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UNDERSTANDING MARKOV-SWITCHING RATIONAL
EXPECTATIONS MODELS

ROGER E.A. FARMER, DANIEL F. WAGGONER, AND TAO ZHA

Abstract. We develop a set of necessary and sufficient conditions for equilibria to
be determinate in a class of forward-looking Markov-switching rational expectations
models and we develop an algorithm to check these conditions in practice. We use
three examples, based on the new-Keynesian model of monetary policy, to illustrate
our technique. Our work connects applied econometric models of Markov-switching
with forward looking rational expectations models and allows an applied researcher
to construct the likelihood function for models in this class over a parameter space
that includes a determinate region and an indeterminate region.

I. Introduction

Reduced form Markov-switching models have been widely used to study economic
problems in which there are occasional structural shifts in fundamentals. In an ap-
proach initiated by Hamilton (1989), a set of economic time series is modeled as a
vector autoregression (VAR) in which the parameters of the process are viewed as the
outcome of a discrete state Markov process. It is well known that a constant param-
eter vector autoregression can be viewed as the reduced form of a forward looking
rational expectations model but less is known about the Markov-switching case.

In a recent literature a number of authors have begun to study the relationship
between Markov-switching models and forward looking Markov-switching rational
expectations (MSRE) models. Work in this area includes papers by Leeper and Zha
(2003), Svensson and Williams (2005), Blake and Zampolli (2006), Davig and Leeper
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(2006, 2007), and Farmer, Waggoner, and Zha (2008a). MSRE models are more
complicated than linear rational expectations models since the agents of the model
must be allowed to take account of the possibility of future regime changes when
forming expectations.

To make progress with empirical work that uses the MSRE approach one must be
able to write down the likelihood function for a complete class of possible solutions. In
the case of linear models, Lubik and Schorfheide (2003) have shown how to partition
the parameter space into two disjoint regions: one in which there exists a unique
determinate rational expectations equilibrium and one in which there exist multiple
indeterminate solutions driven by non-fundamental shocks. One would like to be able
to find a similar partition for the case of MSRE models but, in order to accomplish
this task, one would need to find a set of necessary and sufficient conditions under
which an MSRE model has a unique determinate solution. This paper provides such
conditions for an important subset of MSRE models; those in which there are no
predetermined variables.

Our paper is structured in the following way. In Section II we discuss the relation-
ship of our paper to previous literature. Section III introduces the class of forward
looking Markov-switching rational expectations models that we will study and Section
IV reviews known results for the linear model. In Section V we discuss some results
from the engineering literature and explain the differences between alternative sta-
bility concepts that are equivalent in linear models but different in Markov-switching
systems. Sections VI and VII contain our main results; a characterization theorem
and a set of necessary and sufficient conditions for determinacy of equilibrium. In
Section VIII we provide an algorithm that is straightforward to apply in practice and
in Section IX we apply our results to a familiar example; that of the new-Keynesian
model of monetary policy. Section X presents some concluding comments.

II. Related Literature

Markov switching models in economics were first discussed by Hamilton (1989) who
applied them to autoregressive models of gdp where the parameters of the model are
allowed to switch between two regimes. Forward-looking regime switching models
have been studied by Svensson and Williams (2005), Davig and Leeper (2006, 2007)
and Farmer, Waggoner, and Zha (2008a,b,c), who use them to study the effectiveness
of monetary policy. We briefly review the issues that arise in that literature to explain
why the current paper has relevance to an important body of applied research and the
debate over the causes of an observed reduction in the volatility of macroeconomic
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variables in the period after 1980 – a phenomenon widely referred to as the Great
Moderation.

In the context of this debate, Sims and Zha (2006) use a backward-looking Markov-
switching model to ask: Were there regime changes in US monetary policy? Their
preferred explanation for the Great Moderation is that it was caused by changes to
the shock variances of an identified vector autoregression. An alternative explanation,
due to Cogley and Sargent (2002, 2005), argues that changes in observed behavior of
US time series is due to parameter drift in a random coefficient model.

Clarida et. al. (2000) and Lubik and Schorfheide (2004) have presented a third
view. They argue that the policy followed by the Fed before 1980 led to indetermi-
nate equilibria that permitted non-fundamental ‘sunspot’ shocks to add volatility to
realized outcomes. Although this explanation for the Great Moderation is intriguing,
it is inconsistent with the rational expectations assumption: If policy has switched
in the past, it might be expected to switch again in the future. Agents in the model
studied by these authors do not take account of this possibility.

The papers of Svensson and Williams (2005), Davig and Leeper (2006, 2007) and
Farmer, Waggoner, and Zha (2008a,b,c) extend the class of models studied by Clar-
ida et. al. and Lubik and Schorfheide to the Markov-switching rational expectations
environment. This extension is important because it connects the reduced form econo-
metric literature with structural economic theory and allows investigators to account
for anticipation effects. In this environment it becomes possible to ask the question:
Was the Great Moderation caused by a change in the parameters of the policy rule
in a structural model or by a reduction in the variance of structural disturbances?

Although the MSRE literature has made some headway in addressing questions like
this there has been, until now, no known set of necessary and sufficient conditions to
determine if the parameters of a Markov-switching rational expectations model lead
to a determinate equilibrium. Davig and Leeper (2007) show that some solutions
to the MSRE model have a linear representation and they find conditions for the
solution to this linear representation to be unique; but Farmer, Waggoner, and Zha
(2008a) show that these conditions do not apply to the original Markov-switching
rational expectations model.

