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Abstract

This paper applies ideas from mechanism design to model procurement of pre-

scription drugs. We present a mechanism for government-funded market-driven drug

procurement that achieves very close to full static efficiency – all members have access

to all but at most a single drug – without distorting incentives for innovation.

Prescription drugs are an essential component of modern healthcare. In the U.S. drug

spending has skyrocketed in recent years – while in 1980 it amounted to $12 billion, less than

5% of total health care expenditures, in 2006 that number has increased to $216.7 billion,

over 12% of total expenditures. The Center for Medicare and Medicaid Services (CMS)

currently projects drug spending to rise to $446.2 billion in 2015, approximately 2.2% of

projected U.S. GDP.1 Those statistics suggest that even minor efficiency improvements in

the drug procurement process can lead to significant welfare gains.

Lessons learned from markets for typical healthcare services such as doctor consultations

and hospital stays are largely not applicable to markets for prescription drugs. In contrast

∗We would like to thank Jeremy Bulow, Robin Lee, Preston McAfee, Michael Ostrovsky, Andy Skrzypacz,
Joel Sobel and seminar participants at Chicago GSB, Columbia Department of Economics, NBER Summer
Institute and Stanford GSB for helpful comments.
†UC Berkeley and Stanford University, contact: kyna.fong at stanford.edu. Part of this research was

conducted during an internship at Yahoo! Research.
‡Yahoo! Research and NBER, contact: mschwarz at yahoo-inc.com
1Source: CMS Data and CBO Projections.
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to healthcare services, prescription drugs are often supplied by patent-protected monopolists

and feature marginal costs that are a very small fraction of price. In this respect, prescription

drugs bear a stronger resemblance to information goods such as music and software than to

doctor visits and hospital stays.

This paper offers a conceptual framework for efficient design of government-funded pre-

scription drug procurement. We emphasize that this paper is intended primarily as a thought

exercise rather than a specific policy proposal. We address a basic question – whether ef-

ficiency is attainable in the market for prescription drugs in the presence of monopolists –

and then use a highly stylized model to establish a benchmark answer in the affirmative.

Our main objective is to use economic theory to develop a framework for thinking about

prescription drugs.

For drugs that are zero marginal cost, the socially efficient (static) outcome is for all

individuals who derive a positive expected marginal benefit from a drug to have access

to that drug: in other words, static efficiency entails universal access.2 Due to patent

protection, however, drugs are often sold by monopolists, and in the benchmark monopoly

pricing case, the profit-maximizing price leads to deadweight loss. One contribution of this

paper is to describe a novel market-based mechanism for government drug procurement

that approaches static efficiency without introducing additional distortions to incentives for

innovation (relative to the benchmark monopoly pricing case).

One might argue that appropriately chosen government price controls can accomplish

the same goal. The government achieves static efficiency by providing all drugs for free

to its citizens. In conjunction, the government can choose appropriate prices such that

incentives for innovation are unchanged, thus leading to a Pareto gain in welfare. However,

such an arrangement features two major drawbacks: (1) it lacks the power of the market to

dynamically correct for inaccurate pricing, imposing strong informational requirements on

2We assume away externalities. In some cases, drug consumption imposes positive or negative external-
ities. For example, the use of vaccines may prevent an epidemic while the use of antibiotics may create
drug-resistant strains of bacteria.
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the government, and (2) it creates perverse incentives for drug manufacturers to manipulate

prices via lobbying.

In the U.S. lawmakers consider the drawbacks of centralized price interventions serious

enough to exceed their benefits. The Medicare Modernization Act of 2003, which has es-

tablished a universal drug benefit for the elderly in the form of Medicare Part D, explicitly

prohibits the government from negotiating drug prices. Michael Leavitt, the U.S. Secretary

of Health and Human Services, has written that, “government should not be in the business

of setting drug prices or controlling access to drugs. That is a first step toward the type of

government-run health care that the American people have always rejected.” He describes

government price-setting as a situation in which “one government official would set more than

4,400 prices for different drugs, making decisions that would be better made by millions of

individual consumers.”3 At least in the U.S., a market-driven procurement mechanism that

avoids price controls might be a politically palatable way to improve efficiency.

In fact, the U.S. has a long history of using market forces to accompany government

subsidization of prescription drug purchases. In the case of Medicaid, which provides health

insurance for low-income Americans, in 1990 the federal government instituted a “best-price

rule” that ties prices paid by Medicaid to prices paid by private payers. Another example of

policy tying U.S. government subsidies in healthcare to market forces is the advantageous tax

treatment of employer-provided health insurance. Although in both instances the intention

of the government subsidies was to increase access to prescription drugs, studies show that

those interventions have instead led to the perverse effect of raising prescription drug prices

and in fact reducing access to drug coverage. Morton (1997) is the first to point out that

the Medicaid best-price rule has put upward pressure on drug prices, and Duggan & Morton

(2006) offers conclusive evidence of that. Using entirely different methods and data, Schwarz

(2006) finds that the above policies not only have increased drug prices but, by increasing

drug prices, have likely reduced the number of people with access to drugs, perversely the

3Source: Opinion editorial, Washington Post, January 11, 2007.

3



opposite effect of what policymakers intended.

In the presence of monopoly-supplied drugs, the main difficulty in designing a market-

driven mechanism is that, as long as a monopolist faces a population of consumers with

heterogeneous values, he is likely to set his monopoly price above the reservation price of

some consumers, leading to potentially large deadweight losses. Even when the purchase

of drugs is subsidized in the form of traditional insurance, the same problem persists when

monopolists control prices (Newhouse 2004). Intuitively, if the government subsidizes 50%

of each drug purchase, monopolists will double prices in response and deadweight losses will

remain unchanged.

In this paper, we show that there exists a government-funded, market-driven drug pro-

curement mechanism that gives all consumers access to all but at most a single drug, with-

out introducing additional distortions to innovation. Despite monopoly pricing power, static

near-efficiency can be achieved.4,5

In our model we assume that drugs have no substitutes and that each drug is sold by

a monopolist. Although in practice drugs may have therapeutic substitutes, the setting in

which all drugs are supplied by monopolists generates the largest concerns about efficiency

and hence is an important benchmark to consider.

Let us describe the intuition behind the market-driven drug procurement mechanism con-

sidered herein. Recall that deadweight losses arise because the demand curve is downward-

sloping, i.e. different consumers have different willingness to pay. If in fact all consumers

were identical, then a monopolist would set price equal to the universal willingness to pay

and serve the whole market. The key idea we leverage is to “homogenize” demand.

To illustrate that idea, consider a world in which all individuals have the same probability

of disease. The essential source of demand heterogeneity then arises from different tastes

4The additional deadweight loss from taxation is zero so long as the funding for the mechanism equals
the amount the government spends on subsidizing drug coverage under the status quo.

5The idea that mechanisms excluding one efficient trade can achieve near efficiency has been proposed
in a very different setting by McAfee (1992). Specifically, in McAfee (1992) one of many identical items is
excluded, whereas in our setting one of many drugs (which are not substitutes) is excluded from coverage.
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and wealth. For true monopoly drugs, which have no substitutes, we argue that demand

heterogeneity takes a specific form: although different consumers may have different willing-

ness to pay for a given drug, the ratio between willingness to pay for any two monopoly drugs

is constant across all consumers.6

This assumption about the special structure of the demand for drugs is theoretically

grounded. In particular, the assumption is motivated by the literature on the value of life,

which offers a theoretical and empirical framework for thinking about investments in safety

(see Viscusi (1993) for a survey). The main idea is that if a fire detector and an air bag are

equally likely to save a life, then any consumer should place equal reservation prices on both

devices. In our context, we argue that drugs or insurance for drug coverage can be viewed

as particular cases of safety devices that “produce” life or, more accurately, health. Hence,

heterogeneity in demand for drugs arises simply from heterogeneity in willingness to pay

for health. This special demand structure is exactly what allows us to construct a market

mechanism that “homogenizes” demand.

