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ABSTRACT

We examine the impact of piped water on the under-1 infant mortality rate (IMR) in Brazil using a
novel econometric procedure for the estimation of quantile treatment effects with panel data.  The
provision of piped water in Brazil is highly correlated with other observable and unobservable determinants
of IMR -- the latter leading to an important source of bias.  Instruments for piped water provision are
not readily available, and fixed effects to control for time invariant correlated unobservables are invalid
in the simple quantile regression framework.  Using the quantile panel data procedure in Chen and
Khan (2007), our estimates indicate that the provision of piped water reduces infant mortality by significantly
more at the higher conditional quantiles of the IMR distribution than at the lower conditional quantiles
(except for cases of extreme underdevelopment).  These results imply that targeting piped water intervention
toward areas in the upper quantiles of the conditional IMR distribution, when accompanied by other
basic public health inputs, can achieve significantly greater reductions in infant mortality.
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1   Introduction 
The Millennium Development Goals aim to reduce by two-thirds the under-

five child mortality rate by 2015 from the base year 1990 (United Nations, 2005).  

In 2000, diarrhea caused approximately 22% of these deaths worldwide (Black et 

al, 2003).1  About 1.5 million child deaths (or 88% of those from diarrhea) are 

caused by ingestion of unsafe water, inadequate availability of water for hygiene, 

and lack of access to sanitation (Black et al, 2003).  A proposed strategy to 

achieve the Millennium Development Goals of reducing child mortality is to 

improve access to safe drinking water.  Indeed, the Brazilian government has 

announced its goal to achieve universal coverage for piped water (World Bank, 

2003). These proposals raise an important policy question – can provision from 

piped water from the network, hereafter “piped water”, reduce the infant mortality 

rate (IMR).2  For those populations at greatest risk (i.e. in areas that suffer 

severe infant mortality rates) can this provision reduce infant mortality rates, or is 

the provision of piped water effective only when accompanied by complementary 

income-related inputs at the household or community level? 

 In situations involving extreme inequality, it is possible for simple 

conditional mean estimates to mask the answers to these questions.  Quantile 

estimation, which recovers the marginal impact of piped water on various 

quantiles of the conditional distribution of the IMR, can address this problem. 

Quantile regression is, however, not easily adaptable to dealing with problems of 

endogenous regressors.  This presents a difficulty for most policy analyses, since 

policies are seldom applied randomly.  When valid instruments are available, 

endogeneity can be addressed with instrumental variable quantile techniques 

(Abadie et al., 2002; Arias et al., 2001; Chernozhukov and Hansen, 2005, Khan 

                                                           
1 These figures are for the 42 countries with 90% of the worldwide under-5 deaths in 2000 (Black 
et al., 2003).  
2 Our study is limited to the following measure: percentage of households that receive piped water 
from a network.  We do not have data on the quality of that piped water. We also do not have 
data on the type of connection from the network to the home (i.e., whether through plumbing 
internal to the house or through standpipes external to the house). Furthermore, we do not 
evaluate the effectiveness of piped water interventions relative to other water-related 
interventions. Mintz et al. (2001) argue that “decentralized approaches to making drinking water 
safe, including point-of-use chemical and solar disinfection, safe water storage, and behavioral 
change merit far greater priority for rapid implementation.” 
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and Tamer, 2008). The practical problem is that there are often no good 

instruments for many policies.  The usual statistical approach in mean regression 

is to exploit panel variation and estimate fixed effects to control for time invariant 

sources of correlated errors.  However, this approach is not applicable using 

standard quantile techniques.3 

Using a new approach to quantile regression with panel data developed 

by Chen and Khan (2007), we examine the impact of provision of piped water on 

the under-1 infant mortality rate at various quantiles of the conditional IMR 

distribution using panel data for 3568 census units in all Brazil.  We describe the 

effect of the treatment on various quantiles of the outcome distribution, making 

no assumption about the joint distribution of the treated and untreated 

distributions. Our interpretation follows that of Abrevaya (2001) and Bitler et al., 

(2005).  

 We find that an increase of one percentage point in the number of 

households receiving piped water in the group of counties with poor development 

indicators in the period 1980-1991 causes a decline of 1.25 deaths per 1,000 live 

births at the 90th percentile of the conditional IMR, but a decline of only 0.54 

deaths at the 10th percentile.4 The marginal effect at the mean (i.e., 0.72 deaths 

per 1,000 live births) turns out to provide a poor indication of the effect of water 

on much of the IMR distribution.  The most important implication of this result is 

that the impact of a piped water provision policy is determined in large part by 

how those piped water connections are distributed.  There is tremendous payoff 

to targeting water provision to the areas with the highest IMR (both conditional 

and unconditional).  In practice, however, piped water interventions have tended 

to be in places with good indicators of development and which are low in the 

conditional IMR distribution. 

Our paper makes two methodological contributions to the program 

evaluation literature in developing countries.  First, by using novel quantile 

                                                           
3 Differenced regression cannot be applied in the quantile regression context, and simple fixed 
effects estimation suffers from incidental parameters bias unless the panel is very long in the time 
dimension. 
4 These indicators are described in Section 4 and Section 5.2. 
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techniques, we examine whether the provision of piped water can reduce infant 

mortality in the upper tail of the conditional IMR distribution.  A priori, it is unclear 

whether the provision of piped water, without sufficient complementary health 

inputs, will yield a reduction in IMR at these quantiles.  Previous studies' focus on 

the impact at the mean of the conditional distribution may obscure this policy-

relevant heterogeneity. 

Second, by applying panel data techniques to quantile estimation, we can 

estimate the impact of piped water on IMR while controlling for potential time 

invariant confounders.  Areas with fewer piped water connections are also high 

IMR areas. These areas may suffer from systematic underreporting of infant 

deaths (Victora and Barros, 2001). At the same time, areas with more piped 

water connections are likely to benefit from other superior health inputs (these 

inputs are unobservables in our study, such as access to medical care, nutritional 

supplements, and public health infrastructure.) (Jalan and Ravallion, 2003; 

Weinreb, 2001).  Our estimates will not suffer from the downward bias arising 

from the systematic underreporting of deaths or the upward bias arising from 

these time invariant inputs.5  At present, only a few, albeit important papers, have 

applied quantile regression to program evaluation in developing countries 

(Djebbari and Smith, 2005) and fewer still have applied strategies to address 

time invariant confounders within the context of quantile regressions. 

While instrumental variables may not always be available, the proliferation 

of quality panel data means that our methodological approach can be widely 

applied to the evaluation of other programs that provide health inputs or other 

public goods in developing countries.  Our task of evaluating the impact of piped 

water on IMR shares two key characteristics with the evaluation of programs that 

provide health inputs in developing countries, such as the provision of nutritional 

supplements or medical assistance to populations at risk.  First, from the policy 

perspective, it is important to understand the impact of these programs on the 

subpopulations that are most at risk; if unobservables are important determinants 

                                                           
5 The quantile panel data technique we employ, like other fixed effect models, cannot correct the 
bias arising from time varying unobservables (Ahn, Lee, and Schmidt, 2001). 
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of the outcome variable, these subpopulations will tend to occupy the tails of the 

conditional outcome distribution.  Mean impacts will fail to capture heterogeneous 

impacts across the conditional distribution.  Second, the evaluation of these 

programs is complicated by their systematic placement in areas that receive 

superior health inputs.  If these inputs are unobserved by the econometrician, 

they will cause an upward bias in the measurement of positive program impacts.  

At the same time, the systematic underreporting of outcome variables (e.g., 

mortality in higher mortality areas) (Victora and Barros, 2001), may attenuate the 

relationship between health inputs and mortality. 

 

 

2   Piped water and infant mortality in Brazil 
2.1    Infant mortality 

Piped water supply reduces infant mortality directly by reducing the 

incidence of diarrhea that arises from the ingestion of contaminated water and 

food, and indirectly when caregivers are able to devote more time to childcare 

instead of water collection activities. Brazil serves as a case study for the impact 

of piped water on infant mortality for three reasons.  First, diarrheal diseases are 

an important cause of infant mortality, accounting for 8% of infant death in Brazil 

in 1995-7 (Victora, 2001).  In Northeast Brazil, the poorest area in the country, 

diarrhea accounted for 15% of infant mortality (Victora, 2001). Second, under-1 

infants in Brazil are susceptible to water-borne diseases due to the relatively 

short duration of breastfeeding (Sastry and Burgard, 2005).  Diarrhea is likely to 

increase when the infant is first exposed to supplemental liquids or solids, usually 

at ages below 1 year old (Sastry and Burgard, 2005).  The 1989 Brazilian 

National Health and Nutrition Survey indicates that only 29.5% of infants aged 0-

5 months were exclusively breastfed and 36.3% of those aged 0-23 months were 

breastfed (Senauer and Kassouf, 2000).  In 1996, the Brazil-wide estimate of the 

duration for breastfeeding (both exclusive and supplemental) was 8.2 months 
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(Sastry and Burgard, 2005).6 Third, our results from Brazil, particularly the 

Northeast, are potentially transferable to other developing countries.  

 

2.2   Piped water provision: institutions and policies 
During our study period, Brazil experienced three distinct regimes in piped 

water provision – the pre-1971, the 1971-1991, and the post-1991 periods.  Prior 

to 1971, the responsibility for piped water provision rested with municipalities or 

counties.7  In 1971, the federal government launched the National Sanitation 

Plan (PLANASA) with the goal of achieving universal supply of piped water in all 

urban areas.  The state governments created state water companies (CESBs) 

and state water and sanitation funds (FAEs).  Most municipalities signed 20-30 

year concession contracts with the CESBs, transferring responsibilities for the 

extraction, treatment and distribution of piped water to latter.  Under PLANASA, 

only municipalities with such contracts could gain access to federal funding 

(ERM, 2003). 

During PLANASA’s operation between 1971 and 1991, investments in 

water and sanitation amounted to US$13.6 billion. The Employment Guarantee 

Fund (FGTS) financed 60% of the total investments, the FAEs and CESBs 

financed 29% and the federal budget and other sources funded the rest.  The 

National Housing Bank (BNH), which managed PLANASA’s operations, and the 

CESBs borrowed from international development banks (ERM, 2003).8  The 

CESBs charged tariffs to users, allowing cross-subsidies between high- and low-

income users (McNallen, 2006).  PLANASA prioritized water services over 

sewerage and targeted larger and fast growing cities and metropolitan regions.9 

Rural areas received little service as most contracts between municipalities and 

the CESBs were restricted to urban areas, while rural villages remained under 

                                                           
6 The average duration of breastfeeding did not differ dramatically between the Northeast and the 
rest of Brazil (Sastry and Burgard, 2005). 
7 We use the terms municipality or county, interchangeably, to correspond to the Brazilian-term 
“municipios” 
8 The FTGS is financed by taxes on employers (ERM, 2005).  
9 PLANASA invested 68% of funds into water and only 32% into sanitation. 
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municipal responsibility.  Many municipalities, however, lacked the resources to 

provide piped water supply (ERM, 2003).  

Brazil’s economic upheavals in the 1980s contributed to PLANASA’s 

demise in 1991.  The CESBs, FTGS, FAEs and BNH all faced financial 

problems. PLANASA’s operational functions were transferred to another federal 

bank, the National Economic Bank (CEF) (ERM, 2003).  With the expiry of 

contracts signed under PLANASA, many municipalities are seeking to regain 

control of the water services (ERM, 2003).  Several states and municipalities are 

locked in dispute over the asset ownership, regulatory authority, and 

concessionary powers (World Bank, 2003).  The disputes have discouraged 

private investments (World Bank, 2003).  Several of the more prosperous 

municipalities have opted to sign concessions with providers other than the 

CESBs.  These municipalities have ended cross-subsidization, contributing to 

service deterioration in the poorest municipalities (ERM, 2005). 

The Brazilian government has not implemented a consistent piped water 

program to replace PLANASA.10  The debate at the federal level on proposed 

2001 legislation for a comprehensive approach to water management ended in a 

stalemate (ERM, 2003).  Today, the relative roles of the various federal 

institutions in the water sector remain poorly defined and uncoordinated11 (World 

Bank, 2003).  

Brazil’s funding criteria for water investments have not consistently 

prioritized the poor (World Bank, 2003).  PROSANEAR is one of the few projects 

that target water and sanitation services to the urban poor.12  That project 

extended the existing public water network into poor urban neighborhoods. 

Between 1992-7, PROSANEAR I provided piped water to 0.9 million people and 

sewage facilities to 1 million people in 17 cities.  Water agencies cross-

                                                           
10 PRONURB (the Sanitation Program for Urban Settlements) and PROSANITATION operated 
between 1990-4 and 1995-8, respectively (Garrido, 2006). 
11 The federal institutions include the Special Secretariat for Urban Development (SEDU), The 
Federal Economic Bank (CEF), the National Bank for Economic and Social Development 
(BNDES), the National Water Agency (ANA), the Ministry of Planning and Budget, the Ministry of 
Finance, and the National Health Foundation (FUNASA) (World Bank, 2003).  
12 The PROSANEAR I projects were financed by a World Bank loan, local water companies, state 
or municipal governments, and the CEF.  

7 



subsidized the low PROSANEAR tariff with revenues from their other customers 

and received through direct subsidies from the local governments. Two 

subsequent projects, PROSANEAR II and PASS/Comunidade Solidária, also 

target low income communities (Katakura and Bakalian, 1998).  In addition, the 

Ministry of Health manages Program Alvorado, a social program with water 

supply and sanitation components (World Bank, 2003). 

In the year 2000, out of the 5507 municipalities, about 3706 municipalities 

received piped water supply from state water companies and about 1676 

municipalities received their supply from a mix of municipal water providers, 

private concessionaires, private and social organizations.  In the remaining 2% of 

municipalities, water was supplied through standpipes and water tankers (in the 

small rural villages of the semi-arid area of the Northeast Region) and, through 

the use of private wells and individual extraction from surface water in the rest of 

the country” (ERM, 2003). 

 

2.3   Patterns of piped water provision (1970-2000) 
The provision of piped water by regions is tabulated in Table 1A. 

Specifically for this table, we classify counties as urban in a given year if 50% or 

more of their population live in urban areas. As evident from Table 1A, Brazil’s 

policies have resulted in superior piped water coverage in urban counties 

situated in the more prosperous regions i.e., the Southeast and the South, but 

poor coverage in other less prosperous regions, i.e., the Northeast and the North. 

Coverage lags in rural counties across all regions, but is especially scant in the 

North and Northeast. In the 1970s, piped water coverage in the urban counties 

was low in the Southeast (51%), extremely low in the South (27%) and sparse 

the Center-West, North and Northeast (15-20%). Between 1970 and 1991, piped 

water coverage in urban areas grew to moderate levels in the Southeast and 

South (62-66%), to low levels in the Center-West and Northeast (39-44%), but 

remained extremely low in the North (27%). By 2000, coverage has grown to 

high levels in the South and Southeast (74-77%) and to moderate levels in the 

Center-West and Northeast (62-69%), while coverage lagged in the North (50%). 
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Piped water coverage in rural counties has lagged behind that in urban counties. 

In rural counties in the Southeast, South, and Center-West, piped water 

coverage grew from scant levels in 1971 (4-20%) to moderate levels (44-48%) by 

2000. In contrast, the coverage in the rural counties in the North and Northeast, 

which has been sparse even as late as 1991 (13% and 19%), remains low in 

2000 (31% and 42%). 

