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1. Introduction

This article elaborates on a basic thesis: the formal estimation of dynamic stochastic general

equilibrium (DSGE) models has become one of the cornerstones of modern macroeconomics.

The combination of rich structural models, novel solution algorithms, and powerful simulation

techniques has allowed researchers to transform the quantitative implementation of equilib-

rium models from a disparate collection of ad hoc procedures to a systematic discipline where

progress is fast and prospects entrancing. This captivating area of research, which for lack of

a better name I call the New Macroeconometrics, is changing the way we think about models

and about economic policy advice.

In the next pages, I will lay out my case in detail. I will start by framing the appearance

of DSGE models in the context of the evolution of contemporary macroeconomics and how

economists have reacted to incorporate both theoretical insights and empirical challenges.

Then, I will explain why the New Macroeconometrics mainly follows a Bayesian approach. I

will introduce some of the new techniques in the literature. I will illustrate these points with

a benchmark application and I will conclude with a discussion of where I see the research at

the frontier of macroeconometrics. Because of space limitations, I will not survey the �eld

in exhausting detail or provide a complete description of the tools involved (indeed, I will

o¤er the biased recommendation of many of my own papers). Instead, I will o¤er an entry

point to the topic that, like the proverbial Wittgenstein�s ladder, can eventually be discarded

without undue apprehension once the reader has mastered the ideas considered here. The in-

terested economist can also �nd alternative material on An and Schorfheide (2006), who focus

more than I do on Bayesian techniques and less in pure macroeconomics, and in Fernández-

Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2008), where the work is related with

general issues in Bayesian statistics, and in the recent textbooks on macroeconometrics by

Canova (2007) and DeJong and Dave (2007).

2. The Main Thesis

Dynamic equilibrium theory made a quantum leap between the early 1970s and the late 1990s.

In the comparatively brief space of 30 years, macroeconomists went from writing prototype

models of rational expectations (think of Lucas, 1972) to handling complex constructions like

the economy in Christiano, Eichenbaum, and Evans (2005). It was similar to jumping from

the Wright brothers to an Airbus 380 in one generation.
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A particular keystone for that development was, of course, Kydland and Prescott�s 1982

paper Time to Build and Aggregate Fluctuations. For the �rst time, macroeconomists had a

small and coherent dynamic model of the economy, built from �rst principles with optimizing

agents, rational expectations, and market clearing, that could generate data that resembled

observed variables to a remarkable degree. Yes, there were many dimensions along which the

model failed, from the volatility of hours to the persistence of output. But the amazing feature

was how well the model did despite having so little of what was traditionally thought of as

the necessary ingredients of business cycle theories: money, nominal rigidities, or non-market

clearing.

Except for a small but dedicated group of followers at Minnesota, Rochester, and other

bastions of heresy, the initial reaction to Kydland and Prescott�s assertions varied from

amused incredulity to straightforward dismissal. The critics were either appalled by the whole

idea that technological shocks could account for a substantial fraction of output volatility or

infuriated by what they considered the super�uity of technical �reworks. After all, could

we not have done the same in a model with two periods? What was so important about

computing the whole equilibrium path of the economy?

It turns out that while the �rst objection regarding the plausibility of technological shocks

is alive and haunting us (even today the most sophisticated DSGE models still require a no-

table role for technological shocks, which can be seen as a good or a bad thing depending

on your perspective), the second complaint has aged rapidly. As Max Plank remarked some-

where, a new methodology does not triumph by convincing its opponents, but rather because

critics die and a new generation grows up that is familiar with it.1 Few occasions demonstrate

the insight of Plank�s witticism better than the spread of DSGE models. The new cohorts

of graduate students quickly became acquainted with the new tools employed by Kydland

and Prescott, such as recursive methods and computation, if only because of the comparative

advantage that the mastery of technical material o¤ers to young, ambitious minds.2 And

naturally, in the process, younger researchers began to appreciate the �exibility o¤ered by

the tools. Once you know how to write down a value function in a model with complete

markets and fully �exible prices, introducing rigidities or other market imperfections is only

one step ahead: one more state variable here or there and you have a job market paper.

1Admittedly, Plank talked about scienti�c truths and not methodologies, but the original incarnation
sounds too outmodedly positivist for the contemporary foucaultian spirit.

2Galeson�s (2007) insights about the two types of artistic creativity and their life cycles are bound to apply
to researchers as well.
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Obviously, I did not mention rigidities as a random example of contraptions that we

include in our models, but to direct our attention to how surprisingly popular such additions

to the main model turned out to be. Most macroeconomists, myself included, have always

had a soft spot for nominal or real rigidities. A cynic will claim it is just because they are

most convenient. After all, they dispense with the necessity for re�ection, since there is hardly

any observation of the aggregate behavior of the economy cannot be blamed on one rigidity

or another.3

But just because a theory is inordinately serviceable or warrants the more serious accu-

sation that it encourages mental laziness is certainly not proof that the theory is not true.

At least since David Hume, economists have believed that they have identi�ed a monetary

transmission mechanism from increases in money to short-run �uctuations caused by some

form or another of price stickiness. It takes much courage, and more aplomb, to dismiss two

and a half centuries of a tradition linking Hume to Woodford and going through Marshall,

Keynes, and Friedman. Even those with less of a Burkean mind than mine should feel re-

luctant to proceed in such a perilous manner. Moreover, after one �nishes reading Friedman

and Schwartz�s (1971) A Monetary History of the U.S. or slogging through the mountain of

Vector Autoregressions (VARs) estimated over 25 years, it must be admitted that those who

see money as an important factor in business cycles �uctuations have an impressive empirical

case to rely on. Here is not the place to evaluate all these claims (although in the interest

of disclosure, I must admit that I am myself less than totally convinced of the importance of

money outside the case of large in�ations). Su¢ ce it to say that the previous arguments of

intellectual tradition and data were a motivation compelling enough for the large number of

economists who jumped into the possibility of combining the beauty of DSGE models with

the importance of money documented by empirical studies.

Researchers quickly found that we basically require three elements for that purpose. First,

we need monopolistic competition. Without market power, any �rm that does not immedi-

ately adjust its prices will lose all its sales. While monopolistic competition can be incorpo-

rated in di¤erent ways, the favorite route is to embody the Dixit-Stiglitz framework into a

general equilibrium environment, as so beautifully done by Blanchard and Kiyotaki (1987).

While not totally satisfactory (for example, the basic Dixit-Stiglitz setup implies counterfac-

tually constant mark-ups), the framework has proven to be easy to handle and surprisingly

3A more sophisticated critic will even point out that the presence of rigidities at the micro level may wash
out at an aggregate level, as in the wonderful example of Caplin and Spulber (1987).
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�exible. Second, we need some role to justify the existence of money. Money in the util-

ity function or a cash-in-advance constraint can accomplish that goal in a not particularly

elegant but rather e¤ective way.4 Third, we need a monetary authority inducing nominal

shocks to the economy. A monetary policy rule, such as a money growth process or a Taylor

rule, usually nicely stands in for such authority. There were, in addition, two extra elements

that improve the �t of the model. First, to delay and extend the response of the economy

to shocks, macroeconomists postulated factors such as habit persistence in consumption, ad-

justment cost of investment, or a changing utilization rate of capital. Finally, many extra

shocks were added: to investment, to preferences, to monetary and �scal policy, etc.5

The stochastic neoclassical growth model of Kydland and Prescott showed a remarkable

ability to absorb all these mechanisms. After a transitional period of amalgamation during the

1990s, by 2003, the model augmented with nominal and real rigidities was su¢ ciently mature

as to be put in a textbook by Mike Woodford and to become the basis for applied work. For

the �rst time, DSGE models were su¢ ciently �exible to �t the data su¢ ciently well as to

be competitive with VARs in terms of forecasting power (see Edge, Kiley, and Laforte, 2008,

for the enchantingly good forecast record of a state-of-the-art DSGE model) and rich enough

to become laboratories where realistic economic policies could be evaluated. The rest of the

history is simple: DSGE models quickly became the standard tool for quantitative analysis of

policies and every self-respecting central bank felt that it needed to estimate its own DSGE

model.6 However, as surprising as the quick acceptance of DSGE models outside academic

circles was, even more unexpected was the fact that models were not only formally estimated,

leaving behind the rather unsatisfactory calibration approach, but they were estimated from

a Bayesian perspective.

4Wallace (2001) has listed many reasons to suspect that these mechanisms may miss important channels
through which money matters. After all, they are reduced forms of an underlying model and, as such, they
may not be invariant to policy changes. Unfortunately, the profession has not developed a well-founded
model of money that can be taken to the data and applied to policy analysis. Despite some recent promising
progress (Lagos and Wright, 2005), money in the utility function or cash-in-advance will be with us for many
years to come.

5Also, researchers learned that it was easy to incorporate home production (Benhabib et al., 1991), an
open-economy sector (Mendoza, 1991 and 1995, Backus, Kehoe, and Kydland, 1992 and 1995, and Correia,
Neves, and Rebelo, 1995) or a �nancial sector (Bernanke, Gertler, and Gilchrist, 1999) among other extensions
that I cannot discuss here.

6Examples include the Federal Reserve Board (Erceg, Guerrieri, and Gust, 2006), the European Central
Bank (Christo¤el, Coenen, and Warne, 2007), the Bank of Canada (Murchison and Rennison, 2006), the
Bank of England (Harrison et al., 2005), the Bank of Sweden (Adolfson et al., 2005), the Bank of Finland
(Kilponen and Ripatti, 2006 and Kortelainen, 2002), and the Bank of Spain (Andrés, Burriel, and Estrada,
2006).
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3. The Bayesian Approach

I took my �rst course in Bayesian econometrics from John Geweke at the University of

Minnesota in the fall of 1996. I remember how, during one of the lectures in that course,

Geweke forecasted that in a few years, we would see a considerable proportion of papers in

applied macro being written from a Bayesian perspective. I was rather skeptical about the

prediction and dismissed Geweke�s claim as an overly optimistic assessment by a committed

Bayesian. Fortunately, Geweke was right and I was wrong. The last decade has indeed

experienced an explosion of research using Bayesian methods; so much so that, during a

recent talk, when I was presenting an estimation that for several reasons I had done using

maximum likelihood, I was assailed by repeated instances of the question: why didn�t you

use Bayes?, a predicament rather unimaginable even a decade ago.

How did such a remarkable change come about? It would be tempting to re-enumerate, as

has been done innumerable times before, the long list of theoretical advantages of Bayesian

statistics and state that it was only a matter of time before economists would accept the

obvious superiority of the Bayes choice. In fact, I will momentarily punish the reader with

yet one more review of some of those advantages, just to be sure that we are all on board.

But the simpler truth is that, suddenly, doing Bayesian econometrics was easier than doing

maximum likelihood.7

The reason is that maximizing a complicated, highly dimensional function like the likeli-

hood of a DSGE model is actually much harder than it is to integrate it, which is what we

do in a Bayesian exercise. First, the likelihood of DSGE models is, as I have just mentioned,

a highly dimensional object, with a dozen or so parameters in the simplest cases to close to

a hundred in some of the richest models in the literature. Any search in a high dimensional

function is fraught with peril. More pointedly, likelihoods of DSGE models are full of local

maxima and minima and of nearly �at surfaces. This is due both to the sparsity of the data

(quarterly data do not give us the luxury of many observations that micro panels provide)

and to the �exibility of DSGE models in generating similar behavior with relatively di¤erent

combination of parameter values (every time you see a sensitivity analysis claiming that the

results of the paper are robust to changes in parameter values, think about �at likelihoods).

7This revival of Bayesian tools is by no means limited to econometrics. Bayesian methods have become
extremely popular in many �elds, such as genetics, cognitive science, weather analysis, and computer science.
The forthcoming Handbook of Applied Bayesian Analysis edited by O�Hagan and West is a good survey of
Bayesian statistics across many di¤erent disciplines.

6



Consequently, even sophisticated maximization algorithms like simulated annealing or the

simplex method run into serious di¢ culties when maximizing the likelihoods of dynamic

models. Moreover, the standard errors of the estimates are notoriously di¢ cult to compute

and their asymptotic distribution a poor approximation to the small sample one.

