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1.  INTRODUCTION 

How the composition of the U.S. vehicle fleet responds to changes in gasoline 

prices has important implications for policies that aim to address climate change, local air 

pollution, and a host of other externalities related to gasoline consumption. 3   We 

investigate this response.  Exploiting a unique and detailed data set, we decompose 

changes in the vehicle fleet into changes in vehicle scrappage and new vehicle purchase 

decisions, and analyze how gasoline prices influence each of these choice margins.  We 

then recover the fuel economy elasticities with respect to gasoline prices in both the short 

and long run.  

        In 2006, the United States consumed 7.6 billion barrels of oil.  This represents 

roughly one-quarter of global production, with gasoline consumption accounting for 44% 

of oil consumption.  The combustion of gasoline in automobiles generates carbon dioxide 

emissions, the predominate greenhouse gas linked to global warming, as well as local air 

pollutants such as nitrogen oxides and volatile organic compounds that harm human 

health and impair visibility.  The costs associated with these environmental effects are 

generally external to gasoline consumers, leading many analysts to argue for corrective 

policies. 

        To address these externalities, a suite of policy instruments have been advanced, 

such as increasing the federal gasoline tax, tightening Corporate Average Fuel Economy 

(CAFE) standards, subsidizing the purchase of fuel efficient vehicles such as hybrids, and 

taxing fuel-inefficient “gas guzzling” vehicles.  Several recent studies have compared 

gasoline taxes and CAFE standards and have concluded that increasing the gasoline tax is 

                                                 
3 See Parry, Harrington, and Walls (2007) for a comprehensive review of externalities associated with 
vehicle usage and federal policies addressing those externalities. 



 2

more cost-effective (National Research Council, 2002; Congressional Budget Office, 

2003; Austin and Dinan, 2005; Jacobsen, 2007).  When evaluating the policy options, 

two important behavioral drivers are: (1) the utilization effect, or the responsiveness of 

vehicle miles traveled (VMT) to fluctuations in gasoline prices, and (2) the compositional 

effect, or the responsiveness of fleet fuel economy to gasoline price changes.  Although a 

large body of empirical evidence on the magnitude of the utilization effect now exists 

(see Small and Van Dender (2007) and Hughes, Knittel, and Sperling (2008) for 

summaries and recent contributions), less evidence exists on the size of the compositional 

effect.  This is the focus of our paper. 

        Existing studies that have attempted to quantify the elasticity of fuel economy to 

gasoline prices can be divided into two categories based on the methods and data used. 

Studies in the first group estimate reduced-form models where the average MPG of the 

vehicle fleet is regressed on gasoline prices and other variables by exploiting aggregate 

time-series data (Dahl, 1979; Agras and Chapman, 1999), cross-national data (Wheaton, 

1982), or panel data at the U.S. state level (Haughton and Sakar, 1996; Small and Van 

Dender, 2007).  Studies using time-series data or cross-sectional data are not able to 

control for unobserved effects that might exist in both temporal and geographic 

dimensions.  Although a panel-data structure allows for that possibility, the average MPG 

used in panel-data studies (as well as other studies in this group) suffer from 

measurement errors.  Because fleet composition data are not readily available, most of 

the previous studies infer the average MPG of the vehicle fleet based on total gasoline 

consumption and total vehicle miles traveled.  However, data on vehicle miles traveled 

have well-known problems such as irregular estimation methodologies both across years 
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and states (see Small and Van Dender (2007) for a discussion).  

        The second group of studies models household-level vehicle ownership decisions 

(Goldberg, 1998; Bento et al., 2008). A significant modeling challenge is to consistently 

incorporate both new and used vehicle holdings.  Despite significant modeling efforts, 

Bento et al. (2008) have to aggregate different vintage models into fairly large categories 

in order to reduce the number of choices a household faces to an econometrically 

tractable quantity.4  This aggregation masks substitution possibilities within composite 

automotive categories and therefore may bias the estimates of both demand elasticities 

with respect to price and the response of fleet fuel economy to gasoline prices toward 

zero.  

        Our study employs a qualitatively different data set and adopts an alternative 

estimation strategy.  First, our data set measures the stock of virtually all vintage models 

across nine years and twenty Metropolitan Statistical Areas (MSAs) and hence provides a 

complete picture of the vehicle fleet's evolution.  In contrast to the aforementioned 

reduced-form studies, the fuel economy distribution of vehicle fleet is therefore observed 

in our data.  Second, the data allow us to control for both geographic and temporal 

unobservables, both of which are found to be important in our study.  In contrast to the 

structural methods alluded to above, we make no effort to recover the household 

preference parameters that drive vehicle ownership decisions, and hence our results are 

robust to many assumptions made in those analyses.  Finally, since we observe the fleet 

composition over time, we are able to examine how the inflow and outflow of the vehicle 

fleet are influenced by gasoline prices. 

        We first examine the effect of gasoline prices on the fuel economy of new vehicles 
                                                 
4 Goldberg (1998) estimates a nested logit model by aggregating all used vehicles into one choice. 
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(i.e., the inflow of the vehicle fleet) based on a partial adjustment model.  We find that an 

increase in the gasoline price shifts the demand for new vehicles toward fuel-efficient 

vehicles.  We then study the extent to which gasoline prices affect vehicle scrappage (i.e., 

the outflow of the vehicle fleet).  To our knowledge, this is the first empirical study that 

focuses on the relationship between gasoline prices and vehicle scrappage.5  We find that 

an increase in gasoline prices induces a fuel-efficient vehicle to stay in service longer 

while a fuel-inefficient vehicle is more likely to be scrapped, ceteris paribus.  With both 

empirical models estimated, we conduct simulations to examine how the fuel economy of 

the entire vehicle fleet responds to gasoline prices.  Based on the simulation results, we 

estimate that a 10% increase in gasoline prices will generate a 0.22% increase in the short 

run (one year) and a 2.04% increase in the long run (after the current vehicle stock is 

replaced).  We also find that sustained $4.00 per gallon gasoline prices will generate a 

14% long-run increase in fleet fuel economy relative to 2005 levels, although this 

prediction should be interpreted cautiously in light of the relatively large out-of-sample 

price change considered and the Lucas critique (Lucas, 1976).6 

        The remainder of this paper is organized as follows. Section 2 describes the data. 

Section 3 investigates the effect of gasoline prices on fleet fuel economy of new vehicles. 

Section 4 examines how vehicle scrappage responds to changes in gasoline prices. 

Section 5 conducts simulations and discusses caveats of our study. Section 6 concludes. 

 

 

                                                 
5 Previous papers on vehicle scrappage have focused on factors such as age, vehicle price and government 
subsidies to retirements of old gas-guzzling vehicles (Walker, 1968; Manski and Goldin, 1983; Berkovec, 
1985; Alberini, Harrington, and McConnell, 1995; Hahn, 1995; Greenspan and Cohen, 1999). 
6 In particular, large and sustained gasoline price increases may introduce new demand and supply-side 
responses that would change the model parameters, which themselves might be functions of policy 
variables. 
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2.  DATA 

Our empirical analysis and policy simulations are based on vehicle fleet 

information in twenty MSAs listed in Table 1.  The geographic coverage for each MSA is 

based on the 1999 definition by the Office of Management and Budget.  These MSAs, 

well-representative of the nation as discussed at the end of this section, are drawn from 

all nine Census regions and exhibit large variation in size and household demographics.  

There are three data sets used in this study and we discuss them in turn. 

        The first data set, purchased from R.L. Polk & Company, contains vehicle 

registration data for the twenty MSAs.  This data set has three components.  The first 

component is new vehicle sales data by vehicle model in each MSA from 1999 to 2005. 

The second component is vehicle registration data (including all vehicles) at the model 

level (e.g., a 1995 Ford Escort) in each MSA from 1997 to 2000.  Therefore, we observe 

the evolution of the fleet composition at the model level over these 4 years.7  This part of 

the data includes 533,395 model-level records representing over 135 million vehicles 

registered during this period.  The third component is registration data at the segment 

level (there are twenty-two segments) in each MSA from 2001 to 2005.8  We observe 

59,647 segment-level records representing over 170 million registrations during this 

period.9  Our empirical analysis of new vehicles is based on the first part of this data set 

                                                 
7 We ignore medium and heavy duty trucks and vehicles older than 1978 because the fuel economy 
information is not available for them.  Since these vehicles account for less than 1% of total vehicle stock, 
our finding should not be significantly altered. 
8 There are 22 segments including 12 for cars (basic economy, lower mid-size, upper mid-size, traditional 
large, basic luxury, prestige luxury, basic sporty, middle sporty, upper specialty, prestige sporty), 4 for vans 
(cargo minivan, passenger minivan, passenger van, cargo van), 3 for SUVs (mini SUV, mid-size SUV, full 
size SUV), and 3 for pickup trucks (compact pickup, mid-size pickup and full size pickup). 
9 The stock data at the model level are very expensive. Facing the tradeoff of the level of aggregation and 
the length of the panel, we decided to purchase the stock data at the model level for years 1997 to 2000 and 
the stock data at the segment level for years 2001 to 2005. We discuss in Section 3 how we integrate the 
model and segment level data. 
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while that on vehicle scrappage is based on the second and third components of the data 

set. 