The structure of the mechanism at a high level conveniently resembles that of Medicare

Part D in the U.S., which is also government-funded and market-driven with private prescrip-

tion drug plans (PDP’s) serving as intermediaries between consumers and drug companies.

The government first fixes a per-member budget (subsidy) B to give to each PDP. Drug

companies announce prices at which the companies are willing to sell their drugs to PDP’s.

Drug plans then procure drugs from drug companies and assemble formularies, i.e. the set

of drugs that a given PDP will cover, within the budget constraint B. Consumers choose a

PDP in which to enroll based on formulary comprehensiveness. The drugs that are not on

a formulary continue to be available on the open market at market prices.

Fixing the subsidy serves to homogenize demand: each person now has the same budget

to be spent on her behalf, and thus the willingness to pay for access to a given drug becomes

6Specifically, we mean the ratio is constant across all consumers with the same probability of disease (i.e.
either all healthy consumers, or all consumers who have already developed the disease).
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uniform across all people.7 Thus, the subsidy forces drug companies to “compete” with one

another to get on PDP’s formularies; as a result, a monopolist can only charge as much as the

relative social value of his product warrants, thus making near efficient outcomes possible.

This mechanism imposes much lower informational requirements on the government than

administering price controls. In order to specify an optimal per-person budget B, the gov-

ernment needs only information about aggregate profits of all drug companies. Furthermore,

in Section 2.1 we argue that the ramifications on drug access of choosing a budget size that

is too high or too low are relatively small. In addition, the mechanism generates a natural

feedback loop. If in a given year many drugs are left off formularies, then the government

knows to increase the budget size in the next year; on the other hand, if all drugs are

covered, then the government may consider lowering the budget size. The mechanism also

allows budget size to be used as a convenient tool for calibrating incentives for innovation

in the pharmaceutical industry.

Kremer has described a patent buyout mechanism that achieves near efficiency in the

presence of monopolists (Kremer 1998). Buying out patents hinges on the notion of a

two-part tariff.8 By transferring lump sums of the appropriate size to inventors (would-be

monopolists) in exchange for patents, the government attains static efficiency because the

invention can then be made available at marginal cost.

The major difficulty with implementing such a system lies in determining the size of

the lump sum. Kremer’s mechanism extracts the relevant information from a market of

private parties, giving them weak incentives to reveal this information truthfully at the cost

of introducing a small inefficiency. He points out that the main problem with his mechanism

is that it is susceptible to manipulation. The expected joint payoff to a patent holder and

any third party whom he controls can be arbitrarily large, making collusion very attractive.

7This is a consequence of consumers having the same relative valuations for all drugs. Given the same
budget and the same probabilities of disease, consumers will allocate their budget across drugs (or insurance
for drugs) in the same way.

8Lakdawalla and Sood (2006) also focus on two-part tariffs; in particular, they describe how the two-part
design of health insurance contracts combats the inefficiency that results from healthcare providers having
market power.
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In the context of prescription drugs, manipulation is a serious concern since there are only

relatively few pharmaceutical companies and they would be regular repeated participants in

patent buyout auctions. The mechanism we describe cannot be manipulated in this fashion.

While Kremer’s (1998) patent buyout mechanism relies on the notion of a two-part tariff,

the mechanism we describe does not – in fact, it can be implemented using either linear

pricing or two-part pricing. Instead, the mechanism relies on a fundamentally different

idea, homogenizing demand, which can be leveraged in drug procurement due to the unique

demand structure for drugs.

There are several features of the prescription drug market that our model ignores com-

pletely. We assume that consumers are rational and capable of identifying the highest-value

formulary, and we restrict attention to the scenario of pure monopoly drugs, which have no

substitutes. We also assume that consumers either have identical probabilities of contracting

each disease, or that a mechanism for perfect risk adjustment is available. Furthermore, we

assume that the marginal costs of producing drugs and the costs of dispensing drugs are

negligible, thus assuming away the importance of existing pharmacy networks. Nonetheless,

our highly stylized model may offer a useful framework for thinking about drug procurement.

1 Model

1.1 The Environment

There is a finite number N of diseases n ∈ {1, 2, . . . , N}. Each disease is treated by a unique

drug, and a treatment requires exactly one unit of a drug (drugs have no substitutes). Each

drug is sold by a patent-protected monopolist.9 Drugs are produced at zero marginal cost,

and drug companies maximize expected profits.

For each disease n, let θn ∈ (0, 1] be the probability that an individual contracts the

9If each drug company owns several drugs, we can rephrase our analysis in terms of each company’s
portfolio of drugs rather than single drugs, and all the results would remain the same.
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disease. Let vn ≥ 0 be the ex-post effectiveness of drug n. We can think of vn as the increase

in future “health” units (measured, for example, in quality-adjusted life years) that the drug

provides to an individual who has developed the disease. Without loss of generality, label

drug N as a maximally valuable drug, i.e. vN = maxn vn. Finally, define zn = θnvn as the

expected benefit of drug n.

Consumers’ utility is strictly increasing in future “health” or life quality and is quasi-

linear and strictly increasing in money. Consider some consumer a. Consumer a’s willingness

to pay for insurance that covers drug n is related to the probability of disease (θn) as well

as the drug’s ability to increase the quality of her future life-years (vn). Let ua be consumer

a’s willingness to pay for insurance coverage of an additional unit of future life quality.10 We

assume that ua is distributed in the population according to some probability distribution

ρ(·) with cumulative distribution function P (·). So, we can write a consumer’s willingness

to pay (in dollars) for insurance that covers drug n as uaθnvn = uazn.11

The population consists of a unit mass of consumers, although all results still hold for a

single consumer or any finite number of consumers.12 We assume that consumers have access

to a market for actuarially fair insurance, which is available “à la carte” on an individual drug

basis. Thus, thinking about a consumer’s willingness to pay for actuarially fair insurance

coverage of a drug is equivalent to thinking about her willingness to pay for that drug.

There are potentially two sources of heterogeneity in willingness to pay for drugs: differ-

ences in health status and differences in willingness to pay for health. We focus on the latter

by assuming that all consumers have the same probability θn of contracting any disease n, or

equivalently that a perfect risk adjustment mechanism is available.13 Assuming perfect risk

10Assuming ua to be constant is a reasonable approximation for small probability events.
11We assume that the per-unit drug prices faced by individual consumers on the open market are equal

to (or not lower than) the per-unit prices faced by insurance companies that sell actuarially fair insurance.
Risk-averse consumers strictly prefer to purchase actuarially fair insurance for drugs. Consequently, if a
consumer chooses not to purchase actuarially fair insurance for a particular drug, then she will choose not
to purchase that drug in the event she does get sick.

12We model consumers as a continuum whose mass is normalized to unity because speaking about the
proportion of consumers with access to a drug is more natural than speaking about the probability that a
consumer has access to a drug.

13Risk adjustment plays an essential role in the design of Medicare Part D and many other insurance
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adjustment focuses attention on an already complicated benchmark for prescription drug

procurement without additional complications due to adverse selection. Furthermore, when

all drugs are supplied by monopolists, it is theoretically possible to construct a perfect risk

adjustment mechanism (see Fong & Schwarz (2009)).

