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1 Introduction

In recent years investors have come to regard US Treasury bonds as hedges, as-
sets that perform well when other assets lose value, and more generally when bad
macroeconomic news arrives. During both of the two most recent stock market and
macroeconomic downturns, in 2000�02 and 2007�09, Treasury bonds performed well.
In addition, for the past decade and particularly during these downturns, Treasury
bond returns have been negatively correlated with stock returns at a daily frequency.
In previous decades, however, Treasury bonds performed very di¤erently; they were
either uncorrelated or positively correlated with stock returns. The purpose of this
paper is to highlight these changes in magnitude and switches in sign of the covaria-
tion between bonds and stocks, and to ask what they imply for bond risk premia and
the shape of the term structure of interest rates.

To understand how a changing bond-stock covariance can a¤ect the pricing of
Treasury bonds, we specify and estimate a multifactor term structure model that
incorporates traditional macroeconomic in�uences� real interest rates and expected
in�ation� along with a state variable driving the variance of real and nominal interest
rates and their covariance with the macroeconomy. The model is set up so that all
factors have an economic interpretation, and the covariance of bond returns with the
macroeconomy can switch sign. For simplicity, the basic version of the model assumes
a constant price of risk, or equivalently, a constant variance for the stochastic discount
factor. We estimate the model using postwar quarterly US time series for nominal
and in�ation-indexed bond yields, stock returns, realized and forecast in�ation, and
the realized second moments of bond and stock returns calculated from daily data
within each quarter. The use of realized second moments, unusual in the term
structure literature, forces our model to �t the historically observed changes in risks.

Our model delivers three main results. First, the risk premia of nominal Treasury
bonds should have changed over the decades because of changes in the covariance be-
tween in�ation and the real economy. The model predicts positive nominal bond
risk premia in the early 1980s, when bonds covaried positively with stocks, and nega-
tive risk premia in the 2000s and particularly during the downturn of 2007�09, when
bonds hedged equity risk.

Second, a strongly concave term structure of interest rates, with high interest
rates at a maturity around 3 years relative to short- and long-term interest rates,
should predict high excess bond returns. In the model, a high bond-stock covariance
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is associated with a high volatility of bond returns. The high bond-stock covariance
generates a high term premium and a steep yield curve at maturities of 1-3 years,
while the high bond volatility lowers long-term yields through a Jensen�s inequality
or convexity e¤ect. Thus, the concavity of the yield curve is a good proxy for the
bond-stock covariance. In this fashion, our model explains the qualitative �nding of
Cochrane and Piazzesi (2005) that a tent-shaped linear combination of forward rates,
with a peak at about 3 years, predicts excess bond returns at all maturities.

Third, however, our model does not explain the volatility of term premia im-
plied by predictive regressions of excess bond returns onto bond yields. Whether
these regressions use maturity-matched yield spreads (Campbell and Shiller 1991),
maturity-matched forward spreads (Fama and Bliss 1987), or a multi-maturity com-
bination of forward rates (Cochrane and Piazzesi 2005), they imply much greater
variability of expected excess bond returns than is captured by our model. This
negative �nding implies that bond risk premia respond to other factors besides the
bond-stock covariance. It is an open question whether these factors are best modeled
using an exogenously changing price of risk, as in the literature on essentially a¢ ne
bond pricing models following Du¤ee (2002), or whether other variables such as the
supply of Treasury bonds need to be incorporated into the analysis as advocated by
Greenwood and Vayanos (2012) and Krishnamurthy and Vissing-Jorgensen (2012).

To illustrate the basic observation that motivates this paper, Figure 1 plots the
history of the realized covariance of 10-year nominal zero-coupon Treasury bonds with
the CRSP value-weighted stock index, calculated using a rolling three-month window
of daily data. For ease of interpretation, the �gure also shows the history of the
realized beta of Treasury bonds with stocks (the bond-stock covariance divided by
the realized variance of stock returns), as this allows a simple back-of-the-envelope
calculation of the term premium that would be implied by the simple Capital Asset
Pricing Model (CAPM) given any value for the equity premium. The covariance
(plotted on the left vertical scale) and beta (on the right vertical scale) move closely
together, with the major divergences occurring during periods of low stock return
volatility in the late 1960s and the mid-1990s.

Figure 1 displays a great deal of high-frequency variation in both series, much
of which is attributable to noise in realized second moments. But it also shows
substantial low-frequency movements. The beta of bonds with stocks was close to
zero in the mid-1960�s and mid-1970�s, much higher with an average around 0.4 in
the 1980�s, spiked in the mid-1990�s, and declined to negative average values in the
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2000�s. During the two downturns of 2000�02 and 2007�09, the average realized beta
of Treasury bonds was about -0.2. Thus from peak to trough, the realized beta of
Treasury bonds has declined by about 0.6 and has changed its sign. According to the
CAPM, this would imply that term premia on 10-year zero-coupon Treasuries should
have declined by 60% of the equity premium.

Nominal bond returns respond both to expected in�ation and to real interest
rates. A natural question is whether the pattern shown in Figure 1 re�ects a changing
covariance of in�ation with the stock market, or a changing covariance of real interest
rates with the stock market. Figure 2 plots the covariance and beta of in�ation shocks
with stock returns, using a rolling three-year window of quarterly data and a �rst-
order quarterly vector autoregression for in�ation, stock returns, and the three-month
Treasury bill yield to calculate in�ation shocks. Because high in�ation is associated
with high bond yields and low bond returns, the �gure shows the covariance and beta
for realized de�ation shocks (the negative of in�ation shocks) which should move in the
same manner as the bond return covariance and beta reported in Figure 1. Indeed,
Figure 2 shows a similar history for the de�ation covariance as for the nominal bond
covariance.

Real interest rates also play a role in changing nominal bond risks. In the period
since 1997, when long-term Treasury in�ation-protected securities (TIPS) were �rst
issued, Campbell, Shiller, and Viceira (2009) report that TIPS have had a predomi-
nantly negative beta with stocks. Like the nominal bond beta, the TIPS beta was
particularly negative in the downturns of 2000�02 and 2007�09. Thus not only the
stock-market covariances of nominal bond returns, but also the covariances of two
proximate drivers of those returns, in�ation and real interest rates, change over time
and occasionally switch sign. We design our term structure model to �t these facts.

The organization of the paper is as follows. Section 2 brie�y reviews the related
literature. Section 3 presents our model of the real and nominal term structures of
interest rates. Section 4 describes our estimation method and presents parameter
estimates and historical �tted values for the unobservable state variables of the model.
Section 5 discusses the implications of the model for the shape of the yield curve and
the movements of risk premia on nominal bonds. Section 6 concludes. An Appendix
to this paper available online (Campbell, Sunderam, and Viceira 2013) presents details
of the model solution and additional empirical results.
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2 Literature Review

Despite the striking movements in the bond-stock covariance illustrated in Figure 1,
this second moment has received relatively little attention in the enormous literature
on the term structure of interest rates.2 One reason for this neglect may be that
until the last 15 years, the covariance was almost always positive and thus it was
not apparent that it could switch sign. In the absence of a sign switch, a model
of changing bond market volatility, with a constant correlation or even a constant
covariance between bonds and stocks, might be adequate.

The early literature on the term structure of interest rates concentrated on testing
the null hypothesis of constant bond risk premia, also known as the expectations
hypothesis of the term structure (Shiller, Campbell, and Schoenholtz 1983, Fama
and Bliss 1987, Stambaugh 1988, Campbell and Shiller 1991). Second-generation
a¢ ne term structure models such as Cox, Ingersoll, and Ross (1985) modeled changes
in bond market volatility linked to the short-term interest rate. This approach
encounters the di¢ culty that bond market volatility appears to move independently
of the level of interest rates. In addition, the empirical link between bond market
volatility and the expected excess bond return is weak, although some authors such
as Campbell (1987) do estimate it to be positive.3

In the last ten years a large literature has speci�ed and estimated essentially
a¢ ne term structure models (Du¤ee 2002), in which a changing price of risk can
a¤ect bond market risk premia without any change in the quantity of risk, while
risk premia are linear functions of bond yields (Dai and Singleton 2002, Sangvinatsos
and Wachter 2005, Wachter 2006, Buraschi and Jiltsov 2007, Bekaert, Engstrom, and
Xing 2009, Bekaert, Engstrom, and Grenadier 2010). Models such as those of Dai
and Singleton (2002) and Sangvinatsos and Wachter (2005) achieve a good �t to
the historical term structure, but this literature uses latent factors that are hard to
interpret economically.

2Important exceptions in the last decade include Li (2002), Guidolin and Timmermann (2006),
Christiansen and Ranaldo (2007), David and Veronesi (2009), Baele, Bekaert, and Inghelbrecht
(2010), and Viceira (2012).

3More recently, Piazzesi and Schneider (2006) and Rudebusch and Wu (2007) have built a¢ ne
models of the nominal term structure in which a reduction of in�ation uncertainty drives down the
risk premia on nominal bonds towards the lower risk premia on in�ation-indexed bonds. Similarly,
Backus and Wright (2007) argue that declining uncertainty about in�ation explains the low yields
on nominal Treasury bonds in the mid-2000�s.
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Some papers have extended the essentially a¢ ne approach to model stock and
bond prices jointly (Mamaysky 2002, d�Addona and Kind 2006, Bekaert, Engstrom,
and Grenadier 2010). Eraker (2008), Hasseltoft (2009), and Bansal and Shaliastovich
(2013) price both stocks and bonds using the consumption-based long-run risks model
of Bansal and Yaron (2004). However none of these papers allow the bond-stock
covariance to change sign.

There is a small empirical literature decomposing nominal bond returns into
economically interpretable shocks to real interest rates, in�ation expectations, and
risk premia, and estimating the covariances of these components with stock returns
(Barsky 1989, Shiller and Beltratti 1992, Campbell and Ammer 1993). A weakness
of this literature is that the estimated covariances are assumed to be constant over
time, an assumption relaxed by Viceira (2012).

