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1 Introduction

In simple settings the conditions under which monetary policy can lead inde-
terminacy are well understood: active Taylor rules generate determinacy and
passive rules generate indeterminacy.1 When monetary policy is subject to
regime switches, presumably because monetary policy has to shift randomly
with changes in some underlying economic conditions, the situation becomes
more complex, especially if policy is active in some regimes and passive in oth-
ers. It is natural then to expect that some average over the regimes, possibly
weighted by transition probabilities, would allow the characterization of deter-
minacy vs. indeterminacy, once indeterminacy is appropriately de�ned. The
question has been studied by Davig and Leeper (2006, 2007), Chung, Davig
and Leeper (2007), and by Farmer, Waggoner and Zha (2009a, 2009b). We
hope to further clarify the conditions for indeterminacy by characterizing the
moments of the stationary distribution of in�ation when monetary policy can
switch across active and passive regimes according to a Markov process. In the
last section, we outline methods to compute the moments of stationary distrib-
utions in regime switching models of higher dimensions.

2 A simple model

We start with the simplest possible model, and leave the extensions for later.
The simplest model has �exible prices where �t is the in�ation rate, rt is the
real rate, and Rt is the nominal rate at time t: The Fisher equation is satis�ed,
that is

Rt = E (�t+1) + rt (1)

and the monetary authority sets the nominal rate according to the Taylor rule:

Rt = ~R+ �t (�t � ~�) (2)

We assume that frtgt is a bounded iid random variable over the state space
% =

�
r1; :::rn

�
with mean ~r; that f�tgt is an irreducible, aperiodic, stationary

Markov chain over state space � =
�
��1; :::

��s
�
with transition matrix P and

stationary distribution � = (�1; :::�s) ; and that the target in�ation rate is
~� = ~R � ~r: Then, substituting (2) into (1) and subtracting ~r from both sides,
we have:

~R� ~r + �t (�t � ~�) = E (�t+1) + rt � ~r

�t (�t � ~�) = E (�t+1)�
��
~R� ~r

�
� (rt � ~r)

�
�t (�t � ~�) = E (�t+1)� (~� � (rt � ~r))

�t (�t � ~�) = E (�t+1 � ~�) + (rt � ~r)
1We have in mind simple Taylor rules in simple settings where the a policy is active if the

central bank changes the nominal rate by more than the change in the in�ation rate, and
passive otherwise.
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If we set qt = �t � ~�; and we de�ne the iid random variable "t = rt � ~r so that
E ("t) = 0; we get:

�tqt = E (qt+1) + "t (3)

We can then explore solutions of (3) that satisfy

qt+1 = �tqt � "t + 
t+1 (4)

provided has Et
�

t+1

�
= 0 for the iid process f
tgt. By repeated substitution

we obtain

qt+N =

 
N�1Y
l=0

�t+l

!
qt +

N�1X
l=0

�

t+1 � "t

� N�1Y
m=l+1

�t+m (5)

It is clear that if ��i > 1 for i = 1; :::s; the only solution satisfying (3) that is
bounded or that has �nite moments is the Minimum State Variable solution
(see McCallum (1983)

qt =
"t
�t

(6)

When ��s < 1 for one or more values of s; indeterminacy can become an
issue and additional solutions of (3) may emerge. For any initial q0 and �nite
state iid sunspot process f
tgt with Et

�

t+1

�
= 0 for all t, there may be other

solutions of (3) satisfying (4) that are bounded, or that have �nite moments. It
may therefore be useful to consider what the set of admissible solutions to (3)
are.
Typically, transversality conditions associated with underlying optimization

problems are given in terms of the expected discounted value of assets in the
limit as time goes to in�nity. If for example the supply of nominal bonds or nom-
inal balances are �xed, under apropriate assumptions fast unbounded de�ations
may generate real asset levels that go to in�nity, violating transversality con-
ditions. Fast unbounded in�ations that drive the real value of bonds or money
to zero may also be ine¢ cient or infeasible, so it is indeed reasonable, from the
perspective of microfoundations, to impose conditions assuring that at least the
mean of the stationary distribution of fqtgt exists. Other more stringent criteria
may only require the existence of second or even higher moments.