In comparison, Markov chain Monte Carlo (McMc) methods have a much easier time

exploring the likelihood (more precisely, the likelihood times the prior) of DSGE models and

o¤er a thorough view of our object of interest. That is why we may want to use McMc

methods even when dealing with classical problems. Chernozhukov and Hong (2003) is a

path-breaking paper that brought that possibility to the attention of the profession. Even

more relevantly, McMc can be transported from application to application with a relatively

small degree of �ne tuning, an attractive property since the comparative advantage of most

economists is not in numerical analysis (and, one suspects, neither their absolute advantage).

I promised before, though, that before entering into a more detailed description of tech-

niques like McMc, I would in�ict upon the reader yet another enumeration of the advantages

of Bayesian thinking. But fortunately, this will be, given the circumstances of this paper, a

rather short introduction. A whole textbook treatment of Bayesian statistics can be found

in several excellent books in the market, among which I will recommend Robert (2001) and

Bernardo and Smith (2000).

I start with a point that Chris Sims repeatedly makes in his talks: Bayesian inference is a

way of thinking, not a �basket�of methods. Classical statistics searches for procedures that

work well ex ante, i.e., procedures that applied in a repeated number of samples will deliver

the right answer in a prespeci�ed percentage of cases. This prescription is not, however, a

constructive recipe. It tells us a property of the procedure we want to build and not how to

do it. Consequently, we can come up with a large list of procedures that achieve the same

objective without a clear metric to pick among them. The best possible illustration is the large

number of tests that can be de�ned to evaluate the null hypothesis of cointegration of two

random variables, each with its strengths and weaknesses. Furthermore, the procedures may

be quite di¤erent in their philosophy and interpretation. In comparison, Bayesian inference

is summarized in one simple idea: the Bayes�theorem. Instead of spending our time proving

yet one more asymptotic distribution of a novel estimator, we can go directly to the data,

apply Bayes�theorem, and learn from it. As simple as that.

Let me outline the elements that appear in the theorem. First, we have some data

yT � fytgTt=1 2 RN�T . For simplicity, I will use an index t that is more natural in a time
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series context like the one I will use below, but minimum work would adapt the notation to

cross-sections or panels. From the Bayesian perspective, data are always given and, in most

contexts, it does not make much sense to think about it as the realization of some data-

generating process (except, perhaps when exploring some asymptotic properties of Bayesian

methods as in Phillips and Ploberger, 1996, and Fernández-Villaverde and Rubio-Ramírez,

2004). Second, we have a model, motivated either by economic theory or some other type of

reasoning. The model is indexed by i and it may be an instance of a set of possible models

to consider M; i.e., we have i 2M: The model is composed by:

1. A parameter set, �i 2 Rki, that de�nes the admissible value of the parameters that
index the functions in the model. Some restrictions come from statistics. For instance,

variances must be positive. Others come from economic reasoning. For example, it

is common to bound the discount factor in an intertemporal choice problem to ensure

that total utility is well de�ned.

2. A likelihood function p(yT j�; i) : RN�T � �i ! R+ that tells us the probability that
the model assigns to each observation given some parameter values. This likelihood

function is nothing more than the restrictions that our model imposes on the data,

either coming from statistical considerations or from equilibrium conditions.

3. A prior distribution � (�ji) : �i ! R+ that captures pre-sample beliefs about the right

value of the parameters (yes, �right� is an awfully ambiguous word; I will come back

later to what I mean by it).

Bayes�theorem tells us that the posterior distribution of the parameters is given by:

�
�
�jyT ; i

�
=

p(yT j�; i)� (�ji)R
p(yT j�; i)� (�ji) d�

This result, which follows from a basic application of the laws of probability, tells us how

we should update our beliefs about parameter values: we combine our prior beliefs, � (�ji) ;
with the sample information embodied in the likelihood, f(yT j�; i), and we obtain a new set
of beliefs, �

�
�jyT ; i

�
: In fact, Bayes�theorem is an optimal information processing rule as

de�ned by Zellner (1988): it uses e¢ ciently all of the available information in the data, both

in small and large samples, without adding any extraneous information.

Armed with Bayes�theorem, a researcher does not need many more tools. For any possible

model, one just writes down the likelihood, elicits the prior, and obtains the posterior. Once
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we have the posterior distribution of the parameters, we can perform inference like point esti-

mation or model comparison given a loss function that maps how much we select an incorrect

parameter value or model. For sure, these tasks can be onerous in terms of implementation

but, conceptually, they are straightforward. Consequently, issues such as nonstationarity do

not require speci�c methods as needed in classical inference (see the eye-opening helicopter

tour of Sims and Uhlig, 1991). If we suspect non-stationarities, we may want to change our

priors to re�ect that belief, but the likelihood function will still be the same and Bayes�theo-

rem is applicable without the disconcerting discontinuities of classical procedures around the

unit root.

But while coherence is certainly an attractive property, at least from an esthetic considera-

tion, it is not enough by itself. A much more relevant point is that coherence is a consequence

of the fact that Bayes�theorem can be derived from a set of axioms that decision theorists

have proposed to characterize rational behavior. It is not an accident that the main solution

concepts in games with incomplete information are Bayesian Nash equilibria and sequential

equilibria and that Bayes�theorem plays a critical role in the construction of these solution

concepts. It is ironic that we constantly see papers where the researcher speci�es that the

rational agents in the model follow Bayes�theorem and, then, she proceeds to estimate the

model using classical procedures, undaunted by the implied logical contradiction.

Closely related to this point is the fact that the Bayesian approach satis�es by construction

the Likelihood Principle (Berger and Wolpert, 1988) that states that all of the information

existing in a sample is contained in the likelihood function. Once one learns about how

Birnbaum (1962) derived the Likelihood Principle from more fundamental axioms, it is rather

di¢ cult not to accept it.

The advantages of Bayesian inference do not end here. First, Bayesian econometrics

o¤ers a set of answers that are relevant for users. In comparison, pre-sample probability

statements are, on most occasions, rather uninteresting from a practical perspective. Few

policy makers will be very excited if we inform them that in 95 of 100 possible samples, our

model measures that a certain policy increases welfare but that we cannot really know if

the actual data represents one of the 95 positive cases or one of the negative 5. They want

to know, conditional on what we have observed in the data, what is the probability that we

would be doing the right thing by, for instance, lowering the interest rate. A compelling proof

of how unnatural it is to think in frequentist terms is to teach introductory statistics. Nearly

all students will interpret con�dence intervals at �rst as a probability interval. Only the
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repeated insistence of the instructor will make a disappointingly small minority of students

understand the di¤erence between the two and provide the right interpretation. The rest of

the students, of course, would simply memorize the answer for the test in the same way they

would memorize a sentence in Aramaic if such a worthless accomplishment were useful to

get a passing grade. Neither policy makers nor undergraduate students are silly (they are

ignorant, but that is a very di¤erent sin); they just think in ways that are more natural to

humans.8 Frequentist statements are beautiful but inconsequential.

Second, pre-sample information is often amazingly rich and considerably useful and not

taking advantage of it is an unforgivable omission. For instance, microeconometric evidence

can guide our building of priors. If we have a substantial set of studies that estimate the

discount factor of individuals and they �nd a range of values between 0.9 and 0.99, any

sensible prior should take this information into consideration.

The researcher should be careful, though, translating this micro evidence into macro

priors. Parameter values do not have an existence of their own, like a Platonic entity waiting

to be discovered. They are only de�ned within the context of a model, and changes in

the theory, even if minor, may have a considerable impact on the parameter values. A

paradigmatic example is labor supply. For a long time, labor economists criticized the real

business cycle models because they relied on what they saw as an unreasonably high labor

supply elasticity (Alesina, Glaeser, and Sacerdote, 2006, is a recent instance of such criticism).

However, the evidence that fed their attacks was gathered mainly for prime age white males

in the United States (or a similarly restrictive group). But representative agent models are

not about prime age white males: the representative agent is instead a stand-in for everyone

in the economy. It has a bit of a prime age male and a bit of old woman, a bit of a minority

young and a bit of a part-timer. If much of the response of labor to changes in wages is

done through the labor supply of women and young workers, it is perfectly possible to have a

high aggregate elasticity of labor supply and a low labor supply elasticity of prime age males.

To illustrate this point, Rogerson and Wallenius (2007) construct an overlapping generations

economy where the micro and macro elasticities are virtually unrelated. But we should not

push the previous example to an exaggerated degree: it is a word of caution, not a licence to

concoct wild priors. If the researcher wants to depart in her prior from the micro estimates,

she must have at least some plausible explanation of why she is doing so (see Browning,

8See also the psychological evidence that humans�cognitive processes are well described by Bayes�theorem
presented by Gri¢ ths and Tenenbaum (2006).
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Hansen, and Heckman (1999) for a thorough discussion of the mapping between micro and

macro estimates).

An alternative source of pre-sample information is the estimates of macro parameters from

di¤erent countries. One of the main di¤erences between economists and other social scientists

is that we have a default belief that individuals are basically the same across countries and

that di¤erences in behavior can be accounted for by di¤erences in relative prices. Therefore,

if we have estimates from Germany that the discount factor in a DSGE model is around 0.98,

it is perfectly reasonable to believe that the discount factor in Spain, if we estimate the same

model, should be around 0.98. Admittedly, di¤erences in demographics or �nancial markets

may show up as slightly di¤erent discount factors, but again, the German experience is most

informative. Pre-sample information is particularly convenient when we deal with emerging

economies, when the data as extremely limited, or when we face a change in policy regime.

A favorite example of mine concerns the creation of the European Central Bank (ECB). If

we were back in 1998 or 1999 trying to estimate a model of how the ECB works, we would

face such a severe limitation in the length of the data that any classical method would fail

miserably. However, we could have used a Bayesian method where the prior would have been

that the ECB would behave in a way very similar than the German Bundesbank. Yes, our

inference would have depended heavily on the prior, but why is this situation any worse than

not being able to say anything of consequence? Real life is full of situations where data are

extremely sparse (or where they speak to us very softly about the di¤erence between two

models, like a unit root process and an AR(1) with coe¢ cient 0.99) and we need to make the

best of a bad situation by carefully eliciting priors.9

Third, Bayesian econometrics allows a direct computation of many objects of interest,

such as the posterior distribution of welfare gains, values at risk, fan charts, and many

other complicated functions of the underlaying parameters while capturing in these computed

objects all the existing uncertainty regarding parameter values. For example, instead of

computing the multiplier of an increase in public consumption (per se, not a very useful

number for a politician), we can �nd the whole posterior distribution of employment changes

in the next year conditioning on what we know about the evolution of the economy plus

9We can push the arguments to the limit. Strictly speaking we can perform Bayesian inference without
any data: our posterior is just equal to the prior! We often face this situation. Imagine that we were back in
1917 and we just heard about the Russian revolution. Since communism had never been tried, as economists
we would need to endorse or reject the new economic system exclusively based on our priors about how well
central planning could work. Waiting 70 years to see how well the whole experiment would work is not a
reasonable course of action.
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the e¤ect of an increase in public consumption. Such an object, with its whole assessment of

risks, is a much more relevant tool for policy analysis. Classical procedures have a much more

di¢ cult time jumping from point estimates to whole distributions of policy-relevant objects.

Finally, Bayesian econometrics deals in a natural way with misspeci�ed models (Monfort,

1996). As the old saying goes, all models are false, but some are useful. Bayesians are not

in the business of searching for the truth but only in coming up with good description of

the data. Hence, estimation moves away from being a process of discovery of some �true�

value of a parameter to being, in Rissanen�s (1986) powerful words, a selection device in

the parameter space that maximizes our ability to use the model as a language in which

to express the regular features of the data. Coming back to our previous discussion about

�right�parameters, Rissanen is telling us to pick those parameter values that allow us to tell

powerful economic histories and to exert control over outcomes of interest. These parameter

values, which I will call �pseudotrue,� may be, for example, the ones that minimize the

Kullback-Leibler distance between the data generating process and the model (Fernández-

Villaverde and Rubio-Ramírez, 2004, o¤er a detailed explanation of why we care about these

�pseudotrue�parameter values).