In this paper we want to model a time-varying covariance between state variables
and the stochastic discount factor, which can switch sign. Du¢ e and Kan (1996)
point out that this can be done within an a¢ ne framework if we allow the state
variables to be bond yields rather than fundamental macroeconomic variables. In
this spirit, Buraschi, Cieslak, and Trojani (2008) expand the state space of a nonlinear
model to obtain an a¢ ne model in which correlations can switch sign. The cost of this
approach is that the factors in the model become di¢ cult to interpret. Instead, we use
interpretable macroeconomic variables as factors and write a linear-quadratic model
like those of Beaglehole and Tenney (1991), Constantinides (1992), Ahn, Dittmar and
Gallant (2002), and Realdon (2006).

To solve our model, we use a general result on the expected value of the expo-
nential of a non-central chi-squared distribution which we take from the Appendix
to Campbell, Chan, and Viceira (2003). To estimate the model, we use a nonlinear
�ltering technique, the unscented Kalman �lter, proposed by Julier and Uhlmann
(1997), reviewed by Wan and van der Merwe (2001), and recently applied in �nance
by Binsbergen and Koijen (2008).
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3 A Quadratic Bond Pricing Model

We now present a term structure model that allows for time variation in the co-
variances between real interest rates, in�ation, and the real economy. In the model,
both real and nominal bond yields are linear-quadratic functions of the vector of state
variables and, consistent with the empirical evidence, the conditional volatilities and
covariances of excess returns on real and nominal assets are time varying.

Before describing the model, it is worth discussing our motivation for writing
down a quadratic model, rather than an essentially a¢ ne model as is more common
in the literature. A key goal of the paper is understand whether the variations in
the quantity of bond risk documented in Figure 1 re�ect variation in the quantity of
real interest rate risk, the quantity of in�ation risk, or a combination of both. This
motivates us to build a model where the state variables are explicitly identi�ed with
economic quantities. This motivation, in combination with the fact that we allow for
time-varying variances and covariances, means that we must venture outside the class
of essentially a¢ ne models.

3.1 The SDF and the real term structure

We start by assuming that the log of the real stochastic discount factor (SDF),mt+1 =
log (Mt+1), follows the process:

�mt+1 = xt +
�2m
2
+ "m;t+1: (1)

For simplicity, the SDF innovation "m;t+1 is homoskedastic although we have devel-
oped and estimated an extension of the model with a heteroskedastic SDF.4 The
drift xt, however, follows an AR(1) process subject to both a heteroskedastic shock
 t"x;t+1 and a homoskedastic shock "X;t+1:

xt+1 = �x (1� �x) + �xxt +  t"x;t+1 + "X;t+1: (2)

4Details of the more general model are available from the authors upon request. The more
general speci�cation captures the spirit of recent term structure models by Bekaert et al (2005),
Buraschi and Jiltsov (2007), Wachter (2006) and others in which time-varying risk aversion drives
time-varying bond risk premia.
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The innovations "m;t+1, "x;t+1, and "X;t+1 are normally distributed, with zero means
and constant variance-covariance matrix. We allow these shocks to be cross-correlated
and adopt the notation �2i to describe the variance of shock "i, and �ij to describe the
covariance between shock "i and shock "j. To reduce the complexity of the equations
that follow, we assume that the shocks to xt are orthogonal to each other; that is,
�xX = 0.

The state variable xt is the short-term log real interest rate. The price of a
single-period zero-coupon real bond satis�es P1;t = Et [exp fmt+1g] ;so that its yield
y1t = � log(P1;t) equals

y1t = �Et [mt+1]�
1

2
Vart (mt+1) = xt: (3)

The model has an additional state variable,  t, which governs time variation in
the volatility of the real interest rate and its covariation with the SDF.5 We assume
that  t follows a standard homoskedastic AR(1) process:

 t+1 = � 
�
1� � 

�
+ �  t + " ;t+1: (4)

Importantly, this process can change sign, so the covariance of the real interest rate
with the SDF and the price of real interest rate risk can be either positive or negative.
Because the model is observationally equivalent when both  t and the shocks it
multiplies switch sign, without loss of generality we normalize the model such that
 t has a positive mean.

We allow for two shocks in the real interest rate because a single shock would
imply a constant Sharpe ratio for real bonds. With only a heteroskedastic shock,
the model would also imply that the conditional volatility of the real interest rate
would be proportional to the covariance between the real interest rate and the real
SDF; equivalently, the conditional correlation of the real rate and the SDF would
be constant in absolute value with occasional sign switches. Our speci�cation avoids
these implausible implications while remaining reasonably parsimonious.

In this model, the log prices of real bonds are linear in xt and quadratic in  t:

pn;t = An +Bx;nxt +B ;n t + C ;n 
2
t ; (5)

5In an earlier version of this paper we assumed a homoskedastic process for the real interest rate,
writing a model in which  t only a¤ects in�ation and nominal interest rates. This generates a simpler
a¢ ne real term structure of interest rates, but is inconsistent with time-variation in the covariance
between TIPS returns and the real economy documented by Campbell, Shiller, and Viceira (2009).
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where the coe¢ cients An, Bx;n, B ;n, and C ;n solve a set of recursive equations given
in the Appendix. These coe¢ cients are functions of the maturity of the bond (n) and
the coe¢ cients that determine the stochastic processes for the state variables. From
equation (3), Bx;1 = �1 and the remaining coe¢ cients are zero at n = 1.

The conditional risk premium on an n-period real bond is linear in  t:

Et [rn;t+1 � r1;t+1] +
1

2
Vart (rn;t+1 � r1;t+1) = �(A�n +B�

n t); (6)

where A�n and B
�
n are functions of An, Bx;n, B ;n, and C ;n. In the case of a 2-period

real bond, we have A�2 = �Xm and B�
2 = �xm. To gain intuition about the 2-period

real bond risk premium, consider the simple case where �Xm = 0 and �xm t > 0.
This implies that real bond risk premia are negative. The reason for this is that
with positive �xm t, the real interest rate tends to rise in good times and fall in
bad times. Since real bond returns move opposite the real interest rate, real bonds
are countercyclical assets that hedge against economic downturns and command a
negative risk premium.

3.2 In�ation and the nominal term structure

To price nominal bonds, we need a model for in�ation. We assume that log in�ation
�t = log (�t) follows a linear-quadratic conditionally heteroskedastic process:

�t+1 = �t + �t +
�2�
2
 2t +  t"�;t+1; (7)

where  t is given in (4) and expected log in�ation is the sum of two components, a
permanent component �t and a transitory component �t.

The dynamics of these components are given by

�t+1 = �t + "�;t+1 +  t"�;t+1; (8)

and
�t+1 = ���t +  t"�;t+1: (9)

The presence of an integrated component in expected in�ation removes the need to
include a nonzero mean in the stationary component of expected in�ation.
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We assume that the underlying shocks to realized in�ation, the components of
expected in�ation, and conditional in�ation volatility� "�;t+1, "�;t+1, "�;t+1, "�;t+1,
and " ;t+1� are again jointly normally distributed zero-mean shocks with a constant
variance-covariance matrix. We allow these shocks to be cross-correlated with the
shocks to mt+1 and xt+1. Since  t premultiplies all in�ation shocks, without loss of
generality we set �� to an arbitrary value of 1.

Our inclusion of two components of expected in�ation gives our model the �exi-
bility it needs to �t both persistent variation in long-term nominal interest rates and
in�ation, and transitory variation in short rates relative to long rates. The former
requires persistent variation in expected in�ation, while the latter requires transitory
variation in some state variable. The persistence and volatility of the long-term
in�ation-indexed bond yield implies that the real interest rate is highly persistent, so
under our assumption that a single AR(1) process drives the real interest rate, we
need a transitory component of expected in�ation to generate changes in the slope of
the nominal yield curve.6

We use the same state variable  t that drives changing volatility in the real term
structure to drive changes in in�ation volatility. This keeps our model parsimonious
while capturing the in�ation heteroskedasticity �rst modelled by Engle (1982) in a
manner consistent with the common movements of nominal and in�ation-indexed
bond volatility documented by Campbell, Shiller, and Viceira (2009).7

We allow both a homoskedastic shock "�;t+1 and a heteroskedastic shock  t"�;t+1
to impact the permanent component of expected in�ation. The reasons for this as-
sumption are similar to those that lead us to assume two shocks for the real interest
rate process. In the absence of a homoskedastic shock to expected in�ation, the
conditional volatility of expected in�ation would be proportional to the conditional

6There are other speci�cations that could be used to �t these facts. We impose a unit root on the
persistent component of expected in�ation for convenience of model analysis and estimation, but a
near-unit root would also be viable. Regime-switching models o¤er an alternative way to reconcile
persistent �uctuations with stationary long-run behavior of interest rates (Garcia and Perron 1996,
Gray 1996, Bansal and Zhou 2002, Ang, Bekaert, and Wei 2008). We could also allow the real
interest rate to have both a persistent and transitory component, in which case expected in�ation
could be purely persistent. Our speci�cation is consistent with Cogley, Primiceri, and Sargent (2010)
and generalizes Stock and Watson (2007) to allow some persistence in the stationary component of
in�ation. Mishkin (1990) presents evidence that bond yield spreads forecast future changes in
in�ation, which is also consistent with our speci�cation.

7Although not reported in the article, the correlation in their data between the volatility of
nominal US Treasury bond returns and the volatility of TIPS returns is slightly greater than 0.7.
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covariance between expected in�ation and real economic variables. There is no eco-
nomic reason to expect that these two second moments should be proportional to
one another, and the data suggest that the conditional covariance can be close to
zero even when the conditional volatility remains positive. Put another way, the
presence of two shocks allows the conditional correlation between real and nominal
variables to vary smoothly rather than being �xed in absolute value with occasional
sign switches. Since long-term expected in�ation is the main determinant of long-
term nominal interest rates, we allow two shocks to this process but for parsimony
allow only heteroskedastic shocks to transitory expected and realized in�ation.