 
 
3   Econometric issues in estimating the impact of piped water on IMR  
3.1   Marginal effects of piped water – mean versus quantiles 

We use quantile techniques to recover the marginal impact of piped water 

on various parts of the conditional IMR distribution.  In contrast, previous studies 

of piped water have focused on the conditional mean of that distribution (Sastry, 

1996; Merrick, 1985; Jalan and Ravallion, 2003).  Only under the assumption that 

the marginal effect of piped water is a simple "common effect" or "location shift" 

will the impact at the mean be the same as the impact for the entire distribution 

(Heckman et al., 1997; Abadie et al., 2002).  In other words, under the “common 

effect” assumption, the piped water intervention has the same impact on 

everyone with the same observed characteristics (Heckman et al., 1997). 

Papers on health inputs have shown that estimates at the mean may 

obscure heterogeneous impacts at the various quantiles of the conditional 

distribution. Moreover, the heterogeneity in the conditional distribution of the 

outcome variable is relevant for public policy.  For example, Abrevaya (2001) 

finds that prenatal care in the US has a significantly higher impact at lower 

quantiles of the conditional distribution of infant birthweight than at the higher 

quantiles.  Moreover, he finds that the black-white differential in birthweight is 

larger at the lower conditional quantiles of birthweight. 

Heterogeneity in the impact of piped water is relevant for policy decisions 

regarding piped water placement. On the one hand, targeting piped water to 

vulnerable households may improve their welfare significantly.  Households or 

communities with low income typically have the fewest public resources for 
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children’s health.13  In such cases, we would expect piped water to have greater 

protective effect among households or communities with lower incomes.  On the 

other hand, targeting piped water to vulnerable households may be necessary 

but not sufficient to improve their welfare.  In particular, their limited income or 

education may constrain their ability to exploit the benefits from piped water 

supply.  In that case, water supply placement would need to be accompanied by 

other interventions (Jalan and Ravallion, 2003). 

In exploring the impact of piped water on IMR, our study explores two 

types of heterogeneity that call for distinct policy responses: (1) heterogeneity 

along observable dimensions such as income and (2) heterogeneity due to 

unobserved factors.  The policy response for the first type of heterogeneity is to 

target along observables such as income and education. The policy response to 

the second type of heterogeneity is more challenging.  It would not be sufficient 

to simply consider income, education, and sewage in defining “vulnerable 

populations”.  Instead, in their task of allocating water, policy-makers need to 

look for other factors (i.e., unobserved factors in our analysis) that make IMR 

high.  In this paper, we seek to also determine the return to targeting these 

unobservables in the placement of piped water, and we describe how such 

targeting might be accomplished. 

The first type of heterogeneity can be explored by standard techniques in 

the literature i.e., by allowing the marginal impact of water to vary by the income 

variable.  However, a mean regression with interaction terms would not address 

the second type of heterogeneity.  In contrast, quantile techniques allow us to 

explore the second type of heterogeneity.  A priori, it is unclear whether the 

marginal effect of water is greater in higher or lower income communities. 

Similarly, a priori, it is unclear whether, controlling for observables such as 

income, education and sewage network, the marginal effect of water is greater at 

higher or lower percentiles of the conditional distribution of the IMR.  

                                                           
13 Thomas and Strauss (1992) make this argument for maternal education. 
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Previous studies suggest a complex relationship between health status, 

water supply and socio-economic status.14  Shuval et al. (1981) propose a four-

stage threshold-saturation model to explain the relationship between health 

status, water supply and socioeconomic levels reported in several empirical 

studies with seemingly contradictory results.15  Shuval et al. (1981) propose that 

at the first stage, i.e., below a threshold of socioeconomic development, the 

provision of water does little to improve the health status of the community.  

Individuals have low disease resistance due to their extremely poor nutrition and 

personal hygiene and their exposure to multiple and simultaneous routes of 

disease transmissions. The provision of water alone, which addresses only one 

route of disease transmission, does not have a strong impact on health. Shuval 

et al.’s (1981) argument echoes that of Briscoe (1984a) – i.e., the improvements 

in drinking water supply in Matlab, Bangladesh did not cause major reductions in 

cholera incidence because complementary interventions were not undertaken to 

eliminate other important, albeit secondary, routes of cholera transmission (e.g., 

the ingestion of polluted water during bathing).  Similarly, Esrey et al. (1992) find 

that water supply had a significant health impact only when accompanied by the 

presence of latrines in their study of infants in Lesotho.16 

At the second stage, above that threshold but below the saturation point, 

socioeconomic development improves the standard of living and reduces the 

exposure to infection (Shuval et al., 1981). At this level of socioeconomic 

                                                           
14 Consider, for example, hygiene behavior, which our study does not explicitly include but which 
can influence whether the provision of water supply translates to health benefits.  It is likely that 
the provision of water supply encourages the adoption of hygienic behaviors.  Cairncross (1990) 
argues that the provision of water leads to health impacts only when accompanied by the 
adoption of hygienic behavior.  Citing Esrey et al. (1985), Cairncross (2003) argues that 
handwashing thus turns out to have an even greater impact on diarrheal disease than water 
supply or sanitation.  Nevertheless, as noted by Cairncross (2003), “a convenient water supply 
makes handwashing easier to practice and hence more likely.  Indeed, it has been confirmed by 
observation in developing countries that mothers of young children are more likely to wash their 
hands at critical moments if they have a piped water supply (Curtis et al., 1995).” 
15 Shuval et al. (1981) use country-level data for 65 developing countries from 1962.  Life 
expectancy at birth measures health status, adult literacy rate measures socioeconomic status, 
and the proportion of the urban population having access to water supply by either household tap 
or standpipe measures the sanitation level.  Shuval et al. (1981) reports that these data, though 
imperfect, are consistent with their model. 
16 Esrey et al. (1992) examine 119 infants who lived in 20 villages in Lesotho from a 6 month 
period in 1984-1985.  
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development, communities have a strong health response to investments in 

water supply.  At the third stage, as communities develop further, they move 

towards a saturation point, whereby improvements in water supply have only a 

small impact on health.  At the fourth stage, beyond the saturation point, 

communities have reached high levels of socioeconomic development. 

Improvements to water supply would not cause further improvements in health 

status (Shuval et al., 1981).  The practical problem in testing this theory is that it 

is not clear what are all the variables that should be used to define 

“socioeconomic development”.  Our quantile approach allows us to measure the 

sensitivity of IMR to determinants of development not explicitly included in the 

analysis. 

Previous studies show diverging results on the interaction between piped 

water and income.  Whether piped water serves as a complement or substitute to 

household and community inputs may be specific to the level of income and 

education and overall institutional environment.  In their study of 33,000 rural 

households in India in 1993-1994, Jalan and Ravallion (2003) find that while 

piped water did cause an overall reduction in diarrheal incidence, households in 

the bottom 40 percent of the income distribution did not experience significant 

health gains.17  In their study of Brazil in 1974-5, Thomas and Strauss (1992) find 

that children in high income urban households benefit more from the availability 

of sewerage services and electricity. In contrast, several studies report that 

households’ input and public infrastructure serve as substitutes.  Thomas et al. 

(1991) find that children of uneducated mothers gained most from sewage 

networks in Northeast Brazil.  Barrera (1990a) finds that children of less 

educated mothers in the Bicol region of the Phillipines benefit more from water 

connections and the absence of excreta in the environment.18 

 
                                                           
17 Jalan and Ravallion (2003) argue that “policymakers trying to reach children of poor families – 
who are typically the most prone to disease – will need to do more than making facility placement 
pro-poor. The incidence of health gains need not favor children from poor families even when the 
placement favors the poor.” 
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3.2   Selective placement of piped water  
Studies relating water supply to health that fail to control for the selective 

placement of water supply would likely overstate the protective effect of water 

(Zwane and Kremer, 2007).  Piped water is likely to be placed in areas that enjoy 

superior medical care provision, and where higher incomes are used to purchase 

other health-related inputs (Jalan and Ravallion, 2003; Weinreb, 2001).  Both 

represent factors that contribute to low IMR (Rosenzweig and Wolpin, 1986).  

Our data indicate that piped water in Brazil is systematically placed in areas with 

superior observables.  The correlation between the water and income variables is 

0.71, 0.73, 0.78, and 0.61 and that between the water and education variables is 

0.60, 0.63, 0.71, and 0.58, in 1970, 1980, 1991 and 2000, respectively.19  It is 

therefore likely that the placement of piped water is also correlated with 

unobservable determinants of infant health. 

To overcome the estimation problem of selective program placement, 

studies from developed countries have exploited the exogenous timing of water-

related interventions to identify their impact.  Troesken (2001) finds that 

municipal water provision in American cities around the early 20th century 

reduced typhoid rates in blacks.  Cutler and Miller (2005) report that chlorination 

interventions in 19 US cities reduced infant mortality.  Watson (2006) finds that a 

ten percentage point increase in the fraction of homes in American Indian 

reservations with sanitation improvements reduced infant mortality by 0.51 

deaths per 1000 births.  

However, few studies from developing countries (even those that focus on 

mean results) have been able to correct for non-random program placement.  In 

their study of Bangladeshi and Filipino villages, Lee et al. (1997) correct for the 

selection bias stemming from conditioning on surviving children, but take the 

placement of piped water as given.  In their Brazilian studies, Sastry (1996) and 

Merrick (1985) report positive association between piped water supply and infant 

                                                                                                                                                                             
18 In the same study, Barrera (1990a) finds that children of more educated mothers derive greater 
benefits from health care facilities and toilet connections. Thomas et al. (1991) find that children 
of uneducated mothers gained least from health care facilities. 
19 These variables are defined in section 5.1. 
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mortality, but are not able to address the issue of program placement.20  The 

study by Jalan and Ravallion (2003) uses propensity score matching techniques 

as a strategy to correct for the selective placement of piped water among rural 

Indian households in 1991.  Comparing households with and without piped water, 

but which are similar on observable dimensions (and, by assumption, on 

unobservable dimensions), they find that the incidence of diarrheal diseases is 

higher in households without piped water.  In contrast, studies testing the impact 

of point-of-use water treatment have been able to implement randomized trials. 

Clasen et al. (2004), Conroy et al. (1996), and Crump et al. (2005) find positive 

health impacts from the use ceramic filters, solar disinfection and chemical 

disinfectants, respectively.  Kremer et al. (2007), using randomized trials to 

evaluate the impact of protecting naturally occurring spring water, find that spring 

protection improves source water quality and that reported child diarrhea 

incidence falls by one quarter. 

 

3.3   Measurement error in IMR 
 Measurement error in the IMR poses a second problem in studies that 

investigate the relationship between health inputs and infant mortality, albeit the 

direction of bias is opposite to that discussed above for program placement.  In 

particular, places that suffer from high infant mortality rates (and exhibit low rates 

of piped water provision) may suffer more severe under-reporting of those infant 

mortality rates.  Even if there were an underlying negative relationship between 

the presence of piped water and infant mortality, the underreporting bias may 

conceal such a relationship.  In the case of Brazil, Victora and Barros (2001), 

citing Simões (1999), note that under-reporting of infant deaths in the Northeast 

                                                           
20 Merrick (1985) uses 1976 cross-sectional in Brazil data to estimate a structural model relating 
infant mortality to factors such as household-level access to piped water, state-level piped water 
supply, maternal and paternal education, and income.  Merrick (1985) obtained piped water 
supply data from the 1970 Census that divided Brazil into 117 geographical units.  In order to 
match the data to the Pesquisa Nacional Amostra de Domicilios (PNAD) household data, he was 
forced to aggregate the variable up to 25 observations corresponding to 25 states.    
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(where provision of piped water is low) is about 66.7%, while the under-reporting 

in the Southeast (where provision of piped water is high) is only 6.5%.21   

 

3.4 Strategies to address non-random program placement and 
measurement error 

To overcome the issue of non-random program placement, quantile 

studies from developed countries have been able to rely on experimental design 

such as in the evaluation of welfare reform or job training programs (Bitler et al., 

2005 and 2006) or instrumental variables such as in evaluating the impact of 

childbearing on income22 (Abadie et al., 2002), the returns to education (Arias et 

al., 2001), returns to job training programs (Chernozhukov and Hansen, 2005).  

In contrast, only a few quantile studies from developing countries have been able 

to rely on experimental design or instrumental variables.  Djebbari and Smith 

(2005) use random assignment experimental data to examine the distributional 

impact of Mexico’s program of education, health and nutrition (PROGRESA).  

They find that the program had a smaller impact on wealth and nutrition for 

households in the lower tail of the wealth and nutrition distribution.  

A few studies, looking only at developed countries, have begun to explore 

the use of panel data in the context of quantile regressions.  For example, 

Abrevaya and Dahl (2006) examine the impact of prenatal care and smoking on 

infant birthweight using panel data on maternally-linked births. They assume a 

correlated random effects model as is done here and in Chen and Khan (2007), 

but also impose the additional restriction of a linear structure on the individual 

specific effect. In this and other important policy contexts, randomized 

placements and instrumental variables are not readily available.  In these 

situations, the use of panel techniques has the potential to correct the estimation 

bias from selective placement and systematic measurement error. 

                                                           
21 The under-registration of infant deaths is estimated to be 52.2% in the North, 13.6% in the 
South, 23.9% in the Center-West, and 43.7% nationally.  Most deaths that are not registered 
occur in the rural areas of the North and Northeast where rates of infectious diseases are higher. 
(Victora and Barros, 2001 citing Simões, 1999) 
22 “Childbearing reduces the lower tail of the income distribution considerably more than other 
parts of the income distribution.” (Abadie et al., 2002). 
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3.5   Why means mask quantile results? 
 In this section, we illustrate why estimating mean effects can be 

significantly different from estimating quantile effects. To keep the discussion 

simple, we focus on the cross-sectional case.  In particular, consider the linearly 

heteroskedastic model: yi = β0 + xiβ1 + xiΨεi, where yi measures the infant 

mortality rate in county i and xi measures the percentage of households there 

with access to piped water.  We assume for this discussion that εi is independent 

of xi (although relaxing this assumption with panel data is a major focus of the 

rest of the paper).  Let με denote the mean of εi (i.e., zero) and let ρθ denote the 

θth quantile of the εi distribution. The variance of εi  is one.  

The marginal effect associated with the conditional mean function (which 

would be estimated were we to use simple OLS) is of the form (β1+Ψμε = β1), 

whereas the marginal effect associated with the θth quantile is (β1+Ψρθ).  The 

differences between these two measures will generally depend upon the 

skewness of the distribution of εi.  For example, if Ψ is positive and the 

distribution of εi is skewed toward the right, then the marginal effect of xi 

associated with the mean will exceed that associated with the median and the 

lower quantiles.  On the other hand, if the distribution is skewed toward the left, 

the reverse will be true – marginal effects associated with the median and higher 

quantiles will exceed the marginal effect attained from OLS. 

 
 
4   Data 

We use newly available census data published by the Brazilian Institute 

for Economic Analysis (IPEA).  These data are reported at the level of minimally 

comparable areas (MCA’s) for the years 1970, 1980, 1991 and 2000.  Previously, 

census data were available at the municipio or county level, which is the smallest 

political division in Brazil (Alves and Beluzzo, 2004). Changes in county 

boundaries between the decades had limited the comparability of the census 

data.  To overcome this limitation, IPEA created the MCA dataset, in which 
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geographical units share common boundaries across the decades. The MCA 

boundaries correspond to county boundaries for those counties whose borders 

did not change between 1970 and 2000.  For those counties that changed their 

borders between 1970 and 2000, neighboring counties were dissolved into one 

larger MCA.  Data from households were then aggregated up to the MCA level 

for 1970, 1980, 1991 and 2000. 

