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ABSTRACT

Sellers of new products are faced with having to guess demand conditions

to set price appropriately. But sellers are able to adjust price over time

and to learn from past mistakes. Additionally, it is not necessary that all

goods be sold with certainty. It is sometimes better to set a high price and

to risk no sale. This process is modeled to explain retail pricing behavior

and the time distribution of transactions. Prices start high and fall as a

function of time on the shelf. The initial price and rate of decline can be

predicted and depends on thinness of the market, the proportion of customers

who are "window shoppers," and other observable characteristics. In a simple

case, when prices are set optimally, the probability of selling the product is

constant over time. Among the more interesting predictions is that women's

clothes may sell for a higher average price than men's clothes, given similar

cost, even in a competitive market. Another is that the initial price level

and the rate of price decline are positively related to the probability of

selling the good. Other observable relationships are discussed.
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A large department store wants to sell a "one—of--a—kind" designer gown.

Although the manager has some idea about the price that the gown can command,

there is generally some guesswork associated with the process. How should he

choose his initial price? If the dress does not sell at that price after the

first few weeks on the rack, he has the option of trying a new price, when

does he change price and how does the new price relate to the old? How does

the decision depend on the characteristics of the gown and on conditions in

the clothing market? Is the gown more likely to sell during the first few

weeks on the rack, is the pattern of expected transactions smooth over time,

or do most sales occur later, when the seller is most frantic about getting

rid of the gown?

Firms face a very similar problem when they market a new product that is

not unique. Imagine a computer firm that introduces a new model. How should

the firm select a time path of prices for the computer, recognizing that the

company is not completely certain about the market for the new item? Is it

best to start with a high price and lower it over time, or should it do the

reverse? Are there any circumstances for which a constant price over time is

the appropriate strategy? How is its price contingent on the number of sales

made in the first days that the product is on the market? Are the number of

transactions likely to be larger at the beginning and then taper off, or might

they be smooth over time? How do these patterns vary with the characteristics

of the goods and the nature of the buyers? When does the firm announce a

"clearance sale," which is an attempt to move merchandise at a price

(significantly) below its original price?

This paper provides a simple framework that permits the analysis of these

issues. It is an attempt to explain pricing and transaction patterns over

time. A number of market phenomena are explained. Among the more interesting

ones are:
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1. Differences in pricing behavior by characteristics of the goods.

For example, it is commonly alleged that women's clothes are more

expensive than men's clothes, given cost conditions. Also, "designer" items

often carry extremely high initial prices, which fall rapidly if the good does

not sell. If men's suits do not exhibit such volatile price behavior, what

might explain this pattern? What does "fashion" have to do with this and is

there an objective definition of "fashion" that yields predictions?

2. Prices may be more or less variable depending upon the thinness of

the market.

For some items, say, a $2 million mansion, transactions are relatively

rare events. How does the pricing of these infrequently traded items differ

from that of goods that turn over often?

3. 1X strategies vary with the uniqueness of the good?

tsigner dresses and Picasso paintings are unique. One and only one item

of its exact type is for sale. But there are many copies of a new computer

model and the sale of one machine does not preclude the sale of another

identical one to another buyer. How does pricing and selling strategy differ

in these two cases?

4. Price reduction policies as a function of time on the shelf.

Some famous department stores have an announced policy of halving the

price of an item for each week that it remains on the floor. Such "bargain

basement" behavior can be predicted and the price cutting rule can be speci-

fied as well. When is a rigid nile of this sort an optimal pricing policy?

The goal is to relate these pricing and selling strategies to underlying,

observable characteristics of the market in order to explain the differences.

Factors relating to the heterogeneity of the goods, the heterogeneity of buyer

preferences, and search costs are discussed.



—3—

The idea behind the model is that the ability to sell goods over time

allows richer strategies for two reasons. First, if the good does not sell

during the first period, the seller still has a chance of selling it during

the next period. Second, the outcome of the first period provides the second—

period seller with additional information. The amount and nature of that

information depends on the characteristics of the market and the number and

attributes of the buyers. This can be modeled in a very easy way and all of

the questions posed above can be addressed.1

A distinction that plays an important role is the one between the

expected selling price and the expected revenue associated with a good. The

former is the price, conditional on a sale. The latter takes into account

that a sale does not always occur. It generally pays to set prices in a way

that sometimes leaves the good unsold at the end of the period.

The most important point to bear in mind is that this is a model of

"retailing." Retailing, as defined in this paper, describes a selling pattern

with an aimounced price that is maintained for some period of time. The

seller agrees implicitly to sell to the first person (or in the case of non—

unique goods, to any person) who comes along and is willing to pay that price.

The good sells at the stated price. No haggling occurs and auctions, which

pit one buyer against another, are not held. Since the analysis and some

results bear a close relation to the auction literature, some comparisons are

made below. Although the retailing paradigm is taken as given and exogenous,

some attempt to explain why retailing is used over other selling schemes is

presented in that section as well.

The design of the paper is to start with the simplest model and then to

introduce complications as necessary to explain the data. The effects of

market competition and strategic behavior of buyers are all considered in

turn.
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I. Intertemporal vs. Single—Period Pricing

The ability to change price after the first attempt to sell the product

fails produces a richer set of strategies and changes the problem facing the

firm. To see this, let us begin with the most basic characterization of the

firm's pricing problem in a single—period context.

A. A One-Period Model

Suppose that the firm will encounter one and only one buyer who is

willing to pay V for the good, but no more. The firm does not know V with

certainty, but has some prior notion of the density of V denoted f(V) with

distribution function F(v).2 (The prior may be based on an examination of the

selling prices of similar goods, but for now, its source is unimportant.) The

risk—neutral firm's problem is to maximize expected profits or

(1) Max R[1 — F(R)]
R

where R is the price and 1 — F(R) is the probability that V exceeds R

so that a sale is made. For the purposes of expositional simplicity, suppose

that the prior on V is uniform between zero and ones Then F(R) R so

that the optimum is at R = 1/2, yielding expected profits of 1/4.

An alternative formulation is that the firm has a large number of simi-

lar, but not identical items that it wishes to sell. It knows that the

distribution of demand prices is given by f(V), but it does not know which

items correspond to high values and which to low. An example is a line of

dresses, which come in different colors or have different trim. Ex ante, the

seller does not know whether it is the yellow or the red one that has V = 1.

The one—period pricing rule is again, set R = 1/2.
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B. A Two-Period Model

Now suppose instead that if the good does not sell during the first

period, the seller faces another buyer during the second period who is

identical to the one he saw during the first period. The firm now has two

chances to sell the good. Furthermore, the failure of the good to sellin

period 1 at price R1 tells the seller something about the V. In this

simple case, it implies that V < R, because if V > R1, the good would

have sold.3

Using Bayes' Theorem, this implies that the posterior distribution which

the firm carries into period 2 is uniform between 0 and R1I so that

the posterior distribution, = V/R1. The choice of affects the

problem in two ways. First, it affects the probability of a sale in period 1.

Second, it determines what the firm can infer from no sale. For example, if

= 1, then the fact that the good did not sell is uninformative because the

firm was certain that V < 1 at the outset. Similarly, R1 = 0 is certain

to result in a sale during the first period so there is no learning that

occurs with this choice either.