        Based on the changes in vehicle stock across time, we can compute vehicle survival 

probabilities at the model level from 1998 to 2000 and at the segment level from 2001 to 

2005.  The survival probability of a model in year t is defined as the number of 

registrations in year t over that in year t-1.  The survival probability of a segment in a 

given year is defined similarly.  These survival probabilities reflect two types of changes 

in the vehicle fleet.  One is the physical scrappage of a vehicle and the other is the net 

migration of a vehicle in and out of the MSA, which might induce a survival probability 

larger than one.  The average survival probability weighted by the number of registrations 

at the model level (369,507 observations) is 0.9504 with a standard deviation of 0.1098, 

while the average survival probability at the segment level (48,370 observations) is 

0.9542 with a standard deviation of 0.0835.  The standard deviations of the survival 

probabilities at the segment level being smaller reflect the aggregate nature of data at the 

segment level.   

        The second data set includes MSA demographic and geographic characteristics from 

various sources (observations in year 2000 are shown in Table 1).  We collect median 

household income, population, and average household size from the annual American 

Community Survey.  Data on annual snow depth in inches are from the National Climate 

Data Center.  From the American Chamber of Commerce Research Association (ACCRA) 

data base, we collect annual gasoline prices for each MSA from 1997 to 2005.         

During this period, we observe large variations in gasoline prices both across years and 

MSAs.  For example, the average annual gasoline price is $1.66, while the minimum was 
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$1.09 experienced in Atlanta in 1998 and the maximum was $2.62 in San Francisco in 

2005.  Figure 1 plots gasoline prices in San Francisco, Las Vegas, Albany, and Houston 

during the period.  Both temporal and geographic variation is observed in the figure 

although geographic variation is relatively stable over time.  The general upward trend in 

gasoline prices during this period can be attributed to strong demand together with tight 

supply.  Global demand for oil, driven primarily by the surging economies of China and 

India, has increased significantly in recent years and is predicted to continue to grow.  On 

the supply side, interruptions in the global oil supply chain in Iraq, Nigeria, and 

Venezuela, tight U.S. refining capacities, damage to that capacity as a result of gulf 

hurricanes, and the rise of boutique fuel blends in response to the 1990 Clean Air Act 

Amendments (Brown et al., 2008) have all contributed to rising and volatile gasoline 

prices.  

        The third data set includes vehicle attribute data such as model vintage, segment, 

make, and vehicle fuel efficiency measured by the combined city and highway MPG.  

The MPG data are from the fuel economy database complied by the Environmental 

Protection Agency (EPA). 10   We combine city and highway MPGs following the 

weighted harmonic mean formula provided by the EPA to measure the fuel economy of a 

model: MPG=1/[(0.55/city MPG) + (0.45/highway MPG)].11  The average MPG is 21.04 

with a standard deviation of 6.30.  The least fuel-efficient vehicle – the 1987 

Lamborghini Countach (a prestige sporty car) – has an MPG of 7.32, while the most fuel-

                                                 
10 These MPGs are adjusted to reflect road conditions and are roughly 15 percent lower than EPA test 
measures. EPA test measures are obtained under ideal driving conditions and are used for the purpose of 
compliance with CAFE standards. 
11 Alternatively, the arithmetic mean can be used on Gallon per Mile (GPM, equals 1/MPG) to capture the 
gallon used per mile by a vehicle traveling on both highway and local roads: GPM = 0.55 city GPM + 0.45 
highway GPM. The arithmetic mean directly applied to MPG, however, does not provide the correct 
measure of vehicle fuel efficiency. 
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efficient one – the 2004 Toyota Prius (a compact hybrid) – has an MPG of 55.59. 

        With vehicle stock data and MPG data, we can recover the fleet fuel economy 

distribution in each MSA in each year.12  The left panel of Figure 2 depicts the kernel 

densities of fuel economy distributions in Houston and San Francisco in 2005. The 

difference is pronounced, with Houston having a less fuel-efficient fleet.  This is 

consistent with, among other things, the fact that San Francisco residents face higher 

gasoline prices, have less parking spaces for large autos, and tend to support more 

environmental causes.  The right panel plots the kernel densities of fuel economy 

distributions in Houston in 1997 and 2005.  The vehicle fleet in 1997 was more fuel-

efficient than that in 2005 despite much lower gasoline prices in 1997.  This phenomenon 

is largely driven by the increased market share of SUVs and heavier, more powerful and 

less fuel-efficient vehicles in recent years.  For example, the market share of SUVs 

increased from 16 percent to over 27 percent from 1997 to 2005 despite high gasoline 

prices from 2001.  The long trend of increasing share of SUVs and declining fleet fuel 

economy at the national level only started to reverse from 2006, mostly due to record 

high gasoline prices. 

        To examine whether the twenty MSAs under study are reasonably representative of 

the entire country, we compare the average MSA demographics and vehicle fleet 

characteristics with national data. As shown in Table 1, there is significant heterogeneity 

across the twenty MSAs in both demographics and vehicle fleet attributes.  Nevertheless, 

the means of these variables for the twenty MSAs are very close to their national 

                                                 
12 Although we only observe segment level stock data from 2001 to 2005, we can impute stock data at the 
model level during this period for vehicles introduced before 2001 based on the vehicle scrappage model 
estimated in Section 3. Along with these imputed model level stock data, the third component, which tells 
us the stock data for vehicles introduced after 2000, completes the vehicle stock data at the model level for 
years from 2001 to 2005. 
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counterparts.  In Section 5.2, we examine how variation in demographics and gasoline 

prices affect the transferability of our MSA-level results to the entire nation. 

 

3.  FUEL ECONOMY OF NEW VEHICLES 

Our empirical strategy is to: (1) estimate the effect of gasoline prices on both the 

inflow (new vehicle purchase) and the outflow (vehicle scrappage) of the vehicle fleet, 

and (2) simulate the would-be fleet of both used and new vehicles under several 

counterfactual gasoline tax alternatives.  In this section, we study how gasoline prices 

affect the fleet fuel economy of new vehicles.  We examine the effect of gasoline prices 

on vehicle scrappage in the next section.  

        We separately investigate new vehicle purchase and vehicle scrappage decisions.  

To preserve robustness, our approach allows each choice margin to be driven by different 

factors (e.g., credit availability, macroeconomic conditions) through different empirical 

models.  Although these two decisions may very well be inter-related, modeling both the 

new vehicle market and used vehicle market simultaneously presents a significant 

empirical challenge as we discussed in the introduction.  For example, Bento et al. (2008) 

have to aggregate different vehicle models into fairly large categories for the sake of 

computational feasibility in an effort to model new vehicle purchase and used vehicle 

scrappage simultaneously.  However, in doing so, potentially useful information about 

within-category substitution has to be discarded.  Although we perform separate analyses 

of new vehicle purchase and used vehicle scrappage decisions, we try to control for 

possible interactions between the choice margins on our tax policy simulations.  
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3.1.  Empirical Model 

Because of behavioral inertia arising from adjustment costs or imperfect 

information, we specify a partial adjustment process that allows the dependent variable 

(i.e., new purchases of a particular vehicle type) to move gradually in response to a policy 

change to the new target value.  Specifically, the one-year lagged dependent variable is 

included amongst the explanatory variables.  This type of model can be carried out 

straightforwardly in a panel data setting and has been employed previously in the study of 

the effect of gasoline prices on travel and fleet fuel economy.  For example, both 

Haughton and Sarkar (1996) and Small and Van Dender (2007) apply this type of model 

to the panel data of average fleet MPG at the U.S. state level, and Hughes et al. (2007) 

employ it in a model of U.S. gasoline consumption. 