In the current paper we provide a complete set of necessary and sufficient conditions
for a large class of forward looking MSRE models to be determinate. Our results
provide the necessary tools for applied researchers to estimate structural models in
this class using maximum likelihood methods.
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III. The Class of Models

We study a class of ergodic multivariate forward-looking rational expectations mod-
els in which the parameters follow a discrete state Markov chain indexed by st with
transition matrix P = [pij]. The element pij represents the probability that st = j

given st−1 = i for i, j ∈ {1, . . . h} where h ≥ 1 is the number of regimes and when
st = i we say that the system is in regime i.1 The models we study are represented
by the equation,

Γstyt = Etyt+1 + Ψstut, (1)

where yt is an n-dimensional vector of endogenous random variables with finite first
and second moments, Γst is an invertible n× n matrix, Ψst is an n×m matrix, and
ut is an m-dimensional vector of exogenous shocks that are assumed to be stationary.
While the existence of a solution to Equation (1) depends on the properties of ut,
its uniqueness does not. Thus, to simplify the exposition, we assume without loss of
generality that ut is iid, mean-zero, and independent of the Markov process st.

We interpret yt to be a vector of economic variables that depends on expectations
of its own future value and we seek a solution to Equation (1) that satisfies a suitable
stability concept.

IV. The Linear Case

To explain our approach, we will spend some time discussing the familiar case when
h = 1 for which Equation (1) is linear and can be written as follows,

Γyt = Etyt+1 + Ψut. (2)

In this case a solution is a stable stochastic process that satisfies Equation (2). De-
pending on the values of the parameters there may be one or more solutions.

One solution, referred to as a minimal state variable (MSV) solution following
McCallum (1983), describes yt as a linear function of the fundamental shocks {ut}.
For Equation (2), a solution of this kind exists and is given by the expression,

yt = Gut, (3)

where

G = Γ−1Ψ. (4)

1The engineering literature (Costa, Fragoso, and Marques, 2004) uses mode to refer to what we
call a regime.
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We require a solution to Equation (2) to be stable because economic agents are
assumed to base decisions on expectations of the future values of yt and these expec-
tations are obtained by recursively iterating Equation (2) into the future; stability
ensures that this process is well defined.

For some parameter configurations, and some definitions of stability, there may be
an infinite set of solutions to Equation (2) all of which are stable. When this occurs,
each member of the set is said to be an indeterminate equilibrium. The minimal
state variable solution is a member of this set but there may be other solutions that
are serially correlated and add additional volatility to the time paths of the state
variables.

In two recent papers on the empirical importance of indeterminate equilibria, Lubik
and Schorfheide (2003, 2004) show how to write an indeterminate solution as a linear
combination of the minimal state variable solution and a first order moving average
component. These solutions can be written as follows,

yt = Gut + wt, (5)

wt = Λwt−1 + V γt. (6)

In these expressions, γt is a stable, k-dimensional, zero-mean, non-fundamental dis-
turbance that may or may not be correlated with the fundamental shock ut, k is the
number of eigenvalues of Γ that are inside the unit circle and Λ is an n× n matrix of
rank k, of the form

Λ = V ΦV �, (7)

with

rσ(Φ) < 1. (8)

The notation rσ(Φ) denotes the spectral radius of Φ, which is the maximum of the
absolute value of the eigenvalues of Φ. The n× k matrix V has orthonormal columns
and the k × k matrix Φ is block upper triangular and its eigenvalues are the stable
eigenvalues of Γ. Equation (7) is equivalent to

ΓV = V Φ. (9)

Note that it is not true in general that Γ = V ΦV � since Φ contains only a subset of
the eigenvalues of Γ. Both the matrices Φ and V can be easily obtained from the real
Schur decompostion of Γ.

There are two important lessons to be learned from the linear model. First, by
writing solutions in the form of Equations (5) and (6) it is possible to convert the
question of whether there is a unique determinate solution to Equation (2) into the
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related question of whether Equation (6) is a stable stochastic process. Second, to
answer the determinacy question we must settle on a suitable concept of stability.

In the following section we will define two concepts: mean-square stability and
bounded stability. These concepts are equivalent in the linear model but, in models
with Markov-switching, they are no longer the same. We will explain why engineers
chose mean-square stability as the appropriate stability concept over bounded stabil-
ity and discuss some lessons that can be learned from the engineers.

V. What Engineering has to Teach us

Our strategy for finding necessary and sufficient conditions for indeterminacy is
to show that solutions to Equation (1) have a similar representation to the moving
average solutions, Equations (5) and (6), that solve the linear model. This turns the
determinacy question into one of stability and allows us to appeal to theorems from
the engineering literature on the existence and uniqueness of stable solutions to a class
of equations that economists call Markov-switching models and engineers refer to as
discrete-time Markov jump linear systems.2 These are VARs in which the parameters
are governed by a discrete state Markov chain and they can be represented by the
following expression,

xt = Astxt−1 + Bstξt, (10)

where xt is an n-dimensional stochastic process, Ast is an n × n matrix, Bst is an
n ×m matrix, and ξt is a stable m-dimensional process independent of the Markov
process st.

Our main idea is to show that all solutions to Equation (1) can be written as the
sum of two particular solutions, one of which depends only on the current regime and
the other is a Markov-switching system with the same form as Equation (10). We are
thus able to convert the question of whether Equation (1) has a unique determinate
solution to the equivalent question of whether Equation (10) possesses a unique stable
solution. This approach requires that we define what it means for the solution to a
Markov-switching model to be stable.

The Markov-switching system described by Equation (10) is mean-square stable if
its first and second moments converge to well defined limits as the horizon extends
to infinity. If, in addition, the process is also bounded, then we say it is boundedly
stable. The formal definitions of mean-square stability and bounded stability are
given below.