The firm's problem then is to choose R1 and R2 where R2 is the

price that the firm tries in period 2, given that the good did not sell in

period 1. In this example, the good is unique so that a sale in period 1

eliminates any concern about period 2. That problem can be written as:

(2) Max R1[1 — F(R1)] +
R2[1

—
F2(R2)]F(R)

R1 ,R2

The first term is the price charged in period 1 times the probability that the

good sells in period 1 • The second term is the price charged in period 2

times the probability of a sale in period 2 at that price, given the

information from period 1, times the probability that the good does not sell

in period 1.
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It is instructive to think of this as a dynamic programming problem and

to consider the firm's optimal strategy in period 2, given that the good did

not sell in period 1 at the price R1. The firm's problem in period 2 is

(3) Max R2[1 — F2(R2)]
R2

Given the prior on V, this becomes

Max R2(1 -
R2/R1)

R2

which has an optimum at R2 = (R1)/2.

This makes obvious intuitive sense. For any given R1, if the good did

not sell during the first period, then the seller can rule out the possibility

that V > R1 The distribution that the seller uses in period 2 is uniform

between zero and R, so the second period's problem is equivalent to the one

facing a firm with only one period to sell and with a prior between 0 and

R1. The solution to that problem is to select = (R1)/2•

Thus, for any given R1, if the good remains unsold after one period,

the rule is to cut the price in half next period. (This halving is specific

to the assumed distribution, of course.) Substitution of = (R1)/2 into

(2) and maximizing with respect to R1 yields4

R1 = 2/3

= = 1/3

This illustrates a number of important points, First, prices fall over

time. A retailer puts a gown on the market at a high price (a1 = 2/3),

hoping that it will sell at that price. If it does not sell, he can revise

his price downward during the next period. The reverse pattern would never be

optimal because once the gown sold at 1/3, the seller has eliminated the
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chance that he will get 2/3 for it. (If V > 2/3, then it exceeds 1/3 as

well so period 2 becomes irrelevant since no gown that will sell in period 2

is ever available after period i.) Stated alternatively, the gowns in the
"prettiest" colors with V > 2/3 sell in period 1. The seller must revise

downward his opinion of the value of remaining gowns. The distribution at the

beginning of period 2 has lower value gowns than those at the start of period

1 because the best ones have already been picked off.

This abstracts from any investment in brand name recognition associated

with charging a lower initial price. For example, new firms frequently charge

lower prices than their rivals to induce customers to try the new product.

The difference between the observed price and the optimal one as calculated in

this problem can be thought of as advertising and is ignored throughout. It

also abstracts from contagion or network effects. The value, V, is assumed

to be independent of the number of others who have similar items.6

Second, the comparison with the one—period solution is interesting.

There, the solution was to set price equal to 1/2. Now, because a

disappointed seller has another chance, a first—period price that exceeds 1/2

is justified.7 If he wanted to, he could always select a price of 1/2 during

the second period because he still has one chance left. Of course, given what

he has learned from period 1, a price of 1/2 is no longer optimal in round 2.

So the prices charged straddle the one period optimum.

Furthermore, expected profits are higher as a result of having a second

chance. In the one—period problem, expected profits were 1/4. In the two—

period problem, expected profits are 1/3 (substitute R1 = 2/3, R2 = 2/3 into

(3)). This is because the expected probability of a sale is higher in the

two—period problem. The expected probability that a sale occurs in one of the

two periods is
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or
(1 — F(R1)) + (1 — F2(R2))F(R1)

1 — 2/3 + (1 — (1/3)/(2/3)](2/3) = 2/3

In the one—period problem, the expected probability of a sale was (1 — F(R))

= 1/2. (The expected selling price is the same in both cases).8

C. Heterogeneous Consumers and Thin Markets

The previous problem was made simple because the inference problem was so

trivial. If the good did not sell during the first period, the firm knew with

certainty that it overpriced the good. In reality, other factors make the

inference problem more difficult. Specifically, two factors are important.

The first is the number of customers who come into the store during the first

period. Intuitively, if only a few customers arrive during the first period,

the firm should be less certain about its inference than if a large number

examine the good and reject it at price R1. Second, heterogeneity among

consumers may be important. If some consumers are willing to pay V, while

others will pay an amount below the firm's reservation price, then the problem

is more complicated. The good might not have sold not because the price was

too high, but because that period's customers were all of the wrong type.

This can be parameterized as follows. Suppose that in period 1, N

"customers" examine the good. Of those, a proportion P are just "shoppers"

whose value of the good is less than the seller's reservation price, and

1 - P are "buyers" who are willing to pay V. As before, v is unknown to

the seller and his goal is to select R1 and R2 to maximize profits, given

his prior beliefs on V. In what follows, "customers" refers to the total

number of individuals who inspect the good, "buyers" refers to the subset with

value equal to V, and "shoppers" refers to the subset with value equal to

zero. (Important is that a given individual does not know whether he is a
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buyer or shopper until he has inspected the good. No one who knew that he was

a shopper would ever bother to look.9)

The problem is similar to the one in (3) except for two points: First,

F2(V) is different here. Second, expected sales depend on P. More

formally, the seller wants to maximize

(4) Max R1(Prob. sale in 1) + R2(Posterior prob. sale in 2)(Prob. no sale in 1)

R1 ,R2

Now, the probability of a sale in period 1 is

(1 — F(R1))(1 — pN)

because the probability that every customer is a shopper is pN so that

1 — N is the probability of encountering at least one buyer. It only

requires one buyer to make the sale as long as R, < V. similarly, the

posterior probability of a sale in period 2 is

(1 — F2(R2))(1 — pN)

and the probability of no sale in period 1 is

1 — ((1 —
F(R1 ))(1 pN)]

It is now necessary to derive F2(V)., Bayes' Theorem states that the

posterior probability is proportional to the probability of the sample, given

the parameter, times the prior probability of the parameter. The sample in

this case is the observation that no one bought during period 1. For V <
R1,

the probability of no purchase is 1. For v > R1 there is only one reason

why the good did not sell during period 1 and that is that all customers were

shoppers. This happens with probability N,

It is easy to show that the normalization required to make the integral

of the density function equal to 1 is
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1/(R1(l — pN) + pN)

so that the density is given by

(5) f (v) = 1 for V < R1
2

R1(1 — N) +
—

=
N for V>R1

R1(1 - PN)+ P

Integrating this yields the distribution function

(6) F2(V)
V for V <

R(1 _N) ÷pN —

R1
+ pN(v -

R1)= for V>R .
R1(1

— PN)+ N
To obtain the probability of a sale in period 2, (1 — F2(R2)) must be

multiplied by (1 — P) since that is the probability that at least one buyer

is encountered in the group of customers.

Substitution of these expressions into (4) yields the following

maximization problem:

(7) Max R1(1 — N (l_pN)Rl +
R2(PN+ (l_PN)R,_ R2](1 — pN)

R1 ,R2

As before, it is instructive to solve this as a dynamic programming

problem, deriving the optimal R2 for any R1I given that period 2 is

reached. This problem is written

(8) Max R2(1 — F2(R2))(1
— Pr')

R2

or

R
2 N

Max R2[1 N Nj(1 P )
R2 R1(1 — P ) + P

Differentiating with respect to R2 and setting the derivative equal to zero
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yield the optimum R2 which is given by:

(9) R2=[R1(l_PN)+PNj.

When pN 0, the problem in (7) and (8) reduces to the simpler problem,

which is a special case, considered earlier. Indeed, substitution of N = 0

into (9) yields the earlier solution that R2 = (1/2)R1.

Given the solution for R2 in terms of R1 (8) can be rewritten as

(10) Max R1[1
— (1 — N)1 +- (1 — pN)[pN÷ (1 PN)R]2

R1

which yields the solution

(11) R1 =
2 + N(1 — N)
4 — (1 — pN)2

When pN = 0 so that the problem reduces to the simple one, the solution

is again R1 = 2/3 and = (1/2)(2/3) = 1/3. As goes to 1, however,

the solution goes to R, = 1/2 and from (9), R2 = 1/2. That is, as pN goes

to 1, prices remain constant over time.