Compared with these previous studies, our data set is much richer in that we have 

registration data at the vehicle model level that provide valuable information about how 

changes in the gasoline price affect substitution across vehicle model.  However, the 

empirical model based on the partial adjustment process cannot be applied directly to the 

vehicle model-level data because vehicle models change over time.  On the other hand, 

aggregating data across models at the MSA level would discard useful information on 

vehicle substitution.  With this in mind, we generate an aggregated data panel in the 

following way.  In each of the four vehicle categories (cars, vans, SUVs, and pickup 

trucks), we pool all the vehicles in the segment in each of the twenty MSAs from 1999 to 

2005 and find the q-quantiles of the MPG distribution.  Denote c as an MPG-segment cell 

that defines the range of MPGs corresponding to the particular quantile and denote t as 

year.  Further denote Nct  as the total number of vehicles in the MPG-segment cell c at 
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year t, with MSA index m suppressed.  

        With this panel data, we estimate the following model: 

 

ctt
tc

tcct ControlsOtherGasP
MPG

NN ξθθθθ +++++= − )1()ln()ln( 3
,

21,10  

 

where the coefficient on the price of gas ( tGasP ) is allowed to vary with the inverse of 

the cell’s MPG.  Noting that 
tc

t

MPG
GasP

,

 equals dollars-per-mile (DPMc,t), we can re-write 

this expression as follows: 

 

               ctttctcct ControlsOtherGasPDPMNN ξθθθθ +++++= − 3,21,10 )ln()ln(  (1)         

 

        Since the lagged dependent variable is one of the explanatory variables, serial 

correlation in the error term would render this variable endogenous. We allow the error 

term to be first-order serially correlated with correlation parameterγ : 

 

cttcct νγξξ += −1,  

 

where ctν  is assumed to be independent across t.  With this serial correlation structure, 

the model can be transformed into: 

 

cttccttcct ZZNN νγθγ +−+= −− )()ln()ln( 1,1, ,                        (2) 
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where Zct  is a vector of all the explanatory variables in equation (1), including the lagged 

dependent variable, and θ  represents the vector of all coefficients. θ and γ can be 

estimated simultaneously in this transformed model using the least squares method, 

where we take into account both heteroskedasticity and cross-cell correlation of ctν in 

estimating the standard errors.  

        Another concern in finding an appropriate empirical model is to describe how 

current and past gasoline prices affect consumer decisions.  An implicit assumption in the 

literature on new vehicle demand (Berry, Levinsohn, and Pakes, 1995; Goldberg, 1995; 

Bento et al., 2008) is that gasoline prices follow a random walk, which implies that only 

current gasoline prices matter in purchase decisions.  This assumption can have important 

implications on long-run policy analysis.  For example, should past gasoline prices matter 

(as would be the case if gasoline prices exhibited mean-reversion), studies with the 

random walk assumption would under-estimate the long-run effect of a permanent 

gasoline tax increase.  While some empirical evidence suggests that recent gasoline 

prices follow a random walk instead of a mean-reverting pattern (Davis and Hamilton, 

2004; Geman, 2007), we do consider alternative specifications that explicitly include the 

role played by lagged gasoline prices in current purchase decisions.  We find that 

including lagged gasoline prices has very little impact on our policy simulation results 

and elasticity estimates.  Due to the strong collinearity in gasoline price variables 

across years (after the MSA-constant time variation in gasoline prices is captured by year 

dummies), the signs of the parameter estimates on lagged price variables tend to bounce 

from positive to negative and the parameters exhibit large standard errors.  We do not 
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report those parameter estimates here for the sake of brevity, but we do discuss the 

elasticities they imply in Section 5.1.13 

 

3.2.  Estimation Results 

We define MPG cells based on twenty quantiles of the MPG distribution.14  Due 

to the discrete nature of the spectrum of MPGs from available vehicle models, there are 

in total 68 cells generated for the four vehicle categories.15  The estimation results are 

presented in Table 2 with various control variables.  Columns 1 and 2 report the results 

from the preferred specification, where the most controls are included.  In all the 

specifications except the second (where the least controls are included), we cannot reject 

the first-order correlation coefficient γ being zero.  In the first specification, γ is estimated 

at 0.025 with a standard error of 0.157, while in the second specification it is estimated at 

-0.115 with a standard error of 0.024.  Therefore, all the results except for the second 

specification are for the model where serial correlation is assumed to be zero, allowing a 

longer panel to be used. 

        In the first specification, the coefficient estimate on the lagged dependent variable, 

ln(Nc,t-1), is 0.068 with a standard error of 0.006.  This implies a modest partial 

adjustment process in new vehicle purchases.  The short-run partial effect of gasoline 

prices on the number of new vehicles is:
GasP
Nct

∂
∂

= [1.145-(26.70/MPG)]Nct.  This implies 

                                                 
13 Estimation results including lagged gas prices are available from the authors upon request. 
14 We also carried out regressions based on 10-quantiles and 30-quantiles. Results from both are similar to 
what are reported here. The regression based on 10-quantiles produces marginally smaller effects of 
gasoline prices, consistent with our conjecture that data aggregation tends to bias the effects downwards by 
discarding information about cross-vehicle substitution within the aggregated category. 
15 There are only 16 cells generated for pickup trucks from the twenty quantiles because, for example, the 
5th percentile and the 10th percentile of the MPG distribution for pickup trucks is the same. 
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that an increase in the gasoline price will increase the sales of new vehicles with MPG 

higher than 23.31 (i.e., the 60th percentile of the MPG distribution in the twenty MSAs), 

and reduce the sales of less fuel-efficient models.  The long-run partial effect of gasoline 

prices on the number of new vehicle registrations is the short-run effect divided by (1-

0.068).  We note in passing that the empirical model mainly captures the effect of 

gasoline prices on the demand side.  The supply-side effect (in particular, the effect on 

product offerings) is likely to take several years to be realized, which would suggest a 

more dramatic departure between the short-run and long-run effects.  Nevertheless, a 

serious examination of the supply-side effect necessitates a more sophisticated, 

computationally-heavy model and richer firm-level data, since product offering in the 

auto industry is an inherently dynamic problem involving strategic considerations.  

        Comparison across specifications demonstrates the importance of various 

unobserved effects.  Specifications 2 and 3 show that controlling for heterogeneity across 

MPG cells dramatically reduces the coefficient estimate on ln(Nc,t-1), which in turn has 

important implications on how past gasoline prices affect consumer decisions.  The 

estimation results from specifications 3 and 4 illustrate that, without controlling for the 

temporal unobservable, the effect of gasoline prices on new vehicle demand would be 

under-estimated.  The downward bias is likely caused by the fact that the new vehicle 

fleet became less fuel-efficient in the early years largely due to the increasing popularity 

of SUVs despite rising gasoline prices.  We control for geographic unobservables (above 

those included MSA demographics) with census region dummies.16  

                                                 
16 Ideally, we would like to include MSA dummies in the regression.  However, because cross-MSA 
variation in gasoline prices, largely due to differences in state and local gasoline taxes and transportation 
costs, are fairly stable over time, MSA dummies would subsume the cross-sectional variation in the 
gasoline variable and prevent us from precisely estimating the parameter on the gasoline price. 
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        It is interesting to note what helps to identify the response of new vehicle purchases 

to gasoline prices.  The response is dictated by the coefficients on DPM and GasP in 

equation (1).  With both year and region dummies included in the regression, the 

identification of the coefficient on GasP primarily relies on cross-sectional variations of 

new vehicle demand in response to changes in gasoline prices across both census regions 

and MSAs in the same region.  Since this cross-sectional variation reflects persistent 

differences in gasoline prices across areas (e.g., due to differences in local taxes, 

transportation costs, and market conditions), our estimated effect of gasoline prices on 

new vehicle demand captures the response of fleet fuel economy to permanent (instead of 

transitory) price changes.  The identification of the coefficient on DPM, however, relies 

not only on cross-sectional variation due to differences in gasoline prices but also on 

cross-model variation arising from the fact that the demand response to changes in 

gasoline prices varies across vehicles with different fuel efficiency.  

 

4.  THE EVOLUTION OF THE STOCK OF USED VEHICLES 

The previous section examined the effect of gasoline prices on the flow of new 

vehicles into the fleet and found that an increase in the gasoline price would increase the 

purchase of fuel-efficient vehicles while reducing that of fuel-inefficient vehicles.  To 

complete the picture of how gasoline prices affect the whole vehicle fleet, we investigate 

the impact of gasoline price changes on the evolution of used vehicles.  In particular, we 

are interested in how gasoline prices affect the flow of vehicles out of the fleet through 

vehicle scrappage. 
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4.1.  Empirical Model  

We define vehicle scrappage as the discontinuation of a vehicle’s registration due 

to physical breakdown or dismantling.17  Another reason for discontinuation of service at 

the national level is export to other countries.18  Both physical breakdown and vehicle 

migration to other countries are relevant for the study of how gasoline prices affect U.S. 

fleet fuel economy.  When it comes to registration data at the MSA level, the 

discontinuation of a vehicle registration in an MSA can arise from physical breakdown 

and vehicle migration due to inter-MSA resale or relocation of the owner.  The latter 

effect has the potential to bias our estimated effect of gasoline price on scrappage; we 

return to this potential problem below. 