3 Indeterminacy

Let us start with the existence of stationary solutions of (4). Since the state
spaces for f�tgt ; f"tgt and f
tgt are �nite with f"tgt and f
tgt zero mean iid
processes, we can immediately apply a theorem of Brandt (1986). Recall that �
is the stationary probability induced by the transition matrix P: Brandt (1986)
shows that if the condition � ln j�0j < 0 holds, that is if the expected value of
ln j�j taken with respect to the stationary probabilities induced by the transition
matrix P is negative, then (4) has a unique ergodic stationary solution. Thus
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we see that the existence of stationary solutions requires not that j��ij < 1 for
every i; but that the average over ln j�0j computed using stationary probabilities
over the state space of the Taylor coe¢ cient is negative. Clearly, the condition
� ln j�j < 0 cannot be satis�ed if j��ij > 1 for all i:
But this is not much help since a stationary distribution need not have �nite

moments, let alone be bounded. In fact it is precisely the �niteness of moments
that will be the focus next. For this we invoke a recent Theorem of Saporta
(2005).2 Let Q be the diagonal matrix with diagonal entries ��i:

Theorem 1 (Saporta (2005),Thm 2) Let

qt+1 = �tqt �
�
"t � 
t+1

�
Assume: (i) � ln j�j < 0;3 and (ii) ln�i i = 1; ::s are not integral multiples of
the same number.4 Then for x = f�1; 1g, the tails of the stationary distribution
of qn, P:>(qn > q); are asymptotic to a power law:

Pr >(xqn > q) � L (x) q��

with L (1) + L (�1) > 0; where � > 0 satis�es

� (Q�P 0) = 1

and where � (Q�P 0) is the dominant root of Q�P 0:

Remark 2 The stationary distribution of fqtgt is two-tailed because realizations
of "t and 
t as well as ��i may be positive or negative.

5

Remark 3 Note that the i0th the column sum of the matrix QP 0 gives the
expected value of the Taylor coe¢ cient conditional on starting at state i:

Remark 4 Most importantly, it follows from power law tails that if the solution
of � = �̂; then the stationary distribution has only moments m < �̂:

The above result is still not sharp enough because it does not su¢ ciently
restrict the range of �: Suppose for example, on grounds of microfoundations,
we wanted to make sure that �̂ > m for some m: To assure that the �rst
moment of the stationary distribution of fqtgt exists, we would want �̂ > 1; or
if we wanted the variance to exist (mean square stability) would want �̂ > 2:

2 In a very di¤erent context Benhabib and Bisin (2008) use similar techniques to study
wealth distribution with stochastic returns to capital as well as stochastic earnings.

3Condition (i) may be viewed as a passive logarithmic Taylor rule in expectation. We
will also use an expected passive Taylor rule in Assumption 1 and Proposition 1 but not in
logarithms.

4Condition (ii) is a non-degeneracy condition often used to avoid lattice disatributions in
renewal theory, and that will hold generically.

5The distribution would only have a right tail if we had �"t + 
t+1 > 0; and ��i > 0 for
all i; that is we would have L (�1) = 0: See Saporta (2005),Thm 1.
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The assumptions to guarantee this however are easy to obtain and trivial to
check, given the transition matrix P and the state space �.
De�ne �m = ((�1)

m
; ::: (�1)

m
) for some positive integer m that we choose.

Assumption 1 (a) Let the column sums of QmP 0 be less than unity, that is
P (�m)

0
< 1; where 1 is a vector with elements equal to 1, (b) Let Pii > 0 for

all i; and (c) Assume that there exists some i for which ��i > 1:

Remark 5 In Assumption 1, (a) implies, for m = 1; that the expected value
of the Taylor coe¢ cient �t conditional on any realization of �t�1; is less than
1; that is that the policy is passive in expectation. (b) implies that there is a
positive probability that the Taylor coe¢ cient does not change from one period
to the next, and (c) implies that there exists a state in which the Taylor rule is
active.

We now turn to our result on the conditions for indeterminacy.

Proposition 1 Let assumption 1 hold. The stationary distribution of in�ation
exists and has moments of order m or lower.

Proof. We have to show that there exists a solution �̂ > m of � (Q�P 0) = 1.
Saporta shows that � = 0 is a solution for � (Q�P 0) = 1; or equivalently for
ln (� (Q�P 0)) = 0: This follows because Q0 = I and P is a stochastic matrix
with a unit dominant root. Let E ln q denote the expected value of ln q evaluated
at its stationary distribution. Saporta, under the assumption E ln q < 0; shows

that
d ln�(A�P 0)

�� < 0 at � = 0; and that ln (� (A�P 0)) is a convex function of
�.6 Therefore, if there exists another solution � > 0 for ln (� (A�P 0)) = 0; it is
positive and unique. To assure that �̂ > m we replace the condition E ln q < 0
with P (�m)0< 1: : Since QmP 0 is positive and irreducible, its dominant root
is smaller than the maximum column sum. Therefore for � = m; � (Q�P 0) < 1.
Now note that if Pii > 0 and �i > 1 for some i; the trace of Q�P 0 goes to
in�nity if � does (see also Saporta (2004) Proposition 2.7). But the trace is the
sum of the roots so that the dominant root of Q�P 0; � (Q�P 0) ; goes to in�nity
with �. It follows that the solution of ln (� (Q�P 0)) = 0; �̂ > m:

Remark 6 It follows from the Proposition for example, that if admissible so-
lutions of (4) require the mean of the stationary distribution of q to exist, we
can apply the assumptions of the Proposition with m = 1; if we require both the
mean and the variance to exist, we invoke the assumptions with m = 2: If on
the other hand P (�)0 > 1 then from the proof of Proposition 1 the stationary
solutions to (4), which exist if the assumptions of Theorem 1 are satis�ed, will
not have a �rst moment7 , and therefore such solutions to (4) may be considered
inadmissible.

6This follows because limn!1
1
n
lnE (q0q�1:::qn�1)

� = ln (� (Q�P 0)) and the log-
convexity of the moments of non-negative random variables (see Loeve(1977), p. 158).

7This is because if a positive � exists it will have to be less than 1:
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Remark 7 Note also that the condition for the existence of a mean for the
stationary distribution of in�ation, P (�)0 < 1, implies that the expected value
of � from every state is less than 1: Since the dominant root � (QP 0) lies between
the maximum and minimum column sums of QP 0; it represents an average value
for � with probabilities weighted appropriately over states, required to be less than
unity; an average Taylor Principle for indeterminate solutions.

The following Corollary follows immediately since it implies � (QmP 0) > 1:

Corollary 1 If P (�m)0� 1; then the stationary distribution of in�ation, which
exists if � ln j�j < 0; has no moments of order m or higher.

Remark 8 If we have a Markov chain for �t and we want it to be iid; then the
rows of P must be identical: transition probabilities must be independent of the
state. The dominant root � (Q�P 0) is simply the trace of Q�P 0 since the other
roots are zero, and column sums �i

�
��i
��
Pji are identical for any j:

Remark 9 Comparative statics for � can be obtained easily since the dominant
root is an increasing function of the elements of Q�P 0. Since � (Q�P 0) is a
log-convex function of �; the e¤ect of mean preserving spreads the random vari-

able limN!1

 
N�1Y
n=0

�
��n

��! 1
N

can be studied though second order dominance

to show that they will decrease �:

The results above are also consistent with Proposition 1 of Davig and Leeper
(2007). First note that as long as there is a state of the Taylor coe¢ cient,
��i > 1 with Pii > 0, and 
t+1 � "t is iid with zero mean, then a stationary
distribution of in�ation that solves (4) will unbounded: there will always be a
positive probability of a su¢ ciently long run of ��i > 1 coupled with non-negative
shocks, to reach any level of in�ation. Therefore we may seek to obtain bounded
solutions of (4) with 0 < ��i < 1; all i. In that case however, the matrix given
by Davig and Leeper (2007), M = Q�1P will have elements larger than those
of P: But the dominant root of P , larger in modulus than other roots, is 1; and
as is well known, an increasing function of its elements. So M must have a root
larger than 1; and bounded solutions would be consistent with the results of
Davig and Leeper (2007).:Conversely, if ��i > 1 for all i; the dominant root, as
well as other roots of M = Q�1P will be within the unit circle and satisfy the
condition given by Davig and Leeper (2007) to rule out bounded solutions to
(4).
However, as shown by Farmer, Waggoner and Zha (2009b) in an example

with a two state Markov chain, bounded sunspot solutions that satisfy (3) may
still exist. With regime-switching we may allow the sunspot variable 
t+1 to
be proportional to �tqt for all transitions to the active regime, and to thereby
dampen the multiplicative e¤ect of the Taylor coe¢ cient, e¤ectively transform-
ing the system into one that behaves as if the policies were passive. The reason
that this is compatible with a zero mean sunspot variable is that the dampening
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of the active policy can be o¤set by a value of 
t+1 for all transitions to the
passive regime, again proportional to the value of �tqt; and thereby preserve
the zero mean of 
: Therefore given transition probabilities, the random switch-
ing model makes it possible maintain the zero mean of the sunspot variable, as
long as we allow a correlation between the sunspot variable and the contem-
poraneous realization of the Taylor coe¢ cient �. Boundedness follows because
this scheme e¤ectively delivers a stochastic di¤erence equation with random
switching between Taylor coe¢ cients that are below one in each regime.
Even more generally, in a New Keynesian model, Farmer, Waggoner and Zha

