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1. Introduction

 A common informational problem in credit markets is partial knowledge of loan repayment.

A borrower may repay in full, in part, or not at all.  At the time that a loan is negotiated, a lender may

not know the amount that will be repaid.

It has been standard to assume that lenders place subjective probability distributions on loan

repayment and maximize subjective expected utility (SEU).  Indeed, the norm has been to go further

and assume that expectations are rational, in the sense that subjective distributions are objectively

correct conditional on available information.  However, a subjective probability distribution is a form

of knowledge.  There are realistic circumstances in which a lender may have no credible basis for

asserting one at all, never mind one that is objectively correct.  These circumstances pose problems

of lending under ambiguity (aka Knightian uncertainty).

Ambiguity may be particularly prevalent when a previously stable credit market experiences

a significant unanticipated shock.  Lenders may be unsure how to interpret the shock—it may have

been temporary or it may signal a regime change.  Lenders in a stable credit market may have

rational expectations for loan repayment, but they may feel unable to update them afterwards. 

This paper studies credit markets in which lenders lack rational expectations about loan

repayment, or may not have probabilistic expectations at all.  Our modeling of behavior under

ambiguity builds in part on our earlier work.  Brock (2006) considered the behavior of an isolated

lender facing repayment ambiguity.  Manski (2005, 2006, 2007, 2009) analyzed various problems

of social planning under ambiguity.  Whereas our earlier work studied the behavior of a single agent,

be it a lender or planner, here we analyze a market in which agents may have to cope with ambiguity.

We consider a setting that is highly simplified in many respects, to enable a relatively
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straightforward analysis.  Our credit market is small relative to the economy as a whole and is

competitive.  Lenders interact only through this market; thus, there are no derivatives markets.

Borrowers are observational identical to lenders and, hence, face the same price of loans.  Inflation

is anticipated, so we denote all monetary quantities in real terms.

Loans are one-period contracts specifying that a borrower will receive one dollar today and

repay r dollars tomorrow.  Loans are securitized rather than held by individual lenders, repayment

to each lender being proportional to his share of the aggregate supply of loans.  Whereas r denotes

the contracted loan repayment rate, let 8(r) denote the loan return per dollar that would actually occur

under contracted rate r.  Lenders know r when they provide loans and they know that 0 # 8(r) # r,

but they may not know the magnitude of 8(r).

Loan supply is determined by lenders who allocate monetary endowments between loans and

a safe asset.  Borrowers demand loans to enable them to undertake potentially productive

investments.  Incomplete repayment occurs when persons borrow with partial knowledge of the

productivity of their investments.  When productivity turns out to be low ex post, they sometimes

lack the resources to fully repay their loans.  Bankruptcy law limits their liability for repayment.  The

market is in equilibrium when the contracted repayment rate r equates loan supply and demand.

We study market equilibrium under several alternative assumptions about loan supply.  We

suppose that lenders use one of a trinity of decision criteria to allocate their endowments:

maximization of SEU, the maximin (MM) criterion, or the minimax-regret (MMR) criterion.  The

SEU criterion chooses an allocation that performs well on average across the loan returns 8 that the

lender thinks feasible.  The MM and MMR criteria make allocations that, in different senses,

perform uniformly well across the feasible loan returns.  Here, as in our earlier work, we find it
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illuminating to compare the behavior of agents who use the SEU, MM, and MMR criteria to make

decisions with partial knowledge.

Our general analysis of market equilibrium requires only weak qualitative assumptions about

loan demand and repayment.  However, the general results are too abstract to yield much intuition.

We obtain explicit, easily interpretable findings when we assume that lender beliefs about the loan

return 8(@) vary directly with r.  We use a simple borrowing scenario to motivate this assumption.  In

this scenario each borrower faces only two states of nature, a good state with positive investment

productivity and a bad state in which the investment does not payoff.

Section 2 studies the operation of a credit market without government intervention except for

the limited liability provided borrowers by bankruptcy law.  In Section 3, we consider a more activist

government that aims to maximize the net social returns to borrowing.  Acting through a public

Authority, the government may intervene to affect the competitive equilibrium.  The Authority, like

lenders and borrowers, may have incomplete information about the productivity of loan-financed

investments.

We formalize the Authority’s decision problem and study the use of two policy instruments.

One intervention manipulates the return on the safe asset and the other guarantees a minimum loan

return to lenders.  Focusing on the simple borrowing scenario, we find that manipulation of the return

on the safe asset can be an effective way to achieve the socially desired outcome if lender beliefs

about the return to lending are not too pessimistic relative to the beliefs of the Authority.

Contrariwise, guaranteeing a minimum loan return can be effective if lender beliefs are not too

optimistic relative to the beliefs of the Authority.  Thus, the two interventions have somewhat distinct

domains of application.  Successful implementation of either policy requires that the Authority know
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lender beliefs and decision criteria.

The concluding Section 4 comments on recent suggestions that ambiguity about investment

returns is a negative influence on the operation of financial markets, inducing investors to allocate

more of their portfolios to safe assets than is socially optimal.  Our analysis suggests that investor

ambiguity need not be the driving force behind a “flight to safety” in credit markets.  In the market

we study, the force driving a flight to safety is increased lender pessimism about the return to lending.

Pessimism is distinct from ambiguity and is easily formalized within the SEU framework.   