Also, by thinking about models and parameters in this way, we come to the discussion of

partially identi�ed models initiated by Manski (1999) from a di¤erent perspective. Bayesians

emphasize more the �normality�of a lack of identi�cation than the problems caused by it.

Bayesians can still perform all of their work without further complications or the need of

new theorems even with a �at posterior (and we can always achieve identi�cation through

non-�at priors, although such an accomplishment is slightly boring). For example, I can still

perfectly evaluate the welfare consequences of one action if the posterior of my parameter

values is �at in some or all of the parameter space. The answer I get may have a large degree

of uncertainty, but there is nothing conceptually di¤erent about the inference process. This

does not imply, of course, that identi�cation is not a concern.10 I only mean that identi�cation

is a somehow di¤erent preoccupation for a Bayesian.

I would not be fully honest, however, if I did not discuss, if only brie�y, the disadvantages

of Bayesian inference. The main one, in my opinion, is that many non-parametric and

semiparametric approaches sound more natural when set up in a classical framework. Think

about the case of the Generalized Method of Moments (GMM). The �rst time you hear about

10Identi�cation issues ought to be discussed in more detail in DSGE models, since they a¤ect the conclusions
we get from them. See Canova and Sala (2006) for examples of non-identi�ed DSGE models and further
discussion.
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it in class, your brain (or at least mine!) goes �ah!, this makes perfect sense.�And it does

so because GMM (and all its related cousins in the literature of empirical likelihood, Owen,

2001, and, in economics, Kitamura and Stutzer, 1997) are clear and intuitive procedures that

have a transparent and direct link with �rst order conditions and equilibrium equations. Also,

methods of moments are a good way to estimate models with multiple equilibria, since all of

those equilibria need to satisfy certain �rst order conditions that we can exploit to come up

with a set of moments.11 Even if you can cook up many things in a Bayesian framework that

look a lot like GMM or empirical likelihood (see, for example, Kim, 1998, Schennach, 2005,

or Ragusa, 2006, among several others), I have never been particularly satis�ed with any of

them and none has passed the �ah!�test that GMM overcomes with such an excellent grade.

Similarly, you can implement a non-parametric Bayesian analysis (see the textbook by

Ghosh and Ramamoorthi, 2003, and in economics, Chamberlain and Imbens, 2003). However,

the methods are not as well developed as we would like and the shining building of Bayesian

statistics gets dirty with some awful discoveries such as the potentially bad asymptotic prop-

erties of Bayesian estimators (�rst pointed out by Freedman, 1963) or the breakdown of the

likelihood principle (Robins and Ritov, 1997). Given that the literature is rapidly evolving,

Bayesian methods may end up catching up and even overcoming classical procedures for non-

parametric and semiparametric problems, but this has not happened yet. In the meantime,

the advantage in this sub-area seems to be in the frequentist camp.

4. The Tools

No matter how sound were the DSGE models presented by the literature or how compelling

the arguments for Bayesian inference, the whole research program would not have taken o¤

without the appearance of the right set of tools that made the practical implementation of the

estimation of DSGE models feasible in a standard desktop computer. Otherwise, we would

probably still be calibrating our models, which would be, in addition, much smaller and

simpler. I will classify those tools in three sets. First, better and improved solution methods.

Second, methods to evaluate the likelihood of the model. Third, methods to explore the

likelihood of the model.

11A simple way to generate multiplicity of equilibria in a DSGE model that can be very relevant empirically
is to have increasing returns to scale, as in Benhabib and Farmer (1992). For a macro perspective on estimation
of models with multiplicity of equilibria, see Jovanovic (1989) or Cooper (2002).
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4.1. Solution Methods

DSGE models do not have, except for a very few exceptions, a �paper and pencil�solution.

Hence, we are forced to resort to numerical approximations to characterize the equilibrium

dynamics of the model. Numerical analysis is not part of the standard curriculum either at the

undergraduate or the graduate level. Consequently, the profession had a tough time accepting

that analytic results are limited (despite the fact that the limitations of close form �ndings

happens in most other sciences where the transition to numerical approximations happened

more thoroughly and with less soul searching). To make things worse, few economists were

con�dent in dealing with the solution of stochastic di¤erence functional equations, which

are the core of the solution of a DSGE model. The �rst approaches were based on �tting

the models to be solved into the framework of what was described in standard optimal

control literature textbooks. For example, Kydland and Prescott (1982) substituted the

original problem by a linear quadratic approximation to it. King, Plosser, and Rebelo (in the

widely disseminated technical appendix, not published until 2002) linearized the equilibrium

conditions, and Christiano (1990) applied value function iteration. Even if those approaches

are still the cornerstone of much of what is done nowadays, as time passed, researchers became

familiar with them, many improvements were proposed, and software circulated.

Let me use the example of linearization, since it is the solution method that I will use

below.12 Judd and Guu (1993) showed that linearization was not an ad hoc procedure but

the �rst order term of a mainstream tool in scienti�c computation, perturbation. The idea

of perturbation methods is to substitute the original problem, which is di¢ cult to solve, for

a simpler one that we know how to handle and use the solution of the simpler model to ap-

proximate the solution of the problem we are interested in. In the case of DSGE models, we

�nd an approximated solution by �nding a Taylor expansion of the policy function describing

the dynamics of the variables of the model around the deterministic steady state. Lineariza-

tion, therefore, is just the �rst term of this Taylor expansion. But once we understand this,

it is straightforward to get higher order expansions that are both analytically informative

and more accurate (as in Schmitt-Grohé and Uribe, 2004).13 Similarly, we can apply all of

12Other solution methods for DSGE models, such as projection algorithms and value function iteration,
are described and compared in Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006). Judd (1998) is a
comprehensive textbook.
13For example, a second order expansion includes a term that corrects for the standard deviation of the

shocks that drive the dynamics of the economy. This term, which captures precautionary behavior, breaks
the certainty equivalence of linear approximations that makes it di¢ cult to talk about welfare and risk.
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the accumulated knowledge of perturbation methods in terms of theorems or in improving

the performance of the method.14 Second, once economists became more experienced with

linearization, software disseminated very quickly.

My favorite example is Dynare and Dynare++, an extraordinary tool developed by Michel

Juillard and a team of collaborators. Dynare (a toolbox for Matlab and Scilab) and Dynare++

(a stand-alone application) allow the researcher to write, in a concise and intuitive language,

the equilibrium conditions of a DSGE model and �nd a perturbation solution to it, up to

second order in Dynare and to an arbitrary order in Dynare++. With Dynare and Dynare++,

a moderately experienced user can write code for a basic real business cycle model in an hour

and compute the approximated solution in a few seconds. The computation of the model

presented below (a fairly sophisticated one) requires a bit more e¤ort, but still coding can

be done in a short period of time (as short as a day or two for an experienced user) and the

solution and simulation take only a few seconds. This advance in the ease of computation is

nothing short of breathtaking.

4.2. Evaluating the Likelihood Function

In our previous description of Bayes�theorem, the likelihood function of the model played a

key role, since it was the object that we multiplied by our prior to obtain a posterior. The

challenge is how to obtain the likelihood of a DSGE model for which we do not even have an

analytic solution. The most general and powerful route is to employ the tools of state space

representations and �ltering theory.

Once we have the solution of the DSGE model in terms of its (approximated) policy

functions, we can write the laws of motion of the variables in a state space representation

that consists of:

1. A transition equation, St = f (St�1;Wt; �) ; where St is the vector of states that describe

14Here I can cite the idea of changing variables (Fernández-Villaverde and Rubio-Ramírez, 2006). Instead
of writing a Taylor expansion in terms of a variable x:

f (x) ' f (a) + f 0 (a) (x� a) +H:O:T:

we can write it in terms of a transformed variable Y (x):

g (y) = h (f (X (y))) = g (b) + g0 (b) (Y (x)� b) +H:O:T:

where b = Y (a) and X (y) is the inverse of Y (x). By picking the right change of variables, we can signi�cantly
increase the accuracy of the perturbation. A common example of change of variables (although rarely thought
of in this way) is to loglinearize instead of linearizing in levels.
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the situation of the model in any given moment in time, Wt is a vector of innovations,

and � is a vector with the structural parameters that describe technology, preferences,

and information processes.

2. A measurement equation, Yt = g (St; Vt; �) ; where Yt are the observables and Vt a set

of shocks to the observables (like, but necessarily, measurement errors).

While the transition equation is unique up to an equivalent class, the measurement equa-

tion depends on what we assume we can observe, selection that may imply many degrees of

freedom (and not trivial consequences for inference; see the experiments in Guerrón-Quintana,

2008).15

The state space representation lends itself to many convenient computations. To begin

with, from St = f (St�1;Wt; �) ; we can compute p (StjSt�1; �), from Yt = g (St; Vt; �), we can

compute p (YtjSt; �) ; and from St = f (St�1;Wt; �) and Yt = g (St; Vt; �), we have:

Yt = g (f (St�1;Wt; �) ; Vt; �)

and hence we can compute p (YtjSt�1; �) (here I am omitting the technical details regarding

the existence of these objects).

All of these conditional densities appear in the likelihood function in a slightly disguised

way. If we want to evaluate the likelihood function of the observables yT at parameter values

�, p
�
yT ; �

�
, we can start by taking advantage of the Markov structure of our state space

representation to write:

p
�
yT j�

�
= p (y1j�)

TY
t=2

p
�
ytjyt�1; �

�
=

Z
p (y1js1; �) dS1

TY
t=2

Z
p (ytjSt; �) p

�
Stjyt�1; �

�
dSt

Hence, knowledge of fp (Stjyt�1; �)gTt=1 and p (S1; �) allow the evaluation of the likelihood of
the model.

Filtering theory is the branch of mathematics that is preoccupied precisely with �nding

the sequence of conditional distributions of states given observations, fp (Stjyt�1; �)gTt=1 : For

15Also, I am assuming that there exists a state space representation that is Markov in some vector of states.
By admitting no-payo¤ relevant states, like Lagrangian multipliers that encode continuation utilities (Abreu,
Pearce, and Stachetti, 1990), we can �t a large class of economic models into this setup.
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this task, it relies on two fundamental tools, the Chapman-Kolmogorov equation:

p
�
St+1jyt; �

�
=

Z
p (St+1jSt; �) p

�
Stjyt; �

�
dSt

and Bayes�theorem (yes, again) :

p
�
Stjyt; �

�
=
p (ytjSt; �) p (Stjyt�1; �)

p (ytjyt�1; �)

where

p
�
ytjyt�1; �

�
=

Z
p (ytjSt; �) p

�
Stjyt�1; �

�
dSt:

is the conditional likelihood.

The Chapman-Kolmogorov equation, despite its intimidating name, tells us only that the

distribution of states tomorrow given an observation until today, p (St+1jyt; �), is equal to the
distribution today of p (Stjyt; �) times the transition probabilities p (St+1jSt; �) integrated over
all possible states. Therefore, the Chapman-Kolmogorov equation just gives us a forecasting

rule for the evolution of states. Bayes�theorem updates the distribution of states p (Stjyt�1; �)
when a new observation arrives given its probability p (ytjSt; �) : By a recursive application
of forecasting and updating, we can generate the complete sequence fp (Stjyt�1; �)gTt=1 we are
looking for.

While the Chapman-Kolmogorov equation and Bayes�theorem are mathematically rather

straightforward objects, their practical implementation is cumbersome because they involve

the computation of numerous integrals. Even when the number of states is moderate, the

computational cost of these integrals makes an exact (or up to �oating point accuracy)

evaluation of the integrals unfeasible.