2Since there is a large economics literature that uses the term Markov-switching system, we will
use the prevailing economic terminology from this point on.
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Definition 1. An n-dimensional process xt is mean-square stable (MSS) if and only if
there exists an n-vector µ and an n× n matrix Σ such that

(a) limt→∞ E0 [xt] = µ,
(b) limt→∞ E0 [xtx

�
t] = Σ.

Definition 2. An n-dimensional process xt is bounded if there exists a real number N

such that
||xt|| < N , for all t,

where || · || is any well-defined norm. If, in addition, the process is MSS, then the
process is said to be boundedly stable.

Other notions of stability could be used in place of mean-square stability. For
instance, in economics covariance stationarity is often used, or asymptotic covariance
stationarity can be used if one wishes to avoid taking a stand on initial conditions.3

In general, asymptotic covariance stationarity is strictly stronger than mean-square
stability. For the system given by Equation (10), however, under the assumption
that the innovation process ξt is asymptotically covariance stationary, the system will
mean-square stable if and only if it is asymptotically covariance stationary. Because
many of the standard theorems we use in this paper are stated in terms of mean-
square stability, we also use mean-square stability, but the reader should note that
the results of our paper would hold if asymptotic covariance stationarity were used
instead. Throughout this paper, we shall use the terms stability and mean-square
stability interchangeably.

For linear systems with bounded shocks, mean-square stability and bounded sta-
bility are equivalent concepts for determining uniqueness of the equilibrium. For
Markov-switching models, however, these two concepts are not the same and one
must choose between them. Engineers use mean-square stability for several reasons.
First, there are many instances of engineering problems in which the system may be
unstable in one or more of its regimes. But as long as this regime does not occur
too frequently the state variables will still converge to a well defined ergodic distri-
bution with finite first and second moments. Unstable regimes would be ruled out
by bounded stability and this definition of stability would define many interesting
physical phenomena to be unstable even though they possess well behaved limiting
distributions. Second, most practical applications assume that the system is driven
by unbounded errors; for example, normal or lognormal distributions are frequently

3Some authors use the terms “wide-sense stationarity” and “asymptotic wide-sense stationarity”
instead of “covariance stationarity” and “asymptotic covariance stationarity.”
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assumed, and hence the state variables are also unbounded in practical applications.
Third, bounded stability is difficult to work with and there is no known set of nec-
essary and sufficient conditions under which a Markov-switching system will display
stability in this stronger sense.

All three of these issues arise in economics. Economics, like engineering, is ripe with
examples where one or more regimes are unstable. For example, hyperinflation in Ar-
gentina in the 1980’s and 1990’s was characterized by a series of explosive regimes
that were subsequently stabilized. Second, although economic theorists often use
boundedness as a stability concept, applied researchers typically use shock distribu-
tions with unbounded errors. Finally, to see why bounded stability poses a practical
difficulty, consider the following example from (Costa, Fragoso, and Marques, 2004,
page 39).

Consider a two dimensional system

xt = Astxt−1, (11)

where Ai is a 2× 2 matrix that take the following values,
�

0 2
� �

0.5 0
�

A1 = and A2 = , (12)
0 0.5 2 0

and consider the following two alternative transition matrices,
�

0.8 0.2
� �

0.9 0.1
�

and . (13)
0.4 0.6 0.4 0.6

In this example the roots of A1 and A2 both lie inside the unit circle and if the state
were to remain in either regime 1 or regime 2 the system would be stable. Although
both roots of A1 and both roots of A2 are inside the unit circle, the product A1A2

has a root outside the unit circle. This means that as long as the system alternates
between regime 1 and 2, the process xt would grow exponentially and hence the
system is unbounded regardless of the values of the transition matrix.

In general, for a process given by Equation (11) to be bounded, all roots of all
possible products of A1 and A2 must be inside the unit circle. For boundedness to be
a workable stability concept one would need to find a simple condition under which
all possible possible products of the coefficient matrices have roots inside the unit
circle and to our knowledge, no such condition is known.

Although there is no known way to check for bounded stability, mean-square sta-
bility is much easier to deal with and Costa et. al. (2004, pages 34-36) show that
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mean-square stability of (11) is equivalent to the question: Are all roots of the matrix
�
p1,1A1 ⊗ A1 p2,1A2 ⊗ A2

�
(14)

p1,2A1 ⊗ A1 p2,2A2 ⊗ A2

inside the unit circle? For the first transition matrix given in (13), the matrix ex-
pressed in (14) has a root outside the unit circle and so the system is unstable even
though it is stable in each regime separately, a somewhat surprising result. On the
other hand, for the second transition matrix given in (13), all the roots of the matrix
expressed in (14) are inside the unit circle and hence the system is stable. These re-
sults illustrate that mean-square stability and bounded stability are different stability
concepts.

VI. A Definition and a Characterization Theorem

In this section we move beyond the engineering literature. Our main result is to
show that the complete set of solutions to the MSRE model, Equation (1), can be
described as the sum of two particular solutions. One is what McCallum (1983) has
called a minimal state variable solution (MSV) and the other is a Markov-switching
system.

We begin by defining a rational expectations equilibrium and proving a theorem
that characterizes a class of stochastic processes that satisfy this definition.

Definition 3. A rational expectations equilibrium is a mean-square stable stochastic
process that satisfies Equation (1).