The intuition behind this result is straightforward. When pN = 0, all

customers are buyers (there are no window shoppers) so the inference problem

becomes perfect. If the good is left on the shelf after the first period, it

can only be because the good was priced higher than V. Therefore, all V >

R1 can be ruled out. But as approaches 1, almost all of the customers

are merely shoppers. Thus, little can be inferred from the fact that no one

bought the good after the first period. Evn if R1 were less than V,

there is a very good chance that the good would still remain on the shelf

after one period in this climate of browsers. Under these circumstances,

having two consecutive periods is no different from having two independent

one—period problems, since nothing is learned from the first period. This
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implies that the solution to the single period problem, namely price = 1/2,

applies in both periods.10

From (11), it can be shown that

(12) 4N + (1 — pN)(2p2N_ 1)

[4 — (1 — pN)2)12

and that

(13) =! {i — R + (1 — pN) •__ij >2 1
apN

The implication is that when pN is small prices start higher and fall more

rapidly with time unsold. For PN close to 1, prices tend to be constant

over time. Now, N has at least two real world interpretations.

First, N is the number of customers per period of times As N

increases, N gets small so that as N increases, prices start high and

fall more rapidly, when there are a lot of customers per period, there is

more information contained in the fact that the good did not sell so that the

strategy moves toward that used when perfect inference is available. On the

other hand, if N is small, less is learned from the fact that the good

remains unsold after one round. This implies that the prices of goods in thin

markets should start lower and fall less rapidly (relative to the prior

distribution) than prices of goods where markets are dense.

Consider, for example, the problem of selling a house. Suppose there are

two different types of houses. One is a $2 million mansion. Such houses turn

over very infrequently and there are very few buyers. Another is a $50,000

high—rise condominium in a building where one of the 300 apartments is sold

weekly. The implication of this section is that prices of mansions should be

less sensitive to time on the market than prices of condominiums. The reason

is that the owner of the mansion cannot infer that his house was overpriced

from the fact that it has been on the market for two months without selling.
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There are very few potential buyers of mansions. But the owner of the

apartment can quickly and precisely infer that if the apartment did not sell

it is not because he encountered few buyers, but instead because it was

overpriced. Information comes with each genuine buyer and there are fewer of

these per period of time in the case of mansions. This suggests that prices

of lower quality goods adjust more rapidly to time on the market during which

the good remains unsold.

The sale of a house does not quite fit this model, since the process is

one of haggling over price, rather than strict retailing. Still, the intui-

tion of the example is appealing. Goods for which the markets are thin have

more rigid prices; "clearance sales" are less common. How is thin defined?

Since N is the number of customers that any one seller faces, thinness must

be defined in some relative sense. Probably the most easily measured aspect

of thinness relates to the transactions per unit of time. Consider the house

example. If there are 100 houses of the low—priced variety and 5 of the high—

priced variety, then in equilibrium, 100 families live in the former and 5 in

the latter. Thinness would be the same unless each of the 100 turns over more

frequently per unit of time. Suppose that those who live in the low-priced

type move twice as often as the high—price residents. Then the number of

customers that visit the low—priced houses per unit of time exceeds that at

the high—priced houses so an unambiguous measure of thinness can be obtained.

The second interpretation of pN relates to search cost and information.

For a given N, P is the proportion of customers who have a purchase price

below the seller's reservation price (in the example above, it was zero). If

customers have much information about the good before they inspect it, then

few shoppers will show up and all of the customers will be buyers. Consider

wholesale versus retail buyers. It is possible (although not obviously true)

that purchasers in the wholesale market have better prior information than
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those in the retail market. If true, this implies that wholesale prices fall

more rapidly with inventory time than retail prices because the seller at the

wholesale level can infer more than the seller at the retail level about his

pricing policy. What should be true under any circumstances, is that for a

given number of customers, an increase in the proportion of those who do not

buy after having examined the good reduces the speed with which prices fall.

Both of these variables, the number of customers and the proportion who do not

buy after looking, are observable, at least conceptually.

Related to this is the idea that search costs are important in determin-

ing the speed with which prices fall as a function of time on the shelf.

Consider a good for which search is costly, for example, a piece of land in

the middle of Alaska. Fbr a given number of customers, a very small propor-

tion will be window shoppers. Because inspection is so expensive, most who

inspect the good are likely to be buyers rather than shoppers. As such, the

seller of that parcel of land can infer a great deal from the decision by any

customer not to purchase the land. Thus, the listing price of the land should

drop rapidly each time a customer opts against purchase.

Contrast this with a house in the middle of Chicago. The proportion of

shoppers—to—buyers is much higher here because search costs are low. Even

individuals who are likely to value the good at zero rather than V may con-

sider taking a look to be certain. Thus, less can be inferred from a given

customer's decision not to buy the house. This implies that price is less

sensitive to N in Chicago than it is in Alaska. Of course, for a given

period of time, N, the number of customers, is likely to be higher for the

house in Chicago than for the land in Alaska. This means that prices may fall

more rapidly with time even though not with N for the house in Chicago.

Both time on the shelf and N are observable.
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Additionally, goods for which repeat purchases are made are likely to

have informed customers and sellers. The prior on V is tight and P is

likely to be small. More is said on this below.

D. Competition

Competition has not been mentioned in the preceding analysis. Implicit

in the fact that goods must be examined to assess value, is some ex post

monopoly power that is created by the imperfect information. Still, most of

the goods that are the subject of this paper are sold in what would normally

be thought of as a competitive environment. How does competition affect the

story?

There are two ways that competition affects the analysis, The first is
that the existence of competition is likely to alter the firm's prior. Even

with uncertainty in the world, a seller in a competitive market might reason-

ably assume that the distribution of V lies to the left of that for a seller

in a monopolistic market for the standard reasons. If a perfect substitute

exists, and if all customers know its price, then no V in excess of that

price is feasible.

There is a more interesting way to think of competition in this context.

What is meant by competition is that even though firms may not be able to

compete directly on the exact good, (e.g., only one store may carry one

particular designer's latest dress), the customer's search is usually for a

good among a class of goods rather than for any one particular item. (E.g., a

woman is looking for a new party dress, not for Yves St. Laurent's latest.)

In this context, a key parameter, pN, has been assumed to be exogenous. But

competition tends to make pN endogenous. Ex ante, stores are identical even

though there may be some ex post differences. For example, a street may

contain ten art galleries, all of which look identical from the outside. But
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since paintings are unique, each gallery has a different selection of

paintings. Positive profit in the gallery business causes more firms to enter

so that the N that each firm sees falls until expected profit equals zero.11

More formally, substitution of (9) and (11) into (7) yields the firm's

revenue function in terms of N• Differentiation with respect to pN yields

the obvious conclusion that expected revenue falls as pN rises.12 (When N =

1, revenue is zero because all customers are shoppers. When pN = 0,

revenue is maximized because all customers are buyers and, so long as N

equals or exceeds 1, a sale is certain for R1 < V.) One way to think about

competition is that firms enter the industry, reducing the per period flow

of N that any one firm faces until profits are driven to zero. Since

expected revenue falls when N falls (it moves inversely with PN),

competition reduces N until expected revenue equals costs.13

The competitive equilibrium yields some testable predictions on pricing.
To the extent that competition reduces profits to zero by decreasing N and

increasing pN, competition also affects the choice of initial price and its

fall over time. From (12), it is clear that increases in P11 as a result of

competition reduce R1 From (13), the same increase in N implies an

increase in R2. This implies that for the same prior on V, firms in com-

petitive markets choose lower initial prices and reduce them less rapidly than

firms in monopolistic markets. Put differently, this suggests that prices are

more sensitive to inventory time in monopolistic markets than in competitive

ones.