       To examine changes in vehicle registration, let i denote a model of a particular 

vintage, let t denote a year starting from 1997, and let m denote an MSA. With m 

suppressed, the change of vehicle stock from period t-1 to period t: 

 

,),(
1,

jtjtjt
tj

jt XP
N
N

εβ +=
−

                                           (3) 

 

where Njt denotes the vehicle stock at the end of year t.  Xjt is a large vector of vehicle 

attributes of model j and regional characteristics of the MSA where model j is registered 

in year t.  A key variable of interest in X is the gasoline price.  β is a vector of parameters 

                                                 
17   Greenspan and Cohen (1999) identify crime, accidents, and wear-and-tear as primary reasons for 
physical breakdown or dismantling.  
18 There were 52,759 used vehicles exported to Mexico through Santa Teresa Port of Entry in New Mexico 
alone in 2004.  As Davis and Kahn (2008) document, these trade flows have risen dramatically since 2005 
due to used-car tariff reductions between the U.S. and Mexico associated with the North American Free 
Trade Agreement (NAFTA). 
 



 17

to be estimated.  Pjt is the survival probability of model j in year t, which is explained by 

X, while jtε captures measurement error and any other changes of vehicles registration 

that are unaccounted for by observed variables. 

        Although we are more interested in the effect of gasoline prices on vehicle 

scrappage from the standpoint of policy-relevance (as opposed to vehicle migration 

across MSAs), the source of registration discontinuation is not identified in our data.  To 

minimize the effect of vehicle migration on our results, we focus on old vehicles (i.e., 

vehicles with more than 10 to 15 years of services) in our empirical analysis.  The 

underlying assumption is that although migrations of these old vehicles across MSAs 

may occur, they are not systematically related to gasoline prices.  To the extent that 

correlation between the gasoline price and used vehicle migration arises from re-sales 

made in order to take advantage of the fact that fuel-efficient used vehicles may have a 

higher valuation in MSAs with higher gasoline prices, the correlation should be weaker 

for old vehicles because the difference in vehicle valuation (which should be proportional 

to the length of remaining life span of the vehicle) is more likely to be too small to cover 

transport and sales transactions costs.   

        To estimate the model, we assume that the error term is mean independent of 

variables in X: .0)|( =jtjt XE ε   A potential concern with this assumption is the 

endogeneity of the gasoline price due to unobservables (e.g., temporal or geographic 

unobservables such as new car prices and offerings) that are correlated with both vehicle 

scrappage decisions and gasoline prices.  To address this, we include various time and 

region dummies as well as MSA demographic variables in the vector X.  We should point 

out that since our used car analysis is at the vehicle model level, simultaneity between 
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vehicle scrappage and gasoline prices should be less of a concern.  It is unlikely for a 

model-specific error term, jtε , in vehicle scrappage to be significant enough to affect 

gasoline prices.  

        In the estimation, we assume that survival probabilities take a logistic form:  
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Nonlinear least squares can be used to recover the parameter vector β.  However, this 

method can only be applied to 1997-2000 where detailed stock data at the model level are 

available.  In years from 2001 to 2005 (i.e., the period of rapid rising gasoline prices), we 

observe stock data only at the segment level; hence the model level survival probability, 

Pjt, cannot be obtained from the data for this period.  In order to take advantage of these 

segment-level data and the gasoline price variation during this period, we employ a 

generalized method of moments estimator.  We set up two sets of moment conditions 

based on the two parts of the data.  Denote Jt as the total number of models in year t.  

Bearing in mind that we suppress market index m and hence the aggregation over markets, 

the first set of moments based on equation (3) is:  
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This set of moment conditions is taken to the model-level data from 1997 to 2000 while 

the second set is taken to the segment-level data from 2001 to 2005.  
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        Intuitively, to form the second set of moments, we take vehicle stocks at the model 

level in 2000 and simulate forward based on predicted survival probabilities.  This yields 

model level stock data for the years 2001 to 2005 for vehicles that existed in 2000.  We 

then aggregate these predicted model-level stock data to the segment-level and match 

those segment-level predictions to their observed counterparts.  To that end, let s denote a 

segment of certain vintage and St-1 denote the total number of segments in year t-1.  The 

total registration of all models in segment s at year t,are given by: 
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The number of vehicle registrations in segment s after k years, Ns,t+k  is given by: 
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In order to forecast vehicle registration in the future, we assume that the error term 

exhibits first-order serial autocorrelation:  

 

,1, jttjjt e+= −ρεε  

 

where jte is assumed to be i.i.d. across both j and t.  Moreover, we assume that 

)|( , jthtj XeE +  = 0 for any non-negative h.  This assumption is implied by the strict 
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exogeneity assumption of the explanatory variables (i.e., )|( , jthtj XE +ε  = 0 for any h) 

and is stronger than the contemporaneous exogeneity (i.e., )|( jtjt XE ε  = 0) required by 

the first set of moment conditions.  

        The prediction of the vehicle registration in segment s after k years, Ns,t+k  is (e.g., 

projecting segment registrations in 2005 based on the model-level data, Nj,t-1, in 2000): 
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The difference between ktsN +, and its forecast, ktsN +,
~  arises from the error terms, ejt, 

ej,t+1, …, ej,t+k.  Denote the parameter vector B = [β  ρ ], the second set of moments is 

then defined as:  
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 where sX  is a vector of weighted mean of product attributes for all the products in 

segment s using the stock data in 2000 as weight.  stN~  is the stock of segment s at year t 

projected from the observed data in 2000 following the equation. 

        To estimate B, we stack both sets of moment conditions to form the criterion 

function. The GMM estimator B̂  minimizes: 
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Denote )]([ BMEG B∇= and ],)()([ ′=Ω BMBME the asymptotic variance of 

B)Bn −ˆ(  is .11 −′′−′ Ω WG)WG(GWGWG)(G   We estimate B and its asymptotic variance 

using a two-step procedure where the first step sets IW =  and provides consistent 

estimates for B and the optimal weighting matrix 1−= ΩW .  The second step re-

estimates the model using the consistent estimate of the optimal weighting matrix 

obtained in the first step.  With the parameter estimate B̂ , we then can predict the stock 

data at the model level in years from 2001 to 2005 for the models that are available in 

2000.  Combining these predicted model-level data with new vehicle registration data 

from 2001 to 2005 described in the data section, we then have a complete vehicle stock 

data at the model level in all years.20 

 

4.2.  Estimation Results 

Table 2 presents parameter estimates of the vehicle survival model with various 

specifications.  The first four specifications focus on vehicles older than ten years.  

                                                 
19 Alternatively, we can use a serial autocorrelation structure in forming the first set of moment conditions. 

The new moment conditions would be .)(1)( ][ 11,
1

2000

1999
1 −−

′

==

+−
∑

= ∑∑ tjttjjtjt

J

jttt

PNNX
J

BM
t

ρε  

Notice t in the new conditions would have to start from 1999 instead of 1998 as shown in equation (2), 
implying a shorter panel to be used in forming the moment conditions. Both methods would give consistent 
parameter estimates under the strict exogeneity assumption and the serial correlation structure. 
20 Another strategy to predicting missing model level data from segment level data for 2001-2005 would 
involve aggregating the 1997-2000 model level data to the segment level data and estimating a scrappage 
model using segment level data from years 1997 through 2005. However, a complication with this strategy 
is that we do not observe segment level MPGs nor do we have the weights necessary to construct segment 
level MPGs from observable model level MPGs. Therefore, whatever segment level MPGs we would end 
up using would suffer from measurement error that could significantly bias parameter estimates. 



 22

Estimation of the first three specifications are based on the two sets of moment conditions, 

taking advantage of both 203,014 model-level observations and 19,360 segment-level 

observations.  The fourth specification is only based on the first set of moment conditions 

and the model-level observations and does not specify the serial correlation structure of 

the error term.  The fifth specification focuses on vehicles older than fifteen years with 

105,734 model-level observations and 10,560 segment-level observations. 