The MCA dataset divides Brazil into 3568 MCAs, a number which 

compares favorably with the 4500 counties in Brazil in 1998 (Mobarak et al., 

2004) and 5560 in 2000 (Alves and Beluzzo, 2004).23  While the MCA dataset is 

imperfect in that it sometimes aggregates several counties which may differ in 

their policy and institutional context, we believe that this dataset represents the 

best demographic panel dataset currently available for Brazil.  The finer 

resolution of the MCA data relative to other available Brazilian panel census data 

lessens the degree of within unit heterogeneity.24 

Table 1B presents summary statistics. The mean infant mortality rate 

declined from 125 deaths per 1000 live births in 1970, to 87 deaths in 1980, to 49 

deaths in 1991 and to 34 deaths in 2000.  At the same time, we see 

improvements in other development indicators.  The percentage of households 

with piped water has increased fourfold from a mere 15% in 1970 to 62% by 

2000.  The percentage of households connected to the sewage network, starting 

from a lower baseline of 5% in 1970, has increased six-fold to 29% by 2000. 

Total fertility rate has more than halved from 5.9 births in 1970 to 2.8 births by 

2000.  Both the income-related Human Development Index and the education-

related Human Development index show improvement between 1970 and 2000.  

 

 
 

                                                           
23 In the 1980s, Brazil had 4088 municipalities, with an average population of 29,800 and an 
average area of 2118 km2 (Sastry, 1996). We drop one observation in our analysis because of 
missing values. 
24 Potter et al. (2002) use the previous version of decennial data (terminating in 1991) that divides 
Brazil into 518 microregions.  Another data source, the PNAD, suffers from municipio boundaries 
that are not consistent from one survey to another. 
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5   Method 
5.1   Estimation 
 Our dependent variable is the number of deaths of infants under one year 

of age per thousand live births. Reviews of active surveillance of developing 

areas and of studies published between 1990 and 2000 indicate that the under-1 

age-group experience the highest diarrhea specific mortality rates (Kosek et al, 

2003). Our analysis focuses on all-cause infant mortality.  Brazilian vital statistics 

data (except when the information is specifically collected by researchers) are 

notoriously unreliable on cause-specific deaths, and the unreliability is worse in 

high mortality areas (Sastry and Burgard, 2002).  By focusing on infant mortality, 

we avoid the potential bias inherent in studies that examine child health.  Studies 

that use child health (e.g., height-for-weight scores) need to correct for the 

selection on surviving children in order to avoid underestimating the overall 

impact of piped water on child health (Lee et al., 1997).25  We interpret the 

coefficient on piped water to capture the impact of piped water on infant mortality, 

typically through reduced risk of death from diarrheal diseases.  

Our study is limited to the analysis of one aspect of the quantity of piped 

water. The definition for the water variable is the percentage of households with 

piped water from the general network.26 As in Sastry (1996) we focus on 

households’ source of water, i.e. from the network, and not on the type of 

connection. Our focus on this variable has two limitations. First, we are not able 

to provide separate estimates for piped water delivered to the household through 

external plumbing (e.g. communal standpipes) and for piped water delivered to 

the household through internal plumbing.27  Second, we do not study the quality 

of piped water.28  

                                                           
25 Child health data from the PNAD, 1996 Demographic and Health Survey and 1989 the 
Brazilian Health and Nutrition fail to provide municipal-level information. Cause-specific vital 
statistics data are not publicly available for all of Brazil.  
26 The IPEA definition is “numero domicilios com água canalizada de rede geral”. We divide this 
figure by the total number of households in that MCA. 
27 Data on water quality and the type of connection is unavailable at the MCA-level. Our study 
therefore cannot overcome an important limitation in current studies. As noted in Fewtrell et al. 
(2005). “there are currently too few data to disentangle satisfactorily the role of service level (i.e., 
community versus household connection) and the health effect of water supply interventions.” 
The type of connection may influence the health effects of piped water provision. Victora et al. 
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In addition to piped water, we include several covariates to account for 

other time-varying factors that influence the IMR. Income-based Human 

Development Index (which we refer to simply as “income”) is added as a 

covariate as higher income levels are associated with improved chances for child 

survival29 (Sastry, 1996 citing Merrick 1985, Thomas et al., 1990 and Victora et 

al., 1986).   

Our regression model should control for improved sanitation,30 as the 

latter influences infant mortality rates (Habicht et al., 1988). We explicitly include 

in our model one type of improved sanitation – i.e., the percentage of households 

with network sewage.31 This type of sanitation is considered the only adequate 

kind in urban areas (UNICEF, 1997). Network sewage is the predominant 

                                                                                                                                                                             
(1988) find in their study in the metropolitan area of Southern Brazil that “compared to those with 
water piped to their house, those with piped water to their plot but not to their house are 1.5 times 
more likely to suffer infant death from diarrhea (95% confidence interval 0.8 to 3.0) and those 
without easy access to piped water had 4.8 times greater risk (95% confidence interval 1.7 to 
13.8). Esrey and Habicht (1986) note that “in the studies reporting health benefits, the water was 
piped into or near the home, whereas in those studies reporting no benefit, the improved water 
supplies were protected wells, tube wells or standpipes.” While the absence of data on the type of 
connection is a limitation to our study, it is useful to note that Sastry (1996), in his study of Brazil, 
reports that infant mortality levels in his data are more strongly correlated with the source of water 
(water from the general network versus other sources) than the type of water connection (internal 
or external plumbing). Sastry then confines his study the analysis of piped water from the 
network, regardless of the type of connection. 
28 While several point of use studies, such as Kremer et al. (2007), have been able to collect data 
on water quality and water quantity, others have not been able to separate the two impacts. For 
example, Esrey (1996) reports that although health benefits from optimal water service (piped 
water) were found, it was not known whether these benefits were due to improvement in the 
quality of water, usage of more copious quantities of water, both factors, or some other 
mechanism. The few studies that have been able to separate the influence of the quality and 
quantity of water find that water quantity has a greater impact than water quality on health and 
mortality (Sastry, 1996; citing Bourne, 1984, Esrey and Habicht, 1988, and Victora et al, 1988). In 
another study, Esrey et al (1991) note that “interventions to improve excreta disposal and water 
quantity, which are associated with better hygiene practices, produce greater impacts than 
improvements in water quality, …particularly so, in highly contaminated environments where 
diarrhea rates are high.” However, more recent studies, such as Fewtrell et al (2005) and Clasen 
et al (2008), argue that water quality interventions at the household level are as effective as 
improvements in sanitation and water supply in reducing the incidence of diarrhea. 
29 The definition for HDI_income = ln (observed value of RFPC) – ln (lower limit of RFPC) / [ln 
(upper limit of RFPC)-ln(lower limit of RFPC) where RFPC is the family per capita income. 
30 Improved sanitation is defined by the World Health Organization as connection to a public 
sewer, connection to a septic system, a pour-flush latrine, a simple pit latrine or a ventilated 
improved pit latrine (UN Millennium Project, 2005) 
31 The IPEA definition is “numero domicilios instalações sanitárias de rede geral”. We divide this 
figure by the total number of households in that MCA. Victora et al. (1986) and Victora et al. 
(1988), both cited in Sastry (1996), find that household toilet facilities are related very weakly to 
child mortality risks. instalaciones 
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method of improved sanitation in urban areas (WHO/UNICEF, 2000). We rely on 

the panel method of our analysis to control for cross-sectional variation in other 

types of improved sanitation in Brazil. Nevertheless, the panel method can 

adequately control for the cross-section variation in improved sanitation other 

than network sewage only to the extent that that variation is fairly constant over 

the decade. In rural areas, an estimated one-fifth to one-half of households use 

basic latrines (WHO/UNICEF, 2000).  Use of pit latrines, while not as effective as 

the sewage network, is correlated with some declines in morbidity (Esrey et al, 

1991). To address the shortcoming in sanitation data for rural areas, we repeat 

our regression analysis with the urban only sample.  

Maternal education, by improving mother’s access to health-related 

information and her ability to make better use of health inputs, influences the 

reduction in the infant mortality rate. (Sastry, 1996 citing Barrera (1990a), 

Rosensweig and Schultz (1982), and Thomas et al. (1991))  In the absence of 

women-specific education or literacy data, we use the education-based Human 

Development Index (which we refer to simply as “education”) variable.  The 

education variable has been constructed by IPEA from a 2:1 weighting of the 

index for literacy rate and the index for school attendance rate.32  As seen in 

Table 1C, while men’s and women’s literacy rates are positively correlated, one 

limitation in using the non-gender specific education variable proxy variable is the 

presence of some regional variation in the gap between men’s and women’s 

literacy rates.    

The total fertility rate is used a co-variate in order to control for the 

association between fertility and IMR (Barnum, 1988).33 The total fertility rate is a 

measure that summarizes the rate of childbearing in a year.  It is derived by 

summing the age-specific birth rates for a population of women in a given period. 

                                                           
32 The HDI_education variable includes current schooling, which captures MCA-level investment 
in education of children. The index of literacy rate or the index of school attendance rate = 
(observed rate – minimum rate) / (maximum rate – minimum rate). 
33 We use this variable to control for the association between higher fertility and higher IMR. We 
do not aim to explain the relationship between them. The association could be due to high fertility 
households having fewer inputs per child or due to households choosing to have more children 
when faced with higher infant mortality rates. 
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That variable is available at the county-level for 1991 and 2000 only and at the 

region level for 1980 and 1970.  

Finally, our panel data procedure controls for county-specific time-

invariant unobservables. One such time-invariant characteristic that influences 

infant mortality is the climate – greater seasonality in temperature and 

precipitation is associated with greater infant mortality from infectious diseases 

(Sastry, 1996).34  Some variables that vary in the cross-section and that we aim 

to control for using the panel procedure (e.g., access to healthcare and 

breastfeeding behavior), are not strictly speaking time-invariant.  There are, 

however, no county-level data maintained on breastfeeding behavior.  While 

there are data available that describe the number of doctors, nurses, and 

hospitals at the county level, we found that these variables had no explanatory 

power after controlling for the county effect, αi. 

 The basic panel data model to be estimated is of the form: 

 

(1) 2,1,,, =+′+= txy titiiti εβα  

 

where yi,t denotes the under-1 infant mortality rate in county i and year t, defined 

as the number of deaths for every 1000 live births before the end of the first year.  

xi,t includes the percentage of households with piped water from the network, the 

percentage of households with sewerage connection, the income variable, the 

education variable, and the interaction between income and the water supply 

variable.35 

iα  denotes the (unobserved) county effect, which controls for time-

invariant sources of unobserved heterogeneity.  Without this control, we would 

expect piped water to be correlated with the error in (1), leading to biased 

                                                           
34Victora et al. (1996) report than ORT played a larger role than income, education, and access to 
water in the sharp decline in infant deaths due to diarrhea in the 1980s. Nevertheless, Sastry and 
Burgard (2005) raise questions about this conclusion. “There is considerable uncertainty 
regarding trends in mortality by cause, because death registration is not complete and information 
on death certificates that are filed is often missing or inaccurate” (Sastry and Burgard, 2005).  
35 Colinearity in these covariates makes it difficult to estimate their distinct effects when they are 
included within the same regression model.   
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estimates.  Indeed, we show this to be the case with a series of cross-sectional 

regressions below.  If unobserved determinants of IMR do not vary in a county 

over the course of a decade, the county effect will control for them non-

parametrically.  Similarly, measurement error in infant mortality may vary by 

county.  As long as the rate of measurement error is stable over the course of a 

decade, iα  will control for its impact on the reported IMR. 

With a constant coefficient vector β and a mean zero restriction on the 

error term, the typical approach to identifying β with panel data is to estimate the 

first-differenced model: 

 

(2) )()( 1,2,1,2,1, iiiii xxyy εεβ −+′−=2,i −

i

 

 

by simply regressing the differenced dependent variable on the differenced 

covariates.  Unfortunately, such an approach will not be valid in the quantile 

regression setting.  To see why, we return to the basic model introduced by 

Koenker and Bassett (1978) and Koenker and Hallock (2001), which allowed 

marginal effects to vary by quantile.  They considered a (cross-sectional) linearly 

heteroskedastic model of the form: 

 

 (3) iiii xxy εψβα )( ′+′+  =

 

which implies that the θth conditional quantile of the dependent variable has the 

following form: 
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where ρθ denotes the θth quantile of the distribution of εi.  We now demonstrate 

that this model cannot carry through to the panel data model by first-differencing.  

In the linear heteroskedastic framework, differencing equation (3) yields: 
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(5) )()( 1,1,2,2,1,2,1,2, iiiiiiii xxxxyy ψεψεβ ′−′+′−=−  

 

Taking conditional quantiles of both sides of equation (5) yields: 

 

(6) )()(),|( 1,1,2,2,1,2,2,1,1,2, iiiiiiiiii xxqxxxxyyq ψεψεβ θθ ′−′+′−=−  

 

Since the quantile and difference operators cannot typically be interchanged 

(unlike the mean and difference operators), the last term in the above expression 

is not equal to θψρ)( 1,2, ′− ii xx .36 

 We therefore apply the approach described in Chen and Khan (2007).  In 

particular, we impose non-parametric structure on the county effect: 

(7) ),( 2,1, iii xxφα =  

 

Where )(⋅φ  is an unknown function that allows for arbitrary dependence on the 

covariates.37  In particular, )(⋅φ  expresses iα  as a function of i’s covariates in 

both years t = 1, 2.   This structure generalizes the typical random effects 

approach, which does not permit iα  to depend upon covariates. It also 

generalizes approaches which impose parametric specification on iα , such as 

                                                           
36 We also note that if we did not allow for the heteroskedastic component, ψtix , , then the 
quantile difference function would be a linear function of β plus an additive constant that varied 
with the quantile.  In this restricted setting, marginal effects would not be allowed to vary across 
quantiles. 
 
37 In practice, data limitations (in particular, a high degree of correlation between many of our 
regressors) will restrict us to using a second-order polynomial in this stage of the estimation.  
Depending upon the specifics of the application, this could be expanded to a higher-order 
polynomial or even a non-parametric bin estimator. 
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Chamberlain (1982), and Abrevaya and Dahl (2006).38  Consequently, we have 

the following functional form for the conditional quantile functions:39 

 

 

(8) θθ ψρβφ titiiiiiti xxxxxxyq ,,2,1,2,1,, ),(),|( ′+′+=  

 

This implies that the first differences in the conditional quantile functions are of 

the form: 
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which, with some simplification, yields: 
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This implies an ability to estimate quantile-varying marginal effects.  Of course, 

the above equations do not translate directly into a feasible estimation procedure 

since the conditional quantile functions,  and , are 

unknown.  The approach can be implemented, however, by following a simple 

),|( 2,1,1, iii xxyqθ ),|( 2,1,2, iii xxyqθ

                                                           

ti,

38 Chen and Khan (2007) show that, despite this generalization, there is no curse-of-
dimensionality associated with estimating β. 
39 We can also allow for an additive unobserved term in our structure if we impose certain 
conditions such as independence of the regressors for both this term and ε as well as 

stationarity on  ti,ε on this term. Specifically, we can define iα  

tiiiii xx ,2,1, ),(α φ η ε++=

tii ,

               

if we assume the “composite" error term, η ε+  is distributed independently of the regressors 
and identically across individuals, as well as strongly stationary. In this way, the quantiles of the 
composite error are constants that vary across quantiles but do not depend on i nor t.  Equation 
(8) would then be of the form 

θθθ ψρβφ titiiiiiti xxcxxxxyq ,,1,2,2,1,, ),(),|( ′ ′ ′=

θ

+ + +     

where c  is a constant that gets differenced out, maintaining the form of equation (9). 
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two-step procedure.  First, non-parametrically estimate the conditional quantile 

functions in (8),  for t = 1, 2.  It is important that the function ),|( 2,1,, iiti xxyqθ )(⋅φ , 

which controls non-parametrically for the county fixed effect iα , include data from 

both time periods.  When estimating , the equation also includes 

observables from period t in linear form.  Denote these fitted values from each of 

these quantile regressions as .  In the second step, we regress 

the differenced fitted values, 

),|( 2,1,, iiti xxyqθ

),| 2,1, ii xx

|(ˆ), 1,2,1, iii yqxx θ

( ,tiyθ

|( 2,iy

q̂

q̂θ )2,,1, ii xx−  on the differenced 

regressors, .  As seen in equations (9) and (10), the proxies for the 

county effects difference out, yielding an estimate of 

)1,ix−( 2,ix

θβ  – i.e., the marginal effect 

for the θth quantile.  As discussed in Chen and Khan (2007), this procedure is 

very simple to implement, requiring little more than STATA or comparable 

statistical software.40 

We implement this panel data procedure separately for three time periods: 

1970-1980, 1980-1991, and 1991-2000.  For the weighted regressions, we 

weight the observations by the average county-level population over the two 

years.  We also estimate unweighted regressions in order to check the 

robustness of our results.  Finally, we use 2,000 bootstrap simulations to recover 

standard errors for our estimates.  