This raises a more general point. Prices of, say, nonperishable items in

supermarkets do not seem to exhibit much time variation at all. How does the

model explain this phenomenon? Competition among supermarkets, which results

in higher pN, is capable of providing one explanation for the phenomenon.

But a more basic force is at work.
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Recall that the reason that prices fall over time is that learning has

taken place during the relevant period. The amount of learning that can occur

depends on the dispersion in the prior on V. But if the same good has been

sold for a long period of time, the relevant prior is likely to be extremely
tight. Thus, little learning occurs and prices remain rigid as a result.

Both factors, the length of the time horizon and the amount of dispersion in

the prior, are analyzed more rigorously below.

E. Observable Time Patterns of Price and Quantity

The theory yields predictions of pricing behavior as a function of three
factors: the number of customers, N; the proportion of customers who are

shoppers rather than buyers, P; and the firm's beliefs about the market,

parameterized through the prior on V. With the exception perhaps of the last

of the three, these variables are observable, at least in theory. However, it

is likely to prove quite difficult to obtain information on P and N.

Quite aside from data considerations, it is useful to be able to relate

price time paths and quantity time paths to some observable characteristics,

as well as to each other, The relation of R1 and R2 to P and N has

already been discussed. Recall that as goes from zero to one, H1 moves

from 2/3 to 1/2 and R2 moves from 1/3 to 1/2: R1 falls and R2 rises so

the ratio of H1 to H2 falls as pN increases, i.e., as inference becomes

more difficult.

The pattern of expected transactions over time is somewhat less

intuitive. The probability of a sale in period 1 is

(14) Prob, sale in 1 = 1 — pN — (1 —
PN)R1

= (1 — pN)(1 — R1) .
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The (unconditional) probability of a sale in period 2 is

Prob(sa].e in 2R2, no sale in 1) • Prob(no sale in 1)

This is the second term of (7) without the price R2 as a scalar. Substitut-

ing (9) into this part of (7) yields

(15) Prob. sale in 2 =-- + (1 — PN)R](l —

Division of (14) by (15) gives the ratio of sales in period 1 to those in

period 2. That ratio is
2(1 —

R1)
N NP + (1 — P

)R1

After substituting (11) into this expression, the ratio reduces to 1. That

means that the unconditional probability of a sale in period 1 is equal to

that for period 2. Expected sales are smooth over time.

Additionally, since expected sales are equal in each period, the proba-

bility that the good sells is given by twice the probability that it sells in

period 1 or by

prob. of sale = 2(1 — pN)(1 — R1)

This varies with pN as

d(Prob.of sale) = —2(1 —
R1)

— 2(1 — N) 1

After substitution of (12), it can be shown that

a(Prob. of sale) <0.
ap

Table 1 simulates some values.
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Table 1

Expected Price and Quantity Relationships

PN R1 R2

Expected
Revenue

Probability
of Sale R1/R2

0.0000 0.6667 0.3333 0.3333 0.6667 2.0000
0.0500 0.6610 0.3390 0.3220 0.6441 1.9500
0.1000 0.6552 0.3448 0.3103 0.6207 1.9000
0.1500 0.6491 0.3509 0.2982 0.5965 1.8500
0.2000 0.6429 0.3571 0.2857 0.5714 1.8000
0.2500 0.6364 0.3636 0.2727 0.5455 1.7500
0.3000 0.6296 0.3704 0.2593 0.5185 1.7000
0.3500 0.6226 0.3774 0.2453 0.4906 1.6500
0.4000 0.6154 0.3846 0.2308 0.4615 1.6000
0.4500 0.6078 0.3922 0.2157 0.4314 1.5500
0.5000 0.6000 0.4000 0.2000 0.4000 1.5000
0.5500 0.5918 0.4082 0.1837 0.3673 1.4500
0.6000 0.5833 0.4167 0.1667 0.3333 1.4000
0.6500 0.5745 0.4255 0.1489 0.2979 1.3500
0.7000 0.5652 0.4348 0.1304 0.2609 1.3000
0.7500 0.5556 0.4444 0.1111 0.2222 1.2500
0.8000 0.5455 0.4545 0.0909 0.1818 1.2000
0.8500 0.5349 0.4651 0.0698 0.1395 1.1500
0.9000 0.5238 0.4762 0.0476 0.0952 1.1000
0.9500 0.5122 0.4878 0.0244 0.0488 1.0500
1.0000 0.5000 0.5000 0.0000 0.0000 1.0000

The relationships illustrated in table 1 provide empirically testable

predictions. As PN goes from zero to one, the price ratio, R1/R2, falls.

Similarly, as goes from zero to one the probability of an eventual sale

falls. This implies that in markets where prices fall rapidly as a function

of time on the shelf, the probability that the good will go unsold is rela—

tively low. The prediction in the housing sample is that mansions, for which

pN is high, should have slowly declining prices and should be more likely to

be taken of f the market after an unsuccessful attempt to sell than inexpensive

condos, for which is low.

This implication is not an obvious one. Since Rj/R2 is high when
R1

is high, the logic implies that for a given prior, goods for which price
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starts high are actually more likely to sell. The reason is that the high

initial price reflects low PN. It is not a matter of calling out prices

randomly, The high initial price is a response to conditions that also imply

that a sale is likely.

Note that the expected price at which the good sells is always 1/2,

irrespective of t• This follows because (prob. sale in 1)/(prob. sale in 2)

= 1 and because (R1 + R2)/2 = .5. This also illustrates the important

distinction between the expected price at which a good sells and expected

revenue. Although expected price, given a sale is independent of pM,

expected revenue falls with• N• The probability that the good remains unsold

(and is returned to the supplier as scrap) increases with pN The point that

not all goods are sold and that there is a systematic relationship between

pricing and the probability of a sale is fundamental to this analysis. It

plays an essential role in reconciling some phenomena described below,

F. Recapitulation

The ability to readjust price as a function of past sales provides the

firm with a richer strategy set. This is especially important when the firm

is more uncertain about the value that consumers attach to the good in ques-

tion. Not only does intertemporal pricing permit more than one chance to

attract buyers, but it also allows the firm to learn about the nature of

demand in the market,

An important implication is that prices start high and fall with time on

the shelf, The level of initial price and speed with which price falls are

positively related to the number of customers that it encounters per period

and to the proportion of real "buyers" in the group. Thin markets have lower

initial and more rigid prices.
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Competition among firms for customers reduces the number of potential

buyers that any one seller encounters. This drives profits to zero, but in

the process, alters the optimal pricing rule. Department stores that sell

somewhat distinct items will select lower initial prices and lower those

prices more slowly when there is competition between stores for buyers. This

is true even when the good in question is available at only one store.

The time pattern of transactions tends to be smooth over time. The

probability that the good eventually sells is positively related to initial

price and the rate of price decline along the optimal price trajectory.

II. Heterogeneous Goods, Fashion, Obsolescence and Discount Rates

This section builds on the earlier ones to explain how prices vary with

factors like product heterogeneity, obsolescence rates and time discounting.

In most of this section, it will be assumed that all customers are buyers,

that is, that P = 0 so that the less complex formulation of the model can be

used.

A. Heterogeneity Among Goods

Is there any sense to the claim that women's clothes cost more than

men's, even for given cost conditions? This is a direct implication of

different product heterogeneity across the type of good.

