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Campbell and Cochrane (1999, hereafter denoted C-C) formulate

a model that successfully explains a wide variety of asset pricing puz-

zles, including the high equity premium, the procyclical variation of

stock prices, and the countercyclical variation of stock market volatil-

ity. These remarkable results are achieved by augmenting the stan-

dard power utility function with a time-varying subsistence level, or

“external habit”, that adapts nonlinearly to current and past average

consumption in the economy. These preferences have been shown to

be useful in a number of additional applications. For example Moore

and Roche (2002), and Verdelhan (2008) extend the C-C framework

to explain anomalies in foreign exchange markets, and Wachter (2006)

addresses the term structure. Wachter (2005) provides efficient ways

to calculate asset prices, using these preferences and exogenously given

consumption and dividends. Bansal et al. (2007) provide an estima-

tion of the C-C model. A continuous-time version and embedding it

into a larger context of long run risk evaluation is in Hansen (2008).

Guvenen (2008) has re-interpreted these preferences as arising from

agent heterogeneity. Given the achieved breakthrough in matching

key asset pricing facts by Campbell and Cochrane and other stud-

ies using their preference specification, it is all the more important

to fully understand the implications of these modeling choices. This

paper demonstrates several unusual implications.

We show that the assertions by Campbell and Cochrane that “more

consumption is always socially desirable,” and that “habit moves non-

negatively with consumption everywhere” are incorrect. As a conse-

quence, government interventions that occasionally destroy part of

the endowment can be welfare improving. Figures 1 and 2 illustrate

such an outcome for a one-time endowment destruction that lowers

the habit level and compares it to a conventional linear habit formu-

lation, calibrated so that the two models share the same steady state.

(Detailed explanations follow in section 2.1.) Figure 1 shows that

the decline in habit is much larger under the C-C formulation due to
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strong nonlinearities away from the steady state. As a result, the wel-

fare loss in the first period is more than compensated for by the welfare

gains in future periods when consumption is so much higher than the

reduced habit level, in contrast to the conventional linear habit for-

mulation, see Figure 2. Figure 3 depicts the effect on overall welfare

depending on the size of the initial endowment destruction. Under

the C-C formulation, welfare decreases for miniscule and large endow-

ment destructions, but it increases for moderately sized destructions.1

Under the conventional linear habit formulation, welfare always falls

in response to an endowment destruction at the steady state.

The purpose of this paper is to study these surprising welfare im-

plications of the C-C preferences and assess their quantitative impor-

tance.

We use the original discrete-time specification of Campbell and

Cochrane rather than moving to a continuous-time specification as in

e.g. Hansen (2008). Exploiting the potential for large movements of

the surplus consumption ratio are key to the analysis here, but may

conceivably disappear in a continuous-time formulation or in other

alterations of the original Campbell-Cochrane framework. One way

of reading the results in this paper therefore is that the differences

between a continuous-time framework and discrete-time framework

may be substantial, in this case.

1 The model

The utility function of the representative agent is

E0

∞
∑

t=0

δt
(Ct −Xt)

1−γ − 1

1 − γ
, (1)

where δ is the subjective time discount factor and Xt is the level

of external habit. A conventional linear external habit formulation

1To detect welfare losses for miniscule endowment destructions under the C-C habit

model, see Figure 4 that magnifies the lower range of destructions in Figure 3.
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specifies that

Xt+1 = µXt + αCat , (2)

where Ca denotes average consumption by all agents in the economy,

and µ and α are parameters.

Campbell and Cochrane (1999) proceed differently. They postulate

a process for the economy’s surplus consumption ratio, Sat ≡ (Cat −

Xt)/C
a
t . Using lowercase letters to indicate logs, they assume that

the log surplus consumption ratio evolves as a heteroscedastic AR(1)

process,

sat+1 = (1 − φ)s̄+ φsat + λ(sat )
(

cat+1 − cat − g
)

, (3)

where φ ∈ [0, 1), g and s̄ are parameters, and the function λ(sa) is

given by

λ(sa) =

{

S̄−1
√

1 − 2(sa − s̄) − 1, sa ≤ smax;

0, sa ≥ smax;
(4)

with smax = s̄ +
(

1 − S̄2
)

/2. The parameter s̄ is the logarithm

of the steady-state surplus consumption ratio S̄, and Campbell and

Cochrane set g equal to the logarithm of the mean consumption gross

growth rate G. It can be shown that the C-C formulation and the

conventional linear habit formulation in equation (2) share the same

steady state if µ = Gφ and α = G(1 − φ)(1 − S̄).