 
5.2   Interpreting the coefficients from the quantile regression 

The marginal impact of piped water (resulting from a one percentage point 

increase in the number of households receiving piped water in each county) at 

the θth  quantile is given by the following expression, as estimated by the 

regression at that quantile:  βθ,water +  ( β θ,water x income x INCOME ) + ( β θ,water x 

                                                                                                                                                                             
 
40 Since this approach attains identification off of variation in the regressors without varying the 
individual specific effect, it cannot be applied to estimate coefficients of time invariant regressors.  
This is also the case with standard fixed effect estimation. Nonetheless, the change in coefficients 
on time invariant variables (e.g., climate) can be estimated using our procedure by interacting 
them with time dummies. 
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sewage x SEWAGE ), where INCOME and SEWAGE denotes the mean intra-group 

value of each variable. 

Importantly, the comparison of the impact of piped water across quantiles 

of the conditional IMR distribution must be made within conditionally similar 

groups of counties.  To understand this concept, imagine that counties have only 

two characteristics and that each characteristic is binomial. The two 

characteristics are high or low water supply, and high or low income. Therefore, 

counties can be grouped into four groups i.e. (1) low water supply and low 

income; (2) low water supply and high income; (3) high water supply and low 

income; and (4) high water supply and high income. In evaluating the variation, if 

any, of the impact of water across quantiles of the distribution, we focus our 

attention on one group of counties, for example, Group 1 with high water supply 

and high income. Using the intra-group mean value of income for Group 1, we 

examine the value of the expression above for the 10th through the 90th quantile 

of the conditional distribution. If the value of the expression were negative and 

smallest in magnitude at the 10th quantile, and negative and largest in magnitude 

at the 90th quantile, we would conclude that within the group of counties with low 

water supply and low income, piped water has the strongest impact in reducing 

infant mortality rate at the higher quantiles of the conditional infant mortality rate. 

We use the analogous method to examine the impact of water across the 

conditional IMR distribution for counties in Group 2, Group 3 and Group 4. 

  Next, consider our actual estimation model with four covariates.41 In order 

to generate a group of counties that are conditionally similar, we categorize 

counties into groups sharing the same covariates or development indicators.  We 

have four covariates – piped water, piped sewage, income and education. A 

county can measure either high or low on each covariate, with the cutoff for 

high/low at the median of these variables.42 Consequently, we have 16 groups of 

                                                           
41 We limit the number of covariates in part because of the need to create group of counties that 
are similar in their covariates. With four covariates, we generate 16 groups of counties.  
 
42 In 1970 and 1980, we use the cutoff of sewage coverage at the 55th and 65th percentile of 
observations. In those years, a substantial number of counties did not have any households 
connected to the sewage network. 
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counties, arising from 24 combination of covariates. In order to capture the local 

characteristic of each group of counties, we calculate the intra-group mean of 

each characteristic for each of these groups of counties.  

Finally, to uncover the marginal impact of water across quantiles of the 

conditional IMR distribution, within conditionally similar groups of counties, we do 

the following. For Group 1, i.e. counties that score low in all four covariates, we 

calculate the expression for the θth quantile using estimates from the appropriate 

quantile regression. Next, for Group 1, we present the estimates from the 10th to 

the 90th quantile in Figure 1.  We repeat this exercise for other groups of counties 

which share similar covariates. The marginal impact of a 0.01 increase in income 

is calculated using an analogous method.  

 

5.3 Simulation – Marginal effects of piped water and averted infant 
deaths 

After conducting the estimations described above, we simulate the 

policymaker’s expectation of averted infant deaths resulting from the additional 

provision of piped water.  We make this calculation using the estimates from both 

the mean and quantile regression specifications.  We apply these estimates to a 

simulated change of one percentage point in the number of households receiving 

piped water in each county.  

Recall that counties are grouped as being high or low in each of these four 

covariates or development indicators: piped water, piped sewage, income and 

education. We therefore have 16 groups of counties corresponding to 16 

possible combinations of high or low values for the four indicators. We calculate 

for each group of counties their intra-group mean income.  Next, for each group 

of counties, we calculate the intra-group distribution of the infant mortality rate.  A 

county will therefore occupy the θth percentile of the conditional infant mortality 

rate distribution (i.e., within a group of counties that are similar in their four 

development indicators). 
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For each county in a given group, we calculate the marginal effect of piped 

water on its infant mortality rate (measured as deaths per 1000 live births) using 

estimates from the appropriate quantile regression and accounting for local 

conditions as captured by income.  We then simulate the effect of an increase of 

one percentage point in the number of households with piped water.43  

6   Regression results  
Table 2 reports the results from the regressions weighted by county-level 

population.44 Results from the mean regression are in column 1, while those from 

the quantile regressions are in columns 2 to 10. Panels A, B and C present 

results from the regressions for 1970-1980, 1980-1991, and 1991-2000, 

respectively. To calculate the marginal impact of piped water, we use the 

coefficients from the weighted quantile panel data regressions for 1970-1980, 

1980-1991 and 1991-2000 and intra-group means from 1970, 1980, and 1991, 

respectively.45   

 

6.1   Marginal impact of piped water 
We report the impact of a one percentage point increase in the number of 

households with piped water supply.46 As seen in Table 2, the coefficients for 

water and the interaction term between water and income for the years 1970-

1980 and 1980-1991 are generally statistically significant at or below the 10% 

level. For the estimates in 1991-2000, these coefficients are statistically 

significant only in the regressions at the upper quantiles.  

                                                           
43 For counties whose intra-group IMR is below the 10th percentile, we use the estimates from the 
10th quantile regression.  For counties whose intra-group IMR is between the 10th and 20th 
percentile, we use the estimates from the 20th percentile regression, and so on.  We use the 
estimates from the 90th percentile for counties whose intra-group IMR is between the 80th and 90th 
percentiles, as well as for counties whose intra-group IMR is above the 90th percentile.  
 
44 The results from the un-weighted regressions are similar to those from the weighted 
regressions and are available on request from the authors. 
45 Results using the intra-group mean from 1980, 1991, and 2000 are qualitatively similar. 
46 We describe reductions in infant mortality resulting from a one percentage point increase in 
households with piped water. In practice, the mean increase in households with piped water is 8.9 
percentage points between 1970 and 1980, 18.2 percentage points between 1980 and 1991, and 
20.2 percentage points between 1991 and 2000. 

28 



 We find four main results for piped water.47  First, our results are 

consistent with Shuval et al.’s (1981) theory. Piped water has a sizable impact in 

reducing IMR after counties exceed a minimal threshold of socioeconomic 

development, but it has little impact after counties cross a saturation threshold. 

Consider Figure 1 which plots these impacts in counties that measure low in all 

their development indicators. In 1970-1980, the increased piped water supply 

reduced IMR by 0.61 to 0.82 deaths per 1000 live births.  By 1980-1991, the 

counties at the upper tail of the conditional IMR distribution have exceeded the 

threshold of development, and we see piped water having a very strong impact. 

At the 80th to the 90th conditional quantiles of the IMR distribution, piped water 

reduced IMR by 1.25 to 1.28 deaths per 1000 live births. These reductions are 

sizable when compared to the mean of 86.8 and 49.2 deaths per 1000 live births 

in 1980 and 1991, respectively. In that same time period, we see some evidence 

of counties in the lower tails of the conditional IMR distribution moving towards 

the saturation point for the impact of water. At the 10th and 20th quantiles of the 

conditional IMR distribution, increased piped water reduced IMR by 0.54 to 0.55 

deaths per 1000 live births. Finally, corresponding to the saturation threshold, by 

1991-2000 we see that piped water has very little impact at any point across the 

conditional IMR distribution. By this point, increased by piped water reduced IMR 

by only 0.03 to 0.21 deaths per 1000 live births. 

 Second, we find that piped water has a larger impact in reducing IMR in 

counties that rank low in their development indicators than in counties that rank 

high, particularly in 1980-1991. Consider Figures 1 and 2, which plot these 

impacts in counties that measure low in all of their development indicators and 

high in at least two of their indicators, respectively. In the first set of counties, a 

one percentage point increase in piped water reduces IMR by 0.54 to 1.28 

deaths per 1000 live births. In contrast, in the second set of counties, the 

increase in piped water reduces IMR by only 0.36 to 0.72 deaths per 1000 live 

                                                           
47 As discussed above, each year we separate counties into sixteen groups that rank similarly in 
their development indicators. For brevity, we present two graphs only, the first, from the group of 
counties that rank low in their development indicators and the second, from the group of counties 
that rank high in at least two of their development indicators. 
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births. This pattern of piped water having a stronger protective effect in counties 

that measure low in observable development indicators than in those that 

measure high hold for most of the other group of counties as well.48 

Third, we find evidence that the impact of piped water varies across the 

conditional IMR distribution. In particular, in the group of counties that measure 

similarly low or similarly high in their development indicators, piped water exerts 

a stronger protective effect at the upper tail of the conditional IMR distribution 

(particularly in 1980-1991). Consider counties that measure low in all of their 

development indicators. As seen in Figure 1, additional piped water reduces IMR 

by 1.25 deaths per 1000 at the 90th percentile but by only by 0.55 deaths per 

1000 live births at the 10th percentile of the conditional IMR. This pattern of a 

stronger protective impact of water in the upper quantiles of the conditional IMR 

distribution in 1980-1991 is also evident in the group of counties that measure 

high in their development indicators.  As seen in Figure 2, the additional piped 

water reduces IMR by 0.68 deaths per 1000 at the 90th percentile, but by 0.36 

deaths per 1000 live births at the 10th percentile of the conditional IMR. 

 Fourth, we find that (particularly in 1981-1990) the estimates from the 

mean panel regression model severely understate the protective impact of piped 

water for the populations occupying the upper quantiles of the conditional IMR 

distribution. The mean estimates suggest that a one percentage point increase in 

the number of households with piped water reduces IMR by 0.72 deaths per 

1000 live births. In contrast, for the group of counties that measure low in their 

development indicators, the quantile panel model finds that an increase in piped 

water reduces IMR by 1.25 deaths per 1000 live births at the 90th conditional 

quantile of the IMR.  

 

6.2   Other variables: Income 
The marginal impact of income is given by the following expression: 

βθ,income + βθ,water x income x WATER + βθ,sewage x income X SEWAGE, where WATER 

and SEWAGE represent the intra-group mean percentage of households with 

                                                           
48 Figures for these other groups of counties are available on request from the authors. 
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piped water supply and networked sewage, respectively. As seen in Table 2, the 

coefficients for income and the interaction term between income and water for 

the years 1970-1980 and 1980-1991 are generally statistically significant at or 

below the 10% level. For the estimates in 1991-2000, these coefficients are 

statistically significant only in some of the quantile regressions. We report the 

impact of a 0.01 increase in income.49  

Our results for income closely track the four patterns that emerged for 

piped water.  First, income has a sizable impact in reducing IMR after counties 

exceed a minimal socioeconomic development threshold, but that impact dies off 

after counties cross a saturation threshold. Consider Figure 3, which plots these 

impacts in counties that measure low in all of their development indicators. In 

1970-1980, increased income reduced IMR by 0.43 to 0.74 deaths per 1000 live 

births. By 1980-1991, the counties at the upper tail of the conditional IMR 

distribution exceeded the threshold of development, and we see income having a 

very strong impact. At the 80th to the 90th conditional quantiles of the IMR, 

income reduced IMR by 1.17 to 1.35 deaths per 1000 live births. In that same 

time period, however, we see some evidence that counties in the lower tails of 

the conditional IMR distribution were moving towards the saturation point for the 

impact of income. At the 10th and 20th conditional quantiles of the IMR 

distribution, increased income reduced IMR by only 0.26 and 0.36 deaths per 

1000 live births, respectively. Finally, corresponding to the saturation threshold, 

we see that income has very little impact across the conditional IMR distribution 

by 1991-2000 when a 0.01 increase reduced IMR by only 0.24 deaths and 0.21 

deaths at the 10th and 90th percentiles, respectively.  

 Second, we find that income has a larger impact in reducing IMR in 

counties that measure low in their development indicators than in counties that 

measure high. Consider Figures 3 and 4, which plot these impacts for these two 

groups of counties, respectively.  In the first set of counties, a 0.01 increase in 

piped water reduces IMR by 0.26 to 1.34 deaths per 1000 live births at the 10th 

                                                           
49 In practice, the mean increase in income (measured by the HDI_income variable) between 
1970 and 1980 is about 0.32.  Income increased by 0.02 between 1980 and 1991, and it 
increased by 0.05 between 1991 and 2000. 
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and 90th percentiles. In contrast, in the second set of counties, the increase in 

income reduces IMR by only 0.08 to 0.97 deaths per 1000 live births at the same 

percentiles. This pattern of income having a stronger protective effect in counties 

that measure low in development indicators than in those that measure high also 

holds for most of the other county groups. 

Third, we find evidence that the impact of income varies across the 

conditional IMR distribution. In particular, in the group of counties that measure 

similarly low or similarly high in their development indicators, income exerts a 

stronger protective effect in the upper tail of the conditional IMR distribution 

(particularly in 1980-1991). Consider counties that measure low in their 

development indicators. As seen in Figure 3, additional income reduces IMR by 

1.34 deaths per 1000 at the 90th percentile but by only by 0.26 deaths per 1000 

live births at the 10th percentile of the conditional IMR. This pattern of stronger 

protective impact of income in the upper quantiles of the conditional IMR in 1980-

1991 is also evident in the group of counties that measure high in their 

development indicators.  As seen in Figure 4, additional income reduces IMR by 

0.97 deaths per 1000 live births at the 90th percentile but by only 0.08 deaths per 

1000 at the 10th percentile. 

 Fourth, we find that, particularly in 1980-1991, the estimates from the 

mean panel regression model severely understate the protective impact of 

income for the populations occupying the upper quantiles of the conditional IMR 

distribution. The mean estimates suggest that a 0.01 increase in income reduces 

IMR by 0.41 deaths per 1000 live births. In contrast, for the group of counties that 

measure low in their development indicators, the quantile panel model finds that 

the increase in income reduces IMR by 1.34 deaths per 1000 live births at the 

90th conditional quantile of the IMR.  

 The total fertility rate may be associated with IMR. As this variable is 

available only for 1991 and 2000, we compare 1991-2000 panel regressions with 

and without it.  Results are tabulated in Panel C1 and Panel C2 in Table 2. A 

calculation of the marginal impact of water using the coefficients from Panel C1 
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and Panel C2 indicate that the regression results are robust to the inclusion of 

the total fertility rate variable. 

