ...N.

Now we need to make sure that the chosen N is indeed optimal, that is, the agent is not
better off deviating from the conjectured learning rule. If investors were to learn about the
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state earlier than in the Nth period, their utility would be fN . To preclude this deviation,
we need to have that (see condition (A.19))

1

2
(1 − γ)B2ω2

i (0) + fN < fi, (A.26)

for 1 ≤ i < N.

On the other hand, consider a scenario when investors fail to learn about the true state
at time N. By conjecture, the optimal behavior in period N + 1 is to learn, therefore, from
the expression (A.18), the utility that the investors would get by deviating is given by,

f̃N = βµ +
1

2
β(1 − γ)

(
(BKN (0) + 1)2(ω2

N (0) + σ2
0) + B2ω2

N+1(0)
)

+ βfN .

Following optimality condition for choice indicator (A.19), we then need to have that

1

2
(1 − γ)B2ω2

N (0) + fN > f̃N . (A.27)

In practice, we loop from a low value of N until we satisfy both optimality conditions
(A.26)-(A.27), where the volatility functions fi solve the linear system (A.25). In numerical
calibrations, the optimal N is always unique: when N is lower than optimum, we violate
the last condition (A.27), so that the agent can increase the utility by estimating, rather
than learning about the state for a cost; for N higher than optimum, (A.26) is not satisfied,
and investors would want to learn sooner.

We follow the same approach to find the volatility functions in the price-dividend ratio.
As hs are no longer random, we can rewrite their recursion in (A.24) much in the same
way as (A.25), as we already know the optimal choice indicator and utility functions fi. To
solve for the approximating constants κ0 and κ1, we use the numerical procedure discussed
in Bansal et al. (2007).

A.6 Parametric Jump Model

To compare our model implications to the results from the above studies, we fit a discrete-
time GARCH-jump specification for returns, which feature autoregressive stochastic volatil-
ity and time-varying arrival intensity of jumps in returns8. Specifically, the return dynamics
is given by

rt = µr + a1,t + a2,t. (A.28)

8Similar specification is considered in Bates and Craine (1999). See Maheu and McCurdy (2004)
for extensions and estimation details.
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Estimation of GARCH-jump model

Data Model
Estimate S.E. Mean S.E.

σv 0.08 (0.004) 0.12 (0.021)
βv 0.91 (0.004) 0.94 (0.018)
αv 0.07 (0.003) 0.03 (0.005)
λ0 0.00 (0.001) 0.00 (0.002)
λl 25.78 (16.21) 152.00 (60.06)
µj -1.6 (0.46) 0.60 (0.78)
σj 2.9 (0.33) 4.30 (0.77)

Estimation of GARCH-jump model using the sample and simulated data.

The first component a1,t represents a smooth Gaussian component of returns, whose con-
ditional volatility is time-varying and follows GARCH(1,1) process:

a1,t =
√

vt−1zt, zt ∼ N(0, 1), (A.29)

vt = σ2
v + βvvt−1 + αv(rt − µr)

2. (A.30)

The second shock a2,t is driven by Poisson jumps:

a2,t =

nt∑

k=1

ξt,k − µjλt−1. (A.31)

The jump size distribution is Normal:

ξt,k ∼ N(µj, σ
2
j ), (A.32)

and the arrival of number of jumps nt = 0, 1, 2, . . . is described by a conditional Poisson
distribution with intensity λt, so that

Prt−1(nt = j) =
exp(−λt−1)λ

j
t−1

j!
. (A.33)

As we are interested in the predictability of jumps by market variance, we follow the liter-
ature and model the jump intensity to be linear in the variance of returns,

λt = λ0 + λlvt. (A.34)

The above specification of return dynamics can be readily estimated by MLE using the
sample and simulated data. In estimations, as we want to capture large, infrequent moves
in asset prices, we restrict the unconditional jump intensity not to exceed 1 jump per year.
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We perform a Monte-Carlo study where we estimate specification (A.28)-(A.34) for
100 simulations of 80 years of daily returns from a time-varying volatility model, and we
compare the results to the estimates based on the sample data. As can be seen in Table
A.6, the model matches quite well the dynamics of the time-varying volatility of smooth
component of the returns: the overall persistence is 0.96 in the model, compared to 0.98 in
the data, and the intercept and ARCH and GARCH parameter coefficients are close as well.
The model can also capture the key findings in the literature regarding the frequency and
predictability of jumps. The estimated jump arrival intensity loading on market variance
is positive and highly significant both in the model and in the data, though, it is estimated
with a large standard error. The mean jump size is −1.6% in the data, and is slightly
positive but insignificant in the model. The standard deviations of the jump distribution
are 3% and 4% in the data and model, respectively. The jumps explain about 10% of the
variation of the returns in the data and the model, and their average frequency is once in
one and two years, respectively.
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Tables and Figures

Table 1: Summary Statistics: Data and Model

Mean Std Kurt Jump-year Jump
Dev Freq Contribution

Data:

Return 7.98 16.61 21.19 3.38 7.46
Model Output:

Constant Volatility:

Return with costly learning 7.92 15.28 18.37 4.47 7.68
Return, no learning 8.10 14.10 3.01 47.93 1.94