        We go to great lengths to control for unobservables along various dimensions by 

including a long list of dummy variables.  We include vehicle segment dummies, make 

dummies, as well as their interactions terms with vehicle age to control for variations in 

ownership cost and resale value across models.21  MSA demographic variables along 

with region dummies are used to control for cross-sectional heterogeneity.  Year 

dummies and the interaction between a time-trend and vehicle category dummies are 

used to capture temporal unobservables such as new product offering and prices that may 

affect vehicle scrappage. 

       Columns 1 and 2 report the estimation results for the preferred specification where 

the most control variables are used.  Most of the parameters are estimated very precisely. 

The partial effect of gasoline prices on vehicle survival is of particular interest because it 

is directly related to how gasoline prices affect the fuel economy of used vehicles.  A rise 

in the gasoline price increases the operating cost of a fuel-inefficient vehicle more than a 

fuel-efficient one.  Therefore, a fuel-inefficient vehicle is more likely to get scrapped than 

its fuel-efficient counterpart, ceteris paribus.  Given that survival probabilities take the 

                                                 
21 Since many models are observed in numerous MSAs and over many years, we could conceivably add 
model dummies to control for model-level unobservables in our scrappage estimation.  The number of 
models (e.g., 4,177 models with age larger than 10) is, however, too large to make this method practical 
given that within-group demeaning as a way of controlling for fixed effects does not apply in the nonlinear 
framework. 
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logistic functional form, the partial effect of gasoline prices on the survival of vehicles 

older than 10 years equals [0.638-(18.362/MPG)] Pjt (1- Pjt), where Pjt is the survival 

probability of model j in year t.  For vehicles with MPG higher than 28.73 (about the 80th 

percentile of the MPG distribution of vehicles older than ten years in the twenty MSAs), 

the partial effect is positive, which means that an increase in the gasoline price would 

raise the survival probabilities of those vehicles.  On the other hand, an increase in the 

gasoline price would reduce the survival probabilities of vehicles with MPG less than 

28.73.  We note that the identification of the effect of gasoline prices on vehicle survival, 

similar to the identification of the effect on new vehicle demand in the previous section, 

relies not only on temporal and cross-sectional variation in vehicle scrappage due to 

differences in gasoline prices but also on cross-model variations from the fact that 

vehicles with different fuel economy respond to changes in gasoline prices differently.  

        The comparison of the first three specifications shows the importance of controlling 

for both temporal and geographic unobservables.  In particular, ignoring the temporal 

unobservables would lead to the over-estimation of the effect of gasoline prices on 

vehicle scrappage while ignoring the geographic unobservables does the opposite.  The 

fourth specification only employs the first set of moments based on the model-level data 

and predicts 29.12 (versus 28.73 in the first specification) as the MPG level at which the 

effect of gasoline prices on vehicle survival changes direction.  The results from the fifth 

specification, which is estimated using vehicles in service longer than fifteen years, 

suggest that an increase in the gasoline price would prolong the life of vehicles with 

MPGs higher than 24.31, while it would shorten that of less fuel-efficient vehicles. 

        To see the economic significance of the effect of gasoline prices on vehicle survival, 
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we present the elasticities of survival probability with respect to gasoline prices in Table 

4.  The first row in Panel 1 reports the weighted average measures for all vehicles older 

than ten years in 2000, where the weights are the number of registrations of each model.  

The average survival probability for these vehicles is 89 percent while the average 

elasticity is -0.023. 22   This average, however, masks significant cross-vehicle 

heterogeneity that arises partly from differences in fuel efficiency.  To see this, we pick 

two models: a 1985 Honda Civic with an MPG of 39.7, and a 1985 Chevy Impala with an 

MPG of 21.1.  Based on the parameter estimates, a one-percent increase in gasoline 

prices would increase the survival probability of the Honda Civic by 0.051 percent while 

reducing that of the Chevy Impala by 0.038 percent in Houston.  As gasoline prices in 

San Francisco are much higher than those in Houston, the heterogeneity across vehicles is 

even stronger in San Francisco as shown in the table.  It is also interesting to note the 

variation in survival probabilities across these two MSAs.  The fuel-efficient Honda 

Civic has a higher survival probability than the Chevy Impala in San Francisco while the 

opposite is true in Houston.  This type of variation provides an important source for the 

identification of the effect of gasoline prices on vehicle survival.  The results in Panel 2 

of Table 4 are based on the parameter estimates from the fifth specification, where we 

assume that gasoline prices affect scrappage but not migration for vehicles already in 

service longer than fifteen years.  The two panels provide qualitatively the same estimates 

for the survival elasticities, with Panel 2 showing that the gasoline price has a stronger 

positive effect on the survival of fuel-efficient vehicles but a weaker negative effect on 

                                                 
22 The 95% confidence intervals based on parametric bootstrapping are provided in the table.  Because the 
estimation of the vehicle survival model is computationally intensive, nonparametric bootstrapping (which 
involves repeated estimation of the model) is not feasible.  Parametric bootstrapping only requires that the 
model to be estimated once, but it does impose stronger assumptions on the data generating process.  
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that of fuel-inefficient vehicles. 

 

5.  SIMULATIONS 

In the previous two sections, we found that gasoline prices have statistically 

significant effects on both the flow into and out of the vehicle fleet.  The goal of this 

section is to examine the response of fleet fuel economy to gasoline price.  To that end, 

we conduct simulations that combine the results of the two empirical models.  

 

5.1.  Impacts of Gasoline Tax Increases      

We first simulate the short-run and long-run responses of fleet fuel economy 

distribution to alternative gasoline tax policies – specifically, an increase in the federal 

gasoline tax of $0.25, $0.60, $1.00 or $2.40.  Among industrial countries, the U.S. has the 

lowest gasoline tax (41 cents per gallon on average including federal, state and local 

taxes).  Meanwhile, Britain has the highest gasoline tax of about $2.80 per gallon.  Parry 

and Small (2005) estimate the optimal gasoline tax in the U.S. is roughly $1.01 per gallon, 

so a 60 cent gasoline tax increment is needed to reach the optimal level.  Williams (2005) 

estimates an optimal tax of $0.91 per gallon.  Although we by no means believe that 

$2.80 dollar gasoline tax is politically feasible in the U.S., we consider the $2.40 gasoline 

tax increase for the purpose of illustration.23  Note that the recent run-up in gasoline 

prices in the United States can be viewed as being equivalent to an increase in the gas tax 

between $1.00 and $2.40, which is passed-on fully to consumers. 

                                                 
23 Following Bento et al. (2008), we assume that the entire tax burden falls on consumers in the simulations. 
That is, the price increase equals the tax increase. This amounts to the assumption that gasoline is produced 
by a perfectly competitive industry exploiting a constant return to scale technology. To the extent that 
gasoline producers have to bear some tax burden, e.g., due to the imperfect competitive nature of the 
industry, the results in the simulation provide upper bounds of the true effects of gasoline tax increases. 
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        Table 5 reports the effect of gasoline tax increases on the average MPG of new 

vehicles, used vehicles, and all vehicles in 2005.  Panel 1 presents the short-run impacts 

in a scenario where 2005 is the first year of tax increases.  The results show that the 

significant effect of gasoline prices on vehicle scrappage for vehicles older than ten years 

translates into a very small impact on the average fuel economy of used vehicles.  The 

impact of a tax increase on fleet fuel economy comes, therefore, mainly through the 

inflow of new vehicles.  The short-run elasticities of average MPG with respect to 

gasoline prices are 0.191, 0.006, and 0.022 for new vehicles, use vehicles, and all 

vehicles, respectively. 

        To examine how the impact of a gasoline tax increases plays out over a longer time 

period, we look next at a scenario where the gasoline tax increase begins in 2001.  The 

effect on the vehicle stock is significantly greater because it incorporates the cumulative 

effects on new vehicles starting from 2001.  For example, the elasticity for all vehicles 

increases from 0.022 to 0.101.  In an even longer term, new vehicles will continue to 

replace old vehicles, so the effect of gasoline prices on the fuel economy of the whole 

fleet beyond the fifth year will be increasingly dictated by its effect on the fuel economy 

of new vehicles.  Therefore, we can interpret the elasticity for new vehicles, 0.204, as the 

long-run effect of gasoline taxes on fleet fuel economy.24  

        Based on our alternative specification where we included lagged gasoline prices 

variables (both dollars-per-mile and gasoline price variables) up to three years in the 

                                                 
24 Linn and Klier (2007) obtain their estimates of the long-run effect of a gasoline tax also through the 
response of new vehicle MPG to changes in the gasoline price.  Using U.S. monthly sales data from 1980 
to 2006, they find smaller responses than ours (e.g., a one-dollar increase in the gasoline price increases the 
average MPG of new vehicles in 2006 by 0.5MPG).  To the extent that consumers view a monthly price 
change as more transitory than that observed on a yearly basis, the response in new vehicle purchase to 
changes in gasoline price would be smaller using monthly data. 
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model for new vehicles, simulations show that the short-run and long-run elasticities of 

the average MPG for new vehicles with respect to gasoline prices are 0.211 and 0.212 

with the 95% confidence interval of [0.095 0.346] and [0.139 0.296], respectively. These 

two elasticity estimates are very close to those from our baseline model (i.e., 0.191 and 

0.204) where only the current gasoline price variables were included.  Nevertheless, the 

confidence intervals in the model with lagged gasoline price variables are visibly larger 

because the standard errors of the coefficient estimates are much larger due to the high 

multicollinearity in the gasoline price variables across years. 