 

6.3   Other variables: Interaction of piped water and income 
The interaction effects between piped water and income at the θth 

quantile is given by Bθ water x income. This coefficient appears to be statistically 

significant for all quantiles in 1970-1980, 1980-1991, and for the upper-quantiles 

in 1991-2000. For a given panel model, the size of the estimates are larger at the 

upper-quantiles relative to the lower quantiles, and this gap in size appears 

largest in 1980-1991.  

 To recall, our results on water indicate that, holding income constant, 

piped water appears most effective at the upper-quantiles of the conditional IMR 

distribution, where unobserved determinants are worse. The positive interaction 

effect between piped water and income suggest that these two inputs into infant 

health are substitutes. In other words, income reduces the effectiveness of piped 

water, suggesting that households are able to translate income into purchases 

that can substitute for piped water as an input into producing better health 

outcomes. The larger size of the coefficients at the upper quantiles suggests that 

income can be more effectively used as a substitute for water at those upper-

quantiles. Plausibly, in counties occupying the upper-quantiles of the conditional 

IMR distribution, which suffer numerous unobserved poor circumstances, income 

can be used to address the ‘simpler’ pathways that lead to infant mortality.  In the 

lower-quantiles, fewer unobserved circumstances remain that can be addressed 

with income, and ultimately, the provision piped water is necessary to attain the 

desired IMR reduction. 

 
6.4   Other variables: Sewage 

The marginal impact of sewage at the θth quantile is given by βθ,sewage 

+βθ,water x sewage X WATER + βθ,water x income X INCOME, where WATER and 

INCOME represent the intra-group mean percentage of households with piped 

water supply and the intragroup mean income. Table 2 indicates that this impact 
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is not statistically significant. These results stand in contrast with our earlier 

results on piped water.  

Our results are consistent with Victora et al (1988), in a population-based 

study in Porto Alegro and Pelotas, Brazil, which finds that piped water supply is 

associated with reduced infant mortality, but no association is detected for 

measures of sanitation facilities (flush toilets or pit latrine). In contrast, Barreto et 

al. (2007) find that a city-wide sanitation program in Salvador, Brazil, reduced 

diarrheal prevalence by 22% on average and by 43% in the poorest 

neighborhoods.50 51  

Nevertheless, our results should be treated with caution in light of two 

limitations in our study.  First, as our variable measures networked sewage (i.e., 

only one type of sanitation facilities), our study provides limited information on the 

potential impact of sanitation facilities on IMR. Second, we have little cross-

sectional variation in our explanatory variable (sewage t2-sewage t1), so we have 

limited ability to discern related variation in our dependent variable, (IMR t2 – IMR 

t1). Thus, the corresponding estimated coefficient has a large standard error.  

 
6.5   Other variables: Education52 

Our results indicate that education is more effective at reducing IMR 

where the overall circumstances are worse. The marginal impact of education is 

indeed larger in 1970-1980 and 1980-1991 and its asymmetry is more 

pronounced in these years than in the latter years. In 1970-1980, a 0.01  

increase in education reduces infant mortality by 1.8 deaths in the 10th percentile 

and by almost one-and-a-half times that amount (i.e. 2.8 deaths) at the 90th 

percentile. In 1980-1991, the gap is larger with 0.74 avoided deaths at the 10th 

percentile and 2.0 deaths at the 90th percentile. In 1991-2000, the gap declines to 
                                                           
50 The sanitation program aimed to increase the number of households with an adequate sewer 
system from 26% to 80%. The program focused on sewage connection, but included some 
improvements in water supply (Barreto et al, 2007). 
51 The contrasting results between diarrheal prevalence and mortality may be caused by care-
seeking behavior, case management and nutritional status (Caincross, pers. comm. May 21 
2008). 
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0.77 avoided deaths at the 10th percentile and 1.2 deaths at the 90th percentile. In 

all three decades, the mean estimate falls between the estimates from the 10th 

and 90th quantile regressions.  

 

6.6   Other models: Urban counties only 
As described earlier, our basic model includes only one type of sanitation 

(i.e., network sewage), which is considered the only adequate sanitation method 

for the urban areas. Our model therefore omits other types of sanitation, such as 

pit latrines, that are considered to be adequate in rural areas. To address this 

limitation, we re-run our analysis restricting our sample to only urban counties. 

We define urban counties to be those with 50% or more of their households living 

in urban areas.53 

Table 3 tabulates the results from the urban only sample. Our results 

(particularly from 1980-1991) indicate that additional piped water supply has a 

sizable impact in reducing the infant mortality rate. Figures 5 and 6 show a 

comparison of the marginal impact of water estimated using the full sample and 

that estimated using the urban only sample. As seen from these figures, the 

marginal impact of water remains sizable for the urban sample, though it is 

smaller in magnitude than in the full sample.  It may well be that, in our earlier 

estimates, the failure to control adequately for latrines in rural areas led us to 

attribute too much of the impact in reduction of IMR to piped water supply. 

Nevertheless, our results from the restricted urban only sample continue to show 

the four patterns observed earlier.  First, the marginal impact of water follows the 

pattern suggested by Shuval et al. (1981).  Second, comparing Figure 5 and 6, 

we see that piped water has a stronger effect in the set of counties that measure 

low in their development indicators. Third, piped water has a stronger protective 

effect in the upper tails of the conditional IMR distribution. Fourth, we find that the 

                                                                                                                                                                             
52 Gender-specific education information are not available at the MCA-level. Therefore, we are 
not able to examine the question of the interaction between maternal education and piped water 
(Barrera, 1990a). 
53 Urbanized counties in the 1970-80, 1980-1991 and 1991-2000 panels are defined based on 
1970, 1980 and 1991 values.  Results (available from the authors upon request) are similar using 
a 70% urbanization cutoff. 
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mean panel regression model underestimates the protective impact of income for 

the populations occupying the upper quantiles of the conditional IMR distribution. 

While the mean estimate suggests that a one percentage point increase in the 

number of households with piped water reduces IMR by 0.63 deaths, the quantile 

estimates at the 90th percentile suggest a reduction of 0.87 deaths per 1000 live 

births.  

 
6.7   Other models: Under-5 child mortality rate 
 We extend our analysis to the under-5 child mortality rate.54  Our analysis 

is limited to one panel model (i.e., 1991-2000) because the under-5 child 

mortality rates at the MCA level are available only for those two census years. 

Our results, presented in Table 4, indicate that piped water did not have a 

statistically significant impact on under-5 child mortality.  Recall that piped water 

has a strong protective impact on under-1 mortality in 1980-1991 but its effects 

are attenuated by 1991-2000. 

Our results showing that piped water has a stronger protective impact on 

infants than on children under the age of five are consistent with those in the 

previous literature.  Several studies document a negative association between 

the presence of piped water and infant mortality, but no statistically significant 

association between that presence and child mortality (Rutstein, 2000; Abou-Ali, 

2003; Woldemicael, 2000).55 Butz el al. (1984) suggests the following 

explanation for this age pattern. “As infants mature (i.e., their immunity systems 

mature), they become less susceptible to enteric pathogens. Infant maturation 
                                                           
54 A large number of studies reviewed in Fewtrell et al. (2005) examine infant and children aged 
0-60 months.  
55 Rutstein (2000), in her meta-analysis of the 89 DHS surveys between 1986 and 1998, finds 
that a statistically significant negative association between piped water and the mortality of 
children aged 1, but no statistically significant association between piped water and the mortality 
of children aged 1-4. Abou-Ali (2003), examining the 1995-6 Egyptian Demographic and Health 
Survey (DHS), finds a statistically significant negative association between presence of piped 
water (whether in residence or in the neighborhood) and post-neonatal mortality (2-12 months) 
but no statistical significant association between piped water and child mortality (12-60 months). 
Woldemicael (2000) finds, in the 1995 Eritrean DHS, a statistically significant negative 
association between good household environment (neither piped water nor flush toilet or only one 
of the two) and neonatal mortality (1-13 months) but no statistically significant association 
between piped water and child mortality (14-60 months). 
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explains why, in spite of increasing exposure with age to the environment and its 

pathogens, improved water and sanitation prevent fewer deaths in the later 

onths.”   

6.8   A

 

e role played by quantile estimation in recovering the full distribution of effects. 

6.9   C

counterintuitive result is likely to be an artifact from the systematic underreporting 

                                                                                                                                                                            

m

 

verted deaths 
Section 1 of Table 5 shows the number of averted deaths as a result of an 

increase of one percentage point in the number of households with piped water 

in each county.  Section 2 shows the number of averted deaths as a result of an 

increase of 0.01 in income. Calculations using the quantile panel data procedure 

are tabulated in column (1) while those using the mean fixed effect regressions 

are tabulated in column (2).  The difference between the two columns reflects the 

asymmetry of the distribution of marginal effects in each decade.  There is a 

strong right-skew pulling up the mean marginal effect of both water and income 

estimated in the 1980-1991 regression.  In contrast, the opposite skew pulls 

down the mean effect for water estimated in the 1970-1980 regression.  By the 

period 1991-2000, aggregate effects (particularly for water) are very similar under 

both measures.  These results emphasize the fact that it is difficult to predict 

which direction asymmetric marginal effects will pull mean estimates, highlighting

th

 
ross-section results 
We examine the naïve cross-sectional estimates as seen in Table 6. The 

association between a one percentage point increase in the number of 

households with piped water and the infant mortality rate at the θth quantile is 

plotted in Figure 7. The cross sectional estimates, particularly in 1970 and 1980, 

indicate that greater provision of piped water is correlated with larger infant 

mortality rates. We see a particularly strong correlation between water supply 

and increased mortality at the higher conditional quantiles of the IMR, although 

the size of the bias diminishes in the latter years of the analysis. This 
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of infant mortality rates in areas on the upper tails of the IMR distribution that 

tend to receive less water. 

 

 

7   Discussion and Policy Implication 
For those populations at greatest risk, can the provision of piped water 

reduce the infant mortality rate or are complementary inputs such as income and 

other public health infrastructure required?  Our results are consistent with 

Shuval et al.’s (1981) threshold-saturation hypothesis, in which the relationship 

between water supply and IMR varies with changing socioeconomic levels.  

Assuming that our differencing procedure can adequately control for correlated 

unobservables and measurement error, we find that water has a small effect in 

the most undeveloped places (i.e., when we look at the high conditional quantiles 

in 1970-80).  As counties start to develop (i.e., the higher quantiles in 1980-91), 

the protective effect of water on IMR starts to rise rapidly. As counties become 

more developed (i.e., low quantiles in 1980-91) the protective effect of water 

declines.  Finally, when very developed (i.e., low quantiles in 1991-00), the effect 

of water on IMR is very small. 

  In 1980-1991, the marginal impact of piped water is greatest in those 

counties with poorest performance in their observable development indicators.  

For counties with poor development indicators – averted deaths at the 90th 

percentile is 1.25 per 1000 live births, while for counties with good development 

indicators only 0.68 are averted. In addition, among those counties that share 

common development indicators, particularly in 1980-1991, we find that piped 

water exerts a stronger protective effect in those counties that occupy higher 

positions in the conditional IMR distribution (i.e., counties that are worse in 

unobservable development indicators). 

 Our results therefore show that (1) piped water provision can cause a 

significant reduction in the IMR (when accompanied by a basic level of other 

public health inputs); and (2) the impact of a piped water provision policy is 

determined in large part by how those piped water connections are distributed.  
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Ignoring costs of provision, our results suggest that, from the perspective of 

health outcomes, new piped water resources should be targeted to the most 

disadvantaged communities. 56,57,58 

What can policy-makers learn from our study?  In addition to recognizing 

the role of particular observed characteristics that influence the effectiveness of 

piped water in reducing IMR, policymakers also need to take into account the 

role of unobserved characteristics – i.e., characteristics that cannot be easily 

summarized with available data.  In practice, policymakers can control for these 

unobservables by implementing the following strategy, which allows one to 

recover their distribution up to a scale and location normalization.  Reconsider 

equation (10), from which we know that the estimated value of θβ  is equal 

to θψρβ + .  Making the location normalization that the median of ti,ε  is zero 

(i.e., 050 =ρ ), we immediately identify β  (i.e., 50ββ = ).  Next, making a scale 

normalization (e.g., 175 =ρ ) we can further identify ψ  (i.e., ββψ −75= ).  With 

estimates of β  and ψ , we can then recover the distribution of ti,ε  (i.e., different 

values of θρ ) from equation (9) simply by observing the conditional quantiles of 

.  The resulting ranking of residuals can then be used to help determine 

where to target piped water interventions.  Our results suggest that there will be 

ti,y

                                                           
56 We do not have detailed data to allow a comprehensive cost-effectiveness or cost-benefit 
analysis on the impact of piped water. Program-specific costs of piped water provision will 
depend on numerous location conditions such as the geography and the existing piped water 
network. Dr. Marcos Thadeu Abicalil, Senior Water and Sanitation Specialist in The World Bank’s 
Brasilia’s Office, reports the following estimates for the per capita costs for the provision of piped 
water supply and sewage networks: BRL 428; and BRL 797 (pers. comm., 2008). Abiko (2007) 
provides some estimates on the costs of provision of piped water based on slum upgrading 
programs. Haller et al. (2007) and Hutton et al. (2007) provide a comprehensive study on the cost 
effectiveness and the costs-benefit analyses of various child health and water and sanitation 
improvements, respectively. Both Haller et al. (2007) and Hutton et al. (2007) add qualifications to 
their study, citing Briscoe’s (1984b) and Okun’s (1988) earlier critique of such analyses.  
57Policymakers may consider other factors in piped water placement such as population density. 
We acknowledge that the provision of piped water may be cheaper in areas with good 
development indicators and/or low conditional IMR.  These locations may already have a minimal 
level of existing infrastructure.  New outlays of pipelines may have to be undertaken in 
disadvantaged areas.  
58 “It has been suggested that piped water disproportionately benefits the better-off people of a 
village” (Mohan, 2005). Further interventions would have to be undertaken to overcome social 
constraints and connection costs that prevent the vulnerable households from accessing the 
network.   
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statistically and economically significant, policy-relevant differences in the 

effectiveness of piped water over these indicators of unobservable determinants, 

with the biggest effects coming high in their distribution. 

Methodologically, these results highlight the importance of applying the 

quantile regression framework to recover the marginal effects of water at various 

parts of the conditional distribution of the IMR.  The marginal effects at various 

parts of the conditional IMR distribution differ substantially from those at the 

mean of the distribution.  Indeed, focusing on the mean of the distribution can 

lead to an underestimate of the potential impact of piped water intervention in 

higher percentiles of the conditional IMR distribution.  Our results for piped water 

intervention correspond with the growing literature on the heterogeneity of 

program impacts across the quantiles of the conditional distribution of the 

outcome variable and the insufficiency of mean estimates to represent this 

policy-relevant heterogeneity. 

Quantile estimation for the evaluation of policy is, however, quite difficult.  

Policies are not often allocated randomly, and good instruments may not be 

available.  Traditional quantile regression is not generally feasible in the panel 

data context.  In contrast, our quantile panel data approach can be widely applied 

to the evaluation of other programs that provide health inputs or public goods in 

developing countries.  This method allows policymakers to understand the impact 

of these programs on the subpopulations that are most at risk, and these 

subpopulations tend to occupy the tails in the conditional distribution.  Amidst the 

scarcity of random assignment and viable instruments, but with the growing 

availability of panel data in developing countries, the panel data approach 

provides a promising strategy to address the issue of bias arising from 

unobservables (albeit only time invariant ones) within the context of quantile 

regressions. 

 
 
 

40 



Bibliography 
 
Abadie A, Angrist J, Imbens G. Instrumental variables estimates of the effect of 
subsidized training on the quantiles of trainee earnings. Econometrica 2002; 
70(1); 91-117. 
 