Finally, there is a perfectly competitive market of risk-neutral prescription drug plans

(PDP’s), which engage in Bertrand-style competition. PDP’s serve as intermediaries between

consumers and drug companies. Each PDP assembles a formulary of drugs to which its

members have access. If a drug is not covered by a consumer’s PDP, the consumer has the

option of purchasing the drug, or actuarially fair supplemental insurance for that drug, on

the open market.

Consumers have private information about their willingness to pay for health ua. How-

ever, the distribution ρ(·) is common knowledge. In addition, the expected benefits of each

drug zn = θnvn are common knowledge among consumers, drug companies, and PDP’s.14

The government, however, does not know the values of each drug.

1.2 A Simple Example

Before presenting the mechanism in detail and proving general results, we first present a

simple example to illustrate the main ideas.

Consider a world in which there are N = 151 drugs, 100 of which provide value of one to

consumers who have developed the associated disease, i.e. vn = 1, and 51 of which provide

value of two to consumers who have developed the associated disease, i.e. vn = 2. We

have a unit mass of consumers indexed by a, and in this world, we assume that all are

healthy and develop each disease independently with identical probability θn = 0.01 for all

n. However, consumers do not have the same willingness to pay for drugs due to differences

programs.
14The assumption that consumers know the relative values of every drug is not necessary for our results to

hold. Instead it is sufficient to assume that consumers are capable of selecting the most valuable formulary
from amongst those offered by PDP’s. That assumption would be satisfied in a world in which trustworthy
entities provide consumers with formulary rankings based on value.
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in preferences and in wealth. In particular, we assume that the marginal willingness to pay

for coverage of an additional unit of future health, ua, is uniformly distributed between 0

and 100. Conditional on consumers being healthy then, the willingness to pay for actuarially

fair insurance coverage of any drug is uniformly distributed between 0 and vn.

Notice that each drug company faces a linear, downward-sloping demand curve. In

the benchmark case of the open market, each drug company acts as a profit-maximizing

monopolist and sets its price at 50vn. As a result, actuarially fair insurance costs 0.5vn per

drug, and half of the population, i.e. those with willingness to pay above 0.5, purchases

insurance and receives drugs if needed. Expected profits to each monopolist are 0.25vn,

and the total amount spent by consumers is (0.25 × 100) + (0.5 × 51) = 50.5. In such a

market, half the population is excluded from all drugs. Even if the government subsidizes

the purchase of drugs by covering half their costs, monopolists will double prices in response

and half of the population will continue to be excluded.

Alternatively, consider the following market-based, government-funded drug procurement

mechanism. The government commits to a maximum budget of 50 for procuring drugs for

the whole population. However, the value of each drug is not known to the government.

Hence, it delegates drug procurement and formulary assembly to two private competing

prescription drug plans (PDP’s), who know the value of drugs, and gives each PDP a budget

of 50 scaled by market share.

Through a centralized procurement auction, each drug company is asked to specify the

price at which it is willing to sell its drug. PDP’s can purchase actuarially fair insurance for

drugs at those prices, and each PDP uses those prices to decide which drugs to cover on its

formulary subject to the budget constraint. Drug companies can choose not to participate in

the auction, and if a drug company opts out, or if its drug is not included on the formulary, the

company has the right to sell its drug on the open market at its monopoly profit-maximizing

price. In the procurement auction, even though the profit-maximizing market price is 50vn,

each company is willing to bid a price as low as 25vn because doing so implies an expected
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profit of 0.25vn, the same profit the company obtains from opting out of the procurement

auction and selling on the open market. Notice, however, that in equilibrium not all drugs

can be fully covered because meeting all drug companies’ outside option profits of 0.25vn

exceeds the budget, i.e. (0.25 × 100) + (0.5 × 51) > 50.

In equilibrium, all companies must bid at the exact same price-to-value ratio because

otherwise companies bidding at lower ratios can shade upwards and just undercut companies

bidding at higher ratios. As a result, the only equilibrium involves all drug companies bidding

a price of exactly 25vn. Actuarially fair insurance for each drug then costs 0.25vn. Due to

competition for membership, each PDP assembles its formulary to maximize social value –

for example, it is an equilibrium for each PDP to include all of the 100 value-1 drugs as well

as 50 of the value-2 drugs randomly chosen from the 51.15

Under this alternative mechanism, the entire population can have access to all but a

single drug, yielding over 99% efficiency, while total spending remains unchanged. Notice

that the approximate efficiency result is not a coincidence. We have chosen the budget to

be exactly equal to
∑N−1

n=1 rn, which is the maximum budget that satisfies Proposition 1 in

Section 2.1. In Figure 1, this budget is the highest value for which the mechanism achieves

exactly first-best.

Even though both the total spending on drugs and the profits to drug companies remain

the same as under the benchmark monopoly regime, the share of the population with access

to almost all drugs doubles. Because drug companies’ profits are unchanged, incentives for

innovation remain unchanged as well.

1.3 The Mechanism

We now describe the mechanism in detail. While it is publicly-funded, implementation is

private – private prescription drug plans (PDP’s) receive government subsidies but must

compete to attract members.

15Note that any other formulary with the same social value is also an equilibrium.
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The government first sets a fixed per-member subsidy B for PDP’s to use in assembling

formularies. Each PDP then assembles a formulary of drugs to which members have access

at marginal cost (which we assume to be zero). PDP’s do not have the option of charging a

membership premium. If a member wishes to buy a drug not on her PDP’s formulary, she

has the option to purchase the drug (or actuarially fair drug insurance) at market prices.16

Prices are set for all PDP’s via a single procurement auction. In the auction each drug

company submits a bid bn, indicating the minimum price the company is willing to accept for

its drug. This creates a vector of bids b = (b1, b2, . . . , bN). Given the fixed budget constraint

B and the bid vector b, each PDP assembles a formulary. Any unused budget becomes a

PDP’s profit. PDP’s compete for membership, and since consumers choose PDP’s with the

most valuable formulary, each PDP assembles the most valuable formulary possible within

the budget in order to attract members.

A formulary consists of a set of drugs that the PDP covers. To avoid integer constraints,

we allow PDP’s to offer partial coverage. Having a partially covered drug on the formulary

means that the drug is covered for a randomly selected fraction, strictly between zero and

one, of the PDP’s members. In particular, if the remaining budget is ε and the next drug

the PDP wants to cover has bid b̂ > ε, then the PDP covers that drug for a fraction ε

b̂
of

members (in equilibrium at most one drug is partially covered).17 To break ties, we assume

that in assembling formularies PDP’s have a lexicographic preference for maximizing the

number of fully covered drugs.18

The strategic component of the mechanism lies in the procurement auction – the bids

submitted directly determine formulary compositions of PDPs. Thus, analysis surrounds

equilibrium bidding behavior in the auction.

16Note that instead of PDP’s, it would be analytically identical to assume consumers assemble their own
“à la carte” formularies.

17Partial coverage of drugs is not unheard of. Drug plans routinely cover certain drugs on a case-by-case
basis, although these decisions aren’t meant to be random.

18Removing this tie-breaking assumption would have no effect on the expected social value of equilibrium
formularies. Including it allows us to focus on the equilibrium formulary that has the maximum number of
fully covered drugs.
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The auction format we consider is a sealed bid (simultaneous-move) auction. Each drug

company n submits a private bid bn ∈ [0,∞) to the auctioneer, or chooses not to participate.

Note that drug companies do not learn any information about other bids. One way to view

the sealed bid auction format is as a model of unstructured negotiation where monopolist

drug companies have all the bargaining power.