The process for realized in�ation, equation (7), is formally similar to the process
for the log SDF (1) in that it includes a quadratic term. This term simpli�es the
process for the reciprocal of in�ation by making the log of the conditional mean of
1=�t+1 the negative of the sum of the two state variables �t and �t. This in turn
simpli�es the pricing of short-term nominal bonds.

The real cash �ow on a single-period nominal bond is simply 1=�t+1. Thus the
price of the bond is given by P $1;t = Et [exp fmt+1 � �t+1g] ;so the log short-term
nominal rate y$1;t+1 = � log

�
P $1;t
�
is

y$1;t+1 = �Et [mt+1 � �t+1]�
1

2
Vart (mt+1 � �t+1)

= xt + �t + �t � �m� t: (10)

The log nominal short rate is the sum of the log real interest rate, the two state
variables that drive expected log in�ation, and a term that accounts for the correlation
between shocks to in�ation and shocks to the stochastic discount factor. This term,
��m� t, is the expected excess return on a single-period nominal bond over a single-
period real bond so it measures the in�ation risk premium at the short end of the
term structure.

The log price of a n-period zero-coupon nominal bond is a linear-quadratic function
of the vector of state variables:

p$n;t = A$n +B$
x;nxt +B$

�;n�t +B$
�;n�t +B$

 ;n t + C$ ;n 
2
t ; (11)

where the coe¢ cients A$n, B
$
i;n, and C

$
i;n solve a set of recursive equations given in

the Appendix. From equation (10), B$
x;1 = B$

�;1 = B$
�;1 = �1, C$z ;1 = �m�, and the

remaining coe¢ cients are zero at n = 1.
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Like risk premia in the real term structure, risk premia in the nominal term
structure are linear in  t. Intuitively, at times when in�ation is procyclical� as might
be the case if the macroeconomy moves along a stable Phillips Curve� nominal bond
returns are countercyclical, making nominal bonds desirable hedges against business
cycle risk. At times when in�ation is countercyclical� as might be the case if the
economy is a¤ected by supply shocks or changing in�ation expectations that shift the
Phillips Curve in or out� nominal bond returns are procyclical and investors demand
a positive risk premium to hold them.

3.3 Pricing equities

We want our model to �t the changing covariance of bonds and stocks, and so we must
specify a process for the equity return within the model. One modelling strategy
would be to specify a dividend process and solve for the stock return endogenously
in the manner of Mamaysky (2002), Bekaert et al. (2005), and d�Addona and Kind
(2006). However we adopt a simpler approach. Following Campbell and Viceira
(2001), we model shocks to realized stock returns as a linear combination of shocks
to the real interest rate and shocks to the log stochastic discount factor:

re;t+1 � Et re;t+1 = �ex"x;t+1 + �eX"X;t+1 + �em"m;t+1 + "e;t+1; (12)

where "e;t+1 is an identically and independently distributed shock uncorrelated with
all other shocks in the model. This shock captures movements in equity returns that
are both unrelated to real interest rates and carry no risk premium because they are
uncorrelated with the SDF.

Substituting (12) into the no-arbitrage condition Et [Mt+1Rt+1] = 1, the Appendix
shows that the equity risk premium is given by

Et [re;t+1 � r1;t+1] +
1

2
Vart (re;t+1 � r1;t+1) = �ex�xm + �eX�Xm + �em�

2
m: (13)

The equity premium depends not only on the direct sensitivity of stock returns to
the SDF, but also on the sensitivity of stock returns to the real interest rate and the
covariance of the real interest rate with the SDF.

Equation (12) does not attempt to capture heteroskedasticity in stock returns.
Although such heteroskedasticity is of �rst-order importance for understanding stock

11



prices, we abstract from it here in order to maintain the parsimony of our term struc-
ture model. Moreover, as Figure 1 shows, the stock-bond covariance and the stock-
bond beta move closely together, indicating that our assumption of homoskedastic
stock returns is not overly restrictive for the purposes of studying the quantity of risk
in nominal bonds.

The conditional covariance between the SDF and in�ation also determines the
covariance between the excess returns on real and nominal assets. Consider for
example the conditional covariance between the real return on a one-period nominal
bond and the real return on equities, both in excess of the return on a one-period real
bond. This covariance is given by

Covt
�
re;t+1 � r1;t+1; y

$
1;t+1 � �t+1 � r1;t+1

�
= � (�ex�x� + �em�m�) t;

which moves over time and can change sign. This implies that we can identify the
dynamics of the state variable  t from the dynamics of the conditional covariance
between equities and nominal bonds as well as real bonds.

4 Model Estimation

4.1 Data and estimation methodology

The term structure model presented in Section 3 generates bond yields which are
linear-quadratic functions of a vector of latent state variables. We now use this model
to study the postwar history of yields on US Treasury nominal and in�ation-indexed
bonds. Since our state variables are not observable, and the observable series have
a nonlinear dependence on the latent state variables, we obtain maximum likelihood
estimates of our model�s parameters via a nonlinear Kalman �lter. Speci�cally, we
use the unscented Kalman �lter estimation procedure of Julier and Uhlmann (1997).

The unscented Kalman �lter is a nonlinear Kalman �lter which works through
deterministic sampling of points in the distribution of the innovations to the state
variables, does not require the explicit computation of Jacobians and Hessians, and
captures the conditional mean and variance-covariance matrix of the state variables
accurately up to a second-order approximation for any type of nonlinearity, and up
to a third-order approximation when innovations to the state variables are Gaussian.
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Wan and van der Merwe (2001) describe in detail the properties of the �lter and its
practical implementation, and Binsbergen and Koijen (2008) apply the method to a
prediction problem in �nance.8

To implement the unscented Kalman �lter, we specify a system of twelve mea-
surement equations that relate observable variables to the vector of state variables.
We sample the data at a quarterly frequency in order to minimize the impact of high-
frequency noise in the measurement of some of our key variables� such as realized
in�ation� while keeping the frequency of observation reasonably high (Campbell and
Viceira 2001, 2002). By not having to �t all the high-frequency monthly variation in
the data, our estimation procedure can concentrate on uncovering the low-frequency
movements in interest rates which our model is designed to capture.

Our �rst four measurement equations relate observable nominal bond yields to the
vector of state variables, as in equation (11). We use yields on constant maturity 3-
month, 1-year, 3-year, and 10-year zero-coupon nominal bonds sampled at a quarterly
frequency for the period 1953Q1-2009Q3. These data are spliced together from two
sources. From 1953Q1-1961Q1 we sample quarterly from the monthly dataset devel-
oped by McCulloch and Kwon (1993), and from 1961Q2-2009Q3 we sample quarterly
from the daily dataset constructed by Gürkaynak, Sack, and Wright (GSW 2006,
updated through 2009). We assume that bond yields are measured with errors, which
are uncorrelated with each other and with the structural shocks of the model.

Our �fth measurement equation, (7), relates the observed in�ation rate to ex-
pected in�ation and in�ation volatility, plus measurement error. We use the CPI as
our observed price index in this measurement equation. We complement this mea-
surement equation with another one that uses data on the median forecast of GDP
de�ator in�ation from the Survey of Professional Forecasters for the period 1968Q4-
2009Q3. We relate this observed measure of expected in�ation to the sum of equations
(8) and (9) in our model plus measurement error.

The seventh measurement equation relates the observed yield on constant maturity
Treasury in�ation protected securities (TIPS) to the vector of state variables, via the

8Binsbergen and Koijen�s application has linear measurement equations and nonlinear transition
equations, whereas ours has linear transition equations and nonlinear measurement equations. The
unscented Kalman �lter can handle either case. We have also checked the robustness of our estimates
by re-estimating our model using the �square root�variant of the �lter, which has been shown to be
more stable when some of the state variables follow heteroskedastic processes. This variant produces
estimates which are extremely similar to the ones we report in the paper.
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pricing equation for real bonds (5). We obtain data on constant maturity zero-coupon
10-year TIPS dating back to the �rst quarter of 1999 from GSW (2008). Before 1999,
we treat the TIPS yield as missing, which can easily be handled by the Kalman �lter
estimation procedure. As with nominal bond yields, we assume that real bond yields
are measured with errors.

Figure 3 illustrates our real bond yield series. The decline in the TIPS yield
since the year 2000, and the spike in the fall of 2008, are clearly visible in this �gure.
Campbell, Shiller, and Viceira (2009) document that this decline in the long-term
real interest rate, and the subsequent sudden increase during the �nancial crisis,
occurred in in�ation-indexed bond markets around the world. In earlier data from
the UK, long-term real interest rates were much higher on average during the 1980�s
and 1990�s. Our model will explain such large and persistent variation in the TIPS
yield primarily using persistent movements in the short-term real interest rate.

Our eighth measurement equation uses equity returns from the CRSP value-
weighted index comprising the stocks traded in the NYSE, AMEX, and NASDAQ.
This equation describes realized log equity returns re;t+1 using equations (12) and
(13).

The last four measurement equations use the implications of our model for: (i)
the conditional covariance between equity returns and real bond returns, (ii) the con-
ditional covariance between equity returns and nominal bond returns, (iii) the con-
ditional volatility of real bond returns, and (iv) the conditional volatility of nominal
bond returns. The Appendix derives expressions for these time-varying conditional
second moments, which are functions of  t and therefore help us �lter this state vari-
able. Following Viceira (2012), we construct the analogous realized second moments
using high-frequency data. We obtain daily stock returns from CRSP and calculate
daily nominal bond returns from daily GSW nominal yields from 1961Q2 onwards,
and daily real bond returns from daily GSW real yields from 1999Q1 onwards.9 We
then compute the variances and covariances realized over quarter t.