The following theorem characterizes all possible solutions to Equation (1), whether
or not they satisfy mean-square stability.4

Theorem 1. Any solution to the MSRE model (1) can be written in the following
way:

yt = Gstut + wt, (15)

wt = Λst−1,stwt−1 + VstVs
�
t
γt, (16)

where Vst is an n × kst matrix with orthonormal columns and 0 ≤ kst ≤ n, γt is
an arbitrary n-dimensional shock process such that Et−1

�
VstVs

�
t
γt

�
= 0, Λst−1,st is an

4This includes solutions from our previous work Farmer, Waggoner, and Zha (2008a,b) which,
superficially, appear to have a different form.
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n× n matrix of the form VstΦst−1,stVs
�
t−1

for some kst × kst−1 matrix Φst−1,st such that

h

ΓiVi =
�

pi,jVjΦi,j for 1 ≤ i ≤ h, (17)
j=1

and Gstut is the minimum-state-variable (MSV) solution with Gst = Γ−st

1Ψst .

Proof. See Appendix A. �

This theorem states that all solutions to the MSRE model can be written in an
analogous form to the Lubik-Schorfheide representation of solutions to the linear
system; recall that these were represented as the sum of a minimal state variable
solution and a moving average component. Our contribution is to show that, in the
case of MSRE models, the moving average component is a Markov-switching system
and it is this theorem that allows us to appeal to results from the engineering literature
to find conditions for the model defined by Equation (1) to be determinate.

The most important part of our result is Equation (17), which plays the role of
Equation (9) for the linear system. Whereas the matrices Φ and V in Equation (9)
can be obtained directly from the real Schur decomposition of Γ, techniques to find
the set of matrices Φi,j and Vi are more involved. As we will see in the next section,
Equation (17) will be key in devising an algorithm for determining whether or not
there are multiple stable solutions to Equation (1).

VII. Necessary and Sufficient Conditions for a Unique Equilibrium

In this section we develop a set of necessary and sufficient conditions for the ex-
istence of a unique rational expectations equilibrium. We assume that the sunspot
random process γt has mean zero, is mean-square stable, and is independent of the
fundamental Markov process st. We introduce the following definition:

⎡ ⎤
p1,1X1,1 ⊗X1,1 · · · ph,1Xh,1 ⊗Xh,1

. . .
M1(Xi,j) = .. . . .. . (18)

⎢⎢ ⎥⎥⎣ ⎦
p1,hX1,h ⊗X1,h · · · ph,hXh,h ⊗Xh,h

The matrices M1(Λi,j) and M1(Φi,j) are important because they play a role in ex-
pressing the variance of wt in terms of the variance of wt−1. The details of this are
outlined in the proof of the following theorem.

Theorem 2. The process represented by Eqs (15)-(17) is a mean-square stable solution
to the MSRE model (1) if and only if

rσ (M1 (Φi,j)) < 1. (19)
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Proof. See Appendix A. �

Since a rational expectation equilibrium is defined as a mean-square stable solution
to Equation (1), Theorem 2 provides necessary and sufficient conditions for determi-
nacy; that is, for the rational expectations equilibrium to be unique. In the linear case
the analogous conditions can easily be checked using the real Schur decomposition of
a known matrix. For the Markov-switching case, however, the conditions provided in
Theorem 2 are difficult to verify in practice because finding Vi and Φi,j that satisfy
Equations (15) – (17) is not a standard problem in matrix algebra. It is, however,
equivalent to a collection of constrained optimization problems.

For each choice of dimensions {k1, · · · , kh}, Equation (17) and the orthogonality
conditions on the columns of Vi provide constraints on the Vi and Φi,j. Subject to
these constraints, one minimizes the objective function rσ(M1(Φi,j)). If the minimum
value of the objective function is less than one, then the Vi and Φi,j that give the
minimun define a MSS solution different from the MSV solution. On the other hand,
if for all choices of dimensions {k1, · · · , kh}, not all zero, the minimum value is greater
than or equal to one, then there can be no MSS solution other than the MSV solution.
This is formalized in the following corollary.

Corollary 1. Let 0 ≤ ki ≤ n. Consider the problem of choosing n×ki matrices Vi and
kj × ki matrices Φi,j such that rσ (M1 (Φi,j)) is minimized subject to the constraints
ΓiVi =

�h pi,jVjΦi,j and V �Vi = Iki
.j=1 i

(1) If there exists some choice of {k1, · · · , kh}, not all zero, such that the optimal
solution rσ (M1 (Φi,j)) is smaller than one, there will be multiple solutions to
Equation (1).

(2) If, for all possible choices of {k1, · · · , kh}, not all zero, the minimum value of
rσ (M1 (Φi,j)) is greater than or equal to one, there will be only one mean-
square stable solution to the MSRE model (1). This solution is the MSV
solution.

Proof. The proof follows directly from Theorem 2. �

VIII. Constructing Sunspot Solutions

While Theorem 2 and its corollary provide a general technique for determining if
there is a unique MSS solution of Equation (1), we consider a special case where we
are able to explicitly solve the constraints and thus characterize this class of solutions.
Given the complexity of the problem, this illustrative case is important because it
allows one to develop intuition about MSS solutions other than the MSV solution and
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relate our solution technique to the standard eigenvalue problem. It is also a case
with practical relevance as we demonstrate in Section IX.

The case we consider is that of ki = 1 for 1 ≤ i ≤ h. This implies that Vi will be a
vector and Φi,j will be a scalar. The following proposition characterizes solutions of
this form.

Proposition 1.

(1) If there exist scalars c1, · · · , ch and an nh-dimensional vector v = (v1, · · · , vh)

with vi �= 0 such that

(diag (Γi)− ((diag(ci) P )⊗ In)) v = 0, (20)
2rσ

�
diag

�
ci

�
P

�
< 1, (21)

then there exist mean-square stable solutions to Equation (1), other than the
MSV solution.