4.2.1. The Kalman Filter

To �x this computational problem, we have two routes. First, if the transition and measure-

ment equation are linear and the shocks are normally distributed, we can take advantage of

the observation that all of the relevant conditional distributions are Gaussian (this just from

the simple fact that the space of normal distributions is a vector space). Therefore, we only

need to keep track of the mean and variance of these conditional normals. The tracking of

the moments is done through the Ricatti equations of the Kalman �lter (for more details, see

any standard textbook, such as Harvey, 1989, or Stengel, 1994).
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To do so, we start by writing the �rst order linear approximation to the solution of the

model in the state space representation we introduced above:

st = Ast�1 +B"t (1)

yt = Cst +D"t (2)

"t � N (0; I)

where we use lower case letters to denote realizations of the random variable and where "t is

the vector of innovations to the model that stacks Wt and Vt.

Let us de�ne the linear projections stjt�1 = E (stjYt�1) and stjt = E (stjYt) where Yt =
fy1; y2; :::; ytg and the subindex tracks the conditioning set (i.e., tjt� 1 means a draw at mo-
ment t conditional on information until t�1). Also, we have matrices of variances-covariances
Pt�1jt�1 = E

�
st�1 � st�1jt�1

� �
st�1 � st�1jt�1

�0
and Ptjt�1 = E

�
st�1 � stjt�1

� �
st�1 � stjt�1

�0
:

Given these linear projections and the Gaussian structure of our state space representations,

the one-step-ahead forecast error, �t = yt � Cstjt�1; is white noise.

We forecast the evolution of states:

stjt�1 = Ast�1jt�1 (3)

Since the possible presence of correlation in the innovations does not change the nature of

the �lter (Stengel, 1994), so it is still the case that

stjt = stjt�1 +K�t; (4)

where K is the Kalman gain at time t. De�ne variance of forecast as Vy = CPtjt�1C
0 +DD0:

Since �t is white noise, the conditional loglikelihood of the period observation yt is just:

log p (ytj�) = �
n

2
log 2� � 1

2
log det (Vy)�

1

2
�tV

�1
y �t

The last step is to update our estimates of the states. De�ne residuals �tjt�1 = st � stjt�1

and �tjt = st � stjt. Subtracting equation (3) from equation (1)

st � stjx�1 = A
�
st�1 � st�1jt�1

�
+Bwt;

�tjt�1 = A�t�1jt�1 +Bwt (5)
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Now subtract equation (4) from equation (1)

st � stjt = st � stjt�1 �K
�
Cst +Dwt � Cstjt�1

�
�tjt = �tjt�1 �K

�
C�tjt�1 +Dwt

�
: (6)

Note Ptjt�1 can be written as

Ptjt�1 = E�tjt�1�0tjt�1;

= E
�
A�t�1jt�1 +Bwt

� �
A�t�1jt�1 +Bwt

�0
= APt�1jt�1A

0 +BB0: (7)

and for Ptjt we have:

Ptjt = E�tjt�0tjt
= E

�
�tjt�1 �K

�
C�tjt�1 +Dwt

�� �
�tjt�1 �K

�
C�tjt�1 +Dwt

��0
= (I �KC)Ptjt�1 (I � C 0K 0) +KDD0K 0 �KDB0 (8)

�BD0K 0 +KCBD0K 0 +KDB0C 0K 0:

The optimal gain K minimizes Ptjt with the �rst order condition

@Tr
�
Ptjt
�

@K
= 0

and solution

K =
�
Ptjt�1C

0 +BD0� [Vy + CBD0 +DB0C 0]
�1

Consequently, the updating equations are:

Ptjt = Ptjt�1 �Kopt

�
DB0 + CPtjt�1

�
;

xtjt = xtjt�1 +Kopt�t

and we close the iterations. We only need to apply the equations from t = 1 until T and we

can compute the loglikelihood function. The whole process takes only a fraction of a second

on a modern laptop computer.
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4.2.2. The Particle Filter

Unfortunately, linearity and Gaussanity are quite restrictive assumptions. For example, lin-

earization eliminates asymmetries, threshold e¤ects, precautionary behavior, big shocks, and

many other phenomena of interest in macroeconomics. Moreover, linearization induces an

approximation error. Even if we were able to evaluate the likelihood implied by that solu-

tion, we would not be evaluating the likelihood of the exact solution of the model but the

likelihood implied by the approximated linear solution of the model. Both objects may be

quite di¤erent and some care is required when we proceed to perform inference (for further

details, see Fernández-Villaverde, Rubio-Ramírez, and Santos, 2006). The e¤ects of this are

worse than you may think. First, there are theoretical arguments. Second order errors in the

approximated policy function may imply �rst order errors in the loglikelihood function. As

the sample size grows, the error in the loglikelihood function also grows and we may have

inconsistent point estimates. Second, linearization complicates the identi�cation of parame-

ters (or makes it plainly impossible as, for example, the coe¢ cient of risk aversion in a model

with Epstein-Zin preferences as introduced by Epstein and Zin, 1989 and 1991). Finally,

computational evidence suggests that those e¤ects may be important in many applications.

Similarly Gaussanity eliminates the possibility of talking about time-varying volatility

in time series, which is a fundamental issue in macroeconomics. For instance, McConnell

and Pérez-Quirós (2000), Kim and Nelson (1998), Fernández-Villaverde and Rubio-Ramírez

(2007), and Justiniano and Primiceri (2008) have accumulated rather compelling evidence

of the importance of time-varying volatility to account for the dynamics of U.S. data. Any

linear Gaussian model cannot talk about this evidence at all. Similarly, linear models cannot

deal with models that display regime switching, an important feature of much recent research

(see Sims and Zha, 2006, and Farmer, Waggoner, and Zha, 2006a and b).

When the state space representation is not linear or when the shocks are not normal,

�ltering becomes more complicated because the conditional distributions of states do not

belong, in general, to any known family. How do we keep track of them? We mentioned before

that analytic methods are unfeasible except in a few cases. Therefore, we need to resort to

some type of simulation. An algorithm that has been used recently with much success is the

particle �lter, a particular example of a Sequential Monte Carlo (see the technical appendix

to Fernández-Villaverde and Rubio-Ramírez (2007) for alternative approaches).

Because of space constraints, I will not discuss the �lter in much detail (Fernández-

Villaverde and Rubio-Ramírez, 2005 and 2007, provide all the technical background; see
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Arulampalam et al., 2002 for a general introduction, and Doucet, de Freitas, and Gordon,

2001, for a collection of applications). The main idea, however, is extremely simple: we

replace the conditional distribution fp (Stjyt�1; �)gTt=1 by an empirical distribution of N draws�n
sitjt�1

oN
i=1

�T
t=1

from the sequence fp (Stjyt�1; �)gTt=1 generated by simulation. Then, by a
trivial application of the law of large numbers:

p
�
yT j�

�
' 1

N

NX
i=1

p
�
y1jsi0j0; �

� TY
t=2

1

N

NX
i=1

p
�
ytjsitjt�1; �

�
The problem is then to draw from fp (Stjyt�1; �)gTt=1. But, following Rubin (1988), we

can apply sequential sampling:

Proposition 1. Let
n
sitjt�1

oN
i=1

be a draw from p (Stjyt�1; �). Let the sequence fesitgNi=1 be a
draw with replacement from

n
sitjt�1

oN
i=1

where the resampling probability is given by

!it =
p
�
ytjsitjt�1; �

�
PN

i=1 p
�
ytjsitjt�1; �

� ;
Then fesitgNi=1 is a draw from p (Stjyt; �).

Proposition 1 recursively uses a draw
n
sitjt�1

oN
i=1

from p (Stjyt�1; �) to draw
n
sitjt

oN
i=1

from p (Stjyt; �). But this is nothing more than the update of our estimate of St to add the
information on yt that Bayes�theorem is asking for.

The reader may be surprised by the need to resample to obtain a new conditional distrib-

ution. However, without resampling, all of the sequences would become arbitrarily far away

from the true sequence of states and the sequence that is closer to the true states dominates

all of the remaining ones in weight. Hence, the simulation degenerates after a few steps and

we cannot e¤ectively evaluate the likelihood function, no matter how large N is.

Once we have
n
sitjt

oN
i=1
, we drawN vectors of exogenous shocks to the model (for example,

the productivity or the preference shocks) from their corresponding distributions and apply

the law of motion for states to generate
n
sit+1jt

oN
i=1
. This step, known as forecast, puts us

back at the beginning of Proposition 1, but with the di¤erence that we have moved forward

one period in our conditioning, from tjt�1 to t+1jt; implementing in that way the Chapman-
Kolmogorov equation.
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The following pseudo-code summarizes the description of the algorithm:

Step 0, Initialization: Set t 1. Sample N values
n
si0j0

oN
i=1

from p (S0; �).

Step 1, Prediction: Sample N values
n
sitjt�1

oN
i=1

using
n
sit�1jt�1

oN
i=1
, the law of

motion for states and the distribution of shocks "t.

Step 2, Filtering: Assign to each draw
�
sitjt�1

�
the weight !it in Proposition

1.

Step 3, Sampling: Sample N times with replacement from
n
sitjt�1

oN
i=1

using the

probabilities fqitg
N
i=1. Call each draw

�
sitjt

�
. If t < T set t  t + 1 and go to

step 1. Otherwise stop.

With the simulation, we just substitute into our formula

p
�
yT j�

�
' 1

N

NX
i=1

p
�
y1jsi0j0; 	

� TY
t=2

1

N

NX
i=1

p
�
ytjsitjt�1; �

�
(9)

and get an estimate of the likelihood of the model given �. Del Moral and Jacod (2002) and

Künsch (2005) show weak conditions for the consistency of this estimator and for a central

limit theorem to apply.

4.3. Exploring the Likelihood Function

Once we have an evaluation of the likelihood function from �ltering theory, we need to

explore it, either by maximization or by description. As I explained before when I motivated

the Bayesian choice, maximization is particularly challenging and the results are often not

very robust. Consequently, I will not get into a discussion of how we can attempt to solve

this complicated optimization. The Bayesian alternative is, of course, to �nd the posterior:

�
�
�jyT

�
=

p(yT j�)� (�)R
p(yT j�)� (�) d�

(where I have eliminated the index of the model to ease notation). With the result of the

previous subsection, we can evaluate �
�
�jyT

�
for a given � (up to a proportionality constant),

but characterizing the whole posterior is nearly impossible, since we do not even have a close

form solution for p(yT j�):
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This challenge, which for a long time was the main barrier to Bayesian inference, can

nowadays easily be addressed by the use of McMc methods. A full exposition of McMc meth-

ods would occupy an entire book (as in Robert and Casella, 2007). Luckily enough, the basic

point is rather straightforward. We want to somehow produce a Markov chain whose ergodic

distribution is �
�
�jyT

�
. Then, we simulate from the chain and, as the Glivenko-Cantelli the-

orem does its magic, we approximate �
�
�jyT

�
by the empirical distribution generated by the

chain. This twist of McMc methods is pure genius. Usually, we have a theory that implies a

Markov chain. For example, our DSGE model implies a Markov process for output and we

want to characterize it (this is what chapters 11 to 14 of Stokey, Lucas, and Prescott, 1989,

do). In McMc, we proceed backward: we have �
�
�jyT

�
(or at least a procedure to evaluate

it) and we come up with a Markov chain that generates it.

This idea would not be very practical unless we had a constructive method to specify the

Markov chain. Fortunately, we have such a procedure, although, interestingly enough, only

one. This procedure is known as the Metropolis-Hastings algorithm (the Gibbs sampler is

a particular case of Metropolis-Hastings). In the Metropolis-Hastings algorithm, we come

up with a new proposed value of the parameter and we evaluate whether it increases the

posterior. If it does, we accept it with probability 1. If it does not, we accept it with some

probability less than 1. In such a way, we always go toward the higher regions of the posterior

but we also travel, with some probability, towards the lower regions. This procedure avoids

getting trapped in local maxima. A simple pseudo-code for a plain vanilla Metropolis-Hastings

algorithm is as follows:

Step 0, Initialization: Set i  0 and an initial �i. Solve the model for �i

and build the state space representation: Evaluate � (�i) and p(yT j�i). Set i 
i+ 1:

Step 1, Proposal draw: Get a draw ��i from a proposal density q (�i�1; �
�
i ).

Step 2, Solving the Model: Solve the model for ��i and build the new state

space representation.