Campbell and Cochrane consider a pure endowment economy. Let

Yt be the per capita endowment in period t. Endowment growth is

modeled as an i.i.d. lognormal process,

∆yt+1 = g + νt+1, νt+1 ∼ i.i.d. N (0, σ2). (5)

The equilibrium outcome in a market economy is that consumption

equals endowment, cat = yt. We shall now investigate what a social

planner would like to do under free disposal, i.e., cat ≤ yt.
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2 The social planning problem

A social planner or benevolent government, facing a population with

C-C preferences given above, maximizes the expected discounted util-

ity, subject to choosing consumption between zero and current en-

dowment. That is, the only option available to the social planner is

to let agents consume a fraction of the endowment in any given pe-

riod. Let the social planner’s choice variable at time t be denoted

ψt ≡ ct − yt ≤ 0, i.e., the logarithm of the fraction of the endowment

that is consumed. The objective function can then be rewritten as

E0

∞
∑

t=0

δt
(Sat C

a
t )

1−γ − 1

1 − γ
= E0

∞
∑

t=0

δt
exp ((1 − γ)(sat + ψt + yt)) − 1

1 − γ
, (6)

and the law of motion for the log surplus consumption ratio can be

expressed as

sat+1 = (1 − φ)s̄+ φsat + λ(sat ) (ψt+1 − ψt + νt+1) , (7)

where we have used equation (5) to substitute out for g. From now

on, we will leave out the superscript a since outcomes for the repre-

sentative agent and economy-wide averages are the same to the social

planner.

Campbell and Cochrane (1999, p. 246) report that the social marginal

utility is always positive in their model which would seem to imply

that the social planner should set ψt = 0 in all periods. However,

Campbell and Cochrane only prove that an infinitesimal destruction

of the endowment leads to a welfare loss. To illustrate our surprising

finding that noninfinitesimal destructions can increase welfare under

the C-C habit formulation, it is instructive to consider a one-time

perturbation from a steady state.

2.1 One-time perturbation from a steady state

Consider an economy in a non-stochastic steady state with endowment

and consumption growing at a constant growth rate G ≥ 1. The
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parameter restriction that ensures a bounded objective function is

δG1−γ < 1 . (8)

Suppose now that the social planner destroys part of the endowment

in one single period, denoted period 0. Thus, we have log(C0/Y0) =

ψ < 0, and the sequences of the logarithms of consumption and the

surplus consumption ratio evolve as follows

c0(ψ) = y0 + ψ < y0 ,

ct(ψ) = yt , for all t ≥ 1;

s0(ψ) = s̄+ λ̄ψ < s̄ ,

st(ψ) = s̄− φt−1ψ
[

λ(s̄+ λ̄ψ) − φλ̄
]

> s̄ , for all t ≥ 1;

where λ̄ ≡ λ(s̄). Evidently, the representative agent’s utility falls

in period 0 because both his consumption level and the surplus con-

sumption ratio decline relative to the steady state. But the utilities in

all future periods increase due to a higher surplus consumption ratio

that asymptotically returns to its steady-state value. The question

is whether the discounted sum of these changes in utilities produce a

welfare gain or a welfare loss.

After eliminating the constant terms involving −1/(1 − γ) in the

preference specification and dividing through by exp ((1 − γ)y0), the

discounted life-time utility of the described perturbation can be ex-

pressed as

W (ψ) ≡
exp ((1 − γ)(s0(ψ) + ψ))

1 − γ
+

∞
∑

t=1

δt
exp ((1 − γ)(st(ψ) + tg))

1 − γ
(9)

with the derivative

W ′(ψ) = (1 + λ̄) exp ((1 − γ)(s0(ψ) + ψ))

+
∞
∑

t=1

δt
[

φt−1s′1(ψ)
]

exp ((1 − γ)(st(ψ) + tg)) , (10)
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where

s′1(ψ) = −
[

λ(s̄ + ψλ̄) − φλ̄
]

− ψλ̄ λ′(s̄ + ψλ̄) < 0. (11)

The derivative s′1 is negative since ψ < 0 and λ is a decreasing function.

Thus, whether welfare marginally increases or decreases at negative

values of ψ depends on whether the first or the second term in equa-

tion (10) dominates numerically. Appendix A shows that welfare is

globally increasing with a conventional linear habit formulation: there,

endowment destruction in a steady state always leads to a welfare loss.