2 Analysis

In this section, we lay the necessary groundwork and then analyze equilibrium behavior.

The drug procurement mechanism we have described in the previous section is voluntary.

A drug company can choose not to participate and instead to sell its drug on the open market

as a monopolist. We characterize a drug company’s participation constraint by defining a

company’s reserve fee in the procurement auction: that fee is the minimum “per-person

profit,” i.e. ratio of expected total profit to population size, that the company requires in

the auction. Denote drug company n’s reserve fee by rn. In Lemma 1, we show that this

reserve fee is proportional to the expected health benefit zn of drug n.

We first consider per-person budgets B that are “sufficiently large” to satisfy all drug

companies’ participation constraints and to achieve full efficiency (in theory), i.e. B ≥∑N
n=1 rn. We show that in this case almost all drugs are available to all consumers (at zero

cost). Later in Section 2.1, we consider the case when the budget is small and show that the

mechanism performs well in that case also.

We claim that under a sealed bid procurement auction, the mechanism achieves near

efficiency. The following theorem makes our claim formal.

Theorem 1. Let B ≥
∑N

n=1 rn. In any Nash equilibrium of the sealed bid (simultaneous-

move) procurement auction, the expected social value of the equilibrium formulary is greater

than or equal to a formulary that fully covers N − 1 drugs, i.e. a formulary that fully covers

all drugs but one (which may be the drug with the highest reserve fee).
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Before proceeding to the proof, we introduce some preliminary notation and results. Let

bid bn denote the price for which drug company n indicates it is willing to sell one unit of

its drug. Notice that bn implies that in expectation, the per-person price of covering drug n

is θnbn. To make a non-negative profit, a PDP must choose a formulary where the sum of

per-person prices of all drugs on the formulary does not exceed the budget B.

It is convenient to consider normalized bids, defined for drug company n as en = θnbn
rn

. A

normalized bid is equal to the expected per-person price of drug n, scaled by the reserve fee

rn, which is proportional to drug n’s expected health benefit. Focusing on normalized bids

is more convenient analytically, as doing so places drug companies’ bids on the same “scale”

of expected per-person price per unit of expected benefit. Normalized bids are particularly

useful because, given that PDP’s assemble formularies to maximize total expected benefit,

a PDP will never include a drug with some normalized bid without also including all drugs

with lower normalized bids. Notice that to satisfy a company’s participation constraint, the

normalized bid must be at least 1, i.e. θnbn ≥ rn.

We now explicitly characterize a drug company’s reserve fee, i.e. rn. Recall that if a

drug company does not participate in the auction, it sells its drug on the open market as a

monopolist instead. Because our model considers only drugs without substitutes, the profit

the drug company receives from not participating in the government mechanism is exactly

equal to the monopoly profits the company would receive in the absence of any government

intervention. We can show that a company’s total monopoly profit is in fact linear in its

drug’s average expected benefit, i.e. zn = θnvn, and hence each company’s reserve fee rn is

linear in zn.19 Formally, we have the following lemma:

Lemma 1. There exists a constant K > 0 such that rn = Kzn for all n ∈ {0, 1, . . . , N}.

Proof. This proof follows Schwarz (2006). Denote the profit-maximizing monopoly price

19Since all PDP’s are identical and consider the same bids from drug companies, in equilibrium all formu-
laries will be the same. If a drug is covered on any formulary, it will be covered on all formularies and hence
be available to the entire population. Thus, to match its outside option, a drug company need only submit
a bid that is equal to its outside option profits (i.e. open market monopoly profits) divided by the entire
population.
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by ψ∗. Recall that a market for actuarially fair insurance exists and that a consumer is

willing to pay uaθnvn for insurance coverage of drug n. When the price of drug n is set

at ψn, the demand for insurance coverage for drug n is equal to the mass of consumers for

whom uaθnvn exceeds θnψn, i.e. uavn ≥ ψn. We can write (expected) conditional demand as

D(ψn) = θn
∫∞
ψn/vn

dP (ua). That represents the fraction of consumers who are willing to buy

insurance coverage for drug n, when the price of drug n is ψn. So ψ∗ solves the following

profit maximization problem:

max
ψn

ψnθn

∫ ∞
ψn/vn

dP (ua)

Notice that demand depends only on the ratio between price ψn and effectiveness vn. There-

fore each drug company maximizes its expected profits by serving the same proportion of

the population, i.e. choosing the same ratio of price ψn to effectiveness vn. As a result,

a drug company’s total monopoly profit is linear in its drug’s average expected benefit zn.

Therefore, for any n, the company’s reserve fee rn is also linear in zn.

The proof of Theorem 1 relies on three additional lemmas.

Lemma 2. If drug company n submits a normalized bid of e = BPN
i=1 ri

, then in any equilib-

rium drug n will be fully covered. As a result, submitting a normalized bid of en < e is a

strictly dominated strategy for any company n.

Proof. If all drug companies submit a normalized bid of e, then full coverage of all drugs will

just fit within the budget. Hence, a normalized bid of e guarantees drug n is fully covered

on the formulary, and bidding any lower leads only to a strictly lower payoff. (Note that

bidding e satisfies drug company n’s participation constraint since B ≥
∑N

i=1 ri.)

Lemma 3. There exists a constant ζ > 0 such that for any equilibrium bid for any drug, the

probability of that drug being at least partially covered is greater than or equal to ζ.
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Proof. Recall from Lemma 2 that ern is a lower bound on the expected payoff to drug

company n. We now determine an upper bound on that payoff.

If drug n is partially or fully covered, a strict upper bound on its maximum payoff is

B + rn, since B is the maximum payoff drug n receives from its covered portion and rn is

a strict upper bound on the maximum payoff drug n receives from its uncovered portion.

On the other hand, if drug n is not covered, the maximum payoff is rn. Thus, if ζ is the

probability of being at least partially covered, a strict upper bound on drug company n’s

payoff is ζ(B + rn) + (1− ζ)rn = ζB + rn.

Hence ζ must be large enough that, for all n, ζB + rn > ern, i.e. ζ > (e− 1) rn
B
≥ 0.

Before stating the next lemma, we need to introduce two definitions. First, for a given

vector of bids, define d as the sum of reserve fees of all fully uncovered drugs plus the reserve

fees of all partially covered drugs multiplied by the uncovered share of those drugs. In other

words, d measures the total profits earned by drug companies on the open market (not

covered by the formulary). One consequence then is that the sum of all drug companies’

profits combined is equal to B + d.

Secondly, since d is a random variable in any mixed strategy equilibrium, define d̄ as the

expected value of d.

Lemma 4. If d̄ is greater than the monopoly profit of the most valuable drug, i.e. d̄ > rN ,

then in any equilibrium, for any equilibrium realization of bids, there is at least one drug

that has zero coverage and there are at least two drugs that are not fully covered (but may be

partially covered).

Proof. First, we remark that with probability one there is at most one partially covered drug

in equilibrium. Consider any two drugs with a positive probability of not being fully covered.

The probability of both drugs having the same normalized bid is an event of measure zero

because otherwise any of the bidders could strictly increase its payoff by lowering its bid by

an arbitrarily small amount in this event. Thus, without loss of generality we assume that
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there is at most one partially covered drug in any equilibrium formulary realization.

Suppose there exists an equilibrium realization of bids such that all drugs are covered at

least partially and therefore at least N − 1 drugs are fully covered. Since any drug that is

fully covered under a particular realization of bids receives a profit that is greater than or

equal to the expected profit that the drug receives in equilibrium, it follows that B+rN must

be greater than or equal to the total expected profit of the drug companies, which is equal

to B + d̄. Hence, it follows that d̄ ≤ rN , which contradicts the assumption of the lemma.