Step 3, Evaluating the proposal: Evaluate � (��i ) and p(yT j��i ) with (9).
Step 4, Accept/Reject: Draw �i � U (0; 1). If �i �

p(yT j�)�(�)q(�i�1;��i )
p(yT j�)�(�)q(��i ;�i�1)

set �i = ��i,

otherwise �i = �i�1.

Step 5, Iteration: If i < M , set i i+ 1 and go to step 1. Otherwise stop.
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This algorithm requires us to specify a proposal density q (�; �). The standard practice
(and the easiest) is to choose a random walk proposal, ��i = �i�1 + �i, �i � N (0;��), where

�� is a scaling matrix that the researcher selects to obtain the appropriate acceptance ratio of

proposals (Roberts, Gelman and Gilks, 1997, provide the user with guidelines for the optimal

acceptance ratios that maximize the rate of convergence of the empirical distribution toward

the ergodic distribution). Of course, we can always follow more sophisticated versions of

the algorithm, but for most researchers, the time and e¤ort involved in re�nements will not

compensate for the improvements in e¢ ciency.

If we are using the particle �lter, we need to keep the random numbers of the simulation

constant across iterations of the Metropolis-Hastings algorithm. As emphasized by McFadden

(1989) and Pakes and Pollard (1989), �xing the random numbers across iterations is required

to achieve stochastic equicontinuity. Thanks to it, the pointwise convergence of the likeli-

hood (9) to the exact likelihood we stated above becomes uniform convergence. Although

not strictly necessary in a Bayesian context, uniform continuity minimizes the numerical

instabilities created by the �chatter�of random numbers across iterations.

Once we have run the algorithm for a su¢ cient number of iterations (see Mengersen,

Robert, and Guihenneuc-Jouyaux, 1999, for a review of convergence tests), we can perform

inference: we have an empirical approximation of the posterior of the model and �nding

means, standard deviations, and other objects of interest is a trivial task. In the interest of

space, I omit a discussion of how to select a good initial value �0.16 The values we would

have for a standard calibration exercise are, in general, a good default choice.

The reader who is not familiar with the Metropolis-Hastings algorithm may feel that the

previous discussion introduced many concepts. Yes, but none of them is particularly deep

once one has thought about them a bit more carefully. Most important, once you get the

gist of it, McMc methods are surprisingly easy to code, much more, in fact, than even simple

optimization algorithms, and they can be easily be recycled for future estimations. This

is why I said in section 3 that nowadays doing Bayesian econometrics is easier than doing

classical inference.

16The initial states S0 for the �lter can also be though of as parameters of the model. However, it is usually
is easier to sample from the ergodic distribution of states implied by �0:
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5. An Application

The previous pages would look dry and abstract without an application that illustrates how

we do things in practice. Hence, I am presenting a simple estimation exercise that I borrow

from a recent paper I coauthored with Juan Rubio-Ramírez (Fernández-Villaverde and Rubio-

Ramírez, 2008). Since in that paper we were trying to explore how stable over time were the

parameters of DSGE models when we let them vary over time, we took care in estimating

a model that could be easily accepted by as many readers as possible as embodying the

standard New Keynesian DSGE model. Even if my objectives now are di¤erent, the same

justi�cation for the model still holds: this will be as standard a model as I know how to write.

Despite any possible vehement claims to the contrary, my choice of application implies

an implicit endorsement of the New Keynesian model. If I thought that the model was

completely worthless, my behavior would be slightly schizophrenic. And yes, there are good

things in the model. It is built around the core of the neoclassical growth model, which is

the workhorse of modern macroeconomics and which o¤ers a reasonable account of a set of

important stylized facts, both at the long run and business cycle frequencies. Keynes (1936)

complained in the General Theory that David Hume had a foot and a half in the classical

world. Modern DSGE models fully share this nature.17 In addition, the model introduces a

number of real and nominal rigidities that generate the higher degree of persistence we see in

the data and allow for a non-trivial role of monetary policy, which as we discussed in section

2, perhaps we also �nd in the data.

However, we need to remember the many shortcomings of the model. We may as well

begin with its core, the neoclassical growth model. Growth theorist have accumulated many

objections to the basic growth model: it does not have an endogenous mechanism for long-run

growth, the existence of a balanced growth path violates some observations in the data, the

model does not account for the large cross-country di¤erences in income per capita, and so

forth. Our model will su¤er from all of those objections.

The second line of criticism regards the nominal rigidities, which are added in an ad hoc

way through Calvo pricing. Beyond the lack of microfoundations, Calvo pricing misses many

17That is why many argue, with some plausibility, that New Keynesian models are not that Keynesian
after all (see Farmer, 2007). Given the importance they give to a neoclassical core, the key role of money,
and the preference they generate for low and stable in�ation, we could just as well call them neomonetarist
models. However, after seeing the recent uproar at the University of Chicago regarding the new Milton
Friedman Institute for Research in Economics, it is clear that the New Keynesian brand still sells better in
many quarters.
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aspects of the microeconomic evidence of pricing behavior by �rms documented over the last

few years (Álvarez et al. 2005, Bils and Klenow, 2004, Bils, Klenow and Malin, 2008, Dhyne

et al. 2006, Klenow and Kryvtsov, 2008, and Nakamura and Steinsson, 2008, among many

others). Finally, the model does a terrible job of pricing �nancial assets, a point I will revisit

in section 6.

In the interest of space, I will present only the most basic description of the model without

the full background. The interested reader can get many more details at the online appendix

www.econ.upenn.edu/~jesusfv/benchmark_DSGE.pdf. The basic structure of the model in-

cludes a continuum of households that work, consume, and save, a continuum of intermediate

good producers that rent capital and labor to manufacture intermediate goods, a �nal good

producer that aggregates the intermediate goods, a labor �packer�that aggregates di¤erent

types of labor into a homogeneous input, and a government that implements monetary policy

by �xing the short-run nominal interest rate through open market operations. Both prices

and wages will be subject to rigidities that limit how often they can be changed.

5.1. The Households

The �rst type of agents in our model will be the households. We want to have a continuum

of them because, in that way, we can generate a whole distribution of wages in the economy,

with each household charging its own di¤erentiated wage. At the same time, we do not want

to have too much heterogeneity, because this will make computing the model a daunting task.

The trick to combine di¤erent wages but not a lot of heterogeneity is to assume a separable

utility function in consumption and labor and complete markets. Complete markets give us

the basic risk-sharing result that, in equilibrium, marginal utilities are equated. If utility is

separable in consumption, then perfect risk-sharing implies that all households consume the

same amount of the �nal good and hold the same level of capital, collapsing the distribution

of agents along that dimension. Finally, the requirement that we have a balanced growth

path implies that we want to consider utility functions of the form:

E0
1X
t=0

�tdt

(
log (cjt � hcjt�1) + � log

�
mojt
pt

�
� 't 

l1+#jt

1 + #

)

where j is the index of the household, E0 is the conditional expectation operator, cjt is
consumption, mojt=pt are real money balances, pt is the aggregate price level, and ljt is hours

worked. In addition, we have the discount factor, �, a degree of habit persistence, h, which
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will help to induce inertia in the responses of consumption to shocks, and the Frisch labor

supply elasticity, 1=#:

The period utility function is shifted by two shocks. First, a shock to intertemporal

preferences, dt, that works as a demand shock, inducing agents to consume more or less

in the current period. Second, a shock to labor supply, to capture the movements in the

observed wedge in the �rst order condition relating consumption and labor (Hall, 1997). For

simplicity, we postulate that both shocks follow an autoregressive process of order 1 in logs:

log dt = �d log dt�1 + �d"d;t where "d;t � N (0; 1);

log't = �' log't�1 + �'"';t where "';t � N (0; 1):

The standard deviation of the shocks, �d and �', is constant over time, but we could easily

introduce a time component to it (Fernández-Villaverde and Rubio-Ramírez, 2007). Time-

varying volatility in the shocks helps to understand the changing volatility of U.S. and other

Western economies over the last decades that has been named the �Great Moderation�by

Stock and Watson (2003).

Households trade on the whole set of Arrow-Debreu securities, contingent on idiosyncratic

and aggregate events. My notation ajt+1 indicates the amount of those securities that pay

one unit of consumption in event !j;t+1;t purchased by household j at time t at (real) price

qjt+1;t. To save on notation, we drop the explicit dependence on the event. Households also

hold an amount bjt of government bonds that pay a nominal gross interest rate of Rt and

invest xt. Then, the j � th household�s budget constraint is:

cjt + xjt +
mjt

pt
+
bjt+1
pt

+

Z
qjt+1;tajt+1d!j;t+1;t

= wjtljt +
�
rtujt � ��1t � [ujt]

�
kjt�1 +

mjt�1

pt
+Rt�1

bjt
pt
+ ajt + Tt +zt

where wjt is the real wage paid per unit of labor, rt the real rental price of capital, ujt > 0 the

utilization rate of capital, ��1t � [ujt] is the physical cost of rate ujt in resource terms (where

� [u] = �1 (u� 1)+�2
2
(u�1)2 and�1;�2 � 0), �t is an investment-speci�c technological shock

that shifts the relative price of capital, Tt is a lump-sum transfer from the government, and

zt is the household share of the pro�ts of the �rms in the economy. This budget constraint
is slightly di¤erent from a conventional one because households are monopolistic suppliers of

their own type of work j. Therefore, the household �xes wjt (subject to some rigidities to be
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speci�ed below) and supplies the amount of labor ljt demanded at that wage. We can think

of the household either as an independent businessman who can set its own rate or as a union

that negotiates a particular wage rate. This assumption is relatively inconsequential. At the

cost of some additional algebra, we could also let �rms set wages and households supply the

desired labor at such wages.

The law of motion for capital is given by:

kjt = (1� �) kjt�1 + �t

�
1� S

�
xjt
xjt�1

��
xjt:

where � is the depreciation rate. We have a quadratic adjustment cost function

S

�
xt
xt�1

�
=
�

2

�
xt
xt�1

� �x
�2

;

where � � 0 and �x is the long-run growth of investment. The speci�cation of the adjustment
cost function captures the idea that the costs are with respect to moving away from the path of

investment growth that we would have in the balanced growth path. In front of investment,

we have an investment-speci�c technological shock �t that also follows an autoregressive

process:

�t = �t�1 exp (�� + z�;t) where z�;t = ��"�;t and "�;t � N (0; 1):

The investment-speci�c technological shock accounts for the fall in the relative price of capital

observed in the U.S. economy since the Second World War and it plays a crucial role in

accounting for long-run growth and in generating business cycle �uctuations (see the rather

compelling evidence in Greenwood, Herkowitz, and Krusell, 1997 and 2000).The process for

investment-speci�c technological change generates the �rst unit root in the model and it will

be one source of growth in the economy.

The Lagrangian function that summarizes the problem of the household is given by:

E0
1X
t=0

�t

26666664
dt

�
log (cjt � hcjt�1) + � log

�
mjt
pt

�
� 't 

l1+#jt

1+#

�
��t

(
cjt + xjt +

mjt
pt
+

bjt
pt
+
R
qjt+1;tajt+1d!j;t+1;t

�wjtljt �
�
rtujt � ��1t � [ujt]

�
kjt�1 � mjt�1

pt
�Rt�1

bjt�1
pt
� ajt � Tt �zt

)
�Qt

n
kjt � (1� �) kjt�1 � �t

�
1� S

h
xjt
xjt�1

i�
xjt

o

37777775
where the household chooses cjt, bjt, ujt, kjt, xjt, wjt, ljt and ajt+1 (maximization with
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respect to money holdings comes from the budget constraint), �t is the Lagrangian multiplier

associated with the budget constraint, and Qt the Lagrangian multiplier associated with the

law of motion of capital. Since I argued before that with complete markets and separable

utility, marginal utilities will be equated in all states of nature and all periods, I do not need

to index the multipliers by j.