Realized variances and covariances in quarter t are expected variances and covari-
ances at quarter t � 1, plus shocks realized in quarter t. Unfortunately we cannot
treat such shocks as pure measurement error because they may be contemporaneously

9We calculate daily returns on the n year bond from daily yields as rn;t+1 = nyn;t �
(n� 1=264) yn;t+1. We assume there are 264 trading days in the year, or 22 trading days per month.
Prior to 1961Q2, we calculate monthly returns from monthly McKullock-Kwon nominal yields, and
calculate variances and covariances using a rolling 12-month return window.
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correlated with innovations to the state variables of our model.10 Accordingly we
project realized variances and covariances onto information known at quarter t � 1,
and treat the �tted values as the conditional (expected) moments at quarter t�1 plus
measurement error. For each realized variance and covariance, we use three pieces
of information known at quarter t � 1: the lagged value of the realized variance or
covariance, the 3-month nominal Treasury yield, and the spread between the 10-year
nominal yield and the 3-month nominal yield. Viceira (2012) shows these variables
have strong predictive power for the realized second moments at quarter t. We also
note that, because the realized second moments are persistent, the �tted values are
quite similar to the realized second moments at quarter t.

The data used in these measurement equations are plotted in Figure 4 for real
bonds and in Figure 5 for nominal bonds. The left panel of each �gure shows the
projected covariance between daily stock and bond returns, while the right panel
shows the projected variance of daily bond returns. The thick lines in each panel
show a smoothed version of the raw data.

Figure 5 shows that both the stock-nominal bond covariance series and the nominal
bond variance series increase in the early 1970�s and, most dramatically, in the early
1980�s. In the 1950�s, and again in the 2000�s, the stock-nominal bond covariance was
negative, with downward spikes in the two recessions of the early 2000�s and the late
2000�s. Figure 4 shows that the stock-real bond covariance series and the real bond
variance series follow patterns similar to those of nominal bonds for the overlapping
sample period.

Our model has a large number of shocks, and we have found that freely estimating
many of the covariances between these shocks does not materially a¤ect the empirical
results. Therefore, for parsimony we constrain some of these covariances to be zero.
The unconstrained parameters are the covariances of all shocks with the stochastic
discount factor (�xm; �Xm; ��m; ��m; ��m; � m; �m�); the covariances of the transitory
component of expected in�ation with realized in�ation (���) and the heteroskedastic
shock to the real interest rate (�x�); and the covariance of realized in�ation with the
heteroskedastic shock to the real interest rate (�x�). In addition, recall that an ob-
servationally equivalent model can be obtained by multiplying  t and all covariances
by �1. Thus, without loss of generality we constrain the mean of  t to be positive.

With these constraints on the variance-covariance matrix, we allow freely esti-

10We thank an anonymous referee for pointing out this issue.
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mated risk premia on all the state variables. We allow correlations among real
interest rates, realized in�ation, and the transitory component of expected in�ation,
while imposing that the permanent component of expected in�ation is uncorrelated
with movements in the transitory state variables. This constraint is natural if long-
run expected in�ation is determined by central bank credibility, which depends on
political economy considerations rather than business-cycle �uctuations in the econ-
omy. A likelihood ratio test of the constrained model cannot reject it against the
fully parameterized model with all parameters estimated freely. Results from the fully
parameterized model can be found in the Appendix.

4.2 Parameter estimates

Table 1 presents quarterly parameter estimates over the period 1953-2009 and their
asymptotic standard errors, calculated numerically using the outer product method.
The real interest rate is the most persistent state variable, with an autoregressive
coe¢ cient of 0.94 corresponding to a half life of 11 quarters. This persistence re�ects
the observed variability and persistence of TIPS yields. The nominal-real covariance
and the transitory component of expected in�ation are less persistent processes in our
model, with half-lives of about 4 and 5 quarters respectively. Of course the model
also includes a permanent component of expected in�ation. If we model expected
in�ation as a single stationary AR(1) process, as we did in the �rst version of this
paper, we �nd expected in�ation to be more persistent than the real interest rate.
All persistence coe¢ cients are precisely estimated, with very small standard errors.

Table 1 shows large di¤erences in the volatility of shocks to the state variables.
The one-quarter conditional volatility of the homoskedastic shock to the annualized
real interest rate is estimated to be about 53 basis points, and the average one-quarter
conditional volatility of the heteroskedastic shock to the annualized real interest rate
is estimated to be 82 basis points. The average one-quarter conditional volatility of
the transitory component of annualized expected in�ation is about 67 basis points,
and the average one-quarter conditional volatility of annualized realized in�ation is
about 279 basis points.11 By contrast, the average one-quarter conditional volatilities
of the shocks to the permanent component of expected in�ation are very small. Of

11We compute the average conditional volatilities of the heteroskedastic shock to the real interest

rate, the components of expected in�ation, and realized in�ation as
�
�2 + �

2
 

�1=2
times the volatility

of the underlying shocks. For example, we compute the average conditional volatility of realized
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course, the unconditional standard deviations of the real interest rate and the two
components of expected in�ation are much larger because of the high persistence of the
processes; in fact, the unconditional standard deviation of the permanent component
of expected in�ation is unde�ned because this process has a unit root. With the
exception of the volatility of the heteroskedastic shock to the permanent component of
expected in�ation, the volatility parameters for the real interest process and in�ation
are all precisely estimated with very small asymptotic standard errors.

Table 1 also reports the unrestricted correlations among the shocks and their as-
ymptotic standard errors. We report correlations instead of covariances to facilitate
interpretation. We compute their standard errors from those of the primitive para-
meters of the model using the delta method. The Appendix reports covariances and
their asymptotic standard errors.

There is a correlation of over �0:16 between �t and �mt shocks. Although the
correlation coe¢ cient is not signi�cant at the 5% level, the Appendix shows that the
covariance is more precisely estimated. This negative correlation implies that the
transitory component of expected in�ation is countercyclical, generating a positive
risk premium in the nominal term structure, when the state variable  t is positive; but
transitory expected in�ation is procyclical, generating a negative risk premium, when
 t is negative. The absolute magnitude of the correlation between �t and �mt shocks
is larger at around �0:73, implying that the risk premium for permanent shocks to
expected in�ation is larger than the risk premium for transitory shocks to expected
in�ation. However, this correlation has a very large standard error. Similarly, the
magnitude of the correlation between �t and �mt shocks is relatively large, but the
correlation is estimated quite imprecisely.

We also estimate a statistically insigni�cant and economically very small positive
correlation between �t and �mt shocks. The point estimate implies that short-
term in�ation risk is very small, and that nominal Treasury bills have a very small
or zero in�ation risk premium. In addition, we estimate a marginally statistically
signi�cant negative correlation of almost �0:25 between xt and �mt shocks, implying
a time-varying term premium on real bonds that is positive when  t is positive.

Finally, we estimate a negative correlation of nearly �0:35 between  t and �mt

shocks. While not statistically signi�cant, this point estimate indicates that bond risk

in�ation as
�
�2 + �

2
 

�1=2
��, where recall that we have normalized �� = 1.
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is countercyclical, rising in bad times. Since bond risk premia rise with the quantity
of risk, this is consistent with the �ndings of Ludvigson and Ng (2009), who �nd
evidence that bond risk premia are countercyclically related to macroeconomic factors.
The remaining covariances are estimated to be very close to zero and statistically
insigni�cant.

In the equity market, we estimate statistically insigni�cant small loadings of stock
returns on shocks to the real interest rate (�ex and �eX), and a much larger and
statistically signi�cant positive loading on shocks to the negative of the log SDF
(�em). Naturally this estimate implies a positive equity risk premium.

12

4.3 Fitted state variables

How does our model interpret the economic history of the last 55 years? That is,
what time series does it estimate for the underlying state variables that drive bond
and stock prices? Figure 6 shows our estimates of the real interest rate xt. The
model estimates a process for the real interest rate that is high on average, with
a spike in the early 1980�s, and becomes more volatile and declining in the second
half of the sample. Higher-frequency movements in the real interest rate were often
countercyclical in this period, as we see the real rate falling in the recessions of the
early 1970�s, early 1990�s, early 2000�s, and at the end of our sample period in 2007�
09. The real interest rate also falls around the stock market crash of 1987. However
there are important exceptions to this pattern, notably the very high real interest
rate in the early 1980�s, during Paul Volcker�s campaign against in�ation. Since the
late 1990�s the real interest rate generally tracks the TIPS yield, as shown in Figure
3. Thus the model attributes the history of long-dated TIPS yields mostly to changes
in the short-term real rate xt, with a supporting role for the state variable  t.

Figure 7 plots the components of expected in�ation. The permanent component of
expected in�ation, in the left panel, exhibits a familiar hump shape over the postwar

12However, the equity premium in the model is substantially lower than in the data. Our estimates
imply a maximum Sharpe ratio of 15%, while the Sharpe ratio for equities in our data is 35%. In
the Appendix, we provide estimates of the model where we constrain the maximum Sharpe ratio
to be 50%. This results in a substantially lower value of the likelihood function. The estimation
routine prefers to trade a counterfactually low maximum Sharpe ratio to improve the model�s �t
along other dimensions. In particular, raising the Sharpe ratio creates counterfactually high bond
return volatilities.
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period. It was low, even negative, in the mid-1950�s, increased during the 1960�s and
1970�s, and reached a maximum value of about 10% in the �rst half of the 1980�s.
Since then, it has experienced a secular decline and remained close to 2% throughout
the 2000�s.

The transitory component of expected in�ation, in the right panel, was particu-
larly high in the late 1970�s and 1980, indicating that investors expected in�ation to
decline gradually from a temporarily high level. The transitory component has been
predominantly negative since then till almost the end of our sample period, implying
that our model attributes the generally high levels of yield spreads during the second
half of our sample period at least partly to investor pessimism about increases in fu-
ture in�ation. By estimating a generally negative transitory component of expected
in�ation, the model is also able to explain simultaneously the low average nominal
short-term interest rate and the high average real short-term interest rate in the latter
part of our sample period.