Appendix B shows that this is also true locally along the steady-state

path for the C-C preferences. This should come as no surprise since

Campbell and Cochrane (1999, p. 246) prove that the social marginal

utility is positive in their model. More specifically, they show that the

social marginal utility is positive for infinitesimal perturbations when

the endowment follows a random walk. When setting growth equal

to zero in our calculations, we have a constant endowment level or a

degenerate random walk.

However, the local result for the C-C preferences fails to hold glob-

ally. Given Campbell and Cochrane’s (1999, Table 1) parameter val-

ues as reported in our Table 1, we compute the representative agent’s

welfare associated with one-time endowment destructions between 0

and 25 percent.2 Figure 3 shows clearly that there exist endowment

destructions that do raise welfare.3 To understand the mechanisms at

work, consider as an example the five-percent endowment destruction

in Figures 1 and 2. Under the conventional linear habit formulation in

equation (2), habit responds with a one-period lag to the endowment

destruction in period 0 and, as can be seen in Figure 1, the resulting

2Following Campbell and Cochrane (1999), all numerical analyses in our paper are

performed at a monthly frequency.
3As noted in footnote 1, one cannot discern in Figure 3 that endowment destructions

lead to welfare losses locally around the steady state under the C-C habit model, as proven

in Appendix B. But after magnifying the scale in Figure 4, we see that welfare does indeed

decrease for endowment destructions less than 0.07 percent.
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decline in habit is much less than under the C-C habit model. In ad-

dition, under the C-C habit formulation in equation (3), habit moves

contemporaneously with consumption changes and according to the

solid curve in Figure 1, the habit level now falls in response both to

the endowment destruction (period 0) and to the subsequent increase

in consumption (period 1). Hence, the loss of utility in the period with

endowment destruction is mitigated under the C-C habit formulation

because of the contemporaneous drop in habit, and future utility gains

are magnified by the additional habit decline that is triggered by the

consumption hike after the endowment destruction.

The effects upon agents’ welfare depend on how the distance be-

tween consumption and habit change in different periods as illustrated

in Figure 5 where

C0(ψ) −X0(ψ) = exp (y0 + ψ + s0(ψ)) ;

Ct(ψ) −Xt(ψ) = exp (yt + st(ψ)) , for all t ≥ 1.

For a given ψ ≤ 0, it is informative to study the marginal change in

(Ct −Xt) when perturbing ψ,

d [C0(ψ) −X0(ψ)]

dψ
= (1 + λ̄) exp (y0 + ψ + s0(ψ)) ;

d [Ct(ψ) −Xt(ψ)]

dψ
= φt−1s′1(ψ) exp (yt + st(ψ)) , for all t ≥ 1.

We can see that the derivative in period 0 gets muted at low values of

ψ, i.e., at higher levels of endowment destruction, while the opposite

is true for the corresponding derivatives in future periods. In fact, the

multiplicative term s′1 as given in equation (11) becomes arbitrarily

large and negative when ψ is driven to ever lower values and therefore,

the associated loss in (Ct − Xt) for t ≥ 1, becomes arbitrarily large

when reducing the amount of endowment destruction in period 0. This

in turn implies that (Ct−Xt) for t ≥ 1, must take on arbitrarily large

values when computed at ever lower values of ψ. Figure 5 depicts

the exploding outcome for (C1 −X1) when increasing the amount of
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endowment destruction in period 0. Behind the exploding outcome

for (C1 −X1) in Figure 5 lies a critical property of the C-C preference

specifiation: habit can move negatively with consumption. In our ex-

ample, the subsequent consumption hike in period 1 does not increase

but rather decreases the habit level. We will examine this property

further below in section 4.

To calculate the effect on welfare from the higher (C1 −X1) and

the correlated but slowly decaying future values of (Ct−Xt) for t ≥ 2,

one needs to take into account the curvature of the utility function and

compare it to the utility loss in period 0 from the fall in (C0 − X0).

Thus, while (C1 − X1) is ever increasing, welfare takes the hump-

shaped form depicted in Figure 3.

The feature in Figure 3, that the log of the optimal endowment de-

struction is finite, can be shown more generally. Let ω = (ψ0, ψ1, . . . , s0, s1, . . .)

be some (stochastic) path for the decisions and consequently surpluses.