While the credit market we study is highly idealized, we nevertheless think that this paper

makes contributions that advance the understanding of credit markets and that warrant the attention

of policy makers.  We advance understanding of credit markets by studying competitive equilibrium

when lenders use various decision criteria to make lending decisions with partial knowledge of loan

repayment.  We characterize equilibrium in abstraction and we report simple analytical findings that

hold in illustrative settings.  Considering policy, we study interventions that the government may use

to achieve a normatively satisfactory market equilibrium.

Credit markets are complex, and the theoretical literature studying them is diverse and vast,

with different authors emphasizing different aspects of market operation.  We are aware of two other

recent studies of financial markets that assume agents face some sort of ambiguity and then ask how

government intervention might mitigate unpalatable market outcomes.  Easley and O’Hara (2009)

study the sub-optimal asset pricing that may occur when a subset of “ambiguity averse” investors

choose not to participate in the market.  They suggest a possible corrective role for regulation that

limits the occurrence of extreme events.  Caballero and Krishnamurthy (2008a) consider an

environment in which agents face ambiguity about the timing of liquidity shocks.  They find a salutary
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role for a Central Bank as a lender of last resort.

These precedent studies share our broad concern with the positive and normative analysis of

competitive financial markets under ambiguity, but they differ greatly from our work in their

specifics.  Whereas they use the maximin expected utility model to express agent behavior under

ambiguity, we study maximin and minimax-regret behavior.  Whereas they pose relatively abstract

general equilibrium models of financial markets, we develop a partial-equilibrium model of a credit

market with relatively explicit institutional features.  In particular, we differentiate lenders who

choose how to allocate asset endowments from borrowers who demand loans to make productive

investments and who have limited liability for repayment.  We locate the source of ambiguity as

lender inability to interpret a productivity or other shock that reduces loan returns relative to an initial

steady state.  There also are differences across studies in the type of normative analysis performed.

We pose an explicit social welfare function in which the objective is to maximize the net social return

to borrowing.

2. Credit Market Equilibrium

To begin, Section 2.1 formalizes the asset allocation problem that yields the supply of loans.

Maintaining minimal assumptions on the demand for loans, Section 2.2 characterizes the market

equilibrium in generality and when lenders have specific beliefs about the loan return.  Section 2.3

presents a simple borrowing scenario that motivates the specific beliefs studied in Section 2.2. 
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 The requirement that * 0 [0, 1] prohibits the lender from exercising leverage.  If we were1

to permit * > 1, the lender would be able to borrow the safe asset in order to lend an amount larger
than his endowment.  If we were to permit * < 0, the lender would be able to borrow from the public
in order to invest in the safe asset.

2.1. The Supply of Loans

  The supply of loans is determined by the portfolio choices of lenders.  A dollar invested in

the safe asset yields a known return D $ 0.  A dollar invested in loans yields a possibly unknown

return 8(r).  A lender must choose a fraction * 0 [0, 1], implying that he allocates the fraction * of

his endowment to loans and 1 ! * to the safe asset.  An allocation is said to be singleton if * = 0 or

1 and is fractional if 0 < * < 1. 1

If a lender chooses allocation *, his portfolio return is m[*8(r) + (1 ! *)D], where m is the size

of his endowment.  We suppose that the lender wants to maximize this quantity.  Thus, he wants to

solve the problem

(1)        max   m[*8(r) + (1 ! *)D],
          * 0 [0, 1]

The unique optimal allocation is * = 1 if 8(r) > D and * = 0 if 8(r) < D.  All allocations are optimal

if 8(r) = D.

Our concern is asset allocation when the lender knows D and r but not 8(r).  Let '(r) index the

0 ( 0 '(r) (feasible states of nature; that is, the loan returns the lender thinks feasible.  Let 8 (r) / min  8 (r)

1 ( 0 '(r) ( 0 1and 8  / max  8 (r).  The lender cannot solve problem (1) if 8 (r) < D < 8 (r).

Although a lender may not know the optimal allocation, he must somehow choose one.  We
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consider loan supply when the lender maximizes SEU or uses the maximin or minimax-regret

criterion.  We do not argue that lenders “should” use a particular decision criterion.  If the optimal

allocation is determinate, all of the criteria considered here yield it.  If it is indeterminate, there is no

unique “right” way to choose an allocation.

Maximization of SEU: A lender may place a subjective probability distribution on the states of nature,

compute the subjective expected return under each allocation, and choose an allocation that

maximizes this quantity.  Let B(r) denote the subjective distribution on '(r).  Then the lender solves

the optimization problem

B(2)        max   m[*8 (r) + (1 ! *)D],
          * 0 [0, 1]

B (where 8 (r) / I8 (r)dB(r) denotes the subjective mean of 8(r).  The solution to (2) is generically

B Bsingleton, being * = 0 when 8 (r) < D and * = 1 when 8 (r) > D.  All * 0 [0, 1] are solutions when

B8 (r) = D.  Thus, a lender maximizing subjective expected return chooses the same allocation as does

Ba lender who knows the loan return to be 8 (r).

Maximin Loan Supply: To determine the maximin allocation, one first computes the minimum return

attained by each allocation across all states of nature.  One then chooses an allocation that maximizes

this minimum return.  Thus, the criterion is

((3)       max         min  m[*8 (r) + (1 ! *)D].
         * 0 [0, 1]    ( 0 '(r)
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0 0 0The solution is * = 0 if 8 (r) < D and * = 1 if 8 (r) > D. All * 0 [0, 1] are solutions if 8 (r) = D.  Thus,

a lender using the MM criterion chooses the same allocation as does a lender who knows the loan

0return to be 8 (r).