 

5.2.  Heterogeneity in Fuel Economy Elasticity 

The fuel economy elasticities in the previous section are estimated for vehicles in 

the twenty MSAs in year 2005.  This section examines the heterogeneity of fuel economy 

elasticities by studying how they vary with the gasoline price and other demographics. 

This question has important implications for how our estimates can be used in policy 

analysis at the national level and/or in a different period.  For example, given the sharp 

increases in gasoline price since 2005, it is interesting to ask whether fuel economy 

elasticities have gone up significantly. 

        Panel 1 of Table 6 shows the summary statistics of the elasticity estimates for each 

MSA in each year from 1999 to 2005.  The elasticities for all vehicles are based on 

contemporaneous gasoline price changes; therefore, they reflect the short-run effects of 

gasoline prices on fleet fuel economy.  The elasticities for new vehicles, however, are 

estimated based on permanent price changes and can be regarded as long-run effects. 

Significant variations in these estimates are observed.  Moreover, the average elasticities 

both for all vehicles and for new vehicles over the seven-year period are smaller than 
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those in 2005 as shown in Table 5.  

        To examine the sources of variation in fuel economy elasticities, we perform linear 

regressions where the dependent variable is the logarithm of estimated elasticities. We 

are interested in how the gasoline price and other demographic variables affect these 

elasticities while controlling for unobserved regional and temporal effects.  Panel 2 of 

Table 6 reports parameter estimates and their robust standard errors.  Since the gasoline 

price variable is also in the logarithm form, the coefficient estimates suggest that 

doubling gasoline prices would increase the short-run fuel economy elasticity by 68.7%  

while increasing the long-run fuel economy elasticity by 86.9%.  Moreover, differences 

in the demographic variables have very small effects on the fuel economy elasticities. 

        Given that the average gasoline price in the twenty MSAs in 2005 was only slightly 

higher than the national average (2.34 versus 2.24) and other MSA characteristics are 

quite close to the national average as shown in Table 1, we expect the elasticity estimates 

based on the data from the twenty MSAs in 2005 shown in the previous section should be 

good proxies for the national estimates.  Considering that gasoline prices in the U.S. 

passed $4.00 per gallon in 2008 (a 71 percent from $2.34), our model predicts the short 

and long-run fuel economy elasticities would increase by 48.7 and 61.7 percent to 0.033 

and 0.330 from 0.022 and 0.204, respectively, holding all the other factors the same. 

 

5.3.  Alternative Specifications 

Given the findings in Section 3 that lagged gasoline prices matter little in 

consumers purchase decisions, and that the inflow of new vehicles is the major channel 

through which gasoline prices affect fleet fuel economy, we re-examine the impact of 

those prices on the fuel economy of new vehicles using some alternative specifications.  
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Instead of aggregating data into a panel setting as in Section 3 in order to estimate an 

empirical model based on a partial adjustment process, we now use model-level 

observations directly.  In particular, we estimate linear equations where the dependent 

variable is the vehicle MPG while the explanatory variables include the gasoline price 

and other controls.  

        Table 7 presents parameter estimates and robust standard errors for four 

specifications.  The key explanatory variable is the gasoline price.  The logarithm of the 

MPG is used in the first three regressions while the fourth one uses the linear form.25  The 

last row reports the estimates of the fuel economy elasticity with respect to the gasoline 

price.  The comparison of the first three regressions yields the same finding as those from 

Section 3 – without controlling for temporal unobservables, the effect of gasoline prices 

would be under-estimated while the opposite is true if geographic unobservables were not 

controlled for.  The estimate of the fuel economy elasticity from the first regression is 

0.143, compared to 0.148 based on the partial adjustment process for all new vehicles 

from 1999 to 2005 as reported in Panel 1 of Table 5. 

 

5.4.  Discussion and Caveats  

Based on the simulation results in Tables 5 and 6, the average short and long-run 

elasticities of fuel economy with respect to the gasoline price over the period from 1999 

to 2005 is 0.014 and 0.148, respectively.  We find that the elasticities increase with the 

gasoline price.  For example, the short-run and long-run elasticites increase to 0.022 and 

                                                 
25 The gasoline price used in the estimation is the current gasoline price plus 0.068 times the gasoline price 
in the last year. We also estimate some other specifications. The regressions where the current gasoline 
price is used yield marginally smaller coefficients on the gasoline price variable. The log-linear 
specification whose results are report here, provides higher R2 than log-log and linear-linear specifications. 
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0.204 in 2005 when gasoline prices were highest during the seven-year period. Compared 

to the estimates cited in the introduction, our estimates are smaller than those from 

reduced-form studies and larger than those from structural studies.  In addition to 

measurement error in the constructed dependent variable (i.e., the average fleet MPG), 

reduced-form studies often base their estimations on aggregate state or national level data 

and are limited in their ability to control for unobserved temporal and geographic effects, 

which we find to be important.  Studies that do not control for unobserved effects have 

much higher estimates – Dahl (1979) and Wheaton (1982) obtain the short-run fuel 

economy elasticity of 0.21 and 0.33, respectively.  Although both Haughton and Sarkar 

(1996) and Small and Van Dender (2007) use fixed effects at the state level, they do not 

control for unobserved time-varying effects.  Relative to these studies, our results are 

closest to the short-run and long-run fuel economy elasticity of 0.04 and 0.21 in Small 

and Van Dender (2007).  Studies using a structural approach have to aggregate similar 

vehicles into one composite product to keep tractability in estimation.  The aggregation 

could bias the fuel economy elasticity toward zero by discarding the substitution across 

products within the categories used for aggregation.  Goldberg (1998) obtains a long-run 

fuel economy elasticity of 0.05 according to her results in section IV(ii).  Based on Table 

5-2 in their appendix, Bento et al. (2008) find short-run and long-run elasticities of 0.005 

and 0.009, respectively, for an average 2001 gasoline price of $1.49 per gallon.  The 

implicit assumption in these structural studies that only current gasoline prices matter in 

consumer decisions may also contribute to the lower estimates of fuel economy 

elasticities. 

        Two caveats are worth mentioning in relation to our analysis.  The first one, not 
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unique to our study, concerns the effect of gasoline prices on the supply side, which may 

have important bearings on the long-run effect of the gasoline price.  In our empirical 

models, we control for temporal unobservables by including year dummies, which on the 

other hand absorb the effect of product offering which may be partly due to gasoline 

price changes.  Therefore, our estimates mainly capture the effect of gasoline prices from 

the consumer side.  The equilibrium effect from both the demand side and the supply side 

could be larger than our estimates for large price increases, especially in the long run.  

We are not aware of any study that addresses the important supply response, which is 

inherently a dynamic problem involving strategic considerations by auto makers. 

        Second, as we discussed previously, the changes in vehicle stock at the MSA level 

(or the state level, for that matter) can be attributed to vehicle scrappage and vehicle 

migration, which are not separately identified in the data.  To the extent the majority of 

vehicle migrations occur across MSAs (within the country) and that these movements are 

correlated with variations in gasoline prices, the applicability of the estimates from the 

MSA-level data to national policy analysis may be hindered.  To deal with this issue, we 

focus on old vehicles with the assumption that the migration of these old vehicles is 

mainly due to the relocation of the owners (rather than resale across MSAs) and is less 

likely to be correlated with changes in gasoline prices.  This assumption, if too strong, 

may bias upward the estimates of fuel economy response for used vehicles.  Although 

national-level registration data do not suffer this complication from vehicle migrations 

(e.g., exports to other countries), the identification of fleet fuel economy responses has to 

rely on only time-series variation in gasoline price, which compromises their ability to 

control for temporal unobservables.  