(2009a) construct examples of bounded solutions without sunspots that depend
not only on the fundamental shocks of the Minimum State Variable solution,
but also on additional autoregressive shocks driven by fundamental shocks. The
coe¢ cients of the autoregressive structure have to depend on the transitions
between the regimes as well as on the transition probabilities in order to satisfy
the analogue of (3). Markov switching across regimes permits the construction
of such solutions, but the autoregressive structure thus constructed must also
be non-explosive to allow the solutions to be bounded. Farmer, Waggoner and
Zha (2009a) show that this can be accomplished if at least one of the regimes
is passive so that it would permit indeterminacy operating on its own. A key
element of the construction is the dependence of the additional non-fundamental
shocks on the transitions between states and transition probabilities.
For an example of a MSV sunspot solution when "t and �t in equation (3) are

correlated, take the case where �t is iid over � =
�
�1; :::�n

	
with probabilities

p = (p1; :::p
n) ; and set "t = �t�1:We now have a stationary solution that solves

(3) irrespective of the state space � and probabilities p, given by qt = 1: Note
however that with this speci�cation we have Pr(�tq+(1��t) = q) = 1 for q = 1:
(For a discussion of such solutions see Bougerol and Picard (1992), and also
footnote 12 below.) We may now also introduce a "regime switching" sunspot
process with 
t+1 = �t
t+!t; where !t is iid with zero mean, whose distribution
can be characterized by the methods of Theorem 1, provided E ln�t < 0. Now
consider the solution qt = 1+ 
t: Since E (qt+1) = 1+E

�

t+1

�
= 1+�t
t; this

solution also satisi�es (3).

4 Extensions

1. The results can be extended to the case where f�t; "tgt is not necessarily
iid. We can de�ne a Markov modulated process where we have a Markov chain
on
�
�t; "t; 
t+1

	
t
with the restriction that

Pr
�
�t; "t; 
t+1j�t�1; "t�1; 
t

�
= Pr

�
�t; "t; 
t+1j�t�1

�
The idea is that a single Markov process, here for simplicity f�tgt ; drives the
distributions of "t and 
t, so that the parameters of the distribution of "t and 
t
depend on �t�1 but not on past realizations of " and 
: (See Saporta (2005) in
remarks following Thm. 2). A pertinent example of such conditional indepen-
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dence is where the expectations of interest rate deviations "t and the sunspot
variable 
t remain at zero, irrespective of the realizations of �t�1; but other
parameters of their distribution may be a¤ected by �t�1: With an additional
technical assumption the results of the previous sections go through unchanged.8

Furthermore, the �nite state discrete Markov chain assumptions can also be re-
laxed. (See Roitershtein (2007).)
2. To study economic models with regime switching in more than one dimen-

sion, the results of the previous sections have to be generalized. For example
New Keynesian models with sticky prices require two dimensions, in�ation and
output, while AR(q) models with random coe¢ cients can be transformed into
a �rst order system. We may therefore want to study higher order systems of
the type qt+1 = Atqt + bt , where At and bt are random d-dimensional square
matrices and vectors, respectively. The theory to study such multidimensional
processes has been developed by Kesten (1973) and recently extended by others.
(For an overview see Saporta (2004), sections 4 and 5.) While the results con-
cerning power tails in the one-dimensional case generalize at least for the case of
iid transitions, the technical conditions that must be veri�ed, although similar
to the ones for the one dimensional case, are more complex. So we consider
the simplest cases su¢ cient for our purposes based on Kesten (1973), and refer
the reader to Saporta (2004a, sections 4 and 5) and Saporta, Guivarc�h, and Le
Page (2004b)) for generalizations.
Let fAtgt be an iid process on A=

�
A1; :::An

�
with associated probability

distribution p = (p1:::pn) > 0; where each d � d square matrix Ai � 0 that
has no zero rows. We let � (Ai) denote the dominant root of Ai; zi denote the
maximum column sum of Ai where z = (z1; :::zn) ; and yi denote the minimum
column sum of Ai; where y; (y1; :::yn) : Similarly let fbtgt be an iid process
on b=

�
b1; :::bm

�
; with associated probability distribution � =

�
�1; :::�m

�
> 0

where, for all i; bi is not a vector with all zero elements9 .
The two assumptions we need, easily checked, are (i) � = p ln z < 0;10 and

(ii) py� > d
�
2 where d is the dimension of the system. These two assumptions

play a role analogous to (i) in Theorem 1 and P (�m)0> 1 in Corollary 1.
In addition we need two assumptions that rule out exceptional cases: (a)

the elements � (Ai) are not integral multiples of the same number, and (b) for
some � (Ai), bj and bk; ui

�
bj � bk

�
6= 0; where ui is the characteristic vector of

8The technical assumption is

Pr
�
�iq + "i + 
i+1 = q

�
< 1 for any i and q:

This prevents special cases where the stochastic process gets stuck at a particular value of q.
See the last paragraph of the previous section.