Minimax-Regret Loan Supply: By definition, the regret of allocation * in state of nature ( is the

difference between the maximum achievable portfolio return and the return achieved with this

allocation.  The MMR rule computes the maximum regret of each allocation over all states of nature

and chooses an allocation to minimize maximum regret.  Thus, the criterion is

( ((4)       min       max    max [m8 (r), mD] ! m[*8 (r) + (1!*)D].
        * 0 [0, 1]   ( 0 '(r)

Manski (2007, 2009) showed that the MMR allocation is

1                                            8 (r) ! D

MMR(5)    *   =  min [max (————— , 0), 1].

1 0                                         8 (r) ! 8 (r)

0 Thus, the MMR allocation is always fractional when the lender faces ambiguity; that is, when 8 (r)

1< D < 8 (r).  In contrast, we found above that the SEU and MM allocations are singleton except when

D takes particular values.



9

Maximization of Monotone Functions of the Portfolio Return

Rather than seek to solve optimization problem (1), a lender may want to solve

(1N)        max   f{m[*8(r) + (1 ! *)D]}
            * 0 [0, 1]

for some strictly increasing function f(@).  He would consequently apply the SEU, MM, or MMR

criterion to this transformation of the portfolio return.   The shape of f(@) does not affect the MM

allocation, but it does affect the SEU and MMR allocations.  It is well known that the SEU allocation

may be fractional if f(@) is sufficiently concave and the subjective distribution B has sufficient

dispersion.  The MMR allocation is fractional under ambiguity for all continuous f(@), but the value

MMRof *  varies with f(@); see Manski (2009).

Our analysis of market equilibrium takes f(@) to be the identity function.  This case is simple

in various respects.  In particular, the allocation chosen using each of the three decision criteria is

invariant with respect to the size m of the lender’s endowment.

2.2. Equilibrium Contracted Repayment Rates

The credit market is in equilibrium when the contracted repayment rate r equates the aggregate

supply of and demand for loans.  The analysis in this section places only weak qualitative assumptions

on the demand for loans.  We suppose that the demand function D(@) is continuous and strictly

r 6 4decreasing in r, with lim  D(r) = 0.
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We are much more specific in our characterization of supply.  We suppose that lenders have

homogeneous beliefs and use the same decision criterion to allocate their endowments.  These

assumptions, coupled with the fact that the size of the endowment does not affect the chosen

allocation, enable us to aggregate lenders into a representative lender who allocates the combined

endowment of all lenders.

Let *(r) be the asset allocation that the representative lender would choose if the contracted

repayment rate were r.  Section 2.1 showed that *(r) depends on beliefs about 8(r) and on the decision

criterion used.  We found that *(r) is always determinate under the MMR criterion and typically so

under the SEU and MM criteria, but it is indeterminate for specific values of D under the latter

criteria.  Hence, the aggregate supply of loans at rate r is the possibly set-valued quantity

(6)   S(r)  =  M*(r),

where M is the combined endowment of all lenders.  The market is in equilibrium if

(7)   D(r)  0  M*(r).

Equilibrium with Known Loan Return

Given specification of the representative lender’s beliefs and decision criterion, we can

determine *(@) and characterize equilibrium condition (7).  Suppose first that 8(@) is known.  We
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showed in Section 2.1 that the unique optimal allocation is *(r) = 1 if 8(r) > D, *(r) = 0 if 8(r) < D,

and indeterminate if 8(r) = D.  Hence, an equilibrium value of r satisfies the inequality

(8)              M@1[8(r) > D]  #  D(r)  # M@1[8(r) $ D].

Here and elsewhere, 1[@] is the indicator function taking the value one if the logical condition in the

brackets holds, and zero otherwise.

Two types of equilibria may occur, which we label full-supply and indifferent-supply

equilibria.  Consider the set [1, 4) of all feasible values of r.  Lenders supply their full asset

fendowment M to the credit market when r lies in the set R  / [r: 8(r) > D].  They are indifferent

iamong all loan supplies [0, M] when r lies in R  / [r: 8(r) = D].  They supply nothing to the credit

z fmarket when r is in R  / [r: 8(r) < D].  Hence, a full-supply equilibrium occurs if r 0 R  and D(r) =

i zM.  An indifferent-supply equilibrium occurs if r 0 R  and D(r) 0 [0, M].  Contract rates in R  cannot

be equilibria: they imply that S(r) = 0, but we have assumed that D(r) > 0 for all r.

The credit market has at most one full-supply equilibrium, the reason being that there exists

at most one value of r such that D(r) = M.  Co-existence of a full-supply equilibrium with one or more

indifferent-supply equilibria can occur in principle.  However, the credit market has a unique

equilibrium given a weak shape restriction on 8(@).