 32

6.  CONCLUSIONS 

The fleet fuel economy in the U.S. is the lowest among the industrialized nations 

and is falling further behind.  In 2002, the average fuel economy of the vehicle fleet in 

the U.S. was about 13 MPG below that of countries in the European Union and 21 MPG 

below that of Japan.  With volatile gasoline prices and growing concern about global 

climate change and local air quality, political support for curbing U.S. fuel consumption 

has increased dramatically in recent years.  In this paper, we address a central question in 

the analysis of different policy alternatives by quantifying the response of fleet fuel 

economy to gasoline prices.  

         Taking advantage of a rich data set of all registered passenger vehicles in twenty 

MSAs, we are able to decompose the effects of gasoline prices on the evolution of the 

vehicle fleet into changes arising from the inflow of new vehicles and the outflow of used 

vehicles.  We find that gasoline prices have statistically significant effects on both 

channels, but that their combined effect results in only modest impacts on fleet fuel 

economy.  The short-run and long-run elasticities of fleet fuel economy with respect to 

gasoline prices are estimated at 0.022 and 0.204 in 2005.  Our results suggest that the $4 

per gallon gasoline prices observed in 2008 could result in a sizable increase in fleet fuel 

economy (i.e., an increase in average fleet MPG of 3.27, or 14% relative to 2001) and a 

large accompanying reduction in gasoline consumption if they were to remain permanent.  

Recall that record-high gasoline prices in 1970’s only led to short-lived increases in fleet 

fuel economy and failed to induce any long-term solution such as fuel-saving technology 

innovations in the industry.  In our view, recent high gasoline prices present opportunities 

for the development and diffusion of fuel-saving technological advances in the forms of 
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favorable consumer sentiment and political environment, which could not be achieved 

through politically feasible gasoline tax increases. 
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Table 1: Characteristics of the Twenty MSAs in 2000 

  Census    Median    Total    Average   Snow Annual New Fleet Fleet 
MSA Region Household Population Household Depth Gas Vehicle MPG Age 

                   Income       ('000)   Size  ('inch) Price MPG     
Albany, NY  1 44,761 843 2.41 77.1 1.68 23.35 24.28 8.94 
Atlanta, GA  2 50,237 4,037 2.69 3.1 1.33 22.16 23.12 8.04 
Cleveland, OH  3 40,426 2,883 2.49 78.1 1.56 23.28 23.89 8.21 
Denver, CO  4 50,997 2,080 2.54 56.7 1.59 22.31 23.35 8.52 
Des Moines, IA  5 44,088 439 2.47 49.3 1.52 22.12 23.30 9.35 
Hartford, CT  6 50,481 1,136 2.51 74.9 1.66 23.48 24.27 9.40 
Houston, TX 7 42,372 4,105 2.87 0 1.5 21.77 22.68 7.78 
Lancaster, PA  1 43,425 456 2.65 28 1.58 23.01 24.08 9.14 
Las Vegas, NV  4 42,822 1,356 2.63 0 1.8 22.65 23.40 8.68 
Madison, WI  3 46,774 411 2.37 52.2 1.6 22.93 23.96 8.89 
Miami, FL  2 37,500 3,810 2.71 0 1.52 23.33 24.25 8.39 
Milwaukee, WI 3 45,602 1,468 2.5 59.3 1.6 23.19 23.97 8.39 
Nashville, TN  8 42,271 1,196 2.51 8 1.49 22.24 23.39 9.15 
Phoenix, AZ  4 42,760 3,027 2.66 0 1.58 22.35 23.32 8.02 
Saint Louis, MO  5 42,775 2,551 2.54 18.6 1.42 22.67 23.49 8.63 
San Antonio, TX  7 38,172 1,554 2.79 0 1.48 21.91 22.77 8.42 
San Diego, CA  9 47,236 2,717 2.72 0 1.77 23.01 24.09 9.02 
San Francisco, CA 9 62,746 6,882 2.72 0 1.93 23.33 24.09 9.15 
Seattle, WA  9 52,575 2,379 2.48 7 1.68 23.05 24.00 9.45 
Syracuse, NY  1 39,869 705 2.53 191.9 1.68 22.78 23.82 8.81 
Average   47,291   2.65   1.72 22.74 23.67 8.62 
U.S.   41,486   2.61   1.46 22.30 23.62 8.68 

Note: The average MSA demographics are taken from the US Census (www.ipums.org) and are weighted by the total number of 
households in the MSA. The average gasoline prices are weighted by the total number of registrations and the average MPGs are 
weighted by the number of registrations of each vehicle model. Both the household income and the gasoline price are in 2005 dollars.  
Fleet MPG and fleet age are the average MPG and vehicle age of all vehicles in year 2001. 
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Table 2:  New Vehicle Regression Results 
 

 (1) (2) (3) (4) 
Variable θ  S. E. θ  S. E. θ  S. E. θ  S. E.
Constant 22.026 3.379 6.368 2.954 16.516 2.873 18.016 2.851
Log(Nt-1) 0.068 0.006 0.638 0.024 0.074 0.007 0.071 0.007
GasPrice 1.145 0.211 0.723 0.133 0.662 0.128 1.135 0.169
Dollar Per Mile = GasPrice * GPM -26.700 3.336 -8.798 2.735 -15.842 2.631 -26.549 3.185
GPM -203.280 65.856 -46.249 61.647 -171.780 59.376 -199.502 58.905
Log(MHI)*GPM 9.546 8.215 4.013 8.026 2.387 7.373 9.470 7.377
Log(POP)*GPM -0.621 1.417 -0.719 1.405 -1.078 1.283 -0.623 1.270
Log(AHS)*GPM 63.623 25.973 35.344 26.133 57.355 23.134 63.384 22.940
Snow * GPM -0.057 0.034 -0.012 0.034 -0.066 0.031 -0.056 0.031
Log(MHI) -0.879 0.420 -0.515 0.383 -0.178 0.356 -0.502 0.356
Log(POP) 1.020 0.072 0.399 0.073 1.044 0.061 1.027 0.060
Log(AHS) -5.255 1.345 -2.025 1.232 -3.400 1.096 -3.681 1.082
Snow depth 0.002 0.002 0.000 0.002 0.003 0.002 0.003 0.002
Cell dummies (67) Yes No  Yes Yes
Year dummies (6) Yes No  No Yes
Year * class dummies (3) Yes No  No Yes
Region dummies (8) Yes  No  No  No  
Adjusted R2 0.619  0.516  0.606  0.613  
Durbin-Watson statistics 2.156   1.901   2.076   2.116   

 
Notes: Bold type indicates the coefficient estimate is statistically significant at the 5% level. The total number of observations is 
6,578. The dependent variable in the equation is the logarithm of the total number of vehicles in a given MPG cell, Log(Nt). 
GPM, measuring fuel intensity, is the average gallon per mile of vehicles in the MPG cell. MHI is the median household income 
in $10,000 in the MSA; POP is the total population in millions the MSA; AHS is the average household size. These 3 
demographic variables are from 2000 census. Snow is the average snow fall in inches from 1999 to 2005 in the MSA. 
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Table 3: Used Vehicle Survival Regression Results 

 (1) (2) (3) (4) (5) 
Variable β  S. E. β  S. E. β   S. E. β  S. E. β  S. E. 
Constant -2.324 0.718 -0.181 0.666 -0.232 0.659 -2.314 0.702 -3.050 0.682
GasPrice 0.639 0.128 0.254 0.100 1.148 0.112 0.631 0.158 0.794 0.128
DPM = GasPrice* GPM -18.362 2.580 -20.578 2.134 -18.807 2.467 -18.362 3.164 -19.293 2.696
GPM 126.766 15.426 150.910 14.414 144.393 15.361 126.767 13.336 136.751 14.068
Age -0.644 0.012 -0.616 0.013 -0.640 0.011 -0.607 0.022 -0.536 0.016
Age2 0.017 0.000 0.016 0.000 0.017 0.000 0.014 0.001 0.015 0.001
Vintage before 1981 -0.027 0.043 0.073 0.026 -0.005 0.041 0.023 0.045 -0.071 0.039
Vintage 1981 - 1985 -0.055 0.022 -0.101 0.017 -0.084 0.021 -0.124 0.022 -0.171 0.021
Log(MHI)*GPM -20.306 4.124 -16.843 3.363 -18.797 3.915 -20.306 3.885 -20.008 3.827
Log(POP)*GPM 2.393 0.814 3.098 0.708 2.810 0.803 2.393 0.732 2.867 0.788
Log(AHS)*GPM -64.068 12.421 -91.496 12.368 -84.383 12.911 -64.068 10.379 -74.230 11.496
Snow*GPM 0.022 0.018 0.007 0.015 0.016 0.017 0.025 0.015 0.034 0.016
Log(MHI) 1.485 0.188 1.742 0.152 1.065 0.167 1.487 0.181 1.727 0.176
Log(POP) -0.232 0.035 -0.140 0.031 -0.226 0.033 -0.239 0.032 -0.229 0.034
Log(AHS) 6.309 0.591 4.538 0.553 3.647 0.543 6.319 0.526 5.487 0.573
Snow 0.000 0.001 0.001 0.001 -0.001 0.001 -0.003 0.001 -0.003 0.001
Segment dummies (21) Yes Yes Yes Yes Yes
Make dummies (15) Yes Yes Yes Yes Yes
Segment dummies * age (21) Yes Yes Yes Yes Yes
Make dummies * age (15) Yes Yes Yes Yes Yes
Year dummies (7) Yes No Yes Yes Yes
Year * class dummies (3) Yes No Yes Yes Yes
Region dummies (8) Yes  No  No  Yes  Yes  
ρ  -0.169 0.068 -0.210 0.073 -0.175 0.073 -0.224 0.116