Formally, what this section examines is how dispersion in the prior on V

affects pricing policy and the probability that a sale is made. Assume that

P = 0 so that the firm's problem becomes the one in (2) (which is the special

case of (4) with P = 0).

Consider a mean preserving spread. For expositional convenience, let us

be specific. Suppose that the prior on V for, say, men's clothes, is

uniform between .5 and 1.5, but for women, it is uniform between 0 and 2. (We
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ignore the endogeneity of the prior throughout.) The idea is that to the

extent that men's clothes take on more variations, it is more difficult to

predict the value of any particular item. Both distributions have the same

mean value and it would seem that average prices, average revenues, and

expected revenues might be the same. This is not the case.

Given the distributions, the prior distribution function for men's

clothes is

(16a) F(V) = V — 1/2 for 1/2 < V< 3/2

and this results in a posterior for any given R1 of

(16b) F2(V) = (V — 1/2)/(R1 — 1/2) for 1/2<V<R1

Similarly, the prior for women's clothes is

(17a) F(V) = V/2 for O<V<2

and this results in a posterior for any given R1 of

(1 7b) F2(V) = V/R1 for 0 < V <

Substitution of (17a,b) into (2) yields the solution that the initial

price for women's clothing, R1, equals 4/3 and the period 2 price, R2, is

2/3. This makes sense since the prior on V is simply a rescaling of the

original prior, where solutions were 2/3, 1/3.

Substitution of (16a,b) into (2) yields the solution that the initial

price of men's clothing, R1, equals 1 and the period 2 price, R2, is 1/2.

Note that the period 2 price is the lower bound of the posterior (and prior)

distributions so that the optimum in this case is to make the sale a certainty

in period 2. (Of course, this result is dependent on the shape of the density

function.)
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Given the prices and the priors, it is obvious that the probability that

the woman's garment sells at 4/3 is 1/3 and the (unconditional) probability

that it sells at 2/3 is also 1/3. This results in an expected price of 1, and

the good is sold 2/3 of the time so expected revenue is 2/3.

For men's clothes, the probability that the garment sells at R1 = 1 is

1/2 and the probability that it sells at 1/2 is also 1/2. The expected price

is 3/4 and expected revenue is 3/4.

Although this is only one example, it illustrates a number of important

points: First, the more disperse prior results in a higher expected price for

a given mean. Thus, women's clothes cost more than men's clothes. Second,

because women's clothes remain unsold more often than men's clothes, expected

revenues can be lower, even though the price, given a sale, is higher. In

competitjon, firms enter the men's clothing industry until expected revenue is

equal across sectors. In the more general model, where P 0, this

reinforces the result that men's clothes sell for lower prices. The key to

this result is that at the optimum prices, more women's clothes remain

unsold. The seller either retains the good (as in the case of an unsold

house), or wholesales it off.

A similar story might apply to goods that are very new or rapidly

changing over time. 'lb the extent that the prior is more diffuse for these

goods, their prices should start higher, but fall faster than those on more

traditional items. This predicts more variance over time in the prices of new

computers than in the prices of standard typewriters. Another reason for high

price variance in the computer market may be the importance of obsolescence.

The next section examines that issue.

As an empirical matter, economists who construct price indexes tend to

focus on the price, given a sale, and ignore the probability of a transaction.



—24—

What this points out is that pricing and sale probabilities are linked. For

many purposes, when the probability of a sale is less than one, expected

revenue—per—good might be a better metric than expected price, given a sale.

The former is more closely related to what the firm generally cares about,

even though the latter is what consumers care about.

B. Fashion, Obsolescence and Discounting the Future

Some goods go out of style very quickly whereas others seem to retain

their popularity for long periods of time. Again, the example of men's and

women's clothes may be relevant. It may be true that men's suits change lapel

widths less frequently than women's clothes change style. That phenomenon is

assumed exogenous for the purposes of this paper, but it is interesting to

know how fashion, or obsolescence as it might be termed in other markets,

affects the choice of initial price and the rigidity of prices over time.

This is easily treated in the current framework. Let us think of

obsolescence or fashion as taking the following form: tiring the first priod,

the good is worth V, but in the second period it is worth V/K, where

K > 1 • The seller still does not know V, but he does know that whatever it

is, it will retain only 1/K of its worth in period 2.

All that changes is the value that is inserted into the period 2 density

function. That is, the individual buys the good in period 2 when

V/K > R2

or when

V > 2
During period 1, nothing is changed so the firm's maximization problem in (2)

now becomes

(18) Max R1[1 —
F(R1)] + R2(1

—
F2(KR2)]F(R1)

R1 ,R2
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Assuming that the prior is uniform between zero and one, the optimum prices

are from the first—order conditions

R
(19a) R2 =2
and

(19b) R1 = 4K— 1

For K = 1, the solutions are identical (as they must be) to those obtained

without obsolescence, namely, R1 = 2/3, R2 1/3.

What is clear from (19a) is that prices fall faster with time on the

shelf when K is large. The reason, of course, is that the seller knows that

if the good was worth V in period 1 it is only worth V/K in period 2, so

period 2's price adjusts accordingly.

Equally intuitive is that the price in period 1 is lower when K is

large. The more obsolete the good becomes, the more anxious is the seller to

get rid of it in period 1. As a result, he trades off this sense of urgency

against the price that would provide him with the best posterior to carry into

period 2.

Stated alternatively, a "classic," defined as a good that does not go out

of style, carries a higher initial price, independent of any resale considera-

tions. Its price is less sensitive to inventory than a good that goes out of

style rapidly. This is true even for a given set of cost conditions.

Time discounting, although seemingly similar, is somewhat different. The

reason is that even though the seller might think of a sale in period 2 at

V as worth only V/K in present value, the posterior density function is

still on V. not V/K because buyers are willing to pay V in period 2.

Thus, the objective function is not (18), but is instead

(20) Max R1(1 — F(R1)) + 2r) (1 F2(R1))F(R1)
R1 ,R2
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the present value of the period 2 price is R2/(l + r), but the customer

continues to buy the good as long as V > R2 The solution when V is
uniform between zero and one is given by

(21a) R2 = R1/2

(21b) R = 2(1 + r)
1 4(l+r)—i

Note that R2 R1/2' which differs from (19a). The price does not

fall more rapidly when the discount rate is positive. This is as it should

be. Given that the firm gets to period 2, the best that it can do is take the

information from period 1 (that V < R1) and optimize. Discounting is

irrelevant to that decision. This was not true when the good became obsolete

in the second period.

But implications about urgency are similar. As r gets large, the firm

is anxious to make the sale in period 1, not because the good will become

obsolete, but for reasons of time preference. At the extreme, as r goes to

infinity, R1 = 1/2. The value of the second period is zero so the firm

behaves as it would in the one—period problem, setting R1 = 1/2. But if it

does get to period 2, the best policy now is to cut price to 1/4 because it

knows (with certainty) that V < 1/2.

Time discounting reduces the initial price, but does not change the rate

at which prices fall as a function of time on the shelf. Obsolescence reduces

the initial price too, but also increases the rate at which prices fall as a

function of time on the shelf.

C. Longer Horizons

Two periods have been assumed throughout the analysis. Time discounting
was one way to modify that assumption, but it is useful to consider more
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directly how a change in time horizon affects pricing strategy. In many

respects, this is another way to treat obsolescence, but there is more to it

than that.