The �rst order conditions with respect to cjt, bjt, ujt, kjt, and xjt are:

dt (cjt � hcjt�1)
�1 � h�Etdt+1 (cjt+1 � hcjt)

�1 = �t

�t = �Etf�t+1
Rt
�t+1

g

rt = ��1t �
0 [ujt]

Qt = �Et
�
(1� �)Qt+1 + �t+1

�
rt+1ujt+1 � ��1t+1� [ujt+1]

�	
��t +Qt�t

�
1� S

�
xjt
xjt�1

�
� S 0

�
xjt
xjt�1

�
xjt
xjt�1

�
+ �EtQt+1�t+1S 0

�
xjt+1
xjt

��
xjt+1
xjt

�2
= 0:

I do not include the �rst order conditions with respect to Arrow-Debreu securities, since we

do not need them to solve for the equilibrium of the economy. Nevertheless, those �rst order

conditions will be useful below to price the securities. In particular, from the second equation,

we can see that

�jt+1
�jt

=
dt (cjt+1 � hcjt)

�1 � h�Et+1dt+2 (cjt+2 � hcjt+1)
�1

dt (cjt � hcjt�1)
�1 � h�Etdt+1 (cjt+1 � hcjt)

�1

is the pricing kernel of the economy.

If we de�ne the (marginal) Tobin�s Q as qt =
Qt
�t
(the value of installed capital in terms

of its replacement cost), we �nd:

qt = �Et
�
�t+1
�t

�
(1� �) qt+1 + rt+1ujt+1 � ��1t+1� [ujt+1]

��
1 = qt�t

�
1� S

�
xjt
xjt�1

�
� S 0

�
xjt
xjt�1

�
xjt
xjt�1

�
+ �Etqt+1�t+1

�jt+1
�jt

S 0
�
xjt+1
xjt

��
xjt+1
xjt

�2
:

The �rst equation tells us that the relative price of capital is equal to the (expected) return

we will get from it in the next period

(1� �) qt+1| {z }
Sale Value

+ rt+1ujt+1| {z }
Rental Payment

� ��1t+1� [ujt+1]| {z }
Compensation for Utilization Rate
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times the pricing kernel. The second equation determines that if S [�] = 0 (i.e., there are no
adjustment costs), we get:

qt =
1

�t

i.e., the marginal Tobin�s Q is equal to the replacement cost of capital (the relative price of

capital), which falls over time as �t increases. Furthermore, if �t = 1 (as we have in the basic

real business cycle model), the relative price of capital is trivially equated to 1.

The necessary conditions with respect to labor and wages are more involved. There is

a labor �packer�that aggregates the di¤erentiated labor supplied by each household into a

homogeneous labor unit that intermediate good producers hire in a competitive market. The

aggregation is done through the following production function:

ldt =

�Z 1

0

l
��1
�

jt dj

� �
��1

(10)

where 0 � � <1 is the elasticity of substitution among di¤erent types of labor and ldt is the

aggregate labor demand.

The labor �packer�maximizes pro�ts subject to the production function (10), taking as

given all di¤erentiated labor wages wjt and the wage wt for ldt . Consequently, its maximization

problem is:

max
ljt

wtl
d
t �

Z 1

0

wjtljtdj

After some algebra, we get the input demand functions associated with this problem:

ljt =

�
wjt
wt

���
ldt 8j (11)

which shows that the elasticity of substitution also controls the elasticity of demand for j�th
type of labor with respect to wages. Then, by using the zero pro�t condition for the labor

�packer�:

wt =

�Z 1

0

w1��jt dj

� 1
1��

:

Now we can specify the wage-setting mechanism. There are several mechanisms for in-

troducing wage rigidities but one that is particularly clever and simple is a time-dependent

rule called Calvo pricing. In each period, a fraction 1� �w of households can reoptimize their
wages and set a nominal value ptwjt. All other households can only partially index their
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wages by past in�ation with an indexation parameter �w 2 [0; 1]. Therefore, the real wage of
a household that has not been able to reoptimize it for � periods is:

�Y
s=1

�
�w
t+s�1
�t+s

wjt

The probability 1 � �w is the reduced-form representation of a more microfounded origin of

wage rigidities (quadratic adjustment costs as in the original Calvo paper, 1983, contract

costs, Caplin and Leahy, 1991 and 1997, or information limitations, Mankiw and Reis, 2002,

or Sims, 2002), which we do not include in the model to keep the number of equations within

reasonable bounds. In section 6, I will discuss the problems of Calvo pricing in detail. Su¢ ce

it to say here that, despite many potential problems, Calvo pricing is so simple that it still

constitutes the natural benchmark for price and wage rigidities. This is due to the memoryless

structure of the mechanism: we do not need to keep track of when wages reoptimized the last

time, since �w is time independent.

Relying on the separability of the utility function and the presence of complete markets,

the only part of the Lagrangian that gets a¤ected by the wage and labor supply decisions of

the household is:

max
wjt

Et
1X
�=0

(��w)
�

(
�dt't 

l1+#jt+�

1 + #
+ �t+�

�Y
s=1

�
�w
t+s�1
�t+s

wjtljt+�

)
(12)

subject to

ljt+� =

 
�Y
s=1

�
�w
t+s�1
�t+s

wjt
wt+�

!��
ldt+� 8j

Note how we have modi�ed the discount factor to include the probability �w that the house-

hold has to keep the wage for one more period. Once the household can reoptimize, the

continuation of the decision problem is independent from our choice of wage today, and

hence, we do not need to include it in the section of the Lagrangian in equation (12). We

also assume that

(��w)
� �t+�

�Y
s=1

�
�w
t+s�1
�t+s

goes to zero for the previous sum to be well de�ned.

Also, because of complete markets, all of the households reoptimazing wages in the current

period will pick the same wage and we can drop the jth from wjt. The �rst order condition
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of this problem is then:

� � 1
�

w�tEt
1X
�=0

(��w)
� �t+�

 
�Y
s=1

�
�w
t+s�1
�t+s

!1�� �
w�t
wt+�

���
ldt+� =

Et
1X
�=0

(��w)
�

0@dt+�'t+� 
 

�Y
s=1

�
�w
t+s�1
�t+s

w�t
wt+�

!��(1+#) �
ldt+�
�1+#1A

where w�t is the new optimal wage. This expression involves in�nite sums that are di¢ cult

to handle computationally. It is much simpler to write the �rst order conditions as f 1t = f 2t

where we have the recursive functions:

f 1t =
� � 1
�

(w�t )
1�� �tw

�
t l
d
t + ��wEt

�
�
�w
t

�t+1

�1�� �
w�t+1
w�t

���1
f 1t+1

and:

f 2t =  dt't

�
wt
w�t

��(1+#) �
ldt
�1+#

+ ��wEt
�
�
�w
t

�t+1

���(1+#)�
w�t+1
w�t

��(1+#)
f 2t+1:

Now, if we put the previous equations together and drop the j�s indexes (that are redun-

dant), we have the �rst order conditions

dt (ct � hct�1)
�1 � h�Etdt+1 (ct � hct)

�1 = �t

�t = �Etf�t+1
Rt
�t+1

g

rt = ��1t �
0 [ut]

qt = �Et
�
�t+1
�t

�
(1� �) qt+1 +

�
rt+1ut+1 � ��1t+1� [ut+1]

���
1 = qt�t

�
1� S

�
xt
xt�1

�
� S 0

�
xt
xt�1

�
xt
xt�1

�
+ �Etqt�t+1

�t+1
�t

S 0
�
xt+1
xt

��
xt+1
xt

�2
:

the budget constraint:

cjt + xjt +
mjt

pt
+
bjt+1
pt

+

Z
qjt+1;tajt+1d!j;t+1;t

= wjtljt +
�
rtujt � ��1t � [ujt]

�
kjt�1 +

mjt�1

pt
+Rt�1

bjt
pt
+ ajt + Tt +zt
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and the laws of motion for ft:

ft =
� � 1
�

(w�t )
1�� �tw

�
t l
d
t + ��wEt

�
�
�w
t

�t+1

�1�� �
w�t+1
w�t

���1
ft+1

and:

ft =  dt't (�
�w
t )

��(1+#) �ldt �1+# + ��wEt
�
�
�w
t

�t+1

���(1+#)�
w�t+1
w�t

��(1+#)
ft+1:

where ��wt = w�t =wt:

The real wage evolves as a geometric average of the past real wage and the new optimal

wage:

w1��t = �w

�
�
�w
t�1
�t

�1��
w1��t�1 + (1� �w)w

�1��
t :

5.2. The Final Good Producer

There is one �nal good producer that aggregates intermediate goods yit with the production

function:

ydt =

�Z 1

0

y
"�1
"

it di

� "
"�1

: (13)

where " is the elasticity of substitution. Similarly to the labor �packer,� the �nal good

producer is perfectly competitive and maximizes pro�ts subject to the production function

(13), taking as given all intermediate goods prices pti and the �nal good price pt. Thus, the

input demand functions associated with this problem are:

yit =

�
pit
pt

��"
ydt 8i;

where ydt is aggregate demand and the price level is:

pt =

�Z 1

0

p1�"it di

� 1
1�"

:

5.3. Intermediate Good Producers

As mentioned above, there is a continuum of intermediate goods producers, each of which has

access to a production function yit = Atk
�
it�1

�
ldit
�1�� � �zt where kit�1 is the capital rented

by the �rm, ldit is the amount of the labor input rented from the labor �packer,�and where
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At, a neutral technology level, evolves as:

At = At�1 exp (�A + zA;t) where zA;t = �A"A;t and "A;t � N (0; 1)

This process incorporates a second unit root in the model. The �xed cost of production � is

indexed by the variable zt = A
1

1��
t �

�
1��
t to make it grow with the economy (think, for example,

of the �xed cost of paying some fees for keeping the factory open: it is natural to think that

the fees will increase with income). Otherwise, the �xed cost would become asymptotically

irrelevant. In a balanced growth path, zt is precisely the growth factor in the economy that

we want to scale for. The role of the �xed cost is to roughly eliminate pro�ts in equilibrium

and to allow us to dispense with the entry and exit of intermediate good producers.

Since zt = A
1

1��
t �

�
1��
t , we can combine the processes for At and �t to get:

zt = zt�1 exp (�z + zz;t) where zz;t =
zA;t + �z�;t
1� �

and �z =
�A + ���
1� �

:

Many of the variables in the economy, like ct, will be cointegrated in equilibrium with zt. This

cointegration captures the evidence of constant main ratios of the economy in a stochastic

trend environment with the advantage that, with respect to the empirical literature, the

cointegration vector is microfounded and implied by the optimization decision of the agents

in the model and not exogenously postulated by the econometrician (for the origin of this

idea, see King et al., 1991).

The problem of intermediate goods producers can be chopped into two parts. First, given

input prices wt and rt, they rent ldit and kit�1 to minimize real cost:

min
ldit;kit�1

wtl
d
it + rtkit�1

subject to their supply curve:

yit =

(
Atk

�
it�1

�
ldit
�1�� � �zt if Atk�it�1

�
ldit
�1�� � �zt

0 otherwise

The solution of this problem implies that all intermediate good �rms equate their capital-

labor ratio to the ratio of input prices times a constant:

kit�1
ldit

=
�

1� �

wt
rt
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and that the marginal cost mct is

mct =

�
1

1� �

�1���
1

�

��
w1��t r�t
At

A useful observation is that neither of these expressions depends on i since At and input

prices are common for all �rms.

The second part of the problem is to set a price for the intermediate good. In a similar

vein to the household, the intermediate good producer is subject to Calvo pricing, where now

the probability of reoptimizing prices is 1� �p and the indexation parameter is � 2 [0; 1].
Therefore, the problem of the �rms is:

max
pit

Et
1X
�=0

(��p)
� �t+�
�t

( 
�Y
s=1

��t+s�1
pit
pt+�

�mct+�

!
yit+�

)

subject to

yit+� =

 
�Y
s=1

��t+s�1
pit
pt+�

!�"
ydt+� ;

where future pro�ts are valued using the pricing kernel �t+�=�t.