(2) These solutions are given by Equations (15) and (16) where

Vst =
vst , (22)�vst�
cst−1 �Λst−1,st = vstv . (23)�2 st−1�vst−1

(3) The solutions defined in part (2) are bounded if and only if |ci| < 1.

Proof. See Appendix A. �

Part (3) of this proposition gives a complete characterization of the set of boundedly
stable solutions of this form. Recall that in general one would need to check if all
possible permutations of all possible products of matrices have roots inside the unit
circle. This is simple in the case of ki = 1 since the relevant matrices become scalars
and scalar multiplication is commutative.

The proposition allows us to check for mean-square stable solutions by solving the
nonlinear equation

det (diag (Γi)− ((diag(ci) P )⊗ In)) = 0, (24)

and seeing if Equation (21) holds. In the case of one regime, this optimization problem
reduces to checking to see if Γ has an eigenvalue inside the unit circle.

In the case of two or more regimes the numbers ci are analogous to eigenvalues,
and are eigenvalues if all the ci are forced to be equal. However, in general, there will
be a continuum of solutions of Equation (24). For example, when h = 2, Equation
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(24) defines a pair of curves c1 = ψ(c2), which correspond to the two branches of
the solution. The question of determinacy amounts to asking whether the correspon-
dence c1 = ψ(c2) has an intersection with the region defined by the spectral radius
condition, Equation (21). In Section IX, we provide economic examples and plot the
correspondence c1 = ψ(c2) for each example. We provide one example where there is
a unique solution and two examples where there is a continuum of solutions for which
the spectral radius condition is satisfied.

IX. An Application to the New-Keynesian Model

In this section, we apply our theoretical results to the canonical new-Keynesian
model studied by Lubik and Schorfheide (2004);5

AS curve πt = βEtπt+1 + κxt + uS
t , (25)

DIS curve xt = Etxt+1 − σ−1(it − Etπt+1) + ut , (26)

Policy rule it = αstπt + ιstxt, (27)

where xt is the deviation of output from its trend path, πt is a percentage deviation
Dfrom its steady state value, it is the nominal interest rate, ut is an aggregate demand

S D Sshock, u is an aggregate supply shock and we allow for both both u and u to bet t t

serially correlated:

uS
t = ρSuS

t−1 + εS
t , (28)

D Dut = ρDut−1 + εD
t . (29)

The innovations εS
t tand εD are stationary exogenous random processes satisfying

Etε
S
t+1 = Etε

D
t+1 = 0.

The private sector block, consisting of Equations (25) and (26), has three regime-
independent parameters, σ, β and κ. The parameter σ represents the intertemporal
elasticity of substitution, β is the discount factor of the representative household,
and κ is the slope of the Phillips curve. Uncertain monetary policy, represented by
Equation (27), has two regime-dependent parameters, αst and ιst , that capture the
degree to which monetary policy is active or passive and we concentrate on the case
of two regimes by setting h = 2.

5Liu, Waggoner, and Zha (2008) show how to derive this MSRE model directly from the consumers
and firms’ optimization problems.
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To write the new-Keynesian model in compact form, we substitute Equation (27)
into Equation (26). Rearranging terms the model can then be written as

Fstyt = HEtyt+1 + ut, (30)

where
S

�
πt

� �
u

�
yt = , ut = t ,

Dxt ut�
1 −κ

� �
β 0

�
Fst = , H = .

σ−1αst 1 + σ−1ιst σ−1 1

This is a special case of Equation (1) where Γst = H−1Fst and Ψst = H−1.
The solution to this new-Keynesian model has the same form as Equations (15)

and (16) but because we allow for autocorrelated errors, the coefficient matrices Gst

(for st = 1, . . . , h) for the MSV solution have the following form:
⎡

G1

⎤ ⎡
Ψ1

⎤
. −1 .

vec .. = [Im ⊗ diag(Γi)− ρ� ⊗ P × In] vec .. , (31)
⎢⎢ ⎥⎥ ⎢⎢ ⎥⎥⎣ ⎦ ⎣ ⎦

Gh Ψh

where ρ is a 2× 2 diagonal matrix whose diagonal vector is [ρS, ρD]. For this model
we can make use of Proposition 1 to find values of c1 and c2 such that rσ < 1.

Following Leeper (1991), the literature on Taylor Rules defines a regime in which
the interest rate is changed by more than one for one in response to a change in
expected inflation, to be an active regime. If the interest rate responds less than
one for one, the regime is said to be passive. The response coefficient of the Fed is
represented by the parameter α and the fact that regime 1 is passive and regime 2
is active is represented in our model by setting |α1| < 1 and |α2| > 1. The matrix P

determines the persistence of each regime.
We will provide three examples, one example with a unique determinate equilibrium

and two examples with a continuum of indeterminate equilibria and we will illustrate
Proposition 1 in graphs. For all the examples we choose the following parameter
values:

α1 = 0.8, ι1 = 0.0, ι2 = 0.0 (regime dependent parameters);

β = 0.99, σ = 1.0, κ = 0.132, ρS = ρD = 0.9 (private-sector parameters);

p22 = 0.95 (probability of staying in the second regime).

Whether a model is determinate or not is a complicated question and the answer
depends on many parameter values in the model. In this section, we vary the values
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Figure 1. The new-Keynesian model with the baseline parameteri-
zation: α1 = 0.8, α2 = 2.5, ι1 = ι2 = 0.0, β = 0.99, σ = 1.0, κ =

0.132, p11 = 0.75, and p22 = 0.95. The two lines are defined by Equa-
tion (24) and the shaded region is defined Inequality (21).

of only α2 and p11 and focus on an illustration which demonstrates that uniqueness
of the equilibrium can be affected by the degree of an active monetary policy and by
the persistence of the active regime relative to the passive regime.