Consider a firm that has T rather than 2 periods during which to sell

its product. The problem in (2) generalizes to

(22) Max R1[1 — F(R1)] + R2[1 — F2(R2)]F(R1) + R3[1 —
F3(R3)JF(R2)

R1 ,R2, . . .,R
+ •ø• + 'Tt — FT(RT)JF(RT1)

where Ft(v) is the posterior after t — 1 periods. As before, F(V)

refers to the prior distribution before period 1. ch term on the right—hand

side has as one of its components F(Rt_i) because this is the probability

that the good was not sold before period t. The problem yields a system of

recursive first—order conditions given by

(23) = i — + R2 = 0

a1
= — 2R2 + = 0

R2 - T-1 + RT 0

=
RT1

- = 0

These yield the general solution that

(24a) = 1/(T + 1)

(24b) Rt = CT - t + l)RT = T - t + 1

These solutions are quite intuitive. First, as T gets large so that

the horizon lengthens, eq. (24a) implies that the price in the last period

goes to zero. Second, eq. (24b) implies that price drops by a smaller amount
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each period with increases in T. Thus, price changes less rapidly per period.

But the initial price is higher as T increases so that a larger total range

of prices is covered. As T goes to infinity, R1 = T/(T + 1) goes to 1.

The price starts at the top and moves down trivially each period until V is

hit precisely. As T goes to 1, we are back to the one-period problem and

R1 is 1/2.

Stated simply, as the firm's selling horizon lengthens, initial price is

higher and prices fall off less rapidly each period. }owever, the price in

the final period is lower as the time horizon increases. This also implies

that the probability that the good sells before the end is reached increases

in T because 1 F(RT) increases in T.

The difference between adding periods and merely lengthening the time

associated with each period is that learning takes place and a new price can

be chosen each period. This comes back to an essential feature of "retailing"

as defined in this paper. The price is fixed for a given length of time

(which is likely to depend on the number of customers encountered per unit of

time). Price changes only occur at the end of that interval. No attempt is

made to call out the highest possible price, and lower it until the customer

agrees to purchase. There are good reasons for not doing this, and those

reasons are discussed below.

D. Non—unique Goods

There is another respect in which the time horizon can be lengthened.

The situation that many firms face in marketing new products is somewhat

different from the one analyzed so far. above, it was assumed that once the

good is sold, there are no others to sell. This is appropriate for a painting

or designer dress, but what of a new computer model put out by an established

company? The fact that the good sells in the first period does not preclude
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additional sales in the second period. How should the prices be set under

these circumstances?

Again, for simplicity, return to the two—period horizon problem and

continue to assume that P = 0: all customers are buyers. Now, three prices

are relevant: The seller must select a price in period 1, Ri; he must choose

a price in period 2 given that no purchases were made in period 1, 2; and

he must choose a price in period 2 given that at least one purchase was made

in period 1, R2. (Under the assumptions about consumer homogeneity, knowing

the exact number of items sold provides no additional information,14

Normalize such that one item is available for sale in period 1 and N2

are available in period 2. If no sale occurs in period 1, then N2 + 1 are

available. N2 may be greater or less than 1. The preceding analysis of

unique goods is merely a special case, with N2 0. The firm's maximization

can be written as

(25)

R
Max. R(i — F(R)) + (N+ 1)R(1 — F(R))F(R) + NR(i — F(R))(1 — F(R))

1' 2' 2

It is especially revealing to treat this as a dynamic program and to

examine what happens if the good sells in period 1.

The second—period problem is

(26) Max N2R2(1 — i2(R2))
R2

Again, using Bayes' Theorem

=0 for V<R1
f(V)=

1 — F(R )
for V > R1

so 1

F(V)=0 for V<R12 F(V) —
F(R1)

—
=

1 —
F(R1)

for V > R1 .
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The maximization in (26) becomes

(27a) Max N2R2 if R2 < R1

N R (1 - F(R ))
(27b) Max 2

—
F(R1)

if R2>R1

Branch (27a) is always increasing in R2 so if the solution is on this

branch, it is at 12 = R1. If > R1,
then the first—order condition for

(27b) is relevant:

d N2— = (1 — F(R ) — R f(R )) = 0
dR 1—FCR1Y 2 2 2

or

- 1—F(R)
R = 2
2 f(R)

This solution is identical to that of the one-period problem. But the

optimal price in the one—period problem can never exceed R1, so the corner

is relevant here, too. Thus, the solution is 12 = R,,
This implies that price in the second period never rises, even if the

good sells during the first period. The reason is that the part of the

distribution below R1 is irrelevant anyway, so knowing that v > R1 does

not change the decision on the optimal price.

Given that R2 =
R1, and using the definition of (v) eq. (26) can

be rewritten as

Max R1(1 — F(R1)) + (N2+ 1)R2(1 — F2(R2))F(R1) + N2R1(1 — F(R1))
R1 ,R2

or

Max (N2+ 1)R1(1 — F(R1)) + (N2+ 1)R2(1 — F2(R2))F(R1)
R1 ,R2

Since the scalar (N2+ 1) is irrelevant, this problem is identical to

the one in (2), where goods were assumed to be unique. Thus, all results
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already derived hold even in the case of non—unique goods. In this example,

R1 = 2/3

R2 = 1/3

= 2/3

If some sales are made in period 1, then price is held at R1 If no sales

are made, then price is halved.15

E. Spoiling the Market and Nondurable Goods

The result that the price following a successful period 1 never falls

hinges on the assumption that demanders who find the price too high in period

1, return for another look in period 2. (If no sale occurs, there are N2+ 1

buyers in period 2.) This is an inappropriate assumption in t obvious

cases. The first is that buyers lose interest when they find that R1 > v.
This may be rational when buyers do not know the firm's prior so that they

cannot forecast its price cutting behavior. The second is that the good is

nondurable. For example, a hotel room that was vacant on Saturday night can-

not be stored and sold again on Sunday.

Under these circumstances, the maximization problem is

R
Max... R1(1 — F(R1)) +

R2N2(1
—

F2(R2))F(R1) +
R2N2(1

—
F2(R2))(1

—
F(R1))

1' 2' 2

Using the results of the previous section, this can be written as

Max (N2+ 1)R1(1 — F(R1)) +
R2N2(1

—
F2(R2))F(R1)

R1 ,R2

The first-order conditions imply that at the optimum,

R2

R2 = R1,'2

2N2+
2

R1
=

3N2+
4
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If N2 1 so that demand is constant over time, R1 = 4/7, instead of 2/3

as obtained before. The reason is that losing a sale in period 1 is now more

costly since the market is spoiled for that buyer, so the firm selects a lower

first—period price. The learning effect, which is still present, is offset to

some extent by the desire to avoid having first—period buyers walk away

without buying. It is not offset completely because
R1 > 1/2, so this is

not the same as consecutive one—period problems. Even though the good is not
storable, the information derived from period 1 is, so sellers of nondurab].es

do not behave myopically. As N2 gets large, R1 approaches 2/3 because the

lost sales in period 1 are trivial, relative to revenue generated in period 2.
The information effect dominates.

Iv. Consumer Behavior

There are a number of aspects of consumer behavior that are worth

considering, We start by analyzing strategic play by purchasers and link this

analysis to the auction literature.

A. Strategic Considerations

Consumers may know the firm's pricing policy and in particular, that
R2 < R1• es it pay for a consumer in period 1 to wait for period 2, knowing

that by doing so he may be able to purchase the good at a lower price? The

decision depends on. the number of rival customers.