Suppose that 8(@) satisfies the single-crossing property at D.  That is, suppose there exists a

unique r  such 8(r ) = D, with 8(r) < D for r < r  and 8(r) > D for r > r .  If D(r ) # M, then r  is the* * * * * *

unique equilibrium.  If D(r ) > M, then equilibrium occurs at the unique r > r  such that D(r) = M.* *
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Equilibrium with Partially Known Loan Return

Suppose now that the lender does not know 8(@).  If he maximizes SEU or uses the MM

B 0criterion, the equilibrium condition has the same form as (8) with 8 (@) or 8 (@) replacing 8(@).  Thus,

an equilibrium value of r respectively satisfies the inequality

B B(9)            M@1[8 (r) > D]  #  D(r)  # M@1[8 (r) $ D].

or

0 0(10)            M@1[8 (r) > D]  #  D(r)  #  M@1[8 (r) $ D].

If he uses the minimax-regret criterion, an equilibrium solves the equation

1                                                          8 (r) ! D
(11)            D(r)  =  M@min [max ( ————— , 0), 1].

1 0                                                       8 (r) ! 8 (r)

Equilibrium When Loan-Return Beliefs Vary Directly with r

Equilibrium conditions (9) – (11) are too abstract to offer much intuition.  However, they have

simple and readily interpretable forms when lender beliefs about the loan return vary directly with r.

We give the findings here.  Section 2.3 will present a simple borrowing scenario that motivates these
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beliefs.

0Suppose lenders believe that the lowest feasible loan return is " r and the highest feasible

1 0 1 0 0 1 1return is " r, where 0 # "  # "  # 1.  Thus, lenders set 8 (r) = " r and 8 (r) = " r as the lowest and

0 1highest feasible loan returns at contracted repayment rate r.  The boundary case "  = "  occurs if

0 1lenders know the loan return.  The boundary case ("  = 0, "  = 1) expresses the belief that all logically

possible loan returns are feasible.  Suppose as well that if lenders maximizes SEU, they place a

uniform subjective distribution on 8(r).  Then we have these findings for equilibrium under the trinity

of decision criteria.

B 0 1Maximization of SEU: The subjective mean return is 8 (r) = ("  + " )r/2, so (9) takes the form

0 1 0 1(12)              M@1[r > 2D/("  + " )]  #  D(r)  # M@1[r $ 2D/("  + " )].

0 1 0 1Thus, the equilibrium value of r equals 2D/("  + " ) if D[2D/("  + " )] # M and solves the equation

0 1D(r) = M if D[2D/("  + " )] > M.

Consider the two boundary cases mentioned above.  Suppose lenders know the loan return,

0 1with "  = "  = " for some " 0 (0, 1].  Then the equilibrium value of r equals D/" if D(D/") # M and

solves the equation D(r) = M if D(D/") > M.  Suppose lenders think that all loan returns are possible,

0 1so ("  = 0, "  = 1).  Then the equilibrium value of r equals 2D if D(2D) # M and solves the equation

D(r) = M if D(2D) > M.

0 0Maximin Loan Supply: If 8 (r) = " r, (10) becomes 
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0 0(13)              M@1[r > D/" ]m  #  D(r)  # M@1[r $ D/" ].

0 0Thus, the equilibrium repayment rate is D/"  if D(D/" ) # M and solves the equation D(r) = M if

0D(D/" ) > M.

Consider the two boundary cases.  If lenders know the loan return, the equilibrium r again

equals D/" if D(D/") # M and solves the equation D(r) = M if D(D/") > M.  If lenders think that all

0loan returns are possible, then D/"  = 4.  Hence, the credit market collapses in this case.

0 0 1 1Minimax-Regret Loan Supply: If 8 (r) = " r and 8 (r) = " r, (11) becomes

1                                                         " r ! D
(14)            D(r)  =   M@min [max (———— , 0), 1].

1 0                                                        ("  !" )r

0 1If "  < " , the factor multiplying M on the right-hand side of (14) is an increasing continuous function

1 0 0of r, whose value increases strictly from zero at r = D/"  to one at r = D/" .  If D(D/" ) > M, the

0equilibrium repayment rate solves the equation D(r) = M.  If D(D/" ) # M, the equilibrium rate is the

1 0r 0 (D/" , D/" ) that solves the equation

1                                        " r ! D
(15)            D(r)  =  M@ ———— .  

1 0                                      ("  !" )r

In the boundary case where lenders think that all loan returns are possible, the equilibrium rate solves

this special case of (15): D(r) = M(r ! D)/r.
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In the boundary case where lenders know the loan return, the right-hand-side of equation (14)

is a step mapping whose value equals 0 for r < D/", M for r > D/", and the set [0, M] for r = D/".

Hence, the equilibrium value of r again equals D/" if D(D/") # M and solves the equation D(r) = M

if D(D/") > M.

2.3. A Simple Borrowing Scenario

Although equilibrium conditions (9) – (11) are abstract in general, we showed above that they

take the simple and intuitive forms (12) – (14) when lender beliefs about the loan return vary directly

with r.  We now present a simple borrowing scenario that motivates these beliefs.  This scenario is

highly idealized, but we nonetheless think it instructive.

Borrowing to Finance Productive Investments

To begin, we formalize the idea that borrowers take loans to finance productive investments,

but may be unable to repay in full when investment returns turn out to be low.  Consider a population

J who want to undertake productive investments.  For example, a student might invest in a college

jeducation or a firm may open a new retail store.  For each j 0 J, let g (x) give the gross return to an

j jinvestment of size x, where x $ 0.  We assume that g (0) = 0 and that g (@) is increasing, differentiable,

and concave.  The gross-return function may vary with j, but we continue to assume that borrowers

are observationally identical to lenders.