Rewrite the objective function (6) as

exp ((1 − γ)(sa0 + ψ0 + y0)) − 1

1 − γ
+ V (ω, (yt)) (12)

where

V (ω, (yt)) = E0

∞
∑

t=1

δt
exp ((1 − γ)(sat + ψt + yt)) − 1

1 − γ
(13)

Assume that V (ω, (yt)) > −∞. For example, this is the case for a

never-destruct-endowment policy of ψt ≡ 0, t ≥ 1. So an agent aiming

at maximizing welfare will have no problem satisfying this assumption.

Consider now an alternative path, ω̃ = (ψ̃0, ψ̃1, . . . , s̃0, s̃1, . . .) and

suppose that it improves welfare compared to the original path. There

are two cases to consider, depending on γ.

First, assume that γ > 1. Consider the two parts of welfare in

(12). The possible gain in the second part V (ω̃, (yt)) − V (ω, (yt)) is

bounded above by δ/((1 − δ)(γ − 1)) − V (ω, (yt)). However, the loss

stemming from current utility will be unbounded as ψ̃0 → −∞. Thus,
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for any ω̃ improving welfare compared to the current path, the initial

endowment destruction must not drop below some treshold ψ, which

generally depends on the current strategy ω and the current state.

Next, assume that γ < 1. In that case, the loss from driving ψ̃0 →

−∞ is finite and given by (exp ((1 − γ)(sa0 + ψ0 + y0)) − 1)/(1 − γ).

However, the first term in the continuation value of V (ω̃, (yt)) will

now rise without bounds in ψ0. It is easy to see that welfare can be

improved upon without bounds, since all subsequent terms for t ≥ 2

are in expected sum bounded below by −δ2/((1−δ)(1−γ)) . Therefore,

for the problem of welfare maximization to be well-posed, we must

have γ > 1.

2.2 Solution to the social planning problem

So far, we have considered only a one-time deviation from a steady

state benchmark, and shown that the latter is not optimal for the

numerical cases shown. What then is the optimal solution? Let us

thus turn to calculating the solution of the social planner’s problem

and a quantitative assessment of how much welfare can be improved

by destroying endowments.

To solve for the optimal allocation, we formulate a dynamic pro-

gramming problem for the social planner. Let s and ψ be the loga-

rithms of last period’s surplus consumption ratio and the fraction of

last period’s endowment that was consumed. The current value of

the endowment shock is denoted ν. The optimum value of the social

planner’s problem is then4

v(s, ψ, ν) = max
ψ̃≤0, s̃

{

exp((1 − γ)(s̃ + ψ̃))

1 − γ
+ δE

[

exp((1 − γ)(g + ν̃))v(s̃, ψ̃, ν̃)
]

}

4As in equation (9), we have rescaled the value function by leaving out the constant

terms involving −1/(1 − γ) in the preference specification, and normalized by dividing

through by exp ((1 − γ)y) where y is the current endowment.
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where the maximization is subject to

s̃ = (1 − φ)s̄+ φs+ λ(s)
(

ψ̃ − ψ + ν
)

, (14)

ν̃ ∼ N(0, σ2) . (15)

Since γ > 1, and if a solution to the planning problem exists, then the

value function is nonpositive, v(s, ψ, ν) ≤ 0. Note that λ(s) ≥ 0.

Proposition 1 Let γ > 1. Assume that

δ exp((1 − γ)g + (1 − γ)σ2/2) < 1 (16)

There is a solution to the social planner’s problem. The solution for

the decision on the endowment destruction is finite, ψ̃ > −∞.

Proof: To show that there is a solution, first consider the auxil-

liary problem, restricting the domain to s ≥ s for some lower bound

s > −∞, and truncate the normal distribution | ν̃ |< ν̄. For this

problem, we claim that the optimal solution ψ̃ is bounded from below,

ψ ≥ ψ∗, where ψ∗ may depend on the current state (s, ψ, ν). To see

this, note that the first term of the objective function diverges to −∞

as ψ̃ → −∞. On the other hand, the second term, i.e. the expected

future value is bounded by zero from above. Hence, the objective

function is bounded. Furthermore, Bellman’s sufficient conditions for

a contraction mapping apply, due to condition (16). Thus, there is a

unique solution to the social planner’s problem with a restricted do-

main. As the domain is expanded, standard arguments show that the

solution converges locally uniformly to a solution of the social plan-

ner’s problem stated above. •

We will now provide a numerical solution to this problem using

Campbell and Cochrane’s monthly time scale of their parameterization

in Table 1 but without any uncertainty, ν = ν̃ = 0. The endowment
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growth shocks will be reintroduced in the next section when we assess

the quantitative importance of policy interventions.