Suppose that a buyer has located a gown in period 1 that she values at

V > R1. If she buys the dress, she earns rent = v — R1' Alternatively, she
can wait until period 2 hoping that no others will get there first. The more

potential customers there are in the market, the lower is the probability that

the gown will remain on the rack into the next period. If the buyer passes up

the gown this time, there are N — 1 other customers who might beat her to it
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next period. Therefore, the expected rent from waiting is

(V —

She waits if16

V —
R1 < (V - R2)/N

or if

R1(1 — 1/2N) > V(1 — 1/N)

since R1 = 2R2.

As N goes to infinity, the left side goes to R1 and the right to V.

So the consumer waits if R1 > V. But R1 > V precludes buying the good in

period 1 anyway, so for sufficiently large N, strategic behavior is not an

issue. There are too many others around who can beat this customer to it.

She buys it when she finds it.17 The argument is reinforced if some of this

period's buyers might obtain the good first.

On the other hand, as N goes to 1 it is certain that the consumer

behaves strategically because R1/2 > 0. The consumer is sure to get it next

period since she has no competition so he might as well wait for a lower

price. Thus, strategic behavior is not an issue when there is a large number

of potential buyers, but may be important when only a few individuals are even

potentially interested in the good.18

If goods are not unique, then without time preference, strategic behavior

results in an equilibrium that is identical to that of the one—period problem.

The reason is that all buyers gain if no sales are made in period 1. Since

the good is not unique, all are satisfied in period 2 at a lower price (R2 <

R1), No buyer has any incentive to purchase in period 1. Of course, if the

seller knows this, then he can infer nothing from the fact that no one bought

in period 1. As such, his problem is like the one—period problem so the

solution is Rt = 1/2. Given that solution, no strategic waiting occurs.
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The original solution (2/3, 1/3, 2/3) is restored if some buyers have

high time preferences for the good. (A calculator that produces services over

time provides more utility, the sooner it is acquired.) Then at least some

buyers have an incentive to deviate from the waiting strategy. The initial

"no waiting" equilibrium is restored when some buyers have sufficiently high

time preference to buy in period 1. This requires V —
R1 > (V R2)/(I + r)

where r is the discount rate. For r sufficiently large, a sale in period

1 is guaranteed when V > R1• Then the solution reverts to setting R2
R1

so that strategic waiting is not an issue. Since price does not fall over

time, nothing is gained by waiting.

B. Auctions and Stochastic Arrival of Customers

One way to deal with uncertainty about consumer demand is to hold an

auction.19 In fact, the solution to the basic problem is in many respects

simply a Dutch auction, where the price begins high and continues to fall

until a purchaser declares that he is willing to buy at that price. In the

case where the time horizon is long, so that the reduction in price is small

at each period, and where N is small so that consumers may behave strategic-

ally with respect to waiting time, the analysis is that of a traditional Dutch

auction.

There are two major differences between this analysis and the one that

pertains to the standard Dutch auction. The first is one of emphasis. This

analysis for the most part assumes that N is large and consequently ignores

most strategic behavior by consumers.20 It focuses instead on the rule that the

seller uses to choose the optimal size of the step as a function of the number

of bidders and their types (shoppers or buyers), and of the number of periods

in the horizon. Recall that the number of periods depends on the cost of

changing price because a period is defined as that time during which price
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does not change. If there were no cost to changing price, then the period

notion would be dispensed with and the seller would change price each time a

customer examined the good. Then R would move with N only and time would

be irrelevant.

The second important difference is related. In a Dutch auction, there is

no reason to alter the size of the step once the process is in motion. That

is, once the seller selects an amount by which to lower price each time, no

new information appears until a buyer agrees to purchase the good, at which

point it is too late to use that information. That is not true in the
retailer context, nor is it true in this model. Although we have assumed

throughout that N is fixed, there is nothing in the setup of the problem

that precludes a stochastic N. In fact, for a given choice of R1i the

optimal R2 is given by equation (9), reproduced here:

(9)
R2 =--. {R1(1

— pN) + pNj

If N here is interpreted as the realization of N in period 1, then (9)

still holds as the optimum R2 (because the second period N does not

enter). Thus, the retailer can alter his choice of R2, i.e., change the

size of the step in the Dutch auction, after having observed something from

the first period. Of course, the ability to do so changes the choice of
R1

because that problem now involves an integral over all possible realizations

of N.21 But the point is that the retail pricing policy has an additional

instrument that is useful in all cases where N is stochastic. That instru-

ment is the ability to select the size of the step after obtaining some

information.

There are at least two related reasons why a seller might choose a strict

retail pricing rule over some form of auction or haggling. The first, already
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mentioned, is that an auction may encourage strategic behavior on the part of

consumers that is absent when retail pricing is used. For example, consider

confronting every potential buyer with the maximum possible V and lowering

price very rapidly until the consumer agrees to purchase. Obviously, the

consumer would wait until P = 0, knowing that the considerations that

prevented strategic waiting in the last section are not relevant with this

type of pricing behavior. The retail pricing method, where R1 is chosen and

fixed in advance, discourages strategic behavior by consumers when the number

of customers is sufficiently large. This suggests that retailing is more

likely to be used when there are a large number of anonymous buyers.

The second, and perhaps more compelling reason why large, impersonal

stores might prefer retailing to some form of haggling has to do with delega-

tion of authority. Even if no agency problems exist, it is not unreasonable

to believe that the management of a department store would not trust price

setting to low—paid retail clerks. Since buyers can always refuse to buy if

the price is too high, but can purchase if the price is too low, bad price

setting can result in losses to the firm even if those prices are only

randomly too high or too low. To avoid this adverse selection problem, the

firm may decide to have its experts announce a rigid price (or price rule)

that is posted. No haggling is permitted because the clerk who represents the

store may not be good at it. Agency problems reinforce this result.

This suggests that haggling is more likely to occur when the owner (who

is presumably the high quality price setter) is also the sales agent. Mom—

and—pop stores are more likely to bargain with their customers over price than

are large department stores, which use retail pricing almost exclusively.

There are some more subtle elements, special to this setup, that are not

generally part of the Eitch auction. First, with a IXitch auction, all bidders
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are present at the same time. Equivalently,22 each may submit a binding sealed

bid. In the case of the former, it is necessary that customers examine the

good at the same time. The story in this paper allows individuals to arrive

at different times during each period. The first one to arrive who will pay

price R1 in period 1 (or R2 if it goes to period 2) gets the good. The

Dutch auction imposes the cost that a common meeting time must be found.

Retail pricing does not impose that cost because consumers can choose their

own shopping time.

Sealed bids do not force a common meeting time, but they do create a

waiting period between the time that the bid is made and the winner is deter-

mined. This, too, is costly. For example, a woman bids on a dress for the

Ball and then sees another one before she learns whether she made the winning

bid on the first. Buying the second dress might leave her with two, but

failure to purchase might result in her having none.

V. Empirical Thoughts

The purpose of this theory is to provide some empirical implications on

pricing and transactions behavior as a function of some observable parameters.

There are a substantial number of predictions about pricing and time on the

shelf as a function of the number of customers per period, the type of custo-

mers (shoppers or buyers), the time horizon, interest rates, the durability of

the good, and the shape of the prior.

With the exception perhaps of the last, all of these have observable
analogues. The number of customers and general thinness of the market can be

proxied by the turnover rate for the good. E.g., houses that turn over more

rapidly are sold in markets with higher N. The type of customer, P, can be

measured by the proportion of individuals who examine a good relative to the
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number that actually buy it. The time horizon relates to the maximum number

of times that a price is changed before the good is taken of f the floor.

E.g., bargain basements eventually give up on some goods. After how many

price reductions does this occur?

additionally, some state contingent behavior has been predicted. For

example, when goods are non—unique, the price in period two that follows a

successful period 1 differs in a specific way from the price that follows an

unsuccessful period 1. This relationship is observable and can be tested.