Time-Varying Volatility:

Return with costly learning 7.82 15.22 35.14 3.97 9.47
Return, no learning 7.92 14.12 3.21 48.82 2.00

Mean, standard deviation and kurtosis of returns, and frequency and variance contribution

of jumps. The first panel presents statistics in the data, while the second one – for the

model specifications with constant and time-varying aggregate volatility, respectively. No

learning refers to the case when the agent has no option to learn the true state for a

cost. Jump-year frequency is the average frequency of years with large price movements

as flagged by jump-detection statistics, in years. Jump Contribution measures the average

percent contribution of large price moves to total return variance. Data are daily inflation-

adjusted market returns for 1926 - 2006. Model statistics are based on the average across

100 simulations of 80 years of data. Jump-detection statistics are based on 1% significance

level.
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Table 2: Estimation of Consumption Volatility

Projection: ∆c pd spread R2

∆̂c 0.347 0.007 -0.004 0.28
(0.065) (0.006) (0.004)

σ̂2 × 104 -0.546 4.602 0.23
(1.156) (2.056)

GARCH: AR(1) V ol GARCH ARCH R2

∆̂c 0.32 2.81e-06 0.82 0.14 0.10
(0.11) (7.5e-06) (0.07) (0.06)

Estimation of conditional consumption volatility based on projection of consumption growth
and extracted squared consumption residual on price-dividend ratio and junk bond spread
(top panel) and on AR(1)-GARCH(1,1) specification. Data is annual real consumption
growth for 1930-2006.

Table 3: Model Calibration

Parameter Value

µ 7.27e-05
ρ 0.9963
σ 8.53e-04
ν 0.99
σw 5.07e-05
ϕe 8.95e-03
ϕd 5
β 0.9999
γ 10
χ 0.080087

Calibrated parameter values, daily frequency.
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Table 4: Endowment Dynamics: Data and Model Calibration

Data Model
Estimate S.E. Median 5% 95%

Mean 1.95 (0.32) 1.94 1.18 2.57
Vol 2.13 (0.52) 2.17 1.81 2.60
AR(1) 0.44 (0.13) 0.52 0.37 0.64
AR(2) 0.16 (0.18) 0.15 -0.06 0.36
AR(5) -0.01 (0.10) -0.02 -0.27 0.17

Calibration of income dynamics. Data is annual real consumption growth for 1930-2006.

Model is based on 100 daily simulation of 80 years of income aggregated to annual horizon.
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Figure 1: Time-series of Returns
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Daily observations on real market returns from 1926 to 2006. Grey regions correspond to

periods with at least one significant large price move, at 1% significance level.

Figure 2: Return Quantiles in the Data
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Figure 3: Frequency of Jump-Years
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jump-detection test. Data (solid line) is based on daily observations on real market returns

from 1926 to 2006, while model average (dashed line) and 5% − 95% confidence band are

based on 100 simulations of the full model.

Figure 4: Predicted Probability of Large Price Moves
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ity of large price moves (dashed line with values on the right Y-axis) based on the aggregate

volatility. Stars indicate years with at least one large price move.
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Figure 5: Jump Correlations in the Data
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Correlation of return jump indicator with level of real economy (left panel), aggregate

volatility (middle panel) and conditional variance of returns at up to 5 year leads and lags.

Top panel is based on annual observations of real consumption growth from 1930 to 2006;

middle and bottom panels are based on the series of industrial production from 1926 to

2006, quarterly and monthly, respectively. Jump indicators for the considered horizons are

based on daily returns non-parametric jump detection at 1% significance level.
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Figure 6: Costly Learning in Constant Volatility Case
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line), 10 (middle solid line) and 5 (upper dashed line).

Figure 7: Costly Learning in Time-Varying Volatility Case
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Figure 8: Income and Return Simulation in Constant Volatility Case
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Simulation of the economy for 80 years in constant volatility case. Top panel depicts daily

income growth. The next two panels show daily market returns when the agent learns about

the true state for a cost, and with no option to learn, respectively. Red stars indicate days

of learning, while grey regions correspond to flagged years with at least one significant jump

using the jump-detection statistics.
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Figure 9: Income Simulation in Time-Varying Volatility Case
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Figure 10: Return Simulation in Time-Varying Volatility Case
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Simulation of the economy for 80 years in time-varying volatility case. The two panels

show daily market returns when the agent learns about the true state for a cost, and with

no option to learn, respectively. Red stars indicate days of learning, while grey regions

correspond to flagged years with at least one significant jump using the jump-detection

statistics.
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Figure 11: Model Frequency of Large Moves
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model.
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Figure 12: Model-Implied Jump Correlations
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Model-implied correlation of return jump indicator with endowment growth (left panel),

conditional variance of endowment growth (middle panel) and conditional variance of re-

turns (right panel), monthly frequency, at up to 5 year leads and lags based on the model

with costly learning (top panel) and the model with no option to learn the true state for a

cost (bottom panel). Model statistics are based on the average across 100 simulations of 80

years of data aggregated to monthly horizon; dashed lines show 5%− 95% confidence band.

Jump indicator is based on daily returns non-parametric jump detection at 1% significance

level.
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