In delivering a numerical solution, we had to solve a challenging

problem. Consider equation (14) without random shocks, and suppose

that ψ̃ = 0, while driving ψ → −∞. Note that then s̃ → ∞. While

we have shown, that the optimum (in the previous period) occurs for

some finite value of ψ, it still may be the case, that very low ψ’s

are desirable, and, in fact, they are (in a sense to be made precise

below). Low ψ’s result in high s̃. It then takes a long time per the

autoregression in (14) to return to a range below smax. We found that

a typical optimal solution path will occasionally increase s̃ to values

just below 16, or, put differently to values S̃ = exp s̃ = 9000000. It

should be clear that value function iterations on a grid of S-values,

using e.g. a constant step size, which also is reasonably exact for the

“standard range” of S ∈ [0, Smax], where Smax ≈ 0.09, is numerically

infeasible (and this is the sense in which ψ is “very low”). A different

numerical strategy is required.

We solve this problem by noting that optimal consumption is equal

to endowment for all s ≥ s∗, where s∗ is “one step” above smax ac-

cording to equation (14), i.e., where s∗ satisfies

s∗ =
1

φ
(smax − (1 − φ)s̄) .

Indeed, for s ≥ s∗, one can easily calculate the number of steps it

takes to return to the region s < s∗, where destruction of the endow-

ment might be optimal, and calculate the utility generated during the

transition path to this region.

We impose a grid on destruction choices (1 − exp(ψ)) at step-

size ∆ exp(ψ) = 0.02 and use interpolation for s, but “storing” all

functions, using a grid for S with step size 0.0002 for S < S∗ =

exp(s∗). Above S∗, we use a grid on log(S), using 10 grid points

between each “step” of the AR-process (14).

The resulting decision rule is shown in figure 6. Note the unusual

shape of the decision rule that prescribes destruction of the endow-
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ment in a triangular-shaped region, with a very steep “canyon” of

destruction for S near Smax.

Simulations, starting at Smax and no consumption destruction quickly

settle down on a regular cycle of consumption destructions, where each

cycle typically takes somewhere around 300 periods or months, i.e. ap-

proximately 25 years. By inspecting the simulations, we find that a

cycle is typically launched as follows. Coming from a high value of s,

the surplus consumption ratio eventually drops below s∗, per iteration

on (14). Then, there is soon a first period of endowment destruction,

and after at most two additional periods, the social planner reverts to

full consumption and “launches” s to a high range again, starting the

cycle of gradual return to the below-s∗-region.

Besides these typical cycles with brief phases of endowment de-

struction, there are instances of cycles with more periods of destruc-

tion and time spent in the below-s∗-region, before launching s to a

higher range. Though, we suspect that this “slow maneuvering” into

launch position is just an artifact of our numerical approximation of

calculating a value function on a grid, rather than being a feature

of the solution to the exact dynamic programming problem. Our

conjecture is supported by the following exercise. Given an initial

s ∈ [smax, s
∗), we let the social planner make T consecutive deci-

sions on endowment destruction, while setting consumption exoge-

nously equal to the endowment forever afterwards. Thus, conditional

on a launch of s to a higher range, the payoff is approximately the

same as in the dynamic program except that we have replaced the

future continuation value when drifting below s∗ by the value of no

more endowment destruction. Since optimal cycles are on average 25

years long, this difference in distant future behavior is heavily dis-

counted and hence, should not matter much for the optimal choice of

endowment destruction during the initial launch. The computational

advantage of this T-dimensional maximization problem is that it can

be solved with standard numerical maximization routines rather than
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calculations on a grid. When solving this problem for large values of

T , we found that the optimal length of the launch phase, i.e., the time

spent in the below-s∗-region, never exceeded three periods.

3 Quantitative importance

The findings of the previous section indicate that the recurrent de-

struction of the endowment is optimal. We now allow for random

shocks to consumption growth, using the exact monthly parameteri-

zation of Campbell and Cochrane in Table 1. Rather than solve for

the optimal policy response, we examine the welfare gains of policies

parameterized by (ψ, p), which destroy a fixed fraction (1− exp(ψ)) ∈

[0, 1] of the endowment every p:th period, p ∈ {2, 3, . . .}. The policy

experiment starts off with an immediate destruction in the first period

and continues in perpetuity. No upper bound on the logarithm of the

surplus consumption ratio st was imposed in the calculations.