Finally, Figure 8 shows the time series of  t. As we have noted, this variable is
identi�ed primarily through the covariance of stock returns and bond returns and the
volatility of bond returns� both nominal and real. The state variable  t exhibits low
volatility and an average close to zero in the period leading up to the late 1970�s, with
brie�y negative values in the late 1950�s, and an upward spike in the early 1970�s. It
becomes much more volatile starting in the late 1970�s through the end of our sample
period. It rises to large positive values in the early 1980�s and stays predominantly
positive through the 1980�s and 1990�s. However, in the late 1990�s it switches sign
and turns predominantly negative, with particularly large downward spikes in the
period immediately following the recession of 2001 and in the fall of 2008, at the
height of the �nancial crisis of 2007�09. Thus  t not only can switch sign, it has done
so during the past ten years. Overall, the in-sample average for  t is positive.

The state variables we have estimated can be used to calculate �tted values for
observed variables such as the nominal term structure, real term structure, realized
in�ation, analysts�median in�ation forecast, and the realized second moments of
bond and equity returns. We do not plot the histories of these �tted values to save
space. They track the actual observed yields on nominal bonds, in�ation forecasts,
and the realized stock-nominal bond covariance very closely, and closely the yields on
TIPS, realized in�ation, and the rest of the realized second moments included in the
estimation. In general, our model is rich enough that it does not require measurement
errors with high volatility to �t the observed data on stock and bond prices.
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5 Term Structure Implications

5.1 Moments of bond yields and returns

Although our model �ts the observed history of real and nominal bond yields, an im-
portant question is whether it must do so by inferring an unusual history of shocks,
or whether the observed properties of interest rates emerge naturally from the prop-
erties of the model at the estimated parameter values. In order to assess this, Table
2 reports some important moments of bond yields and returns.

The table compares the sample moments in our historical data with moments
calculated by simulating our model 1,000 times along a path that is 250 quarters (or 62
and a half years) long, and averaging time-series moments across simulations. Sample
moments are shown in the �rst column and model-implied moments in the second
column. The third column reports the fraction of simulations for which the simulated
time-series moment is larger than the corresponding sample moment in the data.
These numbers can be used as informal tests of the ability of the model to �t each
sample moment. Although our model is estimated using maximum likelihood, these
diagnostic statistics capture the spirit of the method of simulated moments (Du¢ e
and Singleton 1993, Gallant and Tauchen 1996), which minimizes a quadratic form
in the distance between simulated model-implied moments and sample moments.13

The �rst two rows of Table 2 report the sample and simulated means for nominal
bond yield spreads, calculated using 3 and 10 year maturities, and the third and
fourth rows look at the volatilities of these spreads. Our model provides a fairly
good �t to average yield spreads, although it does understate both the average 3-
year spread (slightly) and the average 10-year spread (to a greater extent, therefore
overstating the average concavity of the yield curve). A more serious problem for the
model is that it systematically overstates the volatility of yield spreads, a problem
that appears in almost all our 1,000 simulations.

The next four rows show how our model �ts the means and standard deviations
13In Table 2 the short-term interest rate is a three-month rate and moments are computed using

a three-month holding period. In the Appendix we report a table using a one-year short rate and
holding period. This alternative table follows Cochrane and Piazzesi (2005), and shows us how our
model �ts lower frequency movements at the longer end of the yield curve. Results are comparable
to those reported in Table 2.
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of realized excess returns on 3-year and 10-year nominal bonds. In order to calcu-
late three-month realized returns from constant-maturity bond yields, we interpolate
yields between the constant maturities we observe, doing this in the same manner
for our historical data and for simulated data from our models. Just as with yield
spreads, the model provides a good �t to mean excess returns. It overstates the
volatility of excess returns on 3-year bonds but provides a good �t for the volatility
of 10-year bonds.

The next four rows of the table summarize our model description of TIPS yields.
The model generates an average TIPS yield that is somewhat higher than the observed
average. We do not believe this is a serious problem, as our estimates imply higher
real interest rates earlier in our sample period, before TIPS were issued, than in
the period since 1997 over which we measure the average TIPS yield. Thus the
discrepancy may result in part from the short and unrepresentative period over which
we measure the average TIPS yield in the data.

The model implies a small negative average real yield spread and a small positive
average realized excess return. The di¤erence between these two statistics re�ects
the e¤ect of Jensen�s Inequality; equivalently, it is the result of convexity in long-term
bonds. The positive average risk premium results from our negative estimate of �xm
in Table 1, which implies that the real interest rate is countercyclical on average.

5.2 Risk premia and the yield curve

In our model, all time variation in bond risk premia is driven by variation in bond
risk, not by variation in the aggregate price of risk. It follows that long bond risk
premia are linear in the state variable  t. Figure 9 illustrates this fact. The left
panel plots the simulated expected excess return on 3-year and 10-year nominal bonds
over 3-month Treasury bills against  t. The right panel of the �gure shows the term
structure of risk premia as  t varies from its sample mean to its sample minimum
and maximum. Risk premia spread out rapidly as maturity increases, and 10-year
risk premia vary from -45 to 115 basis points.

The full history of our model�s 10-year term premium is illustrated in Figure 10.
The �gure shows fairly stable risk premia of about 0.2% during the 1950�s and 1960�s,
a spike in the early 1970�s, and a run up later in the 1970�s to a peak of about 1.15%
in the early 1980�s. A long decline in risk premia later in the sample period was
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accentuated around the recession of the early 2000�s and during the �nancial crisis
of 2007�09, bringing the risk premium to its sample minimum of -0.45%. This time
series re�ects the shape in the nominal-real covariance  t illustrated in Figure 8.

An important question is how the shape of the yield curve responds to these
variations in risk premia. To isolate the e¤ect of changing  t, Figure 11 plots the
log real and nominal yield curves generated by our model when  t is at its in-sample
mean, maximum, and minimum, while all other state variables are at their in-sample
means. Thus the central line describes the yield curve� real or nominal� generated
by our model when all state variables are evaluated at their in-sample mean. For
simplicity we will refer to this curve as the �mean log yield curve.�14

In both panels of Figure 11, increasing  t from the sample mean to the sample
maximum raises intermediate-term yields and lowers long-term yields, while decreas-
ing  t to the sample minimum lowers both intermediate-term and long-term yields.
Thus  t alters the concavity of both the real and nominal yield curves.

The impact of  t on the concavity of the nominal yield curve results from two fea-
tures of our model. First, nominal bond risk premia increase with maturity rapidly
at intermediate maturities and slowly at longer maturities because intermediate ma-
turities are exposed both to transitory and permanent shocks to expected in�ation.
When  t is positive, this generates a steep yield curve at shorter maturities, and a
�atter one at longer maturities. When  t changes sign, however, the di¤erence in
risk prices pulls intermediate-term yields down more strongly than long-term yields.

Second, when  t is far from zero bond returns are unusually volatile, and through
Jensen�s Inequality this lowers the bond yield that is needed to deliver any given
expected simple return. This e¤ect is much stronger for long-term bonds; in the
terminology of the �xed-income literature, these bonds have much greater �convexity�
than short- or intermediate-term bonds. Therefore extreme values of  t tend to lower
long-term bond yields relative to intermediate-term yields.

Similar e¤ects operate in the real term structure. Real bond risk premia are
highly sensitive to  t at intermediate maturities because real interest rate variation

14Strictly speaking this is a misnomer for two reasons. First, the log real and nominal yield curves
are non-linear functions of the vector of state variables. Second, the unconditional mean of the
log nominal yield curve is not even de�ned, since one of the state variables follows a random walk.
Thus at most we can compute a mean nominal yield curve conditional on initial values for the state
variables.
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is transitory, and long-term real bonds have high convexity so their yields are driven
down by high levels of bond volatility.

In the Appendix, we conduct similar analyses of term structure responses to our
model�s other state variables. Real interest rate shocks have highly persistent e¤ects
on both the real and nominal yield curve, while the permanent component of expected
in�ation shifts the nominal yield curve up and down, and the transitory component
of expected in�ation changes the slope of the nominal yield curve. These results can
be related to Litterman and Scheinkman�s (1991) �level�, �slope�, and �curvature�
factors. In our model, the covariance of nominal and real variables  t primarily
drives the curvature factor while the other state variables primarily move the level
and slope factors. Thus our model suggests that the curvature factor is likely to be
the best proxy for bond risk premia.

An empirical result of this sort has been reported by Cochrane and Piazzesi (CP,
2005). Using econometric methods originally developed by Hansen and Hodrick
(1983), and implemented in the term structure context by Stambaugh (1988), CP
show that a single linear combination of forward rates is a good predictor of excess
bond returns at a wide range of maturities. CP work with a 1-year holding period
and a 1-year short rate. They �nd that bond risk premia are high when intermediate-
term interest rates are high relative to both shorter-term and longer-term rates; that
is, they are high when the yield curve is strongly concave.

Our model interprets this phenomenon as the result of changes in the nominal-real
covariance  t. As  t increases, the risk premiums for both components of expected
in�ation rise. This strongly increases the intermediate-term yield, but it has a damped
or even perverse e¤ect on long-term yields because these yields respond only to the
permanent component of expected in�ation and the convexity of long bonds causes
their yields to fall with volatility. Thus the best predictor of excess bond returns is
the intermediate-term yield relative to the average of short- and long-term yields.

5.3 The predictability of bond returns

Despite this promising qualitative pattern, the predictability of bond returns is small
in our model. The bottom panel of Table 2 illustrates this point. In the �rst three
rows we report the standard deviations of true expected 3-month excess returns within
our model. Our model implies an annualized standard deviation for the expected
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excess return on 3-year bonds of about 12 basis points, and for the expected excess
return on 10-year bonds of about 19 basis points.15 This variation is an order of
magnitude smaller than the annualized standard deviations of realized excess bond
returns, implying that the true explanatory power of predictive regressions in our
model is tiny. There is also modest variability of about 14 basis points in the true
expected excess returns on TIPS.