IX.1. Example 1. In this example, we set

α2 = 2.5, p11 = 0.75.

For this parameterization, one can verify that part (2) in Corollary 1 is satisfied. Thus,
the equilibrium is unique and characterized by the MSV solution, whose coefficient
matrices are given by Equation (31).

Figure 1 gives an intuitive explanation of why the equilibrium is unique. Given the
parameter values in this example, we compute the values c1 = ψ(c2) for every value
of c2. The correspondence c1 = ψ(c2) has two branches for a given value of c2: we
plot both branches on the figure as two lines both of which define values of c1 and c2

that satisfy Equation (20). We also compute the region defined by Inequality (21).
Figure 1 shows that for this case there is an empty intersection of the correspondence
with the region and hence there are no stable equilibria other than the MSV solution.
All values of the correspondence c1 = ψ(c2) represent solutions to Equation (1) that
are unstable and hence are ruled out by Definition 3.
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If there were no switching between regimes, regime 1 would be associated with
an indeterminate equilibrium and regime 2 would be associated with a unique de-
terminate equilibrium. This follows from the fact that for our chosen parameters,
the matrix Γ1 has a root inside the unit circle whereas Γ2 has both roots outside.
When there is Markov switching between regimes, it is the set of regimes that is
determinate.

IX.2. Example 2. In this example, we set

α2 = 1.05, p11 = 0.75.

This example differs from the previous example only in that α2 is smaller. Even
with this smaller value of α2, regime 2 by itself would be associated with a unique
determinate equilibrium because Γ2 has both roots outside the unit circle. We now
use this example to demonstrate that the magnitude of an active policy’s response
to inflation plays an essential role in determining uniqueness of the equilibrium. The
active policy in this case is too weak to ensure a unique equilibrium, as shown in
Figure 2. Recall that the correspondence c1 = ψ(c2) shows values of c1 and c2 that
satisfy Equation (20) and shaded region represents points that satisfy Inequality (21).
Using part (1) of Proposition 1; the fact that the lower branch of the correspondence
intersects with the upper right corner shaded region implies that there is a continuum
of indeterminate stable equilibria.

IX.3. Example 3. A third example is provided by the following parameterization.

α2 = 1.05, p11 = 0.90.

Here, the duration of regime 1 relative to regime 2 is longer than that in example
2. As discussed above, regime 1 in isolation would be associated with an indetermi-
nate equilibrium. We saw in example 2 that there was only a small set of values of
c1 = ψ(c2) and c2 that were associated with mean-square stable equilibria. Figure 3
demonstrates that, when the passive regime is more persistent, the lower branch of
the correspondence c1 = ψ(c2) intersects with a much larger portion of the shaded
region than in example 2; hence there is a larger set of values of c1 and c2 for which
there exists an indeterminate equilibrium.

Example 3 is interesting not only because indeterminacy persists for a wider range
of parameter values but also because the characteristics of the indeterminate solutions
in this case display an unexpected property; the persistence of shocks in the active
regime can take a wide range of values. The parameters c1 and c2 determine the
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Figure 2. The new-Keynesian model with an alternative parameter-
ization: α1 = 0.8, α2 = 1.05, ι1 = ι2 = 0.0, β = 0.99, σ = 1.0, κ =

0.132, p11 = 0.75, and p22 = 0.95. The two lines are defined by Equa-
tion (24) and the shaded region is defined Inequality (21).

Figure 3. The new-Keynesian model with an alternative parameter-
ization: α1 = 0.8, α2 = 1.05, ι1 = ι2 = 0.0, β = 0.99, σ = 1.0, κ =

0.132, p11 = 0.90, and p22 = 0.95. The two lines are defined by Equa-
tion (24) and the shaded region is defined Inequality (21).
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persistence of shocks in each regime. Recall that the policy maker in regime 1 follows
a passive policy and the policy maker in regime 2 is active.

From the scales on both the x-axis and the y-axis in Figure 3 one can see that there
is not much variation in the admissible values of c1 while indeterminacy exists for a
wide range of c2. It follows from the fact that the range of c1 inside the indeterminate
region is small, that the characteristics of indeterminate dynamics in regime 1 are
similar for the entire set of indeterminate equilibria.

There is, however, a wide range of possible values of c2 that are consistent with
an indeterminate equilibrium. Monetary policy is active in regime 2, and if regime
2 were an absorbing state, then once the system entered regime 2 the equilibrium
would be determinate. But since the system can escape back to the passive regime,
indeterminacy may spillover to the active regime and lead to many possible dynamic
paths for the state variables in regime 2, even though the Fed follows an active policy.
Further, the characteristics of each of these equilibria varies widely.

The parameter c2 represents the degree of autocorrelation of the non-fundamental
shock in the active regime and Figure 3 shows that this can vary from −1 to a value
greater then 1 with every possible value in between. Each of these values represents
a different equilibrium with a very different degree of persistence for the observed
behavior of inflation, output and the interest rate.

X. Conclusion

Our main contribution in this paper was to provide a set of necessary and sufficient
conditions for determinacy in a class of forward looking Markov-switching rational
expectations models. To accomplish this task, we showed how the question of de-
terminacy of a rational expectations model can be restated as a stability question
in a class of Markov-switching models. To make progress, we argued for the use
of mean-square stability rather than bounded stability as the appropriate stability
concept.