Suppose that members of J do not have their own endowments and, hence, must borrow to
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 Another source of incomplete repayment, present in real credit markets but not in our2

model, is imperfect lender ability to enforce legal repayment claims.

finance their investments.  The tentative net return to a loan-financed investment of size x, subtracting

jfull repayment of the loan, is g (x) ! rx.  However, bankruptcy law limits loan liability to the

jmagnitude of the gross return g (x).  We assume that the borrower repays as much of the loan as he

is able to, subject to the limit on liability given by bankruptcy law.  Hence, the borrower actually

j jrepays min[rx, g (x)] and he realizes the net return max[0, g (x) ! rx].

Borrower j wants to solve this optimization problem:

j(16)                max   max [0, g (x) ! rx].
                       x $ 0

j jt jtHe can solve this problem if he knows g (@).  Given that g (0) = 0, the maximum value of g (x) !rx

over x $ 0 must be non-negative.  Hence, the optimization problem reduces to

j(17)                max  g (x) ! rx.
                       x $ 0

jGiven that g (@) is increasing, differentiable, and concave, the optimal loan magnitude is positive if

jdg (0)/dx > r and is zero otherwise.

jA borrower with partial knowledge of g (@) may not be able to solve problem (17).  He may

jplace a subjective probability distribution on g (@) and choose x to maximize expected net return.  Or,

not having probabilistic expectations, he may use the MM or MMR criterion to choose x.  In any case,

borrowing x > 0 may be a reasonable decision ex ante but a poor one ex post.  If the gross return turns

out to be low, a borrower may not be able to fully repay his loan.2
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 Bankruptcy protection is key to this result. The borrower knows that if he receives a bad3

draw on <, he will realize a zero net return regardless of what magnitude loan he demands.  Hence,

Given our assumption that loans are securitized, lenders are concerned with the aggregate

jrepayment of loans rather than with the repayment of a particular individual’s loans.  Let x (r) be loan

demand by borrower j at contracted repayment rate r.  The loan return at this rate is

j 0 J j j j                          3  min{rx (r), g [x (r)]}
(18)      8(r)  /   )))))))))))))))))) .

j 0 J j                                      3  x (r)

The denominator is aggregate loan demand and the numerator is aggregate repayment.

Loan Returns with All-or-Nothing Investments

Loan return (18) is particularly simple if each borrower faces two possible states on nature,

a good state yielding positive gross returns to investment and a bad state yielding no return.  Formally,

let borrower j know that

j j j(a) g (x) = < h(x), where <  $ 0, h(0) = 0, and h(@) is increasing, differentiable, and concave;

j 0j 1j(b) there are two possible values of < , being <  = 0 and <  = 1.

Then the net return to investing any amount x is zero in state 0 and max[0, h(x) ! rx] in state 1. The

borrower cannot affect his outcome in state 0, so his dominant strategy is to ignore state 0 and choose

j x $ 0x optimally for state 1.  Thus, x (r) = argmax  h(x) ! rx. 3
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he can ignore the possibility of a bad draw and optimizes for the case of a good draw.
 Consider borrowing without bankruptcy protection.  Suppose that a borrower knows p and
maximizes expected net return, believing that he faces state 1 with probability p and state 0 with
probability 1 ! p.  The expected net return is p@h(x) ! rx.  Hence, loan demand at rate r in the
absence of bankruptcy protection equals loan demand at rate r/p with bankruptcy protection.

Although the borrower behaves as if he knew that state 1 will occur, either state may actually

occur.  If state 1 occurs, he repays his loan in full.  If state 0 occurs, he repays nothing.  Hence, the

loan return (18) has the form

j 0 J j j                        r@3  x (r)@1[<  = 1]
(19)   8(r)  =   ))))))))))))))) .

j 0 J j                                3  x (r)

This expression simplifies further under the assumption that all borrowers faces the same gross-return

function h(@) in state 1.  This implies that loan demand is homogeneous across borrowers.  Hence, (19)

reduces to

(20)    8(r)  =  pr,

j 0 J jwhere p / (1/*J*)@3  1[<  = 1] is the fraction of borrowers who realize the good state of nature.

0 0 1 1Equation (20) motivates the lender belief setting 8 (r) = " r and 8 (r) = " r.  In the borrowing

scenario under discussion, the actual loan return varies directly with r.  However, lenders may not

know the fraction p of borrowers who realize the good state of nature and, hence, repay their loans.

0 1Thus, "  and "  are the lowest and highest values of p that lenders thinks feasible.
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3. Intervention to Maximize the Social Return to Borrowing

Section 2 considered the operation of a credit market without government intervention except

for the limited liability provided borrowers by bankruptcy law.  In this section, we consider a more

activist government that aims to maximize the net social returns to borrowing.  Acting through a

public Authority, the government may intervene to affect the competitive equilibrium.

Section 3.1 formalizes the Authority’s decision problem.  Sections 3.2 and 3.3 study the use

of two policy instruments to promote the social objective.   One intervention manipulates the return

on the safe asset and the other guarantees a minimum loan return to lenders.