Proof. (Theorem 1) We prove Theorem 1 by showing that d̄ must be smaller than the

reserve fee of the most valuable drug. We begin by assuming the contrary and then arrive

at a contradiction.

Suppose that d̄ is greater than the reserve fee (i.e. monopoly profit) of the most valuable

drug. Lemma 4 then tells us that under any equilibrium realization of bids at least one

drug has zero coverage and at least two drugs are not fully covered. But as long as there is

always one fully uncovered drug for any equilibrium vector of bids, we show below that there

must exist an equilibrium action that leads to a drug not being covered with arbitrarily high

probability, hence contradicting Lemma 3.

Consider the range of normalized bids that are consistent with an equilibrium (a mixed

strategy involves a drug company randomizing over a range of normalized bids). Denote

the supremum of that range for drug company n as emax
n . If the set is unbounded, let

emax
n =∞. Also, let emax = maxn e

max
n so that emax is the highest normalized bid encountered

in equilibrium.

Now consider some drug company i for whom emax
i = emax. As company i’s bid approaches

emax, the probability that drug i will have zero coverage approaches one. However, this

violates Lemma 3. Hence, we have a contradiction and therefore conclude that d̄ must be

less than the reserve fee of the most valuable drug.
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2.1 Small Budgets

We have shown that sufficiently large budgets yield near efficient outcomes. We now show

that when the budget is small, the mechanism performs very well.

We begin by defining a “first-best” benchmark for comparison. Recall that in our model

we consider a world in which the government does not know the values of each drug. Let us

now consider a counterfactual world in which the government knows exactly the values of

each drug (and hence the monopoly profits each drug would generate on the open market).

Moreover, the government has the power to make lump-sum take-it-or-leave-it offers to drug

companies in exchange for any of its citizens being able to consume a company’s drug when

needed. In this benchmark world, the government assembles the most valuable formulary

subject to two constraints: (1) the cost per person does not exceed the budget B, and (2)

each drug company receives exactly its monopoly profits (thus ensuring that participation

is voluntary and there are no distortions to innovation). We will refer to the value of that

formulary as first-best.

In our model, because the government is not informed about the values of each drug,

first-best may not be achievable. For small budgets, however, Proposition 1 shows that in

fact the first-best formulary value is achievable.

Proposition 1. Let B ≤
∑N−1

n=1 rn. In the unique equilibrium of the sealed bid procurement

auction, the expected social value of the equilibrium formulary is exactly equal to first-best,

i.e. the maximum formulary value achieved in the benchmark world in which the government

knows exactly the values of each drug and has the power to make lump-sum take-it-or-leave-it

offers to drug companies.

For small budgets, the mechanism we have described leads to a formulary in which all on-

formulary drugs are covered at exactly a normalized bid of one. By paying for on-formulary

drugs an amount that is equal to the profits that would have been generated under monopoly

pricing, the mechanism provides access to on-formulary drugs for all of the population, and
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Figure 1: Illustration of formulary value achieved by mechanism, as a function of budget B

not just the fraction that can afford those drugs at monopoly prices.

The proof of Proposition 1 is straightforward. If the budget is not large enough to meet

all drug companies’ reserve fees, then competition to get on the formulary will drive each

company to bid down to a level that generates expected profits equal to its reserve fee

of monopoly profits. No drug company can get on the formulary with a normalized bid

higher than one because it will be undercut by some other drug company. Meanwhile, no

company will submit a normalized bid less than one because its participation constraint will

be violated.

Figure 1 presents an illustration, under both “small” budgets (Proposition 1) and “large”

budgets (Theorem 1), of the formulary value achieved by the mechanism relative to first-

best. Notice that when the budget is small, those two values are identical – the formulary

value attained by the mechanism is equal to the first-best. When the budget is large, the

formulary value attained by the mechanism falls below the first-best, but only by an amount

less than or equal to the value of a single drug.
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2.2 Incentives for Innovation

Determining what level of profits correspond to “optimal” incentives for innovation is outside

the scope of this paper, and we remain agnostic about what profit levels are optimal – that

is the topic of a separate, well-developed literature.20

We can show, however, that the mechanism performs well at preserving relative incentives

for innovation across drugs. When the budget is small, i.e. B <
∑N−1

n=1 rn, then from Section

2.1 above we know that incentives for innovation are exactly unchanged – all drug companies

receive exactly their monopoly profits.

Now consider the case of large budgets B ≥
∑N

n=1 rn. We can show that total profits

are distributed across all drug companies in close proportion to expected benefit. Fix any

equilibrium and let eavgn denote the expected normalized profit to drug company n. We know

from Lemma 2 that eavgn > e, where e = BPN
n=1 rn

is a lower bound on the normalized profit any

drug company can receive. To understand the distribution of profits across drug companies,

we are interested in how much drug companies’ expected profits deviate from that lower

bound and compute the following ratio:

√∑N
n=1(eavgn rn − ern)2

B + d̄
,

where the numerator, i.e. the square root of the sum of squared residuals between drug

companies’ expected profits and the lower bound, is normalized by total profits across all

drug companies.

As a corollary of Theorem 1, we show that this ratio goes to zero as the value of the largest

drug becomes small relative to the sum of the values of all drugs. To do so, we consider

the worst-case scenario. The numerator takes its maximum value when all drug companies

have expected normalized profits of exactly en = e except for one company, which receives

all remaining profits. Thus, in the worst-case the total deviation of expected profits divided

20For example, see Boldrin and Levine (2006), Garber,ones and Romer (2006), Hopenhayn, Llobet and
Mitchell (2006), and Scotchmer (1999).
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by total profits, i.e. the ratio above, is exactly rN
B+d̄

, which is less than or equal to rNPN
n=1 rn

.

Thus, as the value of the largest drug becomes small relative to the sum of the values of

all drugs, the total deviation of expected profits among drugs from the lower bound goes to

zero.

Hence, the mechanism described in the above section continues to do well at preserving

relative incentives for innovation even when the budget is large. In fact, Proposition 2 in

the next section shows that under an ascending clock auction format, relative incentives for

innovation across drugs are perfectly preserved even when budgets are large. Notice that

the budget size B serves as a convenient tool for calibrating the strength of incentives for

innovation in prescription drug markets.

2.3 Extension

The previous section assumes that PDP’s are risk neutral players. The mechanism described

in the above section could easily be modified so that we can get the same efficiency results

even if PDP’s were risk averse and unable to diversify the risk. In particular, the modification

would involve changing the bid format to per-person prices.

Thus far the bid format we have been considering is a conventional linear price: the bid

specifies the price that drug companies charge to PDP’s per unit of the drug. An alternative

bid format is a per-person price: the bid specifies the price that drug companies charge to

PDP’s per consumer covered by the PDP regardless of whether that consumer will need the

drug. Collecting a per-person price for a consumer obligates the drug company to provide

the drug for free in the event the disease is contracted. Note that the results of the previous

section continue to hold if bids are submitted as per-person prices rather than linear prices.

Per-person pricing improves risk-sharing. Linear prices create uncertainty about how

much PDP’s will have to pay to drug companies and hence create artificial risk for both

PDP’s and drug companies, which produce drugs at zero marginal cost. Under per-person
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pricing, that uncertainty disappears.21

We also point out that, in the mechanism described in the previous section, generically

all equilibria are in mixed strategies (see Appendix A.1). The fact that no pure strategy

equilibrium exists may be seen as an undesirable property. However, mixed strategy equi-

libria arise due to the simultaneous-move nature of the mechanism; in mechanisms where

players move sequentially, pure strategy equilibria can be attained.