Concerning the initial condition S−1, we pursue two alternatives.

First, we use the steady state S−1 = S̄. Second, we draw S−1 from

the unconditional distribution depicted in Campbell and Cochrane’s

Figure 2, derived there for the continuous-time version of the model.

We simulate 100 time series of monthly endowments, where the length

of each series is 200 years. We compare the average welfare obtained

under the policy experiments of periodic destruction to the bench-

mark “laissez-faire” average welfare measure obtained from the same

simulations, when no endowment destruction takes place. The wel-

fare comparison is measured in terms of the percentage increase in

consumption needed to make the agents in the laissez-faire economy

as well as off as under the policy (ψ, p).

Table 2 contains the results where we find large welfare gains

(rather than welfare losses) associated with the policies of periodic

destructions. Put differently, a society of agents with Campbell-

Cochrane preferences would experience a welfare gain equivalent to a
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permanent increase of nearly 16% in consumption, if the government

enforced one month of fasting per year, reducing consumption by 10

percent then. Note that the government should neither be too timid

nor too audacious in its demands of consumption reduction while fast-

ing: the welfare gains at 15 as well as 5 percent reductions are smaller

than at 10 percent. Either way, these welfare gains are dramatic.

4 Habit moves negatively with consump-

tion

The economic intuition for the surprising finding that the agents are

better off with a cyclical destruction of endowments is to be found

in the implied law of motion for the external habit. Campbell and

Cochrane (1999, p. 212) claim that habit moves nonnegatively with

consumption everywhere. Unfortunately, this is not so. Instead, habit

can fall contemporaneously with a rise in consumption even locally

around the steady state. After differentiating the law of motion for

the surplus consumption ratio in equation (3), we obtain

dxt+1

dct+1

= 1 −
λ(st)

exp(−st+1) − 1
.

In the steady state, st = st+1 = s̄, so the parameterization of the

function λ(s) in equation (4) guarantees that dx/dc = 0 at the steady

state. Next, we calculate the second derivative,

d2xt+1

dc2t+1

= −
λ(st)

2

[exp(−st+1) − 1]2
exp(−st+1) ≤ 0,

and the expression is strictly negative at the steady state. This es-

tablishes that there is a region around the steady state in which habit

moves negatively with consumption.5

Based on Campbell and Cochrane’s monthly frequency of their pa-

rameterization in Table 1, Figure 7 maps out the relationship between

5We are thankful to John Cochrane for suggesting this exposition of our argument.
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consumption changes and movements in the habit level. In particular,

for a given value of last period’s surplus consumption ratio, the figure

depicts how contemporaneous habit responds to percentage changes in

consumption relative to last period’s levels. As a numerical reference,

the steady-state surplus consumption ratio is 0.057. It can be seen

that the habit level moves negatively with consumption for a wide

range of consumption increases. Hence, our finding of large welfare

improvements associated with the cyclical destruction of endowments

can be understood as “investments” in a lower habit level. That is,

a period of endowment destruction is most likely to be followed by a

rebounce in consumption next period and this consumption growth

will often be associated with the strange effect of lowering the habit

level.6

5 Conclusions

We have shown that the habit formulation by Campbell and Cochrane

imply, that a social planner could reap large welfare gains by destroy-

ing 10 percent of the endowment every 12:th month. To be indifferent

to such a policy, the representative agent would have to be compen-

sated by almost 16 percentage points higher consumption for the in-

definite future under laissez-faire. These welfare results are most likely

connected with a surprising property of the C-C preference specifica-

tion which is that habit can move negatively with consumption.

6To gauge how common this unorthodox habit dynamics is in the laissez-faire econ-

omy, we use our stochastic simulations of Campbell and Cochrane’s environment in the

preceding section to construct an indicator as follows. For any period with consumption

growth in excess of the steady-state growth rate, we compute the habit level and com-

pare it to the counterfactual habit level that would have arisen if consumption had only

grown from last period at the steady-state rate. Half of all simulated periods experience

consumption growth higher than the steady-state rate; of that 50%, roughly one quarter

exhibits unorthodox habit dynamics in the sense that the habit level is reduced relative to

if consumption had only grown at the steady-state rate.
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Our findings imply that Campbell and Cochrane’s (1999, pp. 245–

247) attempt to map their results into a version of the model with

internal habit formation must be reconsidered. Households faced with

such an internal habit would themselves choose to periodically destroy

endowments. Thus, the optimally chosen consumption process would

not be the same as the exogenous endowment process.