A second important contribution was to show how determinacy can be restated as
a constrained optimization problem. This restatement permits an applied researcher
to partition the parameter space of an economic model into determinate and inde-
terminate regions for a large class of Markov-switching rational expectations models
and hence, to compute the likelihood for each regime.

Finally, we provided an application of our approach in the context of the familiar
new-Keynesian model. For this example, the constrained optimization problem is
amenable to a graphical analysis. We believe that our technique will provide useful
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in a wide variety of practical applications and we hope to extend it in future work to
the case where the state vector may contain one or more predetermined variables.

Appendix A. Proofs

Proof of Theorem 1. Let yt be a solution of Equation (1). We must show that yt

can be represented by Equations (15) and (16). Define wt by wt = yt − Gstut. By
substituting this expression into Equation (1) and making use of the definition

Γ−1 , (A1)Gst st
Ψst

it follows that the process wt must be a solution of

Γstwt = Et [wt+1] . (A2)

We must show that Equation (A2) holds when wt is represented by Equation (16).
Let Vi be any matrix with orthonormal columns such that the column space of Vi is
the span of the support of wt1{st=i}, where 1{st=i} denotes the indicator function that
is one if st = i and zero otherwise.6 Let ki be the dimension of the column space of Vi.
Since wt is a solution of Equation (A2), the following equation holds almost surely.

Γiv = E [Γstwt | wt = v, st = i] = E [Et [wt+1] | wt = v, st = i]

h

= E [wt+1 | wt = v, st = i] =
�

pi,jE [wt+1 | wt = v, st = i, st+1 = j] .
j=1

Because the column space of Vj is the span of the support of wt+11{st+1=j}, it follows
that E [wt+1 | wt = v, st = i, st+1 = j] is almost surely in the column space of Vj. This
and the fact that the column space of Vi is the span of the support of wt1{st=i}, implies
that there exists a kj × ki matrix Φi,j such that

h

ΓiVi =
�

pi,jVjΦi,j.
j=1

Define γt = wt − VstΦst−1,stVs
�
t−1

wt−1. Because wt, and hence γt, is almost surely
in the column space of Vst , γt = VstVs

�
t
γt. All that remains to be shown is that

6If the support of wt1{st=i} is {0}, then we take Vi to be the n × 0 matrix and follow the usual
conventions of dealing with matrices that have a zero dimension.
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Et−1

�
VstVs

�
t
γt

�
= 0. Since

Et−1

�
VstV

�
st
γt

�
= Et−1

�
wt − VstΦst−1,stV

�
st−1

wt−1

�

= Γst−1wt−1 −
h�

pst,jVjΦst−1,jV
�
st−1

wt−1

j=1

= Γst−1wt−1 − Γst−1Vst−1V
�
st−1

wt−1

= 0,

where the last equality holds because wt−1 is almost surely in the column space of
Vst−1 . The theorem follows. �

Proof of Theorem 2. It is straight forward to verify that any process yt defined by
Equations (15) and (16) will be a solution of Equation (1) if and only Equation (17)
holds. So, all that remains to be shown is that any process yt defined by Equations
(15) and (16) will be MSS if and only if Equation (19) holds.

Since the exogenous process ut is mean-zero and independent of the Markov process
st, for any yt given by Equations (15) and (16) we have

� � V � � �E[yty ] = E[Gstutu G� ] + E[Gstutγ
� Vst ] + E[VstV

� γtu G� ] + E[wtw ].t t st t st st t st t

Since ut and γt are assumed to be jointly MSS, the first three terms on the right hand
side of the above equation will converge as t increases. Thus yt will be MSS if and
only if wt is MSS.

We apply Theorem 3.9 and 3.33 of Costa, Fragoso, and Marques (2004, pages 36
and 49) to obtain necessary and sufficient conditions for wt to be MSS. Theorem
3.33 states that Equation (16) defines a MSS process if and only if the homogeneous
equation

wt = Λst−1,stwt−1, (A3)

defines a MSS process. Theorem 3.9 states that Equation (A3) defines a MSS process
if and only rσ(A1) < 1. The matrix A1 has the property that if Σi,t = E[ytyt

�1{st=i}],
where 1{st=i} is the indicator function that is one if st = i, then

vec (Σ1,t+1, · · · , Σh,t+1) = A1vec (Σ1,t, · · · , Σh,t) .

� �hSince E[ytyt] = i=1 (Σi,t), it is not surprising that the matrix A1 is key in deter-
minining mean-square stability. To explicitly define A1, we first define the following
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two matrices. Let the h2 × h2 matrix P̂ be

(1,1) · · · (1,h) (2,1) · · · (2,h) · · · (h,1) · · · (h,h)

(1,1)

⎡
p1,1 · · · p1,h 0 · · · 0 · · · 0 · · · 0

⎤

(1,2) 0 · · · 0 p2,1 · · · p2,h · · · 0 · · · 0
. . . . . . . .. . . . . . . .. . . . . . . .

(1,h) 0 · · · 0 0 · · · 0 · · · ph,1 · · · ph,h
P̂ = .. . . . . . .. . . . . . .. . . . . . .

(h,1) p1,1 · · · p1,h 0 · · · 0 · · · 0 · · · 0

(h,2) 0 · · · 0 p2,1 · · · p2,h · · · 0 · · · 0
. . . . . . . .. . . . . . . .. . . . . . . .