Similarly, the time distribution of transactions is related to the initial

price and to the speed with which price falls over time. Again, both are

observable. Finally, more uncertainty in the prior implies a higher initial

price with more rapid decline. It also implies that at the optimal prices,

more goods are left unsold when the prior is diffuse. (Fewer men's suits are

left unsold than women's dresses.) A relationship between initial price, rate

of price decline, and proportion of unsold goods is predicted, and all are

observable.

VI. Summary and conclusion

Sellers must gauge the market any time they attempt to sell a new item.

Their attempt to do so and to learn from experience leads to pricing and

selling behavior that varies in predictable ways with some observable charac-

teristics of the market.

The major theme is that prices start high and fall as a function of time

on the shelf. The speed of that fall and the initial price itself increase as

the number of customers per unit of time increases, as the proportion of

customers who are "genuine buyers" as opposed to "window shoppers" increases,

and as prior uncertainty about the value of the good increases. The optimum
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price path implies that in the case considered, the probability of making a

sale is constant over time.

A number of additional predictions are obtained. First, diffuse priors

may result in higher initial prices and more rapid fall, but also in higher

average price and more goods left unsold. This might explain why women's

clothes carry a higher average price than men's, but are of lower average

"quality," even in a competitive market.

Second, goods that become obsolete more rapidly or are more susceptible

to fashion exhibjt lower initial prices as well as prices that fall more

rapidly with time on the shelf. Positive discount rates have a similar effect

on initial price, but riot the same effect on the rate of price fall.

Third, non—uniqueness of the good does not alter the solution. A

successful first period is followed by no change in the price, whereas an

unsuccessful first period results in the same price reduction as is warranted

when goods are unique.

Fourth, for nonstorable goods, or when spoiling the market is an issue,

the price reduction policy is the same but the initial price is lower than for

storable goods. It is higher than the price that a myopic seller of non—

durables would charge because even though the good is not storable, the

information derived from period 1 is of value.

Fifth, rigid price reduction policies used by bargain basements are

predicted under certain circumstances.

Finally, the paper examines strategic behavior by consumers and the

relationship between a retailer's pricing policy and D.itch auctions.
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Footnotes

1Neither the questions or methodology are entirely novel. The updating
procedure used is described in DeGroot (1970) and has been used more recently
by Grossman, Kilstrom, and Mirman (1975). Another line of literature, Bass
(1969), Bass and Bultzen (1982), Clark and Dolan (1984), and Spence (1982)
examines some of these problems, but the focus is on cost conditions that

change over time, generally tied to some learning by doing. It is my view

that the essence of the marketing problem that faces a firm that introduces a
new product is selecting a strategy in the face of uncertainty about the
demand for its product. The evolution of prices and transactions over time is
more likely to reflect learning about the market than learning about producing
the product. Both models give declining prices over time, but in the case of

cost changes, myopic sellers charge prices that are too high (Bass and

Bultzen) whereas in the case of learning about demand, myopic sellers choose

prices that are too low.

is useful to recognize that F(V) is determined after the retailer

has seen the good himself. For example, retail sellers of dresses know that

they vary in price from $50 to $10,000. After having examined the good, the

seller may know that a particular dress has a V between $500 and $1,000, but

he does not know the exact value within that range.

3This is different from the usual price discrimination problem where the

demand curve of the market is known, but no buyer will reveal where he is on

that demand curve. That problem is treated by Stokey (1981).

4me same solution is obtained if (2) is maximized simultaneously

choosing R1 and R2 because of the time—consistent nature of the problem.
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5This pricing pattern resembles a Dutch auction. This is discussed in

greater detail below.

is an inaccurate assumption in some cases. For example, the demand

for telephones depends on the number of others who can be called.

7mis result is obtained by Grossman, Kilstrom and Mirman (1975).

Although most of their work focuses on consumer learning, they show that an

experimenting monopolist always starts with a higher price than a non-.

experimenting one.

8Harris and Raviv (1981a) consider the use of different types of pricing

mechanisms when demand conditions are uncertain. Their "priority pricing"

scheme resembles an intertemporal price decline. They show that such a scheme

is optimal when capacity falls short of potential demand. That is the situa-

tion that is implicit in this setup because the unique good can be sold to

only one of many potential buyers.

9mis abstracts from shopping for the pure pleasure of it and from any

information that might be useful in making future purchases.

10Note that an identical mechanism is at work in the labor market context

when trying to infer a worker's product/wage ratio from past transactions.

This is the subject of Lazear (1984).

10ne might ask whether advertising the price could bring about an ex

post competitive equilibrium. The answer is no. Consider a store that said

that it offered paintings for $300. The consumer would not know whether that

is a low price for a prior distribution of V that lies, say, between $300

and $400 or a high price for a prior that lies between $200 and $300. This is

why the point of footnote 2, that the seller draws F(V) from some larger

distribution, and sees the narrower distribution before pricing, is important.
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Recently, Milgrom and Roberts (1984) have shown that a seller should use

price and the level of advertising to signal the quality of the good to the

consumer. That will not solve the problem here for t reasons: First, repeat

purchases play a crucial role in their story. Second, the distribution that

the seller sees before pricing differs from the one that the buyer sees before

entering the store. The buyer must engage in some search before he knows even

the prior on V on which the seller bases his pricing. Note, also, that by

definition, v is the price at which the buyer purchases the good and this

takes into account the option of walking out and examining the paintings in

the next gallery.

2The derivative is messy and without obvious intuitive appeal. However,

it can be shown that expected revenue takes on the following values:

pN Revenue
.00 .333
.05 .322
.20 .290
.50 .200
.75 .111
.95 .024

1.00 .000

l3 may or may not vary with N. If it does, then stability conditions

must be checked and equilibrium, if it exists, need not be unique.

14Second—hand markets are ignored.

15The solution that price never rises after a successful period depends

critically on two assumptions. First, there are no contagion or network

effects that shift demand in period 2 relative to period 1. Second, the group

of buyers is homogeneous in the assessment of V.

16Thjs ignores one—period bargaining considerations.

7The argument here is a special case of the more general one made by

Wilson (1977). Wilson shows that as the number of bidders gets large, a

sealed bid auction results in bids that are almost certain to be equal to the
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true reservation value. As will be pointed out below, the declining price

retail policy is like a titch auction, which is equivalent to a sealed bid

auction in fundamental respects. As such, the Wilson result is relevant in

this context.

l8 assumes that the seller ignores the strategic behavior of

consumers. This assumption is troublesome, and without it, a pure strategy

equilibrium may not exist.

19There is a large literature on auctions starting with Vickrey (1961).

r explores the ailocative arid profit implications of a number of different

kinds of auctions, including the second price and r.itch auction. A number of

recent papers have characterized the conditions under which various types of

auctions are efficient and profit—maximizing. Among those are Butters (1975),

Engelbrecht—Wiggans (1980), Harris and Raviv (1981b), Myerson (1981), and

Milgrom and Weber (1982).

20Most of the auction literature focuses on strategic behavior by consu-

mers in selecting a bid. An early example of this kind of analysis is Wilson

(1967), who examines what happens in an auction when one and only one party is

informed about the value of the good.

21The problem in (7) then becomes

N N N N N
Max E [1 — p 1 — (1 — p )R ] + R [P 1+ (1 — p 1)R —

R2](1
— p 2)}

R1,R2
1 1 2 1

where is the stochastic number of buyers in period t.

22See Riley and Samuelson (1981).




