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ABSTRACT

We use two different approaches to measure intertemporal preferences. First we employ the classical
method of inferring preferences from a series of choices (subjects choose between $X now or $Y in
� days). Second we adopt the novel approach of inferring preferences using only response time data
from the same choices (how long it takes subjects to choose between $X now or $Y in � days). In principle,
the inference from response times should work, since choices between items of nearly equivalent value
should take longer than choices between items with substantially different values. We find that choice-based
analysis and response-time-based analysis yield nearly identical discount rate estimates. We conclude
that response time data sheds light on both our revealed (choice-based) preferences and on the cognitive
processes that implement those preferences.
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1. Introduction 
Following Samuelson (1938), economists have adopted the theory of 

revealed preferences: Economic analysis uses choice data to infer underlying 
preferences (or tastes). However, there are many observable phenomena other 
than choices that could in principle be used to infer latent preferences. 

For example, one could try to infer preferences using physiological 
measurements (Edgeworth, 1881). Observers could determine which flavor of 
ice cream produces the greatest anticipatory salivation, or the sharpest spike in 
skin conductance, or the greatest blood flow in the brain’s reward systems. 
These physiological responses could then be inverted to impute the underlying 
preferences that evoked them. A growing body of work in neuroeconomics has 
followed such strategies, concluding that preferences inferred from 
neurophysiological measurements closely match those inferred from choices 
(e.g., de Quervain et al., 2004). 

Social scientists could also try to infer latent preferences from response 
time (i.e., the amount of time subjects take to make decisions) in choice tasks, 
which is the approach taken in the current paper.1 In theory, response time 
should be relatively long when agents choose among goods that have similar 
value (Gabaix and Laibson, 2005; Gabaix et al., 2006). If an agent has a noisy 
estimate of the value of a good but the good almost surely dominates its 
alternatives, then it is not worth taking the time to refine that noisy estimate. 
However, if an agent has a noisy estimate of the value of a good that seems to 
be close in value to the next best alternative, then it is optimal to take additional 
time to refine the noisy estimate. If such theorized mechanisms operate in 
practice, then it should be possible to use only response times to impute 
preferences. Long response times imply near indifference between items in a 
binary choice set. Short response times imply a strong preference for one of the 
items in a binary choice set. 

In psychology, a similar relationship between response time and 
quantities under comparison has been observed in a variety of domains as early 
as the work of Henmon (1906). In perception, Johnson (1939) had subjects 
decide which of two simultaneously presented lines was longer, and found that 
response time was a negative linear function of the logarithm of the difference 
in length. This has been found with other perceptual quantities like area and 
luminance, with the size of visualized objects, and even with the magnitudes of 
abstract numbers (Moyer and Landauer, 1967). Brain imaging studies suggest 
that many