The �rst order condition of this problem, after some algebra and noticing that p�it = p�t ,

Et
1X
�=0

(��p)
� �t+�

8<:
0@(1� ")

 
�Y
s=1

��t+s�1
�t+s

!1�"
p�t
pt
+ "

 
�Y
s=1

��t+s�1
�t+s

!�"
mct+�

1A ydt+�

9=; = 0

This expression tells us that the price is equal to a weighted sum of future expected mark-ups.

We can express this condition recursively as:

"g1t = ("� 1)g2t

g1t = �tmcty
d
t + ��pEt

�
��t
�t+1

��"
g1t+1

g2t = �t�
�
ty
d
t + ��pEt

�
��t
�t+1

�1�"�
��t
��t+1

�
g2t+1

where:

��t =
p�t
pt
:
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Given Calvo�s pricing, the price index evolves as:

1 = �p

�
��t�1
�t

�1�"
+ (1� �p)�

�1�"
t

5.4. The Government Problem

The last agent in the model is the government. To simplify things I forget about �scal policy

and I assume that the government follows a simple Taylor rule:

Rt
R
=

�
Rt�1
R

�R0@��t
�

��0@ ydt
ydt�1

�z

1Ay1A1�R

exp (mt)

that sets the short-term nominal interest rates as a function of past interest rates, in�ation

and the �growth gap�: the ratio between the growth of aggregate demand, ydt
ydt�1

, and the

average growth of the economy, �z. Introducing this growth gap avoids the need to specify a

measure of the output gap (always somehow arbitrary) and, more important, �ts the evidence

better (Orphanides, 2002). The term mt is a random shock to monetary policy such that

mt = �m"mt, where "mt � N (0; 1).
The other elements in the Taylor rule are the target level of in�ation, �, and the steady

state nominal gross return of capital; R. Since we are dealing with a general equilibrium

model, the government can pick either � or R but not both (R is equal to � times the steady

state real interest rate).

The nominal interest rate can be implemented either through open market operations (as

has been the norm for the last several decades) or through paying interest on bank reserves

(as the Fed has recently begun to do in the United States). In both cases, monetary policy

generates either a surplus (or a de�cit) that is eliminated through lump-sum transfers Tt to

households.

5.5. Aggregation, Equilibrium, and Solution

Now, we can add all of the previous expressions to �nd aggregate variables and de�ne an

equilibrium. First, we have aggregate demand, ydt = ct + xt + ��1t � [ut] kt�1. Second, by

noticing that all the intermediate good �rms will have the same capital-labor ratio, we can

�nd aggregate supply:

yt =
At (utkt�1)

� �ldt �1�� � �zt

vpt
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where

vpt =

Z 1

0

�
pit
pt

��"
di

is an ine¢ ciency factor created by price dispersion, and

ldt =
lt
vwt

is labor packed where

vwt =

Z 1

0

�
wjt
wt

���
dj:

is an ine¢ ciency factor created by wage dispersion. Furthermore, by Calvo�s pricing

vpt = �p

�
��t�1
�t

��"
vpt�1 + (1� �p)�

��"
t

and

vwt = �w

�
wt�1
wt

�
�w
t�1
�t

���
vwt�1 + (1� �w) (�

w�
t )

��

A de�nition of equilibrium in this economy is standard and it is characterized by �rst order

conditions of the household, the �rst order conditions of the �rms, the recursive de�nitions

of g1t and g
2
t , the Taylor rule of the government, and market clearing.

Since the model has two unit roots, one in the investment-speci�c technological change and

one in the neutral technological change, we need to rescale all the variables to avoid solving

the model with non-stationary variables (a solution that is feasible, but most cumbersome).

The scaling will be given by the variable zt in such a way that, for any arbitrary variable

xt, we will have ext = xt=zt: Partial exceptions are the variables, ert = rt�t, eqt = qt�t, andekt = kt
zt�t

: Once the model has been rescaled, we can �nd the steady state and solve the model

by loglinearizating around the steady state.

Loglinearization is both a fast and e¢ cient method for solving large-scale DSGE models.

I have documented elsewhere (Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006),

that it is a nice compromise between speed and accuracy in many applications of interest.

Furthermore, it can easily be extended to include higher order terms (Judd, 1998). Once I

have solved the model, I use the Kalman �lter to evaluate the likelihood of the model, given

some parameter values. The whole process takes less than 1 second per evaluation of the

likelihood.
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5.6. Empirical Results

I estimate the DSGE model using �ve time series for the U.S. economy: 1) the relative price of

investment with respect to the price of consumption, 2) real output per capita growth, 3) real

wages per capita, 4) the consumer price index, and 5) the federal funds rate (the interest rate

at which banks lend balances at the Federal Reserve System to each other, usually overnight).

This series captures the main aspects of the dynamics of the data and model much of the

information that a policy maker is interested in. The sample is 1959.Q1 - 2007.Q1.

To �nd the real output per capita series, I �rst de�ne nominal output as nominal consump-

tion plus nominal gross investment. Nominal consumption is the sum of personal consumption

expenditures on nondurable goods and services while nominal gross investment is the sum

of personal consumption expenditures on durable goods, private residential investment, and

nonresidential �xed investment. Per capita nominal output is equal to the ratio between

our nominal output series and the civilian noninstitutional population between 16 and 65. I

transform nominal quantities into real ones using the investment de�ator computed by Fisher

(2006), a series that unfortunately ends early in 2000:Q4. Following Fisher�s methodology,

I have extended the series to 2007:Q1. Real wages are de�ned as compensation per hour in

the nonfarm business sector divided by the CPI de�ator.

My next step is to specify priors. To facilitate the task of the reader who wants to continue

exploring the estimation of DSGE models, I would follow the choices of Smets and Wouters

(2007) with a few trivial changes. Instead of a long (and, most likely, boring) discussion of

each prior, I just point out that I am selecting mainstream priors that are centered around

the median value of estimates of micro and macro data. Also, I �x some parameters that are

very di¢ cult to identify in the data. The priors are given by:

Table 1: Priors

100
�
��1 � 1

�
h  �p � �w

Ga(0:25; 0:1) Be(0:7; 0:1) N (9; 3) Be (0:5; 0:1) Be (0:5; 0:15) Be (0:5; 0:1)

�w R y � 100(�� 1) #

Be (0:5; 0:1) Be (0:75; 0:1) N (0:12; 0:05) N (1:5; 0:125) Ga (0:95; 0:1) N(1; 0:25)

� � �d �' exp(�A) exp(�d)

N (4; 1:5) N (0:3; 0:025) Be (0:5; 0:2) Be (0:5; 0:2) IG (0:1; 2) IG (0:1; 2)

exp(�') exp(��) exp(�e) 100�� 100�A

IG (0:1; 2) IG (0:1; 2) IG (0:1; 2) N (0:34; 0:1) N (0:178; 0:075)
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while the �xed parameters are:

Table 2: Fixed Parameters

� " � � �2

0:025 10 10 0 0:001

Perhaps the only two �xed parameters that are interesting to discuss are " and �, both

with a value of 10. These values imply an average mark-up of around 10 percent, in line with

many estimates.

I generate 75,000 draws from the posterior using a random walk Metropolis-Hastings.

While 75,000 draws is a comparatively low number, there was a substantial and long search

for good initial parameter values, which means that the estimates were stable and passed all

the usual tests of convergence. The posterior medians and the 5 and 95 percentile values

of the 23 estimated parameters of the model are reported in table 3. Figure 1 plots the

histograms of each parameter (one can think of the likelihood as the combination of all those

histograms in a highly dimensional object).18

Table 3: Median Estimated Parameters (5 and 95 per. in parentheses)

� h  # � �

0:998
[0:997;0:999]

0:97
[0:95;0:98]

8:92
[4:09;13:84]

1:17
[0:74;1:61]

9:51
[7:47;11:39]

0:21
[0:17;0:26]

�p � �w �w R y

0:82
[0:78;0:87]

0:63
[0:46;0:79]

0:68
[0:62;0:73]

0:62
[0:44;0:79]

0:77
[0:74;0:81]

0:19
[0:13;0:27]

� � �d �' �A �d

1:29
[1:02;1:47]

1:010
[1:008;1:011]

0:12
[0:04;0:22]

0:93
[0:89;0:96]

�3:97
[�4:17;�3:78]

�1:51
[�1:82;�1:11]

�' �� �e �� �A

�2:36
[�2:76;�1:74]

�5:43
[�5:52;�5:35]

�5:85
[�5:94;�5:74]

3:4e� 3
[0:003;0:004]

2:8e� 3
[0:002;0:004]

[FIGURE 1 HERE]

What do we learn from our estimates? First, the discount factor � is very high, 0.998.

This is quite usual in DSGE models, since the likelihood wants to match a low interest rate.

18These results are also reported in Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2008).
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Since we have long-run growth in the model, the log utility function generates a relatively

high interest rate without the help of any discounting. Second, we have a very high degree of

habit, around 0.97. This is necessary to match the slow response of the economy to shocks as

documented by innumerable number of VAR exercises. Third, the Frisch elasticity of labor

supply is 0.85 (1/1.17). This is a nice surprise, since it is a relatively low number, which

makes it quite close to the estimates of the micro literature (in fact, some micro estimates

are higher than 0.85!). Since one of the criticisms of DSGE models has traditionally been

that they assumed a large Frisch elasticity, our model does not su¤er from this problem.19

Investment is subject to high adjustment costs, 9.51. Again, this is because we want to

match a slow response of investment to shocks. The elasticity of output to capital, 0:21, is

very low but similar to the results by Smets and Wouters (2007). When we interpret this

number, we need to remember that, on top of the payments to capital, we have the pro�ts

of the intermediate good producers. Since the national income and product accounts lump

together both quantities as gross operating surplus, the result is consistent with the evidence

on income distribution.

The estimates also reveal a fair amount of nominal rigidities. The Calvo parameter for

price adjustment, �p; is 0.82 (an average �ve-quarter pricing cycle) and for wages it is 0.68

(an average three-quarter wage cycle). The indexation level for prices, �; is 0.63, and the

indexation for wages is nearly the same, 0:62: Despite the fair amount of uncertainty in the

posterior (for example, � ranges between 0:46 and 0:79), the model points out the important

role of nominal rigidities. There is, of course, the counterargument that since the only way

the model can account for the e¤ects of monetary shocks is through picking up large nominal

rigidities, the likelihood takes us to zones with high rigidity. In a model with other channels

for monetary policy to play a role (for example, with imperfect common knowledge), the

likelihood may prefer less nominal rigidities. In that sense, if the DSGE model is extremely

misspeci�ed, our inference may lead us to wrong conclusions.

The estimates for the coe¢ cients of the Taylor rule are in line with the estimates of single

equation models (Clarida, Galí, and Gertler, 2000). The coe¢ cient on in�ation, � = 1:29,

shows that the Fed respects the Taylor principle (without entering here into a discussion of

whether it did in di¤erent subperiods as defended by Lubick and Schorfheide, 2004). The

coe¢ cient on output, y = 0:19, signals a weak but positive response to the output growth

19On the other hand, the model, like all New Keynesian models, requires quite large preference shocks. It
is not clear to me that we have made much progress by substituting a high Frisch elasticity for these large
shocks.
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gap. The coe¢ cient on lagged interest rates, R = 0:77, indicates a strong desire to smooth

the changes on nominal interest rates over time, which has been attributed either to an

avoidance of disruptions in the money market or to allow new information about the state of

the economy to emerge more fully before a large change in monetary policy is fully passed on.

The estimated target in�ation is a quarterly 1 percent, perhaps high by today�s standards

but in line with the behavior of prices during the whole sample.

The growth rates of the investment-speci�c technological change, ��, and of the neutral

technology, �A, are roughly equal. This means that the estimated average growth rate of the

U.S. economy in per capita terms, (�A + ���) = (1� �) is 0.43 percent per quarter, or 1.7

percent annually. Finally, the estimated standard deviations of shocks show an important

role for both technological shocks and for preference shocks.

6. Areas of Future Research

In the next few pages, I will outline some of the potential areas of future research for the

formulation and estimation of DSGE models. I do not attempt to map out all existing

problems. Beyond being rather foolish, it would take me dozens of pages just to brie�y

describe some of the open questions I am aware of. I will just talk about three questions I

have been thinking about lately: better pricing mechanisms, asset pricing, and more robust

inference.