If the C-C preferences were embedded in an economy with storage

or production, it would rationalize outcomes of consumption bunch-

ing either chosen by households themselves under internal habit for-

mation or through destabilizing policies by a benevolent government

under external habit formation.7 In calculations not reported here, we

follow Campbell and Cochrane’s (1999, p. 210) suggestion that their

endowment economy can alternatively be closed with a linear produc-

tion technology. Using the randomly generated endowment sequences

in the present paper, we then find large welfare gains from storing

roughly 10 percent of the endowment and consuming the savings in

a consumption binge every other month. To make the households in

a laissez-faire economy that consumes the endowment indifferent to

such a policy, consumption would have to be raised by more than 30

percentage points for the indefinite future.

In sum, given the progress made in understanding asset pricing

puzzles with the help of Campbell-Cochrane preferences, the next nat-

ural step will be to understand the macroeconomic implications, when

endogenizing consumption at the aggregate level and when investigat-

ing the scope for government intervention. Our analysis has convinced

us, that this exercise will provide interesting challenges.

7By contrast, Ljungqvist and Uhlig (2000) report on how welfare can be improved

through policies of consumption stabilization under catching-up-with-the-Joneses prefer-

ences, i.e., the conventional linear external habit formulation. In a productivity-shock

driven economy, it is shown that such a consumption externality calls for an optimal tax

policy that affects the economy countercyclically via procyclical taxes, i.e., “cooling” down

the economy with higher taxes in booms and lowering taxes in recessions to stimulate the

economy.
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Appendix A

We show that welfare cannot increase by destroying part of the

endowment along a steady-state growth path, given that the external

habit level is governed by a conventional linear law of motion;

Xt = µXt−1 + αCat−1 = αCa0

t−1
∑

j=0

µjGt−1−j + µtX0 ,

where the second equality would hold along the constant growth path.

In a steady state, habit is ensured to be less than consumption if the

parameters satisfy

G > µ+ α, (17)

and habit would then grow at the rate G and result in a steady-state

ratio Xt/Ct = α/(G − µ).

Let {Ct,Xt} denote the sequence of consumption and habit levels

in the steady state, and consider a one-time perturbation where a

fraction △ ∈ [0, 1 − α/(G − µ)) ≡ Γ of the endowment is destroyed

in period 0: C̃0 = (1 −△)C0, C̃t = Ct for all t ≥ 1; X̃0 = X0, X̃t =

Xt − µt−1α△C0 for all t ≥ 1. Let Ω(△) denote the welfare associated

with a perturbation △, i.e., the preferences in (1) are evaluated at the

allocation {C̃t, X̃t}. Since Ω′′(△) < 0 for all △ ∈ Γ, it suffices to show

that Ω′(0) < 0 in order to establish that Ω′(△) < 0 for all △ ∈ Γ. We

can compute

Ω′(0) = −(C0 −X0)
−γC0 +

∞
∑

t=1

δt(Ct −Xt)
−γµt−1αC0 .

After substituting in for the steady-state allocation, a condition for

Ω′(0) < 0 is

−1 +
∞
∑

t=1

δtG−tγµt−1α < 0 =⇒ Gγδ−1 > µ+ α ,

which is guaranteed to hold under our parameter restrictions (8) and

(17).
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Appendix B

We verify that an infinitesimal endowment destruction must also

decrease welfare under the C-C preference specification;

W ′(0) = (1 + λ̄)S̄1−γ −
∞
∑

t=1

δtφt−1(1 − φ)λ̄
[

S̄Gt
]1−γ

=
1 − φδG1−γ + (1 − δG1−γ)λ̄

1 − φδG1−γ
S̄1−γ > 0 ,

where the convergence of the infinite sum and the strict inequality

follow from φ ∈ [0, 1) and parameter restriction (8). Thus, in the

neighborhood around the steady-state growth path, welfare is strictly

increasing in the fraction of the endowment that is consumed.
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Parameter Variable Annual Monthly

Mean endowment growth (%) g 1.89 0.1575

Standard deviation of endowment growth (%) σ 1.50 0.4330

Persistence coefficient φ 0.87 0.9885

Utility curvature γ 2.00 2.0000

Subjective discount factor δ 0.89 0.9909

Steady-state surplus consumptio ratio S̄ 0.057 0.0571

Table 1: Parameters from Campbell and Cochrane (1999, Table 1) who report

annualized values but, as in our study, perform all numerical analyses at a

monthly frequency.