3.1. The Authority’s Decision Problem

j jRecall that g (x) is the gross return if agent j borrows x  dollars to undertake an investment.

j j jLet the net social return to this investment be g (x ) ! D x , where D  > 0 is the social return to an* *

alternative use of a dollar.  The value of D  may but need not equal the private return D that lenders*

receive for investment in the safe asset.  We assume that the government aims to maximize the

aggregate net social return to the investments financed by borrowing.  Formally, the public Authority

wants to solve the optimization problem 

j j j(21)        max        3 g (x ) ! D x .*

j           x  $ 0, j 0 J   j 0 J

We think maximization of the net social returns to borrowing to be a sensible public objective.
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j 0 J j j jObserve that welfare function 3  g (x ) ! D x  is not utilitarian.  That is, the Authority does not aim*

to maximize a weighted sum of the private utilities achieved by lenders and borrowers.  A utilitarian

welfare function would depend on the loan return that lenders obtain.  When a borrower cannot repay

his loan in full, a transfer occurs from the lender, who receives less than the contracted repayment,

to the borrower, who does not fulfill the contract.  We take this zero-sum transfer to be entirely a

private matter, not one of social import.

The Authority, like lenders and borrowers, may have only partial knowledge and so be unable

to solve problem (21).  To drastically simplify analysis of the Authority’s problem, we will continue

to study the borrowing scenario of Section 2.3.  Then (21) becomes

j j j(22)        max        3 < h(x ) ! D x .*

j           x  $ 0, j 0 J   j 0 J

j j j jIf the Authority were to know (< , j 0 J), it would want to have x  = 0 when <  = 0 and would want x

jto maximize h(x) ! D x when <  = 1.  Our concern is with settings where the Authority does not know*

j(< , j 0 J).

jWe assume that, lacking knowledge of (< , j 0 J), the Authority seeks to maximize the

expected net social return to borrowing; that is, to solve

 

j j(23)        max        3 p@h(x ) ! D x .*

j           x  $ 0, j 0 J   j 0 J

 

Here, as in Section 2.3, p is the fraction of borrowers who realize the good state of nature.  The

x $ 0solution to (23) is to have every borrower invest the amount argmax  h(x) ! (D /p)x.  This is the*
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amount that borrowers in a competitive credit market would invest if the contracted repayment rate

were D /p.  Thus, given knowledge of p, the Authority can solve (23) if it can intervene in the credit*

market so that the equilibrium contracted repayment rate becomes D /p.*

0 1 0 1Suppose that the Authority does not know p, but believes that p 0 [p , p ], where 0 # p  # p

# 1. Then it might use one of the trinity of decision criteria that we previously considered for lenders.

Application of the MMR criterion is complex in this scenario, but the SEU and MM criteria yield

immediate modifications of problem (23).  An Authority maximizing SEU would place a subjective

0 1 Rdistribution, say R, on [p , p ] and replace p in (23) with its subjective mean, denoted p .  An

0Authority using the MM criterion would replace p with p .  Hence, the Authority would want to

R 0intervene in the credit market so that the equilibrium contracted repayment rate becomes D /p  or D /p* *

respectively.  

3.2. Manipulation of the Return on the Safe Asset

Suppose that the Authority can augment lenders’ endowment M and can manipulate the return

D on the safe asset.  If the Authority knows how lenders behave, it can set (M, D) to achieve the

desired borrowing outcome.  In what follows, we assume that the Authority maximizes SEU and,

Rhence, wants the equilibrium value of r to be D /p .  This encompasses cases where the Authority*

R 0knows p or use the MM criterion, as p  then equals p or p .  As in Section 2.2, we assume that

lenders’ beliefs about the loan return vary directly with r.

The Authority first must determine if lenders’ endowment M is large enough to support the

x $ 0 Rdesired magnitude of borrowing.  Let x  / argmax  h(x) ! (D /p )x be the desired investment per* *
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borrower.  Then the desired aggregate loan volume is x *J*.  If x *J* # M, the endowment suffices* *

to supply this loan volume.  Otherwise, the Authority must augment the endowment by the amount

x *J* ! M.  There are many ways to accomplish this.  For example, the Authority might establish a*

governmental or quasi-public lending agency with endowment x *J* ! M.  Henceforth, we take*

lenders’ endowment to be M  / max(M, x *J*).* *

Given endowment M , the desired equilibrium can be achieved by manipulating the return on*

the safe asset.  The required intervention depends on lenders’ beliefs and decision criterion.  We

consider here the three cases examined in Section 2.2.

0 1Maximization of SEU: In the absence of intervention, the equilibrium value of r equals 2D/("  + " )

0 1 R 0 1 Rif D[2D/("  + " )] # M .  To make r = D /p , the Authority should set D = D ("  + " )/(2p ).* * *

0Maximin Loan Supply: In the absence of intervention, the equilibrium value of r equals D/"  if

0 R 0 RD(D/" ) # M .  To make r = D /p , the Authority should set D = D (" /p ).* * *

0 1Minimax-Regret Loan Supply: Suppose that "  < " , as MMR loan supply coincides with the above

0 1cases in the boundary case "  = " .  In the absence of intervention, the equilibrium value of r solves

0 Requation (15) if D(D/" ) # M .  To make r = D /p , the Authority should set D to solve the equation* *

1 R 1 R                                M (" D /p  ! D)         M ("  ! p D/D )* * * *

(24)          x *J*  =  ———————  =  ——————— .*

1 0 R 1 0                                 ("  !" )(D /p )                ("  !" )*

R 1 1 0Thus, the Authority should set D = (D /p )["  !  ("  !" )(x *J*/M )].  The desired value of D equals* * *
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the value with SEU lending if  x *J* = M / 2 and equals the value with maximin lending if x *J* = M .* * * *

Discussion

The above shows that augmentation of lenders’ aggregate endowment and manipulation of

the return to the safe asset can yield the socially desired equilibrium.  However, two caveats temper

the appeal of this intervention.

First, a successful intervention requires the Authority to know lenders’ beliefs and decision

0 1criterion.  If lenders use the SEU or MM criterion, the Authority needs to know (" , " ) to effectively

manipulate D.  If lenders use the MMR criterion, it also needs to know the magnitude x  of the*

optimal investment.  In any case, the Authority needs to know enough about x  to establish an*

endowment that is large enough to supply the desired level of borrowing.  The Authority may or may

not have the required information in practice.

Second, the intervention presumes that the Authority has the power to manipulate D as

required.  In practice, the safe asset often is a government-issued security.  Hence, manipulation of

D would appear to be feasible.  However, the Authority may find it infeasible to set the desired value

of D if lenders are more pessimistic about loan repayment than is the Authority.

Suppose in particular that fiat money is available as a store of value.  Then D can be set no

lower than one minus the inflation rate.  If lenders are sufficiently pessimistic relative to the

Authority, the desired return on the safe asset may be smaller than this lower bound.

R 0 1Suppose, for example, that D  = 1.02, p  = 0.90, and ("  = 0.75, "  = 0.95).  In this plausible*

scenario, the desired value of D is 0.96 if lenders maximize SEU and 0.85 if they use the MM
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criterion.  Setting D to these values is infeasible if the inflation rate is less than 4 and 18 percent

respectively.  If lenders use the MMR criterion, the desired value of D depends on x , equaling the*

SEU value if x *J* = M / 2 and the maximin value if x *J* = M .  Hence, setting D as desired may be* * * *

infeasible here as well.

3.3. Guaranteeing a Minimum Loan Return

When lenders are pessimistic about the return to lending, the Authority may be able to achieve

the desired outcome by guaranteeing a minimum loan return.  Suppose as above that the Authority

augments lenders’ endowment if necessary, so the endowment is M  / max(M, x *J*).  Suppose the* *

0Authority guarantees to lenders that they will receive a minimum return of g $ "  per dollar loaned.

0 1 1Then lenders should revise upward their beliefs about p, replacing (" , " ) with [g, max (g, " )].

The guarantee required to achieved the desired outcome depends on lenders’ beliefs and

decision criterion.  We show here that a loan guarantee can succeed if lender beliefs are sufficiently

pessimistic but not otherwise.

0 1Maximization of SEU: In the absence of intervention, the equilibrium value of r equals 2D/("  + " )

0 1 Rif D[2D/("  + " )] # M .  To use a loan guarantee to make r = D /p , the Authority needs to select g* *

to solve the equation

R 1(25)            D /p   = 2D/[g + max (g, " )].*
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0 1 RThis equation has a unique solution if ("  + " )/2 # p D/D  and no solution otherwise.  To show this,*

0 1 1we consider in turn the ranges "  # g # "  and g > " .

0 1 R 1When "  < g # " , equation (25) becomes D /p  = 2D/(g + " ).  Ignoring the constraint, this*

R 1 0 R 1 1yields g = 2p D/D  ! " .  Thus, the guarantee achieves the desired outcome if "  # 2p D/D  ! "  # " .* *

0 1 R R 1Equivalently, the guarantee succeeds if ("  + " )/2 # p D/D  and p D/D  # " .  * *

1 RWhen g > " , equation (25) becomes D /p  = D/g.  Ignoring the constraint, this yields g =*

R R 1p D/D .  Thus, the guarantee succeeds if p D/D  > " .* *

0Maximin Loan Supply: In the absence of intervention, the equilibrium value of r equals D/"  if

0 R 0D(D/" ) # M .  To use a loan guarantee to make r = D /p , the Authority needs to select g $ "  to solve* *

the equation

R(26)            D /p   =  D/g.*

0 R 0 RIgnoring the constraint g $ " , this yields g = p D/D .  Thus, the guarantee succeeds if "  < p D/D .* *

0 1Minimax-Regret Loan Supply: Suppose that "  <" , as MMR loan supply coincides with the above

0 1 0cases in the boundary case "  = " .  In the absence of intervention, solves equation (15) if D(D/" ) #

R 0 1 1M .  To use a loan guarantee to make r = D /p , we consider in turn the ranges "  < g # "  and g > " .* *

0 1Consider "  < g # " .  The Authority needs g to solve the equation

1 R 1(27)                   x *J*  =  M ("  ! p D/D )/("  ! g).* * *
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0 1 1 1 RIgnoring the constraint "  < g # " , this yields g = "  ! M ("  ! p D/D )/(x *J*).  Thus, the guarantee* * *

0 1 1 R 1succeeds if "  <  "  ! M ("  ! p D/D )/(x *J*) # " .  The MMR guarantee coincides with the SEU* * *

guarantee if x *J* = M /2 and coincides with the MM guarantee if x *J* = M .* * * *

1Consider g > " .  Then the guarantee yields a boundary case where lenders know the loan

return is g@r.  Hence, the equilibrium value of r equals D/g if D(D/g) # M .  Ignoring the constraint,*

R R 1setting g = p D/D  yields the desired outcome.  Thus, this guarantee succeeds if p D/D  > " .* *

Discussion

As with manipulation of the return on the safe asset, successful implementation of a loan

guarantee requires the Authority to know lenders’ beliefs and decision criterion. To obtain a sense

Rof the magnitude of the required guarantee, consider again the example with D  = 1.02, p  = 0.90, and*

0 1("  = 0.75, "  = 0.95).  Suppose as well that the return D on the safe asset equals D .  Then the*

required guarantee is g = 0.85 if lenders maximize SEU and g = 0.90 if they use the MM criterion.