9We could easily allow a continous distribution for b; but we are trying to keepp notation
and exposition to a minimum.
10To assure that � = p ln z < 0 we may use a stronger condition, that the expected value of

the dominant root of
�
A1 
t A1

�
; �
�
A1 
t A1

�
< 1; where 
 is the Kronecker product.This

condition guarantees not only that � < 0 and therefore, the existence of a stationary solution
of of fqtgt, but also the existence of the �rst and second moments. For a proof see Klüppelberg
and Pergamenchtchiko (2004), Saporta (2004) Proposition 4.1, and its proof. A similar and
related condition is used by Farmer, Waggoner and Zha (2009c) to assure the existence of
second moments to yield the desirable "mean square stability" results.
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� (Ai) : Assumption (a) is the analogue of (ii) in Theorem 1. Assumption (b)
would not be needed if > 0. (See remark following Theorem 4 in Kesten (1973).)
It is clear that both the Assumptions (a) � (b) exclude exceptional cases and
can be perturbed away if needed.
The above assumptions assure that there exists 0 < � � � such that the

power law and moment results in the one dimensional case generalize: the power
law will apply to xq; with x any normalized unit row vector of the same dimen-
sion as q. The power law is given by limt!1 Pr (xq � t) = C (x) t�� with C (x)
strictly positive for some but not necessarily for all x; because some or all el-
ements of the vector q may have only a left rather than a right power tail.11

Note that with C (x) > 0; if � < 1 the stationary distribution of fxqtgt has no
mean, if � < 2; it has no variance, and more generally no moment m > �. If �
is not �nite, all moments of fqtgt will exist. We could however study whether
a particular moment fails to exist by computing the value of � = �̂ that solves
py�̂ = d

�̂
2 .12

3. To simplify matters, with some additional assumptions we can introduce
a Phillips curve in a simpli�ed model while still remaining in one dimension.
Let the simple Phillips curve be given by qt = kxt where xt is output and qt is
in�ation, and let the IS curve be xt = �m [Rt � Eqt+1] + Etxt+1 where Rt is
the nominal interest rate: Let the Taylor rule be given by it = �tqt: Then after
substitutions the system can be written as

Eqt+1 =

�
�tmk + 1

mk + 1

�
qt = �tqt

where �t = � > 1 (< 1) if �t = � > 1 (< 1): There is always a bounded solution
given by qt = 0 where in�ation is always at its target steady state.: However, if
�t is generated by a Markov chain, there may also be sunspot solutions given
by

qt+1 = �tqt + 
t+1

where 
t+1 is a sunspot variable. This equation may then be analyzed by the

11Note that is not restricted to be positive. Then for some but not all unit vectors x we
may have C = 0: In some cases, for example for b > 0, the distribution of xq only has a
right tail for all x > 0 so that limt!1 t� Pr (xq � t) = C (x) > 0; (see Kesten (1973), Thm 4
and the remark that follows), but does not have a left tail. Then limt!1 t� Pr (�xq � t) =
limt!1 t� Pr (xq � �t) = 0. Conversely for example for b < 0 only the left but not the right
power tail exists. For more general statements that guarantee C > 0 for all unit vectors x;
see Kesten (1973), thm 6 or Saporta (2004), thms 10-13 and especially 5.1 in sections 4 and
5. The additional assumptions guarantee su¢ cient mixing so that both left and right power
tails exist for all elements of q.
12We may also inquire as to whether � = p ln z > 0 rules out the existence of a stationary

distribution for the solution of qt+1 = Atqt+bt: Bougerol and Picard (1992) prove that this is
indeed the case where fAs; bsgs is iid under the assumptions that (i) fAs; bsg is independent
of qn for s < n (so for example, the direction of time cannot be reversed), and (ii) if for
some fA0; b0g there exists an invariant a¢ ne subspace H 2 Rd such that

�
Aiq + bijq 2 H

	
is

contained in H; then H is Rd: Condition (ii), which the authors call irreducibility, eliminates
for example cases where bt = 0 for all t; so that qt = 0 is a stationary solution for all t
irrespective of fAsgs ; or where for some feasible A0; b0; q0 we have Pr (A0q0 + b0 = q0) = 1:
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same methods used above.
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