In this section, we consider auctions in which drug companies bid in terms of per-person

prices rather than linear prices, so PDP’s need not be risk neutral. To avoid ties, we assume

that for all i 6= j, vi 6= vj. We consider two sequential-move auctions: the ascending clock

auction and the descending clock auction. We prove that each auction features a unique

equilibrium in pure strategies that achieves near efficiency.

Fix some pmax ∈ [B,∞). The rules of the auctions are as follows:22

• Ascending Clock Auction. The clock begins at per-person price p = 0 and increases

continuously until p = pmax . Each drug company n chooses a level at which to leave

the auction, and that becomes its per-person bid pn. There is no re-entry permitted.

Upon observing a dropout at p, a bidder can drop out only at a level strictly higher

than p. Ties are broken in favor of later bidders.

• Descending Clock Auction. The clock begins at per-person price p = pmax and decreases

continuously until p = 0. Each drug company n chooses a level at which to leave the

auction, and that becomes its per-person bid pn. There is no re-entry permitted. Upon

observing a dropout at p, a bidder can drop out only at a level strictly lower than p.

Ties are broken in favor of later bidders.

The following propositions show that, like the sealed bid auction, both clock auctions

21Admittedly, in reality the risks generated by linear drug pricing are easily diversifiable. Nonetheless, it is
theoretically interesting that such risks can be avoided using per-person pricing. For the auctions considered
in this section, per-person pricing makes the analytical treatment simpler and more transparent.

22For completeness, we include non-participation as a viable action in both auctions (although it is not
important for equilibrium analysis). So the action space for bidders in each auction consists of either
submitting a per-person bid p ∈ [0, pmax ] in the auction or not participating at all.
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lead to near efficient outcomes. Unlike the sealed bid auction, however, those outcomes are

achieved in unique, pure-strategy equilibria. Proofs are relegated to the Appendix.

Proposition 2. (Ascending Clock Auction) Let B ≥
∑N

n=1 rn. The unique subgame

perfect equilibrium of the ascending clock auction is a pure strategy equilibrium in which all

drugs are fully covered on the formulary except for the most valuable drug, which is partially

covered. Moreover, the total profit of each drug company n is in constant proportion to its

drug’s expected health benefit zn.

In the ascending clock auction, the most valuable drug, or the drug with the highest expected

benefit zn, is only partially covered on the formulary. The intuition is that in the ascending

clock auction, the last bidder to bid, i.e. the company with the most valuable drug, can bid

arbitrarily high (up to the maximum bid pmax ) so that it collects not only the excess budget

but also some monopoly profits from the open market since its drug is only partially covered.

Other bidders cannot act to lower the payoffs of this highest-value drug company, because

it has the last-mover advantage – it can always threaten to undercut previous bidders and

get its drug fully covered on the formulary.

Proposition 3. (Descending Clock Auction) Let B ≥
∑N

n=1 rn. The unique subgame

perfect equilibrium of the descending clock auction is a pure strategy equilibrium in which all

drugs are fully covered on the formulary except for one drug, which is partially covered. The

partially covered drug is not the most valuable drug.

The intuition is similar to the ascending clock auction. The main differences are that it is

(a) not the highest-value drug that is left partially covered and (b) not necessarily the last

company to bid that is left partially covered. Instead, the identity of the drug company that

remains partially covered depends on the distribution of drugs’ values. What drives these

differences is that in the descending clock auction, a given bidder’s maximum bid is bounded

from above because bidders with lower-value drugs bid later. So no company can submit a

higher bid than what a company with a higher value drug has already submitted.
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Although both clock-auctions achieve near-efficiency, covering all drugs but at most one,

we show in Appendix A.3 that the descending clock auction generally leads to a formulary

with higher social value than the ascending clock auction.

3 Concluding Remarks

There are several intuitive approaches for increasing access to prescription drugs using

government-funded market-driven mechanisms. One approach is for the government to use

market prices as benchmarks for the prices it pays, as in the case of Medicaid. Another

approach is for the government to directly subsidize health insurance by making its purchase

tax-deductible, as in the case of employer-provided health insurance. Research has shown,

however, that both those approaches may have the unintended effect of raising drug prices

and thus reducing rather than increasing the number of people with access to prescription

drugs (Morton (1997), Schwarz (2006), Duggan & Morton (2006)).

Yet a third approach, which we study in this paper, is to make monopolists “compete”

for scarce portions of a fixed subsidy, as in the case of Medicare Part D.23,24 We show that

at least in theory this third approach may lead very close to universal access: we describe

a market-driven mechanism with fixed government subsidies in which all consumers have

access to all but at most one drug.

The structure of the mechanism we describe is similar in many ways to the current form

of Medicare Part D. Medicare’s drug benefit is a government-funded, market-driven federal

entitlement program in which private prescription drug plans receive fixed per-member sub-

sidies from the government but must compete through assembling formularies and setting

premiums to attract members.

There are several major points of distinction. First, our efficiency results hinge on creating

23For details on the design of Medicare Part D, see McAdams & Schwarz (2007).
24Notice that this logic has interesting antitrust implications. Because non-substitue drugs compete with

one another based on cost effectiveness, a merger between two drug companies can put upward pressure on
prices paid by Medicare even if no two drugs, one from each company’s portfolio, are substitutes.
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competition between monopolists for coverage by PDP’s. Hence, it is crucial that every drug

face the threat of being left off the formulary. The design of Medicare Part D, however,

removes that threat for various drugs. By law the government requires coverage of “all or

substantially all” drugs within various “protected” classes of drugs and has created a pathway

for identifying and protecting additional medications (see the Medicare Improvements for

Patients and Providers Act, 2008).

Moreover, the mechanism we describe depends critically upon consumers choosing PDP’s

based on formulary comprehensiveness. PDP’s then assemble formularies to maximize ex-

pected health benefit. In contrast, the current implementation of Part D makes it difficult

for beneficiaries to compare comprehensiveness. To assist seniors in choosing the right drug

plans, the government-run online Medicare Prescription Drug Plan Finder ranks plans based

only on information about drugs that beneficiaries are currently taking (or know they are

likely to take). The government provides no information about formulary comprehensive-

ness.25

The mechanism we describe highlights the importance of formulary comprehensiveness

in determining efficiency, suggesting a novel way to measure a drug’s market penetration.

The current measure predominantly used by the pharmaceutical industry is the percentage

of people diagnosed with the relevant condition who take that drug. Our analysis suggests

another meaningful measure of market penetration, namely formulary penetration: the per-

centage of formularies that include that drug, which thus reflects the percentage of people

who have access to that drug.

The analysis in this paper applies principles of economic theory to prescription drug mar-

kets using a highly stylized model. As we have emphasized, this paper is intended primarily

as a thought exercise rather than a blueprint for market design. Our main objective is to

offer a conceptual framework for efficient design of government-funded drug procurement.

25Even obtaining the list of drugs covered by a particular PDP is difficult.
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A Appendix

A.1 No Generic Pure Strategy Equilibrium under Sealed Bid Auc-

tion

Lemma 5. A pure strategy equilibrium in the sealed-bid auction does not generically exist.