The next three rows report the standard deviations of �tted values of Campbell-
Shiller (1991, CS) predictability regressions of annualized nominal bond excess returns
onto yield spreads of the same maturity at the beginning of the holding period. The
standard deviations in the data are 104 basis points for 3-year bonds, and 251 basis
points for 10-year bonds. These numbers are considerably larger than the true
variability of expected excess returns in our model, implying that our model cannot
match the behavior of these predictive regressions.

In arti�cial data generated by our model, predictive regressions deliver �tted values
that are considerably more volatile than the true expected excess returns. The reason
for this counterintuitive behavior is that there is important �nite-sample bias in the
CS regression coe¢ cients of the sort described by Stambaugh (1999). In the case
of regressions of excess bond returns on yield spreads, by contrast with the better
known case of regressions of excess stock returns on dividend yields, the Stambaugh
bias is negative (Bekaert, Hodrick, and Marshall 1997). In our full model, where the
true regression coe¢ cient is positive but close to zero, the Stambaugh bias increases
the standard deviation of �tted values by generating spurious negative coe¢ cients.
Nonetheless, the standard deviation of �tted values in the model is still considerably
smaller than in the data.

We obtain more promising results using a procedure that approximates the ap-
proach of Cochrane and Piazzesi (2005, CP). We regress excess bond returns on 1-,
3-, and 5-year forward rates at the beginning of the holding period, and report the
standard deviations of �tted values.16 This procedure generates comparable standard
deviations of �tted values in the model and in the data, at least for predicting excess
3-year bond returns. Once again, however, this �nding is largely driven by small-

15Yield interpolation for 3-month returns may exaggerate the evidence for predictability; however
the same yield interpolation is used for simulated data from our models. We have used our sim-
ulations to examine the e¤ect of interpolation. We �nd that interpolation does slightly increase
measured bond return predictability, but the e¤ect is modest.
16Cochrane and Piazzesi impose proportionality restrictions across the regressions at di¤erent

maturities, but we do not do this here.
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sample bias as the �tted values in the model have a much higher standard deviation
than the true expected excess returns.

These results show that although our model does generate time-varying bond risk
premia, the implied variation in risk premia is smaller and has a di¤erent time-series
pattern from that implied by CS and CP regressions. In the CS case, the di¤erence in
time-series behavior can be understood visually by comparing the history of the yield
spread with the history of the model-implied bond risk premium shown in Figure 10.
The former has a great deal of business-cycle variation, while the latter has a hump
shape with a long secular decline from the early 1980�s through the late 2000�s. The
�tted value from a CP regression lines up somewhat better with the model-implied
bond risk premium, but it too spikes up in the recessions of the early 1990�s and early
2000�s in a way that has no counterpart in Figure 10.

We have explored an extension of our model that allows for time-variation in the
aggregate price of risk, identifying this time-variation explicitly with the yield spread
as in Wachter (2006) and others. This extension allows the model to explain much
more of the observed variation in bond risk premia, perhaps unsurprisingly given
prior results in the literature. However, the low-frequency variation in the bond risk
premium generated by changing bond risk remains present in that more complicated
framework.

6 Conclusion

We have argued that term structure models must confront the fact that the covari-
ances between nominal and real bond returns, on the one hand, and stock returns,
on the other, have varied substantially over time and have changed sign. Analyses of
asset allocation traditionally assume that broad asset classes have a stable structure
of risk over time; our empirical results imply that for bonds at least, this assumption
is seriously misleading.

We have added a changing covariance, which can change sign, to an otherwise
standard term structure model with identi�able macroeconomic state variables. In
our model real and nominal bond returns are driven by four factors: the real interest
rate, transitory and permanent components of expected in�ation, and a state variable
that governs the covariances of in�ation and the real interest rate with the stochastic
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discount factor. The model implies that the risk premia of nominal bonds should
have changed over the decades because of changes in the covariance between in�ation
and the real economy. The model predicts positive nominal bond risk premia in
the early 1980�s, when bonds covaried strongly with stocks, and negative risk premia
in the 2000�s and particularly during the downturn of 2007�09, when bonds hedged
equity risk.

Our model is consistent with the qualitative �nding of Cochrane and Piazzesi
(2005) that a tent-shaped linear combination of forward rates, with a peak at about
3 years, predicts excess bond returns at all maturities better than maturity-speci�c
yield spreads. Since the model has a constant price of bond risk and explains risk
premia only from time-variation in the quantity of bond risk, it does not replicate the
high explanatory power of regressions that predict excess US Treasury bond returns
from yield spreads and forward rates. However, the results do suggest that time-
varying bond risk is important in understanding movements in bond risk premia,
particularly at low frequencies.

We interpret our results as posing an important new challenge to the asset pricing
literature. A successful asset pricing model should jointly explain the time-variation
in bond and stock risk premia along with the time-variation in the comovements of
bond and stock returns. Our model is a �rst attempt to do this, but it does not
reconcile the changing second moments of bond and stock returns with high-frequency
variation in bond risk premia captured by the shape of the yield curve. We hope
that future term structure research will address the challenge by extending the model
presented here.

There are a number of ways in which this can be done. First and most obviously,
one can allow for changes in risk aversion, or the volatility of the stochastic dis-
count factor, following Du¤ee (2002), Dai and Singleton (2002), Bekaert, Engstrom,
and Grenadier (2005), Wachter (2006), Buraschi and Jiltsov (2007), and Bekaert,
Engstrom, and Xing (2009).

Second, one can model changing second moments in stock returns, possibly deriv-
ing those returns from primitive assumptions on the dividend process, as in the recent
literature on a¢ ne models of stock and bond pricing (Mamaysky 2002, Bekaert, En-
gstrom, and Grenadier 2005, d�Addona and Kind 2006, Bekaert, Engstrom, and Xing
2009).

Third, one can allow both persistent and transitory variation in the nominal-real
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covariance, as we have done for expected in�ation. This might allow our model to
better �t both the secular trends and cyclical variation in the realized covariance
between bonds and stocks.

Fourth, one can consider other theoretically motivated proxies for the stochastic
discount factor. An obvious possibility is to look at realized or expected future con-
sumption growth, as in recent papers on consumption-based bond pricing by Piazzesi
and Schneider (2006), Eraker (2008), Hasseltoft (2009), Lettau and Wachter (2011),
and Bansal and Shaliastovich (2013). A disadvantage of this approach is that con-
sumption is not measured at high frequency, so one cannot use high-frequency data
to track a changing covariance between bond returns and consumption growth.

It will also be interesting to estimate our model using data from other countries,
for example the UK, where in�ation-indexed bonds have been actively traded since
the mid-1980�s. Evidence of bond return predictability is considerably weaker outside
the US (Bekaert, Hodrick, and Marshall 2001, Campbell 2003) and may better �t the
predictability generated by our model.

Finally, it is important to better understand the monetary and macroeconomic
determinants of the bond-stock covariance. Within a new Keynesian paradigm, one
possibility is that a positive covariance corresponds to an environment in which the
Phillips Curve is unstable, perhaps because supply shocks are hitting the economy or
the central bank lacks anti-in�ationary credibility, while a negative covariance re�ects
a stable Phillips Curve. It would be desirable to use data on in�ation and output,
and a structural macroeconomic model, to explore this interpretation.

The connection between the bond-stock covariance and the state of the macro-
economy should be of special interest to central banks. Many central banks use
the breakeven in�ation rate, the yield spread between nominal and in�ation-indexed
bonds, as an indicator of their credibility. The bond-stock covariance may be ap-
pealing as an additional source of macroeconomic information.
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Table 1: Parameter estimates.

Parameter Estimates

Parameter Estimate Std Err

µx x 103 9.217 0.642

µψ x 103 4.815 1.050

φx 0.938 0.005

φξ 0.880 0.008

φψ 0.847 0.032

σm x 102 8.015 4.150

σX x 103 1.319 0.100

σx x 101 2.919 0.407

σλ x 104 1.443 183.660

σΛ x 104 2.776 0.088

σξ x 101 2.415 0.352

σψ x 103 5.058 2.099

βeX 1.133 3.980

βex x 102 0.548 4.535

βem x 102 9.538 5.169

ρxξ 0.000 0.075

ρxm -0.246 0.136

ρXm x 102 0.007 0.017

ρxπ 0.000 0.620

ρλm -0.732 0.933

ρΛm -0.451 0.844

ρξm -0.163 0.158

ρξπ -0.035 0.826

ρψm -0.347 0.238

ρmπ 0.009 0.107



Table 2: Sample and Implied Moments. Yield spreads (YS) are calculated over the 3mo yield. Realized

excess returns (RXR) are calculated over a 3mo holding period, in excess of the 1yr yield. Units are annualized

percentage points. Simulation columns report means across 1000 replications, each of which simulates a time-

series of 250 quarters. The σ(ĈP ) row reports the standard deviation of the fitted values from a Cochrane-

Piazzesi style regression of RXR on the 1-, 3-, and 5-yr forward rates at the beginning of the holding period.

The σ(ĈS) row reports the standard deviation of the fitted values from a Campbell-Shiller style regression of

RXR on the same-maturity YS at the beginning of the holding period. In the rightmost column we report the

fraction of simulation runs where the simulated value exceeds the data value. † Data moments for the 10yr

return require 117mo yields. We interpolate the 117mo yield linearly between the 5yr and the 10yr ‡ TIPS

entries refer to the 10yr spliced TIPS yield. We have this data 1/1999-9/2009.