Abiko A, de Azevedo Cardoso LR, Rinaldelli R, Riogi Haga HC, Basic costs of 
slum upgrading in Brazil, Global Urban Development Magazine Nov 2007, 3(1) 
  
Abrevaya J. The effects of demographics and maternal behavior on the 
distribution of birth outcomes. Empirical Economics 2001; 26 (1); 247-257. 
 
Abrevaya J, Dahl CM. The effects of birth inputs on birthweight: evidence from 
quantile estimation on panel data. Journal of Business and Economic Statistics 
2006 (conditionally accepted). 
 
Abou-Ali H. The effect of water and sanitation on child mortality in Egypt. 
Department of Economics, Goteburg University, Scandinavian Working Papers in 
Economics # 112, 2003. 
 
Ahn S, Schmidt P, Lee Y.  GMM Estimation of a Panel Data Regression Model 
with Time-Varying Individual Effects.  Journal of Econometrics  2001; 101; 219-
255. 
 
Alves D, Belluzzo W. Infant mortality and child health in Brazil. Economics and 
Human Biology 2004; Special Issue 2(3); 391-410. 
 
Anderson JE. Survey of maternal and child health and family planning in 
Northeastern Brazil: measurement of the duration of breastfeeding and 
postpartum amenorrhea. US Department of Health and Human Services, Center 
for Disease Control working paper; 1991.  
 
Arias O, Hallock K, Sosa-Escudero, W. Individual heterogeneity in the returns to 
schooling: instrumental variable quantile regression using twins data. Empirical 
Economics 2001; 26; 7-40. 
 
Barnum, H. Interaction of infant mortality and fertility and the effectiveness of 
health and family planning programs. Policy Planning and Research Working 
Papers, Population Health and Nutrition, Population and Human Resources 
Department, the World Bank, WPS 65; July 1988. 
 
Barrera, A. The role of maternal schooling and its interaction with public health 
programs in child health production. Journal of Development Economics 1990a; 
32; 69-91.  
 

41 



Barrera, A. The interactive effects of mother's schooling and unsupplemented 
breastfeeding on child health. Journal of Development Economics 1990b; 34; 81-
98. 
 
Barreto ML, Genser B, Strina A, Teixeira MG, Assis AM, Rego RF, Teles CA, 
Prado MS, Matos SM, Santos DN, dos Santos LA, Cairncross S.  
Effect of city-wide sanitation programme on reduction in rate of childhood 
diarrhoea in northeast Brazil: assessment by two cohort studies. Lancet 2007; 
370(9599);1622-1628. 
 
Bitler M, Gelbach J, Hoynes H. Distributional impacts of the Self-Sufficiency 
Project. National Bureau of Economic Research Working Paper 11626; 
September 2005.  
 
Bitler MP, Gelbach J, Hoynes H. What mean impacts miss: distributional effects 
of welfare reform experiments. American Economic Review; 2006; 96; 988-1012. 
 
Black, RE. Diarrheal diseases and child morbidity and mortality. In: Mosley WH, 
Chen LC (Eds), Child survival: strategies for research. Population and 
Development Review 1984; 10 (suppl); 141-161. 
 
Black RE, Morris SS, Bryce J. Where and why are 10 million children dying every 
year? Lancet 2003; 361 (9376); 2226-2234. 
 
Bourne PG. Water and sanitation for all. In: Bourne PG (Ed), Water and 
Sanitation: Economic and Sociological Perspectives, Academic Press; Orlando; 
1984; 1-20.  
 
Briscoe J. Intervention studies and the definition of dominant transmission routes. 
American Journal of Epidemiology 1984a; 120(3); 449-455. 
 
Briscoe J. Water Supply and Health in Developing Countries: Selective Primary 
Health Care Revisited, American Journal of Public Health 1984b; 74( 9); 1009-
1013 
 
Briscoe J. Evaluating water supply and other health programs: short-run vs long-
run mortality effects.  Public Health 1985; 99; 142-145. 
 
Buchinsky M. Recent advances in quantile regression models: a practical guide 
for empirical research. Journal of Human Resources 1998; 33(1); 88-126. 
 
Butz WP, Habicht JP, DaVanzo J. Environmental factors in the relationship 
between breastfeeding and Infant mortality: the role of sanitation and water in 
Malaysia. American Journal of Epidemiology 1984; 119(4); 516-25. 
  

42 



Cairncross S. Health impacts in developing countries: new evidence and new 
prospects  Journal of the Institution of Water and Environmental Management 
1990; 4(6); 571-577. 
  
Cairncross S. Handwashing with soap – a new way to prevent ARIs? Tropical 
Medicine and International Health 2003; 8(8); 677–679.  
  
Chamberlain, Gary, Multivariate regression models for panel data, Journal of 
Econometrics 1982; 18(1); 5–46. 
 
Chen S, Khan S. Semiparametric estimation of non-stationary censored panel 
model data models with time-varying factor. Econometric Theory 2007; 
forthcoming 
 
Chernozhukov V,  Hansen C. An IV model of quantile treatment effects. 
Econometrica  2005;  73(1); 245-261. 
 
Clasen TF,  Brown J, Collin, Suntura O , Caincross S. Reducing Diarrhea 
Through the Use of Household-Based Ceramic Water Filters: A Randomized 
Controlled Trial in Rural Bolivia. American Journal of Tropical Medicine and 
Hygiene 2004 70 (6): 651–57. 
 
Clasen T, Roberts I, Rabie T, Schmidt W, Cairncross S Interventions to improve 
water quality for preventing diarrhoea (Review), The Cochrane Library 2008, 
Issue 2 
 
Conroy RM, Elmore-Meegan M, Joyce T, McGuigan K, Branes J. Solar 
disinfection of drinking water and diarrhoea in Maasai children: a controlled field 
trial. Lancet 1996; 348; 1695–1697. 
 
Crump JA, Otieno P, Slutsker L, Keswick BH, Rosen DH, Hoekstra RM, Vulule 
JM, Luby SP. Household based treatment of drinking water with flocculant-
disinfectant for preventing dirrhoea in areas with turbid source water in rural 
western Kenya: a cluster randomized trial. British Medical Journal 2005; 331; 
478-83. 
  
Curtis V, Kanki B,  Mertens T, Traore E,  Diallo I, Tall F, Cousens S. Potties, pits 
and pipes: explaining hygiene behaviour in Burkina Faso. Social Science and 
Medicine 1995; 41; 383–393. 
 
Cutler D, Miller G. The role of public health improvements in health advances: 
the twentieth century United States. Demography 2005; 42(1); 1-22. 
 
Djebbari H, Smith J. Heterogeneous Program Impacts in PROGRESA, mimeo, 
Laval University and University of Michigan working paper 2005.  
 

43 



ERM (in Association with Stephen Myers Associates and Hydroconseil). Models 
of Aggregation for Water and Sanitation Provision Case Studies Volume 2; 
November 2003. 
 
ERM (in association with Stephen Meyers Associates and Hydroconseil) and 
William D. Kingdom. Models of Aggregation for Water and Sanitation Provision 
Water Supply & Sanitation Working Notes Note No. 1, January 2005.  
  
Esrey SA, Feachem RG, Hughes JM. Interventions for the control of diarrhoeal 
disease among young children: improving water supplies and excreta disposal 
facilities. Bulletin of the World Health Organization 1985; 63; 757–772. 
  
Esrey SA, Habicht JP.  Epidemiologic evidence for health benefits from improved 
water and sanitation in developing countries.  Epidemiologic Reviews 1986; 8; 
117-127. 
 
Esrey SA,  Habicht JP.  Maternal literacy modifies the effect of toilets and piped 
water on infant survival in Malaysia.  American Journal of Epidemiology 1988; 
127(5):1079-1087. 
 
Esrey SA, Habicht JP, Casella G. The complementary effect of latrines and 
increased water usage on the growth of infants in rural Lesotho. American 
Journal of Epidemiology 1992; 135(6); 659-666. 
 
Esrey SA, Potash JB, Roberts L, Shiff C. Effects of improved water supply and 
sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, 
schistosomiasis, and tracoma. Bulletin of the World Health Organization 
1991;69(5):609–21. 
 
Fewtrell L, Kaufmann R,  Kay D , Enanoria W, Haller L , Colford Jr J. Water, 
sanitation, and hygiene interventions to reduce diarrhoea in less developed 
countries: a systematic review and meta-analysis. The Lancet Infectious 
Diseases 2005, 5(1); 42–52.  
 
Fitzenberger B, Koenker R, Machado JAF. Economic applications of quantile 
regression. Studies in empirical economics, Heidelberg; Physica Verlag; 2002. 
 
Garrido, R. Insitutional aspects of water quality management in Brazil. In Biswas 
AK et. al.). Water Quality Management in the Americas. Springer-Verlag; Berlin, 
2006; 95-106. 
 
Habicht JP, Da Vanzo J, Butz WP,  Mother’s milk and sewage: their interactive 
effects on infant mortality. Pediatrics 1988; 81(3); 456-461. 
 
Haller L, Hutton G, Bartram J. Estimating the costs and health benefits of water 
and sanitation improvements at global level. Journal of Water and Health. 2007; 

44 



5(4); 467-80. 
 
Heckman J, Smith J, Clements N. Making the most out of programme 
evaluations and social experiments: accounting for heterogeneity in programme 
impacts. In: The Review of Economic Studies; Special Issue: Evaluation of 
Training and Other Social Programmes. 1997; 64(4); 487-535. 
 
Hutton G, Haller L, Bartram J. Global cost-benefit analysis of water supply and 
sanitation interventions. Journal of Water and Health. 2007; 5(4); 481-502.  
 
Jalan, J, Ravallion M, Does piped water reduce diarrhea for children in rural 
India? Journal of Econometrics 2003; 112(1); 153-173. 
 
Katakura Y.  Bakalian, A. PROSANEAR: People, Poverty and Pipes; UNDP-
World Bank Water and Sanitation Program; Washington DC; 1998 
 
Khan S, Tamer E, Inference on endogenously censored regression models using 
conditional moment inequalities. Journal of Econometrics 2008; forthcoming. 
 
Kremer M, Leino L, Miguel E, Zwane  Spring Cleaning: Rural Water Impacts, 
Valuation, and Institutions, Department of Economics, Harvard University 
working paper, 2007. 
 
Koenker R, Bassett G. Regression Quantiles. Econometrica 1978; 46(1); 33-51. 
 
Koenker R, Hallock KF. Quantile regression. Journal of Economic Perspectives 
2001; 15 (4); 143-156. 
 
Lee LF, Rosenzweig MR, Pitt MM. The effects of improved nutrition, sanitation, 
and water quality on child health in high-mortality populations. Journal of 
Econometrics 1997; 77; 209-236. 
 
McNallen B. Fixing the leaks in Brazil’s Water Law: encouraging sound private 
sector: participation through legal and regulatory reform. Gonzaga Journal of 
International Law 2006; 9; 147-199. 
 
Merrick TW. The effect of piped water on early childhood mortality in urban 
Brazil: 1970 to 1976. Demography 1985; 22 (1); 1-24. 
 
Mintz, E, Bartram J,  Lochery P, Wegelin M, Not Just a Drop in the Bucket: 
Expanding Access to Point-of-Use Water Treatment Systems. American Journal 
of Public Health 2001; 91(10); 1565–1570. 
 
Mobarak AM, Rajkumar AS, Cropper M. The political economy of health-care 
provision and access in Brazil. World Bank Policy Research Working Paper 
3508; 2005. 

45 



 
Mohan P. Inequities in coverage of preventive child health interventions: 
The Rural Drinking Water Supply Program and the Universal Immunization 
Program in Rajasthan, India.  American Journal of Public Health 2005; 95(2); 
241-244. 
 
Okun DA. The value of water supply and sanitation in development: an 
assessment. American Journal of Public Health 1988; 78(11); 1463-1467. 
 
Pebley AR, Millman S.  Birthspacing and child survival, International Family 
Planning Perspectives 1986; 12(3); 71-79. 
 
Population Council. Brazil 1986: Results from the Demographic and Health 
Survey. Studies in Family Planning 1988; 19(1); 61-65    
 
Population Council. Brazil 1996: Results from the Demographic and Health 
Survey Studies in Family Planning 1998; 29(1); 88-92   
 
Potter JE, Schmertmann CP, Cavenaghi SM. Fertility and Development: 
Evidence from Brazil. Demography 2002; 39(4): 739-761. 
 
Rosenzweig MR, Schultz TP. Child mortality in Colombia: individual and 
community effects. Health Policy and Education 1982; 2(3-4):305-348. 
 
Rosenzweig, MR, Wolpin, K. Evaluating the Effects of Optimally Distributed 
Public Programs: Child Health and Family Planning Interventions. American 
Economic Review 1986; 76 (3); 470-482. 
 
Rutstein, S.O. 2000. Factors associated with trends in infant and child mortality in 
developing countries during the 1990s. Bulletin of the World Health Organization 
78(10), 1256-1270 
 
Sastry N. Community characteristics, individual and household attributes, and 
child survival in Brazil. Demography 1996; 33(2); 211-229. 
  
Sastry N, Burgard S. Diarrheal disease and its treatment among Brazilian 
children: stagnation and progress over a ten-year period, RAND Labor and 
Population Program WPS 02-04; 2002. 
 
Sastry N,  Burgard S. The prevalence of diarrheal disease among Brazilian 
children: trends and differentials from 1986 to 1996. Social Science and 
Medicine, 60 (5), 923-935; 2005 
 
Senauer B, Kassouf AL. The effects of breastfeeding on health and the demand 
for medical assistance among children in Brazil. Economic Development and 
Cultural Change 2000; 48 (4); 719-736. 

46 



 
Shuval HR, Tilden RL, Perry BH, Grosse RN. Effect of investments in water 
supply and sanitation on health status: a threshold-saturation theory. Bulletin of 
World Health Organization 1981; 59(2); 243-248. 
 
Simões CC. Estimativas da mortalidade infantil por microrregiões e municípios. 
Brasília: Ministério da Saúde (SPS); 1999.  
 
Stefani P, Biderman C. Returns to education and wage differentials in Brazil: a 
quantile approach. Economics Bulletin 2006; 9(1); 1-6. 
 
Thomas D, Strauss J. Prices, infrastructure, household characteristics and child 
height. Journal of Development Economics 1992; 39(2); 301-331.  
 
Thomas D, Strauss J, Henriques MH. Child survival, height for age and 
household characteristics in Brazil. Journal of Development Economics 1990; 
33(2); 197-234. 
  
Thomas D, Strauss J, Henriques MH. How does mother’s education affect child 
height? Journal of Human Resources 1991; 26(2); 183-211. 
 
Troesken W. Race Disease and the Provision of Water in American cities (1889-
1921), Journal of Economic History 2001; 61(3); 750-756. 
 
UNICEF. The Progress of Nations 1997 - New York: UNICEF, 1997. (ISBN 92-
806-3314-7) 
 
United Nations. The Millenium Development Goals Report 2005; United Nations: 
New York; 2005. 
 
Victora CG. Potential interventions to improve the health of mothers and children 
in Brazil. Revista Brasileira de Epidemiologia 2001; 4(1); 3-69 (In Portuguese). 
 
Victora CG, Barros FC. Infant mortality due to perinatal causes in Brazil: trends, 
regional patterns and possible interventions. Sao Paolo Medical Journal 2001; 
191(1); 33-42.  
 
Victora CG, Olinto MTA, Barros, FC, Nobre LC. Falling diarrhea mortality in 
Northeastern Brazil: did ORT play a role? Health Policy and Planning 1996; 
11(2); 132-141. 
 
Victora CG, Smith PG, Vaughan JP. Social and Environmental Influences on 
Child Mortality in Brazil: Logistic Regression Analysis from Census Files Journal 
of Biosocial Science 1986 18(1); 87-101. 
 