Proof. Suppose there exists a pure strategy equilibrium in which each drug company submits

a bid of bn. One potential outcome is that all drugs are fully covered on the formulary. In

this case, any drug company can profitably deviate by changing its bid to bmax (≥ B) so that

its drug becomes partially covered and collects not only a portion of the budget B but also

a portion of monopoly profits on the open market. So there is no pure strategy equilibrium

in this case.

The other potential outcome is that some drugs are fully covered on the formulary, and

some drugs are not. That implies that some drug companies are submitting normalized

bids strictly greater than 1 and getting on the formulary. Hence, any drug company whose

drug is not fully covered on the formulary can profitably deviate by changing its bid to just

undercut the normalized bid of an on-formulary drug and thus become fully covered on the

formulary at a normalized bid level greater than 1.

Hence, no generic pure strategy equilibrium exists.

A.2 Proofs of Proposition 2 and 3

In the following proofs, we label bidders in the order that they bid. So the first bidder to

bid is bidder 1, the second bidder to bid is bidder 2, and so on so that the last bidder to bid

is bidder N . In the ascending clock auction, bidder N will turn out to be the highest value

bidder (i.e. the bidder with the most valuable drug); meanwhile in the descending clock

auction, bidder N will turn out to be the lowest value bidder (i.e. the bidder with the least

valuable drug).
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When we refer to bidders in terms of their drugs’ values, we use parentheses. For example,

the reserve value for the most valuable drug is r(1) and the reserve value for the least valuable

drug is r(N).

Recall that we have set up our model so that there are no ties. First, ri 6= rj for all i 6= j

so that no two bidders have both the same bid and the same normalized bid. Secondly, in

the rules of the sequential-move auction formats, we have indicated that ties are broken in

favor of later bidders – so if two drug companies submit bids at the same normalized level,

the later bidder has priority for inclusion on the formulary.

Lemma 6. In a clock auction (ascending or descending) with B ≥
∑N

n=1 r(n), there does not

exist an equilibrium in which all bidders bid e = 1.

Proof. Suppose all bidders are bidding e = 1. Consider the last bidder to bid. This bidder

has incentive to deviate and bid as high as possible, which allows it to collect both the

excess budget and a positive fraction of monopoly profits. Notice that if a bidder bids at a

normalized level higher than e = 1 and receives any of the budget, then that bidder receives

a total payoff strictly higher than monopoly profits (i.e. the bidder’s reserve fee).

To be more specific, in the ascending clock auction the last bidder can deviate to bmax and

take excess budget B −
∑N−1

n=1 rn = ε (≥ rN) in addition to a positive fraction (1− ε
bmax ) of

monopoly profits. Similarly, in the descending clock auction the last bidder can deviate to the

second last bidder’s bid and take excess budget B−
∑N−1

n=1 rn (≥ rN), in addition to a positive

fraction of monopoly profits. Thus all bidders bidding e = 1 is not an equilibrium.

Lemma 7. In a clock auction (ascending or descending) with B ≥
∑N

n=1 r(n), there does not

exist an equilibrium in which some bidder receives none of the budget.

Proof. Since B ≥
∑N

n=1 r(n), there always exist a small enough ε > 0 such that if drug

company i bids ε above its reserve fee ri, then in any equilibrium drug i will at least be

partially covered on the formulary. In the worst case, all other drug companies bid at

normalized levels slightly lower than that of drug company i and excess budget B−
∑

n 6=i rn−
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ε′ > 0 remains for drug company i to receive at least partial coverage. Since any drug

company i always has the option of bidding arbitrarily close to its reserve fee in order to

gain partial coverage and receive a payoff strictly higher than its reserve fee, there does not

exist an equilibrium in which some drug company receives none of the budget.

Lemma 8. In any equilibrium of a clock auction (ascending or descending) with B ≥∑N
n=1 r(n), exactly one bidder gets less than full coverage.

Proof. First we show that at most one bidder gets less than full coverage. Suppose there is

an equilibrium in which at least two bidders are less than fully covered. Lemma 7 tells us

that these bidders must be receiving some of the budget and hence they must be partially

covered. However, at most one bidder can be partially covered since there are no ties.

Now we show that at least one bidder gets less than full coverage. Suppose there is an

equilibrium in which all bidders are fully covered. To be an equilibrium, the entire budget

must be depleted. The last bidder can achieve a higher payoff by deviating and increasing

its bid, thereby becoming partially covered, collecting the remaining portion of the budget

and receiving extra payoff from the open market.

Lemma 9. The unique equilibrium of the ascending clock auction involves all bidders bidding

at the same normalized level e∗ except for the bidder with the highest value drug, who bids

bmax . That last bidder is partially covered on the formulary while all the other bidders are

fully covered. All bidders receive normalized profits of e∗.

Proof. First, we characterize the normalized bid e ≥ 1 such that if the first N −1 bidders all

bid at normalized level e, then the optimal bid for bidder N is to bid bmax and be partially

covered on the formulary. The only other bid worth considering is for bidder N to bid e and

be fully covered. Bidding bmax is preferred so long as

erN ≤ (B − e
∑
n6=N

rn) +

[
1−

B − e
∑

n6=N rn

bmax

]
rN
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=⇒ e ≤
B + rN(1− B

bmax )∑
n rn −

∑
n6=N rn

rn
bmax

= e∗. (A.1)

Recall that rN = r(1). Notice that e∗ is the (maximum) value of e that exactly satisfies the

above inequality. If the first N − 1 bidders all bid at e∗ or lower, then the optimal bid for

bidder N is indeed to bid bmax , which leads to expected normalized profits of e∗.

Now consider the first N − 1 bidders. A key observation is the following: the maximal

payoff a bidder j ∈ {1, 2, . . . , N − 1} can hope to receive from bidding e > e∗ and being

partially covered is strictly bounded from above by (B− e∗
∑

n6=j rn) +
[
1− B−e∗

P
n 6=j rn

bmax

]
rj.

That payoff is never higher than the payoff from being fully covered on the formulary at e∗:

e∗rj ≥ (B − e∗
∑
n 6=j

rn) +

[
1−

B − e∗
∑

n 6=j rn

bmax

]
rj

=⇒ e∗ ≥
B + rj(1− B

bmax )∑
n rn −

∑
n6=j rn

rj
bmax

.

Plugging in (A.1) for e∗, we get

=⇒
B + rN(1− B

bmax )∑
n rn −

∑
n6=N rn

rN
bmax

≥
B + rj(1− B

bmax )∑
n rn −

∑
n6=j rn

rj
bmax

which is always true since the LHS numerator is larger than the RHS numerator, while the

LHS denominator is smaller than the RHS denominator. Equality holds if and only if j = N .

Therefore, if any bidder j ∈ {1, 2, . . . , N − 1} has the opportunity to be fully covered at a

normalized bid of ē ≥ e∗, then bidding ē is always preferred to bidding at some e > ē and

being partially covered.

We now use backwards induction to prove that it is a subgame perfect equilibrium for

each bidder j ∈ {1, 2, . . . , N − 1} to bid exactly e∗. Consider bidder N − 1, the second last

bidder to bid. Suppose that all previous bidders have bid e∗. If bidder N − 1 bids e∗, then

bidder N will bid bmax and hence bidder N − 1 will be fully covered on the formulary at e∗.

On the other hand, if bidder N − 1 bids anything higher than e∗, then bidder N will match
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that bid and bidder N − 1 will be partially covered. Hence, bidder N − 1 prefers to bid e∗

and be fully covered. Suppose instead that some previous bidder has bid e > e∗. Then both

bidder N − 1 and bidder N will choose to match e and be fully covered on the formulary

(leaving the previous bidder that has bid e > e∗ to be partially covered).