6.1. Better Pricing Mechanisms

In our application, we assumed a simple Calvo pricing mechanism. Unfortunately, the jury

is still out regarding how bad a simpli�cation it is to assume that the probability of changing

prices (or wages) is �xed and exogenous. Dotsey, King, and Wolman (1999), in an important

paper, argue that state-dependent pricing (�rms decide when to change prices given some

costs and their states) is not only a more natural setup for thinking about rigidities but also

an environment that may provide very di¤erent answers than the basic Calvo pricing.

More recently, Bils, Klenow, and Malin (2008) have presented compelling evidence that

state-dependent pricing is also a better description of the data. Bils, Klenow and Malin�s

paper is a remarkably nice contribution because the mapping between microevidence of price

and wages changes and nominal rigidity in the aggregate is particularly subtle. An interesting

characteristic of our Calvo pricing mechanism is that all the wages are being changed in
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every period, some because of reoptimization, some because of indexing. Therefore, strictly

speaking, the average duration of wages in this model is one period. In the normal setup, we

equate a period with one quarter, which indicates that any lower degree of price changes in

the data implies that the model display �excess�price volatility. A researcher must then set

up a smart �mousetrap.�Bils, Klenow, and Malin �nd their trap in the reset price in�ation

that they build from micro CPI data. This reset in�ation clearly indicates that Calvo pricing

cannot capture many of the features of the micro data and the estimated persistence of

shocks. The bad news is, of course, that handling a state-dependent pricing model is rather

challenging (we have to track a non-trivial distribution of prices), which limits our ability

to estimate it. Being able to write, solve, and estimate DSGE models with better pricing

mechanisms is, therefore, a �rst order of business.

6.2. Asset Pricing

So far, assets and asset pricing have only made a collateral appearance in our exposition.

This is a defect common to much of macroeconomics, where quantities (consumption, in-

vestment, hours worked) play a much bigger role than prices. However, if we take seriously

the implications of DSGE models for quantities, it is inconsistent not to do the same for

prices, in particular asset prices. You cannot believe the result while denying the mechanism:

it is through asset prices that the market signals the need to increase or decrease current

consumption and, in conjunction with wages, the level of hours worked. Furthermore, one of

the key questions of modern macroeconomics, the welfare cost of aggregate �uctuation, is, in

a precise sense, an exercise in asset pricing. Roughly speaking, a high market price for risk

will denote a high welfare cost of aggregate �uctuations and low market price for risk, a low

welfare cost.

The plight with asset prices is, of course, that DSGE models do a terrible job at matching

them: we cannot account for the risk-free interest rate (Weil, 1989), the equity premium

(Mehra and Prescott, 1985), the excess volatility puzzle, the value premium, the slope of the

yield curve, or any other of a long and ever-growing list of related observations (Campbell,

2003).

The origin of our concerns is that the stochastic discount factor (SDF) implied by the

model does not covariate with observed returns in the correct way (Hansen and Jagannathan,

1991). For ease of exposition, let me set h = 0 (the role of habits will become clearer in a

moment) and use the equilibrium condition that individual consumption is equal to aggregate
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consumption. Then, the SDF mt is:

mt = �
ct
ct+1

= �
ztect

zt+1ect+1 = �e��z�zz;t+1
ectect+1

Since (detrended) consumption is rather smooth in the data:

ectect+1 � 1
and the variance of zz;t+1 is low, we have that Etmt � �e��z and �t (mt) is small.

To get a sense of the importance of the �rst result, we can plug in some reasonable value

for the parameters. The annual long-run per capita growth of the U.S. economy between

1865-2007 has been around 1.9 percent. I then set �z = 0:019: For the discount factor, I pick

� = 0:999, which is even higher than our point estimate in section 5 but which makes my

point even stronger. Thus, the gross risk-free real interest rate, Rt is equal to:

Rt = (Etmt)
�1 � ��1e�z = 1:02

However, in the data, we �nd that the risk-free real interest rate has been around 1 percent

(Campbell, 2003). This is, in a nutshell, the risk-free interest rate: even in a context where

agents practically do not discount the future and where the elasticity of intertemporal substi-

tution (EIS) is 1, we create a high interest rate. By lowering � or the EIS to more reasonable

numbers, we only make the puzzle stronger. The extension of the previous formula for the

general constant relative risk aversion utility function is:

Rt = (Etmt)
�1 � ��1e

1
 
�z

where  is the EIS. Even by lowering the EIS to 0.5, we would have that e
1
 
�z would be

around 1.04, which closes the door to any hope of ever matching the risk-free interest rate.

The second result, mt �uctuates very little, implies that the market price for risk,

�t (mt)

Etmt

is also low. But this observation just runs in the completely opposite direction of the equity

premium puzzle, where, given historical stock returns, we require a large market price for

risk.
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How can we �x the behavior of the SDF in a DSGE model? My previous argument re-

lied on three basic components. First, that consumption �uctuates little. Second, that the

marginal utility of consumption �uctuates little when consumption changes a small amount,

and third, that the pricing of assets is done with the SDF. The �rst component seems robust.

Notwithstanding recent skepticism (Barro, 2006), I �nd little evidence of the large �uctua-

tions in consumption that we would need to make the model work. Even during the Great

Depression, the yearly �uctuations were smaller than the total drop in consumption over the

whole episode (the number that Barro uses) and they were accompanied by an increase in

leisure. Exploring the third component, perhaps with incomplete markets or with bounded

rationality, is to venture into a wild territory beyond my current fancy for emotions. My

summary dismissals of the �rst and last argument force me to conclude that marginal utility

must, somehow, substantially �uctuate when consumption moves just a little bit.

The standard constant relative risk aversion utility functions just cannot deliver these

large �uctuations in marginal utility in general equilibrium. As we raise risk aversion, con-

sumers respond by making their consumption decisions smoother. Indeed, for su¢ ciently

large levels of risk aversion, consumption is so smooth that the market price for risk actually

falls (Rouwenhorst, 1995).

Something we can do is to introduce habits, as I did in the model that I estimated before.

Then, the SDF becomes

mt = �
dt (ct+1 � hct)

�1 � h�Et+1dt+2 (ct+2 � hct+1)
�1

dt (ct � hct�1)
�1 � h�Etdt+1 (ct+1 � hct)

�1

and for a su¢ ciently high level of h, we can obtain large �uctuations of the SDF. The intuition

is that, as h! 1, we care about the ratio of the �rst di¤erences in consumption and not the

ratio of levels, and this ratio of �rst di¤erences can be quite large. Habits are plausible (after

a few trips in business class, coming back to coach is always a tremendous shock) and there

may be some good biological reasons why nature has given us a utility function with habits

(Becker and Rayo, 2007). At the same time, we do not know much about the right way to

introduce habits in the utility function (the simple form postulated above is rather arbitrary

and rejected by the data, as shown by Chen and Ludvigson, 2008) and habits generate interest

rates that are too volatile.

Consequently, a second avenue is the exploration of �exotic preferences.� Standard ex-

pected utility functions, like the one used in this paper, face many theoretical limitations.
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Without being exhaustive, standard expected utility functions do not capture a preference

for the timing of resolution of uncertainty, they do not re�ect attitudes toward ambiguity,

and they cannot accommodate loss aversion. Moreover, the standard model assumes that

economic agents do not fear missespeci�cation: they are sure that the model in their heads is

the same as the true description of the world. These limitations are potentially of empirical

importance as they may be behind our inability to account for many patterns in the data,

in particular the puzzling behavior of the prices of many assets and the risk premia (Bansal

and Yaron, 2004). Over the last several years, economists have paid increasing attention

to new forms of the utility function or with fear of misspeci�cation. As a result of this in-

terest, there is a growing excitement about the potentialities of this research area (see the

survey by Backus, Routledge, and Zin, 2005, and the monograph by Hansen and Sargent,

2007, for models where the agents want to behave in a way that is robust to misspeci�cation

mistakes). However, disappointingly little work has been done in the empirical estimation

of DSGE models (or even partial equilibrium models) with this type of preferences (see the

review of Hansen et al., 2007). A better and more realistic understanding of utility functions

is bound to deliver high yields and this understanding must rely on good econometrics (for

some recent attempts, see some of my own work on estimation of models with Esptein-Zin

preferences: Binsbergen et al., 2008).

6.3. More Robust Inference

The relative disadvantage of Bayesian methods when dealing with semiparametrics that we

discussed in section 3 is unsatisfactory. DSGE models are complex structures. To make the

models useful, researchers add many mechanisms that a¤ect the dynamics of the economy:

sticky prices, sticky wages, adjustment costs, etc. In addition, DSGE models require many

parametric assumptions: the utility function, the production function, the adjustment costs,

the distribution of shocks, etc.

Some of those parametric choices are based on restrictions that the data impose on the

theory. For example, the observation that labor income share has been relative constant since

the 1950s suggests that a Cobb-Douglas production function may not be a bad approximation

to reality (although this assumption itself is problematic: see the evidence in Young, 2005,

among others). Similarly, the observation that the average labor supplied by adults in the

U.S. economy has been relatively constant over the last several decades requires a utility

function with a marginal rate of substitution between leisure and consumption that is linear
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in consumption.

Unfortunately, many other parametric assumptions do not have much of an empirical

foundation. Instead, researchers choose parametric forms for those functions based only

on convenience. For example, in the prototypical DSGE model that we presented in the

previous section, the investment adjustment cost function S (�) plays an important role in
the dynamics of the economy. However, we do not know much about this function. Even the

mild restrictions that we imposed are not necessarily true in the data.20 For example, there

is much evidence of non-convex adjustment costs at the plant level (Cooper and Haltiwanger,

2006) and of nonlinear aggregate dynamics (Caballero and Engel, 1999). Similarly, we assume

a Gaussian structure for the shocks driving the dynamics of the economy. However, there

is much evidence (Geweke, 1993 and 1994, Fernández-Villaverde and Rubío-Ramírez, 2007)

that shocks to the economy are better described by distributions with fat tails.

The situation is worrisome. Functional form misspeci�cation may contaminate the whole

inference exercise. Moreover, Heckman and Singer (1984) show that the estimates of dynamic

models are inconsistent if auxiliary assumptions (in their case, the modelling of individual

heterogeneity in duration models) are misspeci�ed. These concerns raise the question of how

we can conduct inference that is more robust to auxiliary assumptions, especially within a

Bayesian framework.

Researchers need to develop new techniques that allow for the estimation of DSGE models

using a Bayesian framework where we can mix tight parametric assumptions along some

dimensions while keeping as much �exibility as possible in those aspects of the model that

we have less con�dence with. The potential bene�ts from these new methods are huge. Our

approach shares many lines of contact with Chen and Ludvigson (2008), a paper that has

pioneered the use of more general classes of functions when estimating dynamic equilibrium

models within the context of methods of moments. Also, I am intrigued by the possibilities of

ideas like those in Álvarez and Jermann (2004), who use data from asset pricing to estimate

the welfare cost of the business cycle without the need to specify particular preferences. In

a more theoretical perspective, Kimball (2002) has worked out many implications of DSGE

models that do not depend on parametric assumptions. Some of these implications are

potentially usable for estimation.

20If we are linearizing the model or computing a second order approximation, we do not need to specify more
of the function than those properties. However, if we want to compute arbitrarily high order approximations
or use a projection solution method, we will need to specify a full parametric form.
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7. Concluding Remarks

I claimed in the introduction that the New Macroeconometrics is a new and exciting area of

research. The previous pages, even if brief, have attempted to show the reader why the �eld is

important and how it de�nes the new gold standard of empirical research in macroeconomics.

But there is an even better part of the deal. Much needs to be done in the �eld: the number

of papers I can think about writing in the next decade, both theoretical and applied, is nearly

unbounded (and, of course, I can only think about a very small subset of all the possible and

interesting papers to write). Since my ability and the ability of other practitioners in the New

Macroeconometrics are limited by the tight constraints of time, we need more eager young

minds to join us. I hope that some readers will �nd this call intriguing.
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