Sample and Implied Moments

Moment Actual Data Model Above

3yr YS mean 0.62 0.46 0.36

10yr YS mean 1.15 0.67 0.31

3yr YS stdev 0.45 0.67 0.98

10yr YS stdev 0.70 1.36 1.00

3yr RXR mean 1.17 0.98 0.40

10yr RXR mean 2.21 1.46 0.30

3yr RXR stdev 4.37 6.35 1.00

10yr RXR stdev 11.16 11.07 0.44

10yr TIPS yield mean 2.58‡ 3.52 0.97

10yr TIPS YS mean -0.16

10yr TIPS RXR mean 0.16

10yr TIPS RXR stdev 9.90

Predictive Regressions

Moment Actual Data Model Above

3yr EXR stdev 0.12

10yr EXR stdev 0.19

10yr TIPS EXR stdev 0.14

3yr RXR σ(ĈS) 1.04 0.40 0.04

10yr RXR σ(ĈS) 2.51† 0.68 0.01

10yr TIPS RXR σ(ĈS) 0.60

3yr RXR σ(ĈP ) 0.79 0.81 0.48

10yr RXR σ(ĈP ) 2.06† 1.41 0.17
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Figure 1: Time series of the stock-bond covariance and the CAPM � of the 10-year nominal bond.
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Figure 2: Time series of the stock-de�ation covariance and the CAPM � of de�ation.
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Figure 3: Time series of US 10-year in�ation-indexed yields.
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Figure 4: Time series of real bond second moments. The �gure on the left shows the �tted value from a
regression of the realized covariance between stock and real bond returns on lagged values of itself, the nominal short
rate, and the yield spread. The �gure on the right shows the �tted value from a regression of the realized variance
of real bond returns on lagged values of itself, the nominal short rate, and the yield spread. The smoothed line in
each �gure is a 2-year equal-weighted moving average.
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Figure 5: Time series of nominal bond second moments. The �gure on the left shows the �tted value
from a regression of the realized covariance between stock and nominal bond returns on lagged values of itself, the
nominal short rate, and the yield spread. The �gure on the right shows the �tted value from a regression of the
realized variance of nominal bond returns on lagged values of itself, the nominal short rate, and the yield spread.
The smoothed line in each �gure is a 2-year equal-weighted moving average.
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Figure 6: Estimated time series of the real rate. The �gure plots the estimated time series of xt, the real
interest rate.
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The �gure on the left plots the estimated time series of �t; the permanent component of expected in�ation. The
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Figure 9: Responses of nominal expected excess returns to  t. The left hand �gure shows the expected
excess returns on 3-year and 10-year nominal bonds over 3-month Treasury bills, as functions of  t. The right hand
�gure shows the term structure of expected excess nominal bond returns as  t is varied between its sample minimum
and maximum while all other state variables are held �xed at their sample means.
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Figure 10: Estimated time series of expected excess returns for 10-year nominal bonds.
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Figure 11: Responses of yield curves to  t . The left hand �gure shows the response of the real yield curve,
and the right hand �gure shows the response of the nominal yield curve, to  t as it is varied between its sample
minima and maxima while all other state variables are held �xed at their sample means.



A Appendix

A.1 Additional Empirical Results

A.1.1 Estimates of Covariances

Parameter Estimates

Parameter Estimate Std Error
�x� � 10�4 0:0021 53:0
�xm� 10�2 �7:18 4:41
�Xm� 10�7 0:968 2:25
�x�� 10�2 0:007 18:1
��m� 10�4 �1:06 55:7
��m� 10�4 �1:25 2:33
��m� 10�2 �3:92 1:91
���� 10�2 �0:85 20:0
� m� 10�3 �1:80 1:00
�m�� 10�2 0:95 10:7



A.1.2 Results for Model Constraining �m = :25
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Figure 1: Estimated time series of the real rate. The �gure plots the estimated time series of xt, the real interest rate.
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Figure 2: Estimated time series of permanent and transitory components of expected in�ation. The �gure on the left plots the
estimated time series of �t; the permanent component of expected in�ation. The �gure on the right plots the estimated time series of �t, the temporary
component of expected in�ation:
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Figure 3: Estimated time series of  t.
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Figure 4: Responses of nominal expected excess returns to  t. The left hand �gure shows the expected excess returns on 3-year and
10-year nominal bonds over 3-month Treasury bills, as functions of  t. The right hand �gure shows the term structure of expected excess nominal
bond returns as  t is varied between its sample minimum and maximum while all other state variables are held �xed at their sample means.
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Figure 5: Estimated time series of expected excess returns for 10-year nominal bonds.
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Figure 6: Responses of yield curves to  t . The left hand �gure shows the response of the real yield curve, and the right hand �gure shows
the response of the nominal yield curve, to  t as it is varied between its sample minima and maxima while all other state variables are held �xed at
their sample means.



Table 1: Parameter estimates.

Parameter Estimates

Parameter Estimate Std Err

µx x 103 7.456 0.677

µψ x 103 2.578 0.396

φx 0.936 0.006

φξ 0.886 0.008

φψ 0.751 0.037

σm x 102 25.000 NA

σX x 103 1.190 0.110

σx x 101 4.271 0.558

σλ x 104 0.849 13.041

σΛ x 104 5.059 1.392

σξ x 101 3.710 0.650

σψ x 103 2.488 0.290

βeX 2.923 3.670

βex x 102 1.356 3.260

βem x 102 9.040 2.837

ρxξ 0.000 0.001

ρxm -0.323 0.096

ρXm x 102 0.002 0.002

ρxπ 0.000 0.445

ρλm -0.871 13.381

ρΛm 0.044 0.120

ρξm -0.146 0.026

ρξπ -0.094 0.685

ρψm 0.195 0.025

ρmπ 0.007 0.122



Table 2: Sample and Implied Moments. Yield spreads (YS) are calculated over the 3mo yield.

Realized excess returns (RXR) are calculated over a 3mo holding period, in excess of the 1yr yield.

Units are annualized percentage points. Simulation columns report means across 1000 replications,

each of which simulates a time-series of 250 quarters. The σ(ĈP ) row reports the standard deviation of

the fitted values from a Cochrane-Piazzesi style regression of RXR on the 1-, 3-, and 5-yr forward rates

at the beginning of the holding period. The σ(ĈS) row reports the standard deviation of the fitted

values from a Campbell-Shiller style regression of RXR on the same-maturity YS at the beginning

of the holding period. In the rightmost column we report the fraction of simulation runs where the

simulated value exceeds the data value. † Data moments for the 10yr return require 117mo yields.

We interpolate the 117mo yield linearly between the 5yr and the 10yr ‡ TIPS entries refer to the 10yr

spliced TIPS yield. We have this data 1/1999-9/2009.

Sample and Implied Moments

Moment Actual Data Model Above

3yr YS mean 0.62 0.57 0.43

10yr YS mean 1.15 0.94 0.37

3yr YS stdev 0.45 0.44 0.40

10yr YS stdev 0.70 0.89 0.89

3yr RXR mean 1.17 1.10 0.43

10yr RXR mean 2.21 1.64 0.31

3yr RXR stdev 4.37 4.27 0.38

10yr RXR stdev 11.16 8.03 0.00

10yr TIPS yield mean 2.58‡ 3.21 0.98

10yr TIPS YS mean 0.15

10yr TIPS RXR mean 0.38

10yr TIPS RXR stdev 6.32

Predictive Regressions

Moment Actual Data Model Above

3yr EXR stdev 0.25

10yr EXR stdev 0.42

10yr TIPS EXR stdev 0.34

3yr RXR σ(ĈS) 1.04 0.24 0.00

10yr RXR σ(ĈS) 2.51† 0.44 0.00

10yr TIPS RXR σ(ĈS) 0.39

3yr RXR σ(ĈP ) 0.79 0.53 0.14

10yr RXR σ(ĈP ) 2.06† 1.01 0.01



A.1.3 Results for Freely Estimated Model
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Figure 7: Estimated time series of the real rate. The �gure plots the estimated time series of xt, the real interest rate.
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Figure 8: Estimated time series of permanent and transitory components of expected in�ation. The �gure on the left plots the
estimated time series of �t; the permanent component of expected in�ation. The �gure on the right plots the estimated time series of �t, the temporary
component of expected in�ation:
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Figure 9: Estimated time series of  t.
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Figure 10: Responses of nominal expected excess returns to  t. The left hand �gure shows the expected excess returns on 3-year and
10-year nominal bonds over 3-month Treasury bills, as functions of  t. The right hand �gure shows the term structure of expected excess nominal
bond returns as  t is varied between its sample minimum and maximum while all other state variables are held �xed at their sample means.
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Figure 11: Estimated time series of expected excess returns for 10-year nominal bonds.
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Figure 12: Responses of yield curves to  t . The left hand �gure shows the response of the real yield curve, and the right hand �gure shows
the response of the nominal yield curve, to  t as it is varied between its sample minima and maxima while all other state variables are held �xed at
their sample means.



Table 1: Parameter estimates.

Parameter Estimates

Parameter Estimate

µx x 103 9.217

µψ x 103 4.815

φx 0.939

φξ 0.880

φψ 0.847

σm x 102 8.019

σX x 103 1.319

σx x 101 2.919

σλ x 104 1.443

σΛ x 104 2.776

σξ x 101 2.415

σψ x 103 5.058

βeX 1.133

βex x 102 0.548

βem x 102 9.538

ρxξ 0.000

ρxm -0.246

ρXm x 102 0.007

ρxπ 0.000

ρλm -0.732

ρΛm -0.451

ρξm -0.163

ρξπ -0.035

ρψm -0.347

ρmπ 0.009



Table 2: Sample and Implied Moments. Yield spreads (YS) are calculated over the 3mo yield.

Realized excess returns (RXR) are calculated over a 3mo holding period, in excess of the 1yr yield.

Units are annualized percentage points. Simulation columns report means across 1000 replications,

each of which simulates a time-series of 250 quarters. The σ(ĈP ) row reports the standard deviation of

the fitted values from a Cochrane-Piazzesi style regression of RXR on the 1-, 3-, and 5-yr forward rates

at the beginning of the holding period. The σ(ĈS) row reports the standard deviation of the fitted

values from a Campbell-Shiller style regression of RXR on the same-maturity YS at the beginning

of the holding period. In the rightmost column we report the fraction of simulation runs where the

simulated value exceeds the data value. † Data moments for the 10yr return require 117mo yields.

We interpolate the 117mo yield linearly between the 5yr and the 10yr ‡ TIPS entries refer to the 10yr

spliced TIPS yield. We have this data 1/1999-9/2009.