 
Notes: Bold type indicates the parameter estimate is significant at the 5% level. Specifications 1-4 are based on vehicles older than 10 years, 
while specification 5 focuses on vehicles older than 15 years. Specification 4 uses only the first set of moment conditions. 
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Table 4: Survival Elasticity with Respect to the Gasoline Price in 2000 

Model            MSA               MPG  Gas Price Survival Prob. Survival Elasticity 
Panel 1: Based on Estimation Results from Specification (1) 
Older than 10 years      All 20            24.43 1.68 0.890 -0.023  [-0.042   0.001] 
1985 Honda Civic  Houston           39.70 1.58 0.801 0.051   [0.001     0.090] 
1985 Chevy Impala  Houston          21.18 1.58 0.885 -0.038  [-0.059  -0.014] 
1985 Honda Civic  San Francisco     39.70 2.04 0.874 0.045   [0.009     0.091] 
1985 Chevy Impala  San Francisco   21.18 2.04 0.782 -0.100  [-0.152  -0.045] 
Panel 1: Based on Estimation Results from Specification (5) 
Older than 15 years      All 20            24.37 1.60 0.779 -0.014  [-0.035   0.013] 
1985 Honda Civic  Houston           39.70 1.58 0.801 0.089   [0.054     0.143] 
1985 Chevy Impala  Houston          21.18 1.58 0.885 -0.020  [-0.042    0.000] 
1985 Honda Civic  San Francisco     39.70 2.04 0.874 0.078   [0.045     0.125] 
1985 Chevy Impala  San Francisco   21.18 2.04 0.782 -0.052  [-0.105   -0.002] 

 
Note: The results in the first row in both panels are weighted averages where the weight is the total 
registrations of the vehicle model. The numbers in the brackets in the last column define the 95% confidence 
interval from parametric bootstrapping.  
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Table 5: Fleet Fuel Economy in 2005 under Tax Alternatives 
 

Tax Alternatives New Vehicles Used Vehicles All vehicles 
Current Tax 23.67 23.65 23.65 
Panel 1: Tax Increase from 2005   
 Increase in Average MPG in 2005 
+ $0.25    0.48    [0.37      0.59]   0.02    [0.00      0.04]   0.06    [0.03      0.08] 
+ $0.60    1.14    [0.88      1.41]   0.04    [0.02      0.07]   0.13    [0.09      0.17] 
+ $1.00    1.88    [1.46      2.34]   0.07    [0.04      0.11]   0.22    [0.17      0.32] 
+ $2.40    4.53    [3.48      5.70]   0.18    [0.12      0.23]   0.59    [0.36      1.06] 
    
Elasticity of Average MPG   0.191  [0.150  0.235]   0.006   [0.000 0.015]   0.022  [0.013  0.031] 
Panel 1: Tax Increase from 2001   
 Increase in Average MPG in 2005 
+ $0.25    0.51    [0.38      0.61]   0.24    [0.18      0.28]   0.26    [0.19      0.30] 
+ $0.60    1.22    [0.91      1.44]   0.54    [0.40      0.62]   0.59    [0.45      0.69] 
+ $1.00    2.02    [1.51      2.40]   0.86    [0.72      1.05]   0.96    [0.77      1.19] 
+ $2.40    4.87    [3.60      5.85]   1.95    [1.51      2.62]   2.23    [1.71      3.06] 
   
Elasticity of Average MPG   0.204  [0.148  0.259]   0.093  [0.069  0.110]   0.101  [0.077  0.119] 
 

Notes: The numbers in the table are from simulations based on regression results for new vehicles and used 
vehicles. The numbers in brackets define the 95% confidence interval from parametric bootstrapping. 
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Table 6:  Heterogeneity in the Elasticity of Fleet Fuel Economy from 1999 to 2005 in 20 MSAs 

 
 

Panel 1:  Summary Statistics of the Elasticities 
Elasticity of Fuel Economy Mean S. D. Min Max 
All Vehicles 0.014 0.013 0.003 0.036 
New Vehicles 0.148 0.134 0.080 0.293 

 
 
 

Panel 2: The Response of the Elasticities to the Gasoline Price and other Demographics 
 All Vehicles New Vehicles 

 (1) (2) (3) (4) 
Variable Para. S. E. Para. S. E. Para. S. E. Para. S. E. 
Constant -5.396 0.462 -7.303 0.454 -3.485 0.206 -3.898 0.267 
Log(GasPrice) 0.687 0.174 0.870 0.162 0.869 0.074 0.792 0.076 
Log(MHI) -0.101 0.111 0.112 0.133 0.205 0.060 0.114 0.075 
Log(POP) 0.043 0.017 0.036 0.024 -0.038 0.010 -0.033 0.013 
Log(AHS) -0.258 0.402 1.461 0.381 0.482 0.173 1.218 0.216 
Snow depth -3.3E-04 3.5E-04 -1.1E-03 3.3E-04 -1.3E-04 2.4E-04 -1.3E-03 2.6E-04 
Year dummies (6) Yes  Yes   Yes  Yes  
Region dummies (8) Yes  No   Yes  No  
Number of observations 140  140   140  140  
Adjusted R2 0.973   0.947   0.973   0.942   

 
Notes: The summary statistics are for the elasticity estimates for each MSA in each year from 1999 to 2005. They are weighted 
by the total number of vehicle registrations in the MSA. The dependent variable in panel 2 is the logarithm of the elasticities. 
Bold type indicates the parameter estimate is significant at the 5% confidence level. The standard errors are heteroskedasticity-
robust. We also estimate (1) and (3) in the linear-linear form, which gives qualitatively the same results. The R2s are 0.946 and 
0.938, respectively. 
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Table 7: Alternative Specifications on the Response of New Vehicle Fuel Economy to Gasoline Prices 
 

  (1) (2) (3) (4) 
Variable Para. S. E. Para. S. E. Para. S. E. Para. S. E. 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Constant 3.476 0.078 3.530 0.048 3.479 0.049 31.096 1.764 
GasPrice 0.075 0.017 0.050 0.004 0.106 0.008 1.637 0.392 
MHI -0.016 0.003 -0.009 0.002 -0.014 0.002 -0.349 0.077 
POP 0.007 0.002 0.010 0.001 0.007 0.001 0.164 0.040 
AHS -0.150 0.027 -0.196 0.017 -0.189 0.017 -3.320 0.609 
Snow depth -0.033 0.012 0.008 0.006 0.006 0.006 -0.817 0.269 
Year dummies (6) Yes   No  Yes  Yes  
Region dummies (8) Yes    No   No   Yes   
Number of observations 42949  42949  42949  42949  
Adjusted R2 0.146  0.142  0.144  0.136  
Implied Elasticity  0.143   0.095   0.201   0.136   

 
Notes: Bold type indicates that the parameter estimate is statistically significant at the 95% level. The dependent 
variable in the first three regressions is the logarithm of MPG of a new vehicle model while that in the last regression 
is just the MPG. The regressions are estimated using weighted OLS where the weight is the total number of 
registration of each vehicle model. Robust standard errors are reported. The implied elasticity is the elasticity of new 
vehicle MPG with respect to gasoline prices. The implied elasticity for the last regression is evaluated at the weighted 
average gasoline price ($1.90) and the weighted average MPG (22.89) from 1999 to 2005 in the 20 MSAs. 
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Figure 1: Gasoline Prices in Selected MSAs 1997-2005 
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Figure 2: Fuel Economy Distributions 
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