Now, consider bidder N − 2. An identical argument holds. Suppose that all previous

bidders have bid e∗. If bidder N − 2 bids e∗, then we know from above that bidder N − 2

will be fully covered on the formulary. On the other hand, if bidder N − 2 bids e > e∗, then

bidder N − 2 will be partially covered. Hence, bidder N − 2 prefers to bid e∗ and be fully

covered. Suppose instead that some previous bidder has bid e > e∗. Then bidder N − 2

prefers to match e and be fully covered.

Continuing the backwards induction for all bidders j = N − 3, N − 4, . . . , 1, we find that

bidder 1 prefers to bid e∗ and be fully covered rather than bid some e > e∗ and be partially

covered. Hence, we conclude that it is a unique subgame perfect equilibrium for all bidders

1, 2, . . . , N − 1 to bid e∗ and for bidder N to bid bmax .

Lemma 10. The unique equilibrium of the descending clock auction involves all bidders but

one being fully covered and one bidder being partially covered.

Proof. From Lemma 8 we know that in any pure strategy equilibrium, exactly one bidder

gets less than full coverage. Our first step is to show that this bidder cannot be completely

uncovered. One way a bidder can receive no coverage is by bidding bmax (≥ B). In the

descending clock auction, no bidder bids bmax in equilibrium because doing so requires that

bidder to move first and effectively eliminate itself from the auction completely. The only

other way in which some bidder j can get no coverage is if it bids at a finite level and all

the other drugs bid such that the budget is exactly depleted and bidder j has the highest

normalized bid. But in this case, since B ≥
∑N

n=1 r(n), bidder j has a profitable deviation to

a lower normalized bid near 1 that guarantees a spot on the formulary. Hence in any pure

strategy equilibrium, exactly one bidder gets partial coverage.
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Our second step is to show that in any equilibrium, a later bidder never bids at a normal-

ized level below that of an earlier bidder. This is obvious if the earlier bidder is fully covered

on the formulary in equilibrium since then the later bidder can match that bid and therefore

be fully covered on the formulary as well. If instead the earlier bidder is not fully covered

on the formulary in equilibrium (and hence is the only bidder not fully covered), then it is

optimal for the later bidder to match the earlier bidder and hence obtain full coverage on

the formulary.

Our third step is to prove that any equilibrium takes the following form: for some j ∈

{2, . . . , N}, (a) bidders 1 through j − 1 bid at some normalized level e1 ≥ 1 and are fully

covered, (b) bidder j bids at some higher normalized level e2 > e1 and is partially covered,

and (c) all remaining bidders j+1 through N bid at normalized level e2 and are fully covered.

To prove that, we show that in any equilibrium, for any two bidders k and k + 1, if both

bidders are fully covered on the formulary, then both bidders must be bidding at the same

normalized level. Suppose not and that bidder k is bidding at a lower normalized level than

bidder k + 1. Then we claim that bidder k has a profitable upward deviation, at least by

ε, that keeps bidder k still fully covered on the formulary. The only concern when bidder k

deviates upward is if bidder k+ 1 now revises its bid downward to undercut bidder k. Even

if bidder k + 1 does so, however, we know there is some other bidder j that, in the original

equilibrium, is partially covered and bidding higher than what bidder k + 1 was originally

bidding. That bidder j will still prefer to be partially covered because (a) either j < k so

bidder j has already bid and the conclusion is trivial, or (b) j > k + 1 and bidder j faces a

larger excess budget than before.

Our final step is to show that there exists an equilibrium and it is unique. That is, there

exists an equilibrium of the form described above with a unique identity of bidder j that is

partially covered and unique normalized bids e1 and e2.

Suppose bidder 1 has chosen some normalized bid e1. We assume e1 is appropriate in the

sense that it leads to subgame behavior that resembles the form of the equilibrium described
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above. In particular, e1 is not too high, so that bidder 1 will be on the formulary26; and e1 is

not too low, so that any bidder j > 1 bidding optimally at a normalized level higher than e1

will always be matched by all remaining bidders that follow bidder j.27 Instead, e1 satisfies

the constraint that at least one later bidder will have incentive to bid at a normalized level

higher than e1, and that later bidder will be the one that is partially covered. By continuity,

we know such an e1 must exist.

The identity j of the partially covered bidder is uniquely determined in the subgame as

the first bidder willing to bid at some e2 > e1. By our constraints on e1, this then leads

to all remaining bidders bidding e2 and being fully covered. We know that such a bidder j

must exist because in the extreme, if bidders 1 through N − 1 bid at the same level (and are

all on getting on the formulary), then bidder N will prefer to bid some e2 > e1 and take the

remaining budget in addition to partial coverage.

Conditional on e1, bidder j chooses its normalized bid e2 > e1 as follows. Let Bj =

B − e1

∑j−1
n=1 rn − e2

∑N
n=j+1 rn. Then bidder j chooses e2 to solve

max
e2≥e1

Bj + (1− Bj

e2rj
)rj

subject to the following three constraints:

1. All remaining bidders prefer to bid e2 (so that bidder j ends up being partially covered).

2. Bidder j cannot bid higher than the bid of the bidder just before, so for rj−1 > rj,

e2 ≤ e1
rj−1

rj

3. Bidding at e2 > e1 must lead to a higher payoff for bidder j than bidding at e1 and

26The minimum constraint is that there exists some j such that e1 < BP
n 6=j rn

.
27If e1 is too low, then it can happen that some bidder j > 1 bids higher than e1 and some even later

bidder k > j bids even higher than bidder j. Clearly, this is suboptimal for bidder 1.
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getting fully covered on the formulary:

e1rj ≤ Bj + (1− Bj

e2rj
)rj.

Since e2 can be arbitrarily close to e1 and B is sufficiently large, we know that given e1, a

solution e2 exists and, by monotonicity, is unique.

Finally, we show that bidder 1’s choice of e1 is unique. This follows immediately from

bidder 1’s payoff e1r1 being strictly increasing in e1 because bidder 1 simply chooses the

highest e1 possible, subject to the constraints detailed above. That unique e1 makes bidder

j just indifferent between bidding e1 (full coverage) and bidding e2 (partial coverage).

A.3 Comparison between Ascending and Descending Clock Auc-

tions

Lemma 11. As bmax increases, the social value of the formulary obtained in the unique

equilibrium of the ascending clock auction converges towards
∑N

n=1 zn−maxn zn. Meanwhile,

as bmax increases, the social value of the formulary obtained in the unique equilibrium of the

descending clock auction remains unchanged and is strictly greater than
∑N

n=1 zn−maxn zn.

Therefore, for any set of drug values {zn}n, there exists a b∗ such that if bmax ≥ b∗, then

the formulary obtained in the unique equilibrium of the descending clock auction has a social

value strictly greater than that of the ascending clock auction.

Proof. In the unique equilibrium of the ascending clock auction, we know that all drugs are

fully covered on the formulary except the highest value drug, which is the last to bid. From

the proof of Lemma 9, we know that the highest value drug always bids bmax and has a

fraction x covered on the formulary, where the numerator of x equals the remaining budget

(which does not increase nearly as fast as bmax ) and the denominator equals bmax . Hence, as
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bmax increases, the fraction x converges to 0 and the social value of the formulary converges

towards
∑N

n=1 zn −maxn zn.

In the unique equilibrium of the descending clock auction, we know that all drugs are

fully covered on the formulary except for one drug, which is partially covered and which is

not the highest value drug. From the proof of Lemma 10, we know that the equilibrium does

not depend on bmax and hence as bmax increases, the social value of the formulary does not

change.
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