Sample and Implied Moments

Moment Actual Data Model Above

3yr YS mean 0.62 0.42 0.31

10yr YS mean 1.15 0.57 0.27

3yr YS stdev 0.45 0.67 0.96

10yr YS stdev 0.70 1.36 1.00

3yr RXR mean 1.17 0.91 0.38

10yr RXR mean 2.21 1.34 0.30

3yr RXR stdev 4.37 6.39 1.00

10yr RXR stdev 11.16 11.17 0.47

10yr TIPS yield mean 2.58‡ 3.57 0.97

10yr TIPS YS mean -0.24

10yr TIPS RXR mean 0.04

10yr TIPS RXR stdev 9.99

Predictive Regressions

Moment Actual Data Model Above

3yr EXR stdev 0.12

10yr EXR stdev 0.19

10yr TIPS EXR stdev 0.14

3yr RXR σ(ĈS) 1.04 0.39 0.03

10yr RXR σ(ĈS) 2.51† 0.68 0.00

10yr TIPS RXR σ(ĈS) 0.66

3yr RXR σ(ĈP ) 0.79 0.82 0.49

10yr RXR σ(ĈP ) 2.06† 1.42 0.16



A.2 Derivations for the Full Model

A.2.1 State Variable Processes

The state variables in the model follow the processes:

�mt+1 = xt +
1

2
z2t �

2
m + zt"m;t+1

xt+1 = �x (1� �x) + �xxt +  t"x;t+1 + "X;t+1
zt+1 = �z (1� �z) + �zzt + "z;t+1

�t+1 = �t + �t +
1

2
 2t�

2
� +  t"�;t+1

�t+1 = �t +  t"�;t+1 + "�;t+1

�t+1 = ���t +  t"�;t+1

 t+1 = � 
�
1� � 

�
+ �  t + " ;t+1

A.2.2 Pricing Equations

Real Term Structure The price of a single-period zero-coupon real bond satis�es

P1;t = Et [exp fmt+1g] = �xt �
1

2
z2t �

2
m +

1

2
z2t �

2
m = �xt

We conjecture that the price function is exponential a¢ ne in xt and zt with the form

Pn;t = exp
�
An +Bx;nxt +Bz;nzt +B ;n t + Cz;nz

2
t + C ;n 

2
t + Cz ;nzt t

	
:

The standard pricing equation implies

Pn;t = Et [exp fpn�1;t+1 +mt+1g] = Et

�
exp

�
An�1 +Bx;n�1xt+1 +Bz;n�1zt+1 +B ;n�1 t+1 + Cz;n�1z

2
t+1 + C ;n�1 

2
t+1

+Cz ;n�1zt+1 t+1 � xt � 1
2z
2
t �

2
m � zt"m;t+1

��
(1)

= exp

(
An�1 +Bx;n�1 ((1� �x)�x + �xxt) +Bz;n�1 ((1� �z)�z + �zzt) +B ;n�1

��
1� � 

�
� + �  t

�
+ Cz;n�1 (�z (1� �z) + �zzt)

2

+C ;n�1
�
� 
�
1� � 

�
+ �  t

�2
+ Cz ;n�1 (�z (1� �z) + �zzt)

�
� 
�
1� � 

�
+ �  t

�
� xt � 1

2z
2
t �

2
m

)
�Et

�
exp

�
d01!t+1 + !

0
t+1D2!t+1

	�



where !0t+1 = ("X;t+1; "m;t+1; "x;t+1; "z;t+1; " ;t+1) ~N (0;�!) ;

d1 =

0BBBB@
Bx;n�1
�zt

Bx;n�1 t
Bz;n�1 + 2Cz;n�1 (�z (1� �z) + �zzt) + Cz ;n�1

�
� 
�
1� � 

�
+ �  t

�
B ;n�1 + 2C ;n�1

�
� 
�
1� � 

�
+ �  t

�
+ Cz ;n�1 (�z (1� �z) + �zzt)

1CCCCA

D2 =

0BBBBB@
0 � � � 0
...

. . .

Cz;n�1
1
2Cz ;n�1

0 1
2Cz ;n�1 C ;n�1

1CCCCCA
Following Campbell, Chan, and Viceira (2003), we complete the square to calculate
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Thus, equating coe¢ cients across equation (1) yields
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Nominal Term Structure The price of a single-period zero-coupon nominal bond satis�es
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Following Campbell, Chan, and Viceira (2003), we complete the square to calculate
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Thus, the coe¢ cients of the pricing equation satisfy
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where B$x;1 = �1; B$�;1 = �1; B$�;1 = �1; C$z ;1 = �m� and all other coe¢ cients are zero at n = 1.



A.2.3 Expected Excess Returns

Real Bond Premia The log expected gross excess return on an n-period zero-coupon real bond is
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since the shocks are conditionally jointly normal. Note that the coe¢ cient recursion implies thatBx;n = Bx;n�1�x�1 so that the terms involving xt drop
out. Following Campbell, Chan, and Viceira (2003), we calculate the expectation by completing the square. Let �0 = ("X;t+1; "x;t+1; "z;t+1; " ;t+1) ~N (0;�v),
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Note that the coe¢ cient recursions imply that B$x;n = B$x;n�1�x � 1; B$�;n = B$�;n�1 � 1,and B$�;n = B$�;n�1�� � 1, so that the terms in-
volving xt, �t, and �t drop out. Following Campbell, Chan, and Viceira (2003), we calculate the expectation by completing the square. Let
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Let h$ij be the ij-th element of H
$. Then expanding and collecting terms gives
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A.2.4 Observation Equations

Stock Returns We model the unexpected stock return as

re;t+1 � Etre;t+1 = �ex"x;t+1 + �eX"X;t+1 + �em"m;t+1

We impose that the only non-zero covariance of "X;t+1 is �X;m. The standard pricing equation then implies that the expected equity return satis�es
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Stock-Real Bond Return Covariance As we saw above, the holding period return on an n-period real bond is

rn;t+1 = pn�1;t+1 � pn;t

=

2664
An�1 �An +Bx;n�1�x (1� �x) +Bz;n�1�z (1� �z) +B ;n�1� 

�
1� � 

�
+ Cz;n�1�

2
z (1� �z)

2
+ C ;n�1�

2
 

�
1� � 

�2
+Cz ;n�1�z (1� �z)� 

�
1� � 

�
+ (Bx;n�1�x �Bx;n � 1)xt +

�
Cz;n�1�

2
z � Cz;n

�
z2t +

�
C ;n�1�

2
 � C ;n

�
 2t

+
�
Cz ;n�1�z� � Cz ;n

�
zt t +

�
Bz;n�1�z �Bz;n + 2Cz;n�1�z (1� �z)�z + Cz ;n�1� 

�
1� � 

�
�z
�
zt

+
�
B ;n�1� �B ;n + 2C ;n�1� 

�
1� � 

�
� + Cz ;n�1�z (1� �z)� 

�
 t

3775
+

24 Bx;n�1 t"x;t+1 +Bx;n�1"X;t+1 + Cz;n�1"
2
z;t+1 + C ;n�1"

2
 ;t+1 + Cz ;n�1"z;t+1" ;t+1

+
�
Bz;n�1 + 2Cz;n�1 (�z (1� �z) + �zzt) + Cz ;n�1

�
� 
�
1� � 

�
+ �  t

��
"z;t+1

+
�
B ;n�1 + 2C ;n�1

�
� 
�
1� � 

�
+ �  t

�
+ Cz ;n�1 (�z (1� �z) + �zzt)

�
" ;t+1

35
We assume that the unexpected stock return is assumed to be

re;t+1 � Etre;t+1 = �ex"x;t+1 + �eX"X;t+1 + �em"m;t+1

Since the "�s are conditionally jointly normal and mean zero we have Covt
�
"a;t+1; "

2
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�
= 0 and Covt ("a;t+1; "b;t+1"c;t+1) = 0 for all a; b; c.

Furthermore, we impose that the only non-zero covariance of "X;t+1 is �X;m:Thus, the expression for the conditional covariance of stock returns with



returns on a long-term real bond is
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Stock-Nominal Bond Return Covariance As we saw above, the holding period return on an n-period nominal bond is
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We assume that the unexpected stock return is assumed to be

re;t+1 � Etre;t+1 = �ex"x;t+1 + �eX"X;t+1 + �em"m;t+1

Thus, the conditional covariance with the real return on short term nominal bond is
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since we impose the condition that the only non-zero covariance of "X;t+1 is �X;m.
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A.3 Derivations for Constant-z Model

A.3.1 State Variables Processes

The state variables in the constant-z version of the model follow the processes:
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A.3.2 Pricing Equations

Real Term Structure The price of a single-period zero-coupon real bond satis�es
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Thus, the coe¢ cients of the pricing equation satisfy
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B$x;n = B$x;n�1�x � 1
B$�;n = B$�;n�1 � 1
B$�;n = B$�;n�1�� � 1



B$ ;n =

26666666666664

�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
� + 2g

$
88

�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
C$ ;n�1� 

+g13B
$
x;n�1B

$
�;n�1 � g15B$x;n�1 + g16B$2x;n�1 + g17B$x;n�1B$�;n�1+2g18B$x;n�1C$ ;n�1� 

g$23B
$2
�;n�1 � g$25B$�;n�1 + g$26B$�;n�1B$x;n�1 + g$27B$�;n�1B$�;n�1 + 2g$28B$�;n�1C$ ;n�1� 

�g$34B$�;n�1 + g$38B$�;n�1
�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
+g$45 � g$46B$x;n�1 � g$47B$�;n�1 � 2g$48C$ ;n�1� 

�g$59
�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
+ g$68

�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
B$x;n�1

+g$78

�
B$ ;n�1 + 2C

$
 ;n�1� 

�
1� � 

��
B$�;n�1

37777777777775
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where B$x;1 = �1; B$�;1 = �1; B$�;1 = �1; B$ ;1 = �m� and all other coe¢ cients are zero at n = 1.