47 



48 

Victora CG, Smith PG, Vaughan JP, Nobre LC, Lombardi C, Teixeira AMB, 
Fuchs SC, Moreira LB, Gigante LP, Barros FC. 1987. Evidence for protection by 
breast-feeding against infant deaths from infectious diseases in Brazil. Lancet 
1987; 2(8554); 319–322. 
 
Victora CG, Smith PG, Vaughan JP, Nobre LC, Lombard C, Teixeira AMB, Fuchs 
SC, L.B. Moreira LB, Gigante LP, Barros FC. Water supply, sanitation and 
housing in relation to the risk of infant mortality from diarrhea. International 
Journal of Epidemiology 1988; 17(3); 651-654. 
 
Watson T. Public health investments and the infant mortality gap: evidence from 
federal sanitation interventions in US Indian Reservations. Journal of Public 
Economics 2006; 90 (8-9); 1537-1560. 
 
Weinreb AA. First Politics, Then Culture: Accounting for Ethnic Differences in 
Demographic Behavior in Kenya.  Population and Development Review 2001, 
27(3); 437-467. 
 
Woldemicael G. The effects of water supply and sanitation on childhood mortality 
in urban Eritrea. Journal of Biosocial Science 2000; 32; 207-227. 
 
World Bank. Brazil: Equitable, Competitive, Sustainable: Contributions for 
Debate. World Bank: Washington DC; 2003. 
 
WHO/UNICEF. Global Water Supply and Sanitation Assessment 2000 Report. 
Geneva: Joint WHO/UNICEF Joint Monitoring Programme for Water Supply and 
Sanitation 2000 (ISBN 92 4 1562021) 
 
World Health Organization and United National Children’s Fund. 2006. Joint 
Monitoring Programme for Water Supply and Sanitation. Coverage Estimates. 
Improved Sanitation.  
 
Zwane AP, Kremer M. What works in fighting diarrheal diseases in developing 
countries? A critical review. World Bank Research Observer 2007; forthcoming. 



Table 1A: Provision of piped water by region (1970-2000)
Year 1970 1970 1980 1980 1990 1990 2000 2000
Location Urban Rural Urban Rural Urban Rural Urban Rural

Water Northeast 15 2 29 8 39 19 62 42
IMR Northeast 192 180 138 136 73 78 50 55

Water North 17 4 22 8 27 13 50 31
IMR North 118 113 72 70 54 59 40 42

Water Center-West 20 4 21 7 44 25 69 48
IMR Center-West 93 92 60 60 33 36 25 31

Water South 27 8 43 16 62 32 74 44
IMR South 84 85 55 53 32 31 19 19

Water Southeast 51 20 52 23 66 33 77 47
IMR Southeast 96 98 60 62 31 40 22 32
Notes:  Water denotes the percentage of households in a county with piped water.
           IMR denotes the under-1 infant mortality rate in deaths per 1000 live births.
           Urban counties in a given year are those with 50% or more of their population living in urban areas.   



Table 1B: Summary Statistics 
   Year Mean Std. Dev.
Infant mortality rate 1970 125.3 52.7
(in deaths per 1000 live 
births) 1980 86.8 45.2
 1991 49.2 24.4
 2000 33.7 18.1
    
Percentage households 1970 15.1 19.5
with piped water (%) 1980 24.0 21.8
(Water) 1991 42.2 23.9
 2000 62.4 20.5
    
Percentage households 1970 5.3 12.3
with sewage connections 
(%) 1980 10.6 19.1
(Sewage) 1991 18.0 26.6
 2000 29.4 30.4
    
Human Development Index 1970 0.22 0.16
Income (income) 1980 0.54 0.27
 1991 0.56 0.10
 2000 0.61 0.10
    
Human Development Index 1970 0.40 0.14
Education (education) 1980 0.47 0.14
 1991 0.65 0.13
 2000 0.78 0.09
    
Total fertility rate 1970 5.9 1.5
 1980 4.5 1.4
 1991 3.6 1.2
 2000 2.8 0.7
     
Female population 1970 12,796 68,110
 1980 16,366 93,898
 1991 20,322 110,204
 2000 23,542 123,214



Table 1C: Literacy rates by region
1981 1991 2000

Male Female Male Female Male Female
Northeast 42.3 40.9 38.9 34.1 26.3 22.4
North 14.2 16.7 11.8 13.1 11.5 11.0
Central-west 19.9 22.7 16.6 17.1 10.2 10.3
South 13.5 17.7 10.1 13.1 6.4 7.7
Southeast 12.5 17.6 9.6 13.0 6.7 8.3
Source: IPEA region-level data  



Table 2 : The influence of piped water on infant mortality rates: panel regression weighted by county-level population
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel A: 1970-1980 
water -0.48 ** -0.81 ** -0.75 ** -0.69 ** -0.75 ** -0.83 ** -0.79 ** -0.94 ** -0.91 ** -0.95 **

(0.06) (0.17) (0.17) (0.15) (0.14) (0.15) (0.16) (0.16) (0.19) (0.28)
sewage 0.14 0.33 0.44 0.23 0.38  0.38 0.46 * 0.41 0.20 0.31

(0.11) (0.30) (0.28) (0.27) (0.27)  (0.27) (0.28) (0.29) (0.35) (0.48)  
income -56 ** -47 ** -45 ** -49 ** -56 ** -56 ** -58 ** -66 ** -70 ** -77 **

(2.99) (6.52) (6.20) (6.42) (6.40) (6.62) (7.08) (7.51) (8.39) (11.3)
education -242 ** -179 ** -212 ** -224 ** -221 ** -231 ** -243 ** -256 ** -270 ** -277 **

(9.90) (21) (21.6) (21) (22) (23) (25.5) (28.9) (30.5) (37.0)
water 0.46 ** 0.90 ** 0.68 ** 0.68 ** 0.76 ** 0.80 ** 0.77 ** 1.15 ** 1.04 ** 1.08 **
   x income (0.06) (0.22) (0.21) (0.18) (0.18) (0.19) (0.20) (0.22) (0.26) (0.39)
sewage -0.08 -0.16 -0.48 * -0.24 -0.37 -0.47 * -0.44 * -0.43 -0.21 -0.21
  x income (0.10) (0.30) (0.27) (0.26) (0.25) (0.24) (0.26) (0.28) (0.35) (0.53)
water  -0.003 ** -0.012 * -0.002 -0.002 -0.002 -0.001 -0.002 -0.008 -0.007  -0.008
  x sewage (0.001) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.009)
Notes: No. obs. 3568. ** statistically significant at the 5% level.  * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions.



Table 2 (continued) : The influence of piped water on infant mortality rates: panel regression weighted by county-level population
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel B: 1980-1991 
water -1.36 ** -0.76 ** -0.74 ** -0.93 ** -1.04 ** -1.25 ** -1.40 ** -1.74 ** -2.01 ** -2.00 **

(0.10) (0.15) (0.13) (0.15) (0.15) (0.16) (0.17) (0.18) (0.19) (0.23)
sewage 0.32 ** -0.31 -0.40  0.02 -0.05 0.09 0.20 0.28 0.28 0.37

(0.14) (0.31) (0.31) (0.32) (0.30) (0.30) (0.32) (0.34) (0.37) (0.39)
income -69.27 ** -32 ** -41 ** -56 ** -67 ** -81 ** -93 ** -110 ** -136 ** -155 **

(4.48) (5.52) (5.70) (6.29) (6.49) (6.93) (7.50) (8.11) (8.43) (9.68)
education -139.37 ** -74 ** -91 ** -107 ** -116 ** -124 ** -130 ** -146 ** -166 ** -203 **

(5.51) (7.57) (7.30) (7.50) (8.14) (7.86) (8.55) (9.44) (11.0) (13.0)
water 1.26 ** 0.76 ** 0.69 ** 1.20 ** 1.31 ** 1.59 ** 1.75 ** 2.16 ** 2.59 ** 2.67 **
   x income (0.13) (0.24) (0.23) (0.24) (0.23) (0.23) (0.25) (0.27) (0.27) (0.31)
sewage -0.19  0.50 * 0.66 ** 0.13 0.20 0.09 0.09 -0.04 -0.07 -0.19
  x income (0.12) (0.30) (0.29) (0.29) (0.27) (0.27) (0.29) (0.30) (0.33) (0.33)
water  -0.004 ** 0.0008 0.0002 -0.002 -0.003 -0.003 -0.005 ** -0.003 -0.003 -0.003
  x sewage (0.001) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)
Notes: No. obs. 3568. ** statistically significant at the 5% level.  * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions.



Table 2 (continued) : The influence of piped water on infant mortality rates: panel regression weighted by county-level population
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel C1: 1991-2000 
water -0.20 ** -0.10 -0.22 ** -0.19 -0.10 -0.08 -0.21 * -0.31 ** -0.40 ** -0.47 **

(0.04) (0.13) (0.11) (0.12) (0.12) (0.12) (0.12) (0.12) (0.13) (0.16)
sewage 0.05 0.15 0.20  0.22 * 0.11 0.16 0.17 0.13 0.27 * -0.004

(0.04) (0.15) (0.13) (0.13) (0.13) (0.13) (0.12) (0.13) (0.16) (0.22)
income -14.01 ** -27 -34 ** -32 ** -23 -18 -37 ** -51 ** -32 -32

(6.87) (16.6) (14.3) (15.3) (15.2) (16.2) (16.7) (18.4) (19.7) (22.7)
education -99.50 ** -77 ** -77 ** -85 ** -95 ** -101 ** -107 ** -105 ** -112 ** -118 **

(2.54) (7.17) (6.18) (6.72) (6.76) (7.24) (7.19) (6.97) (7.59) (9.74)
water 0.17 ** 0.15 0.33 * 0.30 0.15 0.10 0.31 0.43 ** 0.54 ** 0.59 **
   x income (0.08) (0.22) (0.19) (0.19) (0.19) (0.21) (0.21) (0.21) (0.23) (0.28)
sewage -0.07 0.01 -0.10 -0.21 -0.11 -0.33 -0.31 -0.13 -0.26 0.15
  x income (0.08) (0.30) (0.27) (0.26) (0.26) (0.25) (0.24) (0.25) (0.30) (0.41)
water  -0.001 ** -0.002 ** -0.002 ** -0.002 ** -0.001 -0.00004 -0.0001 -0.001 -0.003 * -0.003 *
  x sewage (0.0004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)
Notes: No. obs. 3568. ** statistically significant at the 5% level.  * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions.



Table 2 (continued): The influence of piped water on infant mortality rates: panel regression weighted by county-level population
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean  Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel C2: 1991-2000. Fertility rate is included as a regressor.
water -0.09 ** 0.01 0.02 -0.01 -0.01 -0.07 -0.21 * -0.16 -0.12 -0.28 *

(0.04) (0.13) (0.11) (0.11) (0.12) (0.12) (0.12) (0.12) (0.13) (0.17)
sewage 0.03 0.22 0.15 0.06 0.10 0.15 0.14 0.08 0.16 0.14

(0.04) (0.16) (0.14) (0.14) (0.13) (0.12) (0.13) (0.13) (0.15) (0.24)
income -6.18 -9 -15 -28 ** -27 * -30 * -42 ** -28 -13 -19

(6.82) (17) (14) (14) (15) (16) (17) (18) (19) (24)
education -84 ** -78 ** -75 ** -78 ** -81 ** -87 ** -87 ** -96 ** -102 ** -108 **

(2.97) (8.71) (7.26) (6.76) (7.10) (7.71) (8.05) (7.85) (8.55) (12)
fertility -0.0009 1.60 ** 1.80 ** 2.15 ** 2.27 ** 2.34 ** 2.70 ** 2.45 ** 3.20 ** 3.62 **
   rate (0.08) (0.64) (0.58) (0.57) (0.59) (0.59) (0.66) (0.69) (0.78) (0.94)
water -0.05 0.01 -0.02 0.03 0.01 0.12 0.30 0.18 0.11 0.36
   x income (0.08) (0.22) (0.19) (0.19) (0.20) (0.20) (0.21) (0.20) (0.22) (0.29)
sewage -0.001 * -0.05 -0.11 0.05 -0.06 -0.16 -0.26 -0.22 -0.16 -0.10
  x income (0.0004) (0.31) (0.27) (0.26) (0.25) (0.24) (0.24) (0.26) (0.28) (0.44)
water  2.71 ** -0.002 ** -0.001 -0.002 * -0.001 -0.001 -0.0002 0.0002 -0.002 -0.003 *
  x sewage (0.28) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Notes: No obs. 3568. ** statistically significant at the 5% level. * statistically significant at the 10% level.
Standard errors for the quantile regressions are from 2000 bootstrap repetitions.
 



Figure  1   : Marginal Impact of One Percentage Point Increase in Households with             
Piped Water Supply on the Under-1 Infant Mortality Rates (IMR). 
 
Group of counties that measure low in their development indicators. 
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Notes: Y-axis: Negative values indicate reduction in IMR. 



 
Figure  2   : Marginal Impact of One Percentage Point Increase in Households with             

Piped Water Supply on the Under-1 Infant Mortality Rates (IMR). 
 

 
Group of counties that measure high in their development indicators. 
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Notes: Y-axis: Negative values indicate reduction in IMR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure  3   :  Marginal Impact of 0.01 Increase in Income-Related   
Human Development Index on the Under-1 Infant Mortality Rates (IMR). 

 
Group of counties that measure low in their development indicators. 
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Notes: Y-axis: Negative values indicate reduction in IMR. 



Figure  4  :  Marginal Impact of 0.01 Increase in Income-Related  
Human Development Index on the Under-1 Infant Mortality Rates (IMR). 

 
Group of counties that measure high in their development indicators. 