Endowment destruction, 1 − exp(ψ)

p 0.01 0.05 0.10 0.15 0.20

2 4.89 (4.19) 8.36 (7.00) 13.66 (11.76) 8.68 (13.77) -8.18 (5.56)

6 2.48 (2.08) 9.08 (7.60) 15.45 (13.09) 9.65 (15.03) -8.13 (5.96)

12 1.37 (1.16) 9.03 (7.60) 15.91 (13.40) 9.86 (15.26) -8.12 (6.04)

24 0.72 (0.62) 8.52 (7.28) 15.89 (13.40) 9.89 (15.28) -8.12 (6.06)

120 0.24 (0.21) 4.95 (4.27) 13.40 (11.12) 8.51 (14.06) -8.15 (5.97)

Table 2: Expected welfare gain when switching from the laissez-faire out-

come to a government policy indexed by (ψ, p), measured by the percentage

increase in consumption needed to attain the same expected utility under

no government intervention. A government policy (ψ, p) stipulates that a

fraction 1 − exp(ψ) of the endowment is destroyed every p:th month. The

numbers without parentheses refer to unconditional welfare gains where the

initial surplus consumption ratio is drawn from its unconditional distribu-

tion, and the numbers within parentheses are welfare gains conditional upon

the initial surplus consumption ratio equal to its steady-state value.
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Figure 1: Detrended consumption and habit level associated with a five-

percent endowment destruction in period 0. The dash-dotted curve depicts

the consumption time series that bounces back in period 1. The solid and

dashed curve show the habit time series for the C-C habit model and the

standard habit model, respectively. (Parameter values from Table 1 at a

monthly frequency but without any uncertainty, σ = 0.)
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Figure 2: Difference between consumption and habit level associated with a

five-percent endowment destruction in period 0. The solid and dashed curve

refer to the C-C habit model and the standard habit model, respectively.

Detrended time series of consumption and habit levels are taken from Fig-

ure 1. (Parameter values from Table 1 at a monthly frequency but without

any uncertainty, σ = 0.)
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Figure 3: Welfare gain associated with a one-time endowment destruction,

measured by the permanent percentage increase in consumption needed to

attain the same utility without any destruction. Along a non-stochastic

steady-state growth path, a fraction between 0 and 25 percent of the endow-

ment is destroyed in one single period. The solid and dashed curve depict the

welfare gain associated with such a destructive policy including the utility

loss of the initial endowment destruction under the C-C habit model and the

standard habit model, respectively. Note that utility is not defined in the

standard habit model for endowment destructions that exceed the surplus

consumption ratio in the steady state, S̄ = 0.057. (Parameter values from

Table 1 at a monthly frequency but without any uncertainty, σ = 0.)
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Figure 4: Welfare gain associated with a one-time endowment destruction,

measured by the permanent percentage increase in consumption needed to

attain the same utility without any destruction. The figure is a magnification

of the lower range of endowment destructions in Figure 3. Along a non-

stochastic steady-state growth path, a fraction between 0 and 0.09 percent of

the endowment is destroyed in one single period. The solid and dashed curve

depict the welfare gain associated with such a destructive policy including

the utility loss of the initial endowment destruction under the C-C habit

model and the standard habit model, respectively. (Parameter values from

Table 1 at a monthly frequency but without any uncertainty, σ = 0.)
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Figure 5: Difference between consumption and habit level under the C-C

habit formulation in response to the described one-time endowment destruc-

tions of Figure 3. The solid curve depicts the difference between consumption

and habit level in the period of the endowment destruction, C0−X0, and the

dashed curve depicts the detrended difference in the next period, C1 − X1.

(Parameter values from Table 1 at a monthly frequency but without any

uncertainty, σ = 0.)
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sumption ratio. We only show the decision rule for 0 ≤ S ≤ exp s∗. (Param-

eter values from Table 1 at a monthly frequency but without any uncertainty,

σ = 0.)
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Figure 7: How contemporaneous habit is affected by a consumption change

relative to last period’s levels, for different values of last period’s surplus

consumption ratio. (Parameter values from Table 1 at a monthly frequency.)
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