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎣ ⎦
(h,h) 0 · · · 0 0 · · · 0 · · · ph,1 · · · ph,h

The matrix P̂ is the transition matrix for the Markov process (st−1, st). Let the
n2h2 × n2h2 matrix D(Λi,j) be

⎡
Λ1,1 ⊗ Λ1,1 · · · 0 · · · 0 · · · 0

⎤

. . . . . .. . . . . .. .. . . .
0 · · · Λ1,h ⊗ Λ1,h · · · 0 · · · 0
. . . . .. . . . .D(Λi,j) = . . . . . .

0 · · · 0 · · · Λh,1 ⊗ Λh,1 · · · 0
. . . . . .. . . . . .. . . . . .

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎣ ⎦
0 · · · 0 · · · 0 · · · Λh,h ⊗ Λh,h

The matrix A1 is defined to be (P̂ �⊗In2)D(Λi,j). To complete the proof, we show that
the non-zero eigenvalues of A1 are the same as the non-zero eigenvalues of M1 (Φi,j),
which implies that rσ(A1) < 1 if and only rσ(M1 (Φi,j)) < 1.

Suppose that the h2n2-dimensional vector (v1,1, · · · , v1,h, · · · , vh,1, · · · , vh,h) is an
eigenvector of (P̂ � ⊗ In2)D(Λi,j) with eigenvalue λ = 0� . This implies that

h

pi,j

�
(Λk,i ⊗ Λk,i)vk,i = λvi,j. (A4)

k=1

pi,jDefine vi =
�h (Λk,i ⊗ Λk,i) vk,i, which implies that vi,j = vi. Substituting thisk=1 λ

into Equation (A4) gives p

λ
i,j

�h
k=1 pk,i(Λk,i⊗Λk,i)vk = pi,jvi. Since for every i there is

at least one j such that pi,j � k=1 = λvi, which= 0, this implies that
�h pk,i(Λk,i⊗Λk,i)vk

is precisely the condition needed for the hn2-dimensional vector (v1, · · · , vh) to be an
eigenvector of M(Λi,j) with eigenvalue λ. Reversing this argument shows that any
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eigenvalue of M(Λi,j) will also be an eigenvalue of A1. Thus the non-zero eigenvalues
of A1 are the same as the non-zero eigenvalues of M1(Λi,j). Finally, because

M1(Λi,j) = diag(Vi ⊗ Vi)M1(Φi,j)diag(Vi
� ⊗ Vi

�),

the non-zero eigenvalues of M1(Λi,j) are the same as the non-zero eigenvalues of
M1(Φi,j).

Two points need to be made about the assumptions in Theorems 3.9 and 3.33 of of
Costa, Fragoso, and Marques (2004, pages 36 and 49). First, the derivation of these
theorems are in the complex-valued case. There are some subtleties when applying
these derivations to the real-valued case concerning the permissible initial values.
The details of this are worked out in ? and both of these Theorems hold in the real-
valued case. Second, in Theorem 3.33 the exogeneous shocks γt are assumed to be
an independent covariance stationary process independent of the Markov process st

and the initial condition w0. However, in the proofs all we really need is that E[γt] ∼
µγ, E[γtγ

�] ∼ Σγ, and E[γt1{st=j}w�1{st−1=i}] = 0, where µγ is any n-dimensionalt t

vector, Σγ is any n× n symmetric and positive semi-definite matrix, and 1{st=j} and
1{st−1=i} are indicator functions. In contrast, we assume that the γt are a mean-zero
MSS process independent of the Markov process st, which implies that E[γt] = 0,
E[γtγ

�] ∼ Σγ, and E[γt1{st=j}w�1{st−1=i}] = 0 as required.t t

Proof of Proposition 1. If we define Vi = vi/�vi� and Φi,j = �vj�ci/�vi�, then Equa-
tion (17) can be written in matrix form as

⎛⎡
Γ1 · · · 0

⎤ ⎡
p1,1Φ1,1 · · · p1,hΦ1,h

⎤⎞ ⎡
v1/�v1�

⎤
. . . . . . .. . . . − . . . . .. = 0,. . . .

⎜⎜⎢⎢ ⎥⎥ ⎢⎢ ⎥⎥⎟⎟ ⎢⎢ ⎥⎥⎝⎣ ⎦ ⎣ ⎦⎠ ⎣ ⎦
0 · · · Γh ph,1Φh,1 · · · ph,1Φh,1 vh/�vh�

which is equivalent to Equation (20). Thus, by Theorem 2, the solution given by
Equations (22) and (23) will be MSS if and only if rσ(M1(Φi,j)) < 1. Since

2M1 (Φi,j) = diag
��vi�2

� �
diag

�
ci

�
P

�
diag

��vi�2
�−1

,

rσ(M1(Φi,j)) = rσ(diag (ci
2) P ). This completes the proof of the first two parts of the

proposition.
To prove the third part, note that the process yt given by Equations (15) and (16)

will be bounded if and only the process wt given by Equation (16) is bounded. Since
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Λst−1,st = cst−1vstv /�vst−1�2,st−1

t t
v w0

�
t

�
s0 � ��wt� = �vst�

�
csi−1

�
+

� �
csj−1

v γi−1 + v γtsi−1 st�vs0i=1 i=2 j=i

����� �2

�����
t

i≤ �vst�
�

c a
i=0

where c = max {|c1|, · · · , |ch|} and a = sup
�|v γt|, |v w0|/�vs0�2

�
. Thus the wt,st s0

and hence the yt, will be bounded if |ci| < 1 for all i.
On the other hand, if |ci| ≥ 1 for some i, then for as long as the Markov process

remains in state i, wt will grow exponentially (|ci| > 1) or follow a random walk
(|ci| = 1). Since the Markov process can remain in state i for arbitrarily long periods
of time, the process wt, and hence the process yt, cannot be bounded. �
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