If lenders use the MMR criterion, the desired value of D depends on x , equaling the SEU value if*

x *J* = M / 2 and the maximin value if x *J* = M .  In all of these cases, the required guarantee is less* * * *

than or equal to the subjective mean 0.90 that the Authority holds for the rate of loan repayment.

Hence, it is plausible that the Authority would be willing to make the guarantee.

The potential advantage of a loan guarantee is that it can be implemented when lender beliefs

are too pessimistic for manipulation of the return on the safe asset to be feasible.  Contrariwise, a loan

guarantee cannot achieve the desired outcome when lender beliefs are relatively optimistic.  Hence,

the two interventions have somewhat distinct domains of application.

In some settings it may be advantageous for the Authority to combine the two interventions,
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jointly setting (D, g) to achieve the desired borrowing outcome.  We do not explicitly study joint

interventions here, but combinations that yield the desired outcome can be determined in the same

way that we have examined the interventions in isolation.

Finally, we note that discussions of loan guarantees often caution about moral hazard, the

concern being that the guarantee provides an incentive for lenders to pool groups of borrowers whom

lenders believe have different repayment rates.  We have throughout this paper defined the credit

market under consideration as providing loans to borrowers who are observationally identical to

lenders.  Hence, such pooling is not possible by assumption within the model.

Nevertheless, moral hazard may be a real concern with implementation of loan guarantees in

the real world.  In actuality, lenders may have information about borrowers that is not observable by

the Authority and, hence, may be able to inappropriately pool loans without detection by the

Authority.  The potential for problem is exacerbated if lenders can leverage, borrowing the safe asset

to finance a loan volume larger than their endowments.  Loan guarantees must be designed with

caution to mitigate such problems.

4. Conclusion

Ambiguity (or Knightian uncertainty) about investment returns has recently been asserted to

be a negative influence on the operation of financial markets, inducing investors to allocate more of

their portfolios to safe assets than is socially optimal.  Government intervention to reduce ambiguity

has been recommended as a suitable treatment.  For example, Greenspan (2004, p. 38) has written:
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 Other phenomena associated with credit crises are more difficult to explain within the SEU4

framework.  Easley and O’Hara (2008) study the “freezing” of financial markets, where investors
are unwilling to trade at all.  Freezing differs from a flight to safety, because the latter requires
investors who hold risky assets to trade towards safe ones.  To explain freezing, they conjecture that
investors who lack subjective probability distributions for asset returns have incomplete preferences
and, when unable to order alternative portfolios, choose to maintain the status quo as suggested by
Bewley (2002).

When confronted with uncertainty, especially Knightian uncertainty, human beings invariably

attempt to disengage from medium- to long-term commitments in favor of safety and

liquidity. . . The immediate response on the part of the central bank to such financial

implosions must be to inject large quantities of liquidity.

Considering the recent credit crisis, Caballero and Krishnamurthy (2008b, p. 2) have written:

The heart of the recent crisis is a rise in uncertainty – that is, a rise in unknown and

immeasurable risk rather than the measurable risk that the financial sector specializes in

managing. . . . What should central banks do in this case? They must find a way to re-engage

the private sector’s liquidity.  Re-engagement will only occur as agents’ uncertainty over

outcomes is reduced.

Our analysis suggests that investor ambiguity need not be the driving force behind a “flight

to safety” in credit markets.  In the market we study, the force driving a flight to safety is increased

lender pessimism about the return to lending.  A lender who maximizes SEU becomes more

pessimistic if his subjective mean for the loan return decreases. A decrease in the subjective mean

return to lending induces a decrease in loan supply, the consequence being an increase in the

equilibrium contracted repayment rate and a decrease in the equilibrium loan volume.  Thus, a flight

to safety may occur if lenders maximize SEU.4
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While we do not see ambiguity as a prerequisite for a flight to safety, we do think it highly

plausible that lenders lack rational expectations about loan repayment after unanticipated shocks.

Indeed, they may not have probabilistic expectations at all.  Lenders who lack probabilistic

expectations may use the MM or MMR criterion, or they may cope with ambiguity in some other way.

In any case, the operation of credit markets certainly does depend on lender beliefs about loan

returns and on the decision criteria they use to allocate their endowments.  Hence, an Authority who

wants to intervene in the credit market needs to understand lender beliefs and decision criteria.  Our

study of policies that manipulate the return on the safe asset or provide a loan guarantee shows that

design of a successful intervention requires the Authority to know how pessimistic lender beliefs are

relative to the beliefs of the Authority.  Theoretical analysis of the type performed in this paper can

suggest how lenders may behave, but it cannot reveal how they actually behave.  Empirical analysis

of lender beliefs and decision criteria is necessary.
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