 
 

.35 

-.05
IMR

-.45

-.85

0 20 100 40 60 80
Quantile

1991-2000 1980-19911970-1980
 



Table 3: The influence of piped water on infant mortality rates: panel regression weighted by county-level population. Urban counties only
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel A: 1970-1980 (Urban counties only)
water -0.14 -0.54 * -0.44 * -0.34 -0.43 ** -0.44 ** -0.37 -0.69 ** -0.70 ** -0.49

(0.09) (0.28) (0.25) (0.22) (0.22) (0.22) (0.23) (0.25) (0.31) (0.38)
sewage 0.02 -0.44 -0.57 -0.16 0.17 0.28 0.19 -0.41 -0.95 -0.47

(0.17) (0.59) (0.50) (0.49) (0.45) (0.46) (0.51) (0.54) (0.65) (0.82)
income -51 ** -28 -45 ** -47 ** -46 ** -48 ** -53 ** -51 ** -39 -42

(7.30) (21) (19) (18) (18) (18) (18) (21) (24) (29)
education -385 ** -322 ** -255 ** -285 ** -339 ** -340 ** -327 ** -326 ** -324 ** -366 **

(23) (72) (63) (64) (67) (69) (73) (76) (87) (105)
water 0.21 * 0.34 0.45 0.27 0.55 * 0.49 0.44 0.74 ** 0.56 0.42
  x income (0.12) (0.41) (0.36) (0.34) (0.32) (0.32) (0.33) (0.35) (0.43) (0.55)
sewage 0.47 ** -0.03 0.20 0.30 -0.10 -0.06 0.10 0.21 0.34 0.19
  x income (0.15) (0.39) (0.35) (0.33) (0.31) (0.30) (0.31) (0.34) (0.43) (0.55)
water -0.006 ** 0.01 0.0002 -0.002 -0.002 -0.004 -0.01 -0.01 -0.005 -0.01
  x sewage (0.002) (0.01) (0.008) (0.008) (0.007) (0.007) (0.006) (0.007) (0.008) (0.01)
Notes: No. obs. 704. ** statistically significant at the 5% level. * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions



Table 3 (con't): The influence of piped water on infant mortality rates: panel regression weighted by county-level population. Urban counties only
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel B: 1980-1991 (Urban counties only)
water -1.15 ** -0.28 -0.39 -0.65 ** -0.58 ** -0.79 ** -1.02 ** -1.29 ** -1.44 ** -1.35 **

(0.20) (0.27) (0.27) (0.26) (0.25) (0.26) (0.27) (0.30) (0.35) (0.45)
sewage 0.24 0.02 -0.37 0.28 0.05 0.12 0.34 -0.12 -0.17 -0.004

(0.20) (0.45) (0.45) (0.45) (0.44) (0.43) (0.42) (0.45) (0.47) (0.51)
income -80 ** -28 -40 ** -66 ** -62 ** -74 ** -83 ** -106 ** -113 ** -133 **

(11) (17) (16) (16) (16) (16) (17) (18) (22) (27)
education -192 ** -122 ** -134 ** -161 ** -160 ** -172 ** -179 ** -189 ** -190 ** -255 **

(10) (16) (16) (16) (15) (14) (15) (16) (19) (23)
water 1.00 ** 0.51 0.48 1.13 ** 0.84 ** 1.18 ** 1.45 ** 1.70 ** 1.76 ** 1.72 **
  x income (0.24) (0.39) (0.38) (0.38) (0.36) (0.35) (0.37) (0.39) (0.45) (0.56)
sewage -0.25 0.32 0.51 -0.09 0.20 0.11 -0.12  0.27 0.25 -0.11
  x income (0.16) (0.36) (0.37) (0.36) (0.34) (0.33) (0.32) (0.33) (0.35) (0.39)
water -0.002 -0.003 0.0002  -0.005 -0.004 -0.004 -0.005  -0.001  -0.0003 0.0003
  x sewage (0.002) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
Notes: No. obs. 1275. ** statistically significant at the 5% level. * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions



Table 3 (con't): The influence of piped water on infant mortality rates: panel regression weighted by county-level population. Urban counties only
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
Panel C: 1991-2000 (urban counties only)
water -0.32 ** -0.02 0.03 -0.05 -0.14 -0.17 -0.34 * -0.28 -0.30 -0.22

(0.07) (0.21) (0.19) (0.19) (0.18) (0.20) (0.19) (0.19) (0.20) (0.23)
sewage 0.09 * 0.10 0.01 0.11 0.09 0.10 0.07 -0.01 0.11 0.10

(0.05) (0.19) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.18) (0.24)
income -8.90 -0.91 -11 -18 -30 -31 -55 * -41 -16 1.60

(11) (31) (28) (26) (27) (29) (29) (30) (31) (33)
education -115 ** -91 ** -88 ** -104 ** -106 ** -117 ** -111 ** -117 ** -120 ** -125 **

(3.88) (12) (11) (11) (12) (12) (12) (12) (12) (14)
water 0.39 ** 0.05 -0.07 0.13 0.26 0.38 0.60 * 0.42 0.35 0.21
  x income (0.11) (0.35) (0.32) (0.30) (0.30) (0.33) (0.32) (0.32) (0.34) (0.40)
sewage -0.20 ** -0.03 0.08 -0.13 -0.15 -0.05 0.01 -0.01 -0.31 -0.06
  x income (0.09) (0.37) (0.33) (0.33) (0.33) (0.31) (0.29) (0.29) (0.32) (0.42)
water -0.0003 -0.002 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.0002 -0.002
  x sewage (0.0004) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
Notes: No. obs. 2026.  ** statistically significant at the 5% level. * statistically significant at the 10% level. 
Standard errors for quantile regressions are from 2000 bootstrap repetitions
 



Figure 5.  Marginal impact of one percentage point increase in households with    
piped water on the under-1 infant mortality rates (IMR):  
A comparison of the full sample with the urban only sample. 
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Figure 6.  Marginal impact of one percentage point increase in households with 
piped water on the under-1 infant mortality rates (IMR):  
A comparison of the full sample with the urban only sample. 
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Table 4 : The influence of piped water on under-5 infant mortality rates:panel regression weighted by county-level population (1991-2000)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Mean Quantile
Percentile 10 20 30 40 50 60 70 80 90
water 0.20 ** -0.40 ** -0.02 0.04 -0.01 0.02 -0.02 -0.16 0.13 0.40

(0.07) (0.18) (0.16) (0.16) (0.16) (0.16) (0.17) (0.18) (0.20) (0.26)
sewage -0.18 ** 0.16 -0.03 -0.31 * -0.25 -0.35 * -0.35 * -0.02 -0.28 -0.42

(0.07) (0.21) (0.19) (0.18) (0.17) (0.18) (0.19) (0.20) (0.23) (0.34)
income -15 -45 * -37 * -60 ** -56 ** -68 ** -76 ** -82 ** -58 * -24

(11) (23) (20) (19) (20) (23) (24) (26) (29) (38)
education -107 ** -89 ** -94 ** -92 ** -100 ** -102 ** -110 ** -115 ** -104 ** -156 **

(4.63) (13) (10) (9.5) (10) (10) (11) (11) (13) (19)  
fertility rate 4.97 ** 3.55 ** 4.24 ** 5.15 ** 4.84 ** 5.45 ** 5.13 ** 4.80 ** 4.97 ** 4.58 **

(0.44) (0.90) (0.83) (0.79) (0.84) (0.88) (0.99) (1.06) (1.16) (1.4)
water -0.45 ** 0.65 ** 0.02 -0.07 0.01 -0.06 0.01 0.23 -0.43 -0.67
    x income (0.12) (0.30) (0.26) (0.26) (0.27) (0.27) (0.29) (0.30) (0.34) (0.45)
sewage 0.44 ** -0.13 0.15 0.72 ** 0.58 * 0.66 ** 0.58 * 0.04 0.47 1.28 *
    x income (0.12) (0.41) (0.36) (0.33) (0.31) (0.33) (0.35) (0.37) (0.44) (0.68)
water -0.002726 ** -0.002 -0.001 -0.003 ** -0.003 ** -0.002 -0.001 -0.001 -0.002 -0.01 **
    x sewage (0.0006) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
Notes: No obs. 3568. ** statistically significant at the 5% level.  * statistically significant at the 10% level.
Standard errors for the quantile regressions are from 2000 bootstrap repetititons.  



Table 5: Estimated number of averted deaths from simulated changes in health inputs
(1) (2)

Regression: Quantile Mean

Section 1: Simulation: One percentage point increase in households with piped water
Source of coefficients:
Panel A: 1970-1980 95,000 67,000

Panel B: 1980-1991 104,000 166,000

Panel C1: 1991-2000 26,000 26,000

Section 2: Simulation: 0.01 increase in income-related Human Development Index
Source of coefficients:
Panel A: 1970-1980 97,000 119,000

Panel B: 1980-1991 14,000 45,000

Panel C1: 1991-2000 16,000 11,000

Notes: Coefficients are from Table 2  



Table 6: Correlation of piped water supply and infant mortality rates: cross-section regression weighted by county-level population
Method Mean Quantile
Percentile 10 20 30  40 50 60 70 80 90
Panel A: 1970
water 0.91 ** 0.12 0.15 0.21 0.39 0.62 ** 0.99 ** 1.22 ** 1.68 ** 3.11 **

(0.10) (0.19) (0.23) (0.23) (0.26) (0.29) (0.42) (0.49) (0.78) (0.94)
sewage -0.54 ** -0.03 0.21 0.28 -0.02 -0.05 -0.48 -0.70 -1.18 -2.94 *

(0.19) (0.32) (0.33) (0.34) (0.39) (0.42) (0.54) (0.69) (1.05) (1.65)
income 14 3.49 2.67 -5.96 11 7 30 42 56 61

(8.96) (18) (21) (24) (24) (25) (31) (33) (48) (111)
education -269 ** -176 ** -202 ** -217 ** -248 ** -268 ** -292 ** -311 ** -350 ** -395 **

(8.13) (12) (14) (17) (18) (17) (21) (25) (24) (44)
water -0.47 ** 0.69 0.62 0.61 0.20 0.01 -0.70 -1.21 -1.93 -3.60 *
  x income (0.16) (0.43) (0.51) (0.51) (0.55) (0.57) (0.76) (0.89) (1.27) (1.93)
sewage 1.68 ** -0.23 0.28 1.03 1.16 1.60 * 2.21 ** 2.32 ** 2.87 * 4.30 **
  x income (0.23) (0.61) (0.61) (0.64) (0.74) (0.85) (1.10) (1.18) (1.56) (1.83)
water -0.01 ** -0.003 -0.01 * -0.02 ** -0.01 ** -0.02 ** -0.02 ** -0.02 ** -0.02 -0.01
  x sewage (0.003) (0.006) (0.006) (0.005) (0.006) (0.007) (0.008) (0.008) (0.01) (0.023)
No. obs. 3658. Constant included. ** and * indicate significance at the 5% and 10% level, respectively. 
Standard errors in quantile reg are from 2000 bootstrap repetitions.



Table 6 (con't): Correlation of piped water supply and infant mortality rates: cross-section regression weighted by county-level population
Method Mean Quantile
Percentile 10 20 30  40 50 60 70 80 90
Panel B:1980
water 1.25 ** 0.57 ** 0.55 * 0.82 ** 0.82 ** 0.82 ** 0.91 ** 1.28 ** 1.60 ** 2.10 **

(0.12) (0.22) (0.30) (0.34) (0.35) (0.41) (0.32) (0.36) (0.38) (0.62)
sewage -1.98 ** -1.05 ** -1.36 ** -1.94 ** -1.98 ** -2.08 ** -2.05 ** -2.47 ** -2.27 ** -1.29

(0.23) (0.26) (0.30) (0.37) (0.36) (0.43) (0.46) (0.67) (1.03) (1.71)
income -40 ** -29 ** -43 ** -55 ** -61 ** -68 ** -66 ** -63 ** -53 -12

(5.56) (15) (18) (14) (14) (16) (14) (17) (33) (94)
education -172 ** -93 ** -102 ** -117 ** -126 ** -146 ** -177 ** -179 ** -228 ** -291 **

(8.38) (16) (18) (16) (16) (17) (20) (25) (32) (51)
water -0.57 ** -0.20 -0.07 -0.12 -0.01 0.12 0.18 -0.35 -0.74 -1.52
  x income (0.14) (0.31) (0.47) (0.53) (0.52) (0.57) (0.45) (0.44) (0.48) (0.98)
sewage 2.51 ** 1.40 ** 1.71 ** 2.54 ** 2.68 ** 2.84 ** 2.72 ** 3.44 ** 3.15 ** 2.35
  x income (0.30) (0.35) (0.43) (0.52) (0.51) (0.55) (0.65) (0.88) (1.3) (1.85)
water -0.008 ** -0.004 -0.003 -0.01 ** -0.01 ** -0.01 ** -0.01 ** -0.01 ** -0.01 ** -0.01
  x sewage (0.001) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.006) (0.01)
No. obs. 3658. Constant included. ** and * indicate significance at the 5% and 10% level, respectively. 
Standard errors in quantile reg are from 2000 bootstrap repetitions.



Table 6 (con't): Correlation of piped water supply and infant mortality rates: cross-section regression weighted by county-level population
Method Mean Quantile
Percentile 10 20 30  40 50 60 70 80 90
Panel C: 1991
water -0.29 ** -0.50 ** -0.40 ** -0.20 -0.35 -0.47 -0.40 -0.61 * -0.22 -0.53 *

(0.07) (0.15) (0.17) (0.23) (0.29) (0.33) (0.31) (0.31) (0.33) (0.32)
sewage -0.66 ** -0.51 * -0.73 ** -1.00 ** -0.78 ** -0.67 ** -0.05 -0.46 -0.70 ** -0.59 *

(0.08) (0.26) (0.26) (0.26) (0.30) (0.34) (0.35) (0.32) (0.32) (0.31)
income -127** ** -113 ** -124 ** -120 ** -117 ** -140 ** -88 ** -171 ** -139 ** -189 **

(7.85) (16) (19) (23) (22) (28) (31) (32) (42) (35)
education -82** ** -69 ** -73 ** -77 ** -87 ** -85 ** -109 ** -84 ** -85 ** -65 **

(3.86) (6.51) (9.70) (11) (12) (16) (17) (16) (15) (16)
water 0.76 ** 1.05 ** 0.94 ** 0.62 * 0.83 * 1.10 ** 0.95 * 1.47 ** 0.76 1.23 **
  x income (0.11) (0.24) (0.26) (0.37) (0.47) (0.56) (0.55) (0.54) (0.61) (0.56)
sewage 1.00 ** 1.09 ** 1.43 ** 1.71 ** 1.24 ** 0.99 * 0.04 0.67 0.98 * 0.86
  x income (0.13) (0.52) (0.50) (0.44) (0.46) (0.51) (0.55) (0.51) (0.50) (0.54)
water -0.002 ** -0.004 ** -0.004 ** -0.003 ** -0.002 * -0.002 -0.001 -0.003 * -0.003 -0.003
  x sewage (0.0006) (0.002) (0.002) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003)
No. obs. 3658. Constant included. ** and * indicate significance at the 5% and 10% level, respectively. 
Standard errors in quantile reg are from 2000 bootstrap repetitions.



Table 6 (con't): Correlation of piped water supply and infant mortality rates: cross-section regression weighted by county-level population
Method Mean Quantile
Percentile 10 20 30  40 50 60 70 80 90
Panel D: 2000
water -0.42 ** -0.40 ** -0.56 ** -0.62 ** -0.50 ** -0.41 * -0.51 ** -0.66 ** -0.28 -0.13

(0.06) (0.18) (0.17) (0.20) (0.20) (0.22) (0.26) (0.26) (0.26) (0.23)
sewage -0.22** ** -0.37 ** -0.31 -0.40 * -0.50 ** -0.44 ** -0.32 -0.07 -0.18 -0.26

(0.05) (0.15) (0.20) (0.23) (0.20) (0.18) (0.22) (0.27) (0.26) (0.25)
income -132 ** -127 ** -146 ** -147 ** -149 ** -134 ** -141 ** -155 ** -110 ** -121 **

(7.80) (20) (20) (23) (27) (33) (35) (32) (29) (26)
education -87 ** -43 ** -54 ** -72 ** -75 ** -87 ** -85 ** -85 ** -103 ** -110 **

(4.24) (11) (13) (14) (14) (15) (18) (21) (20) (27)
water 0.97 ** 0.81 ** 1.11 ** 1.23 ** 1.09 ** 0.93 ** 1.10 ** 1.37 ** 0.78 * 0.61
  x income (0.10) (0.33) (0.30) (0.34) (0.35) (0.40) (0.46) (0.46) (0.43) (0.37)
sewage 0.47 ** 0.79 ** 0.64 ** 0.76 ** 1.03 ** 0.89 ** 0.63 * 0.20 0.18 0.34
  x income (0.08) (0.23) (0.30) (0.36) (0.33) (0.32) (0.36) (0.44) (0.46) (0.52)
water -0.002 ** -0.003 ** -0.002 ** -0.003 * -0.004 ** -0.003 -0.003 -0.002 -0.001 -0.001
  x sewage (0.0004) (0.0009) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)
No. obs. 3658. Constant included. ** and * indicate significance at the 5% and 10% level, respectively. 
Standard errors in quantile reg are from 2000 bootstrap repetitions.
 



 
Figure 7.  The association between one percentage point increase in households with 

piped water supply and the under-1 infant mortality rates (IMR), as 
estimated in the cross-sectional regressions. 

 
Group 1: Counties that measure low in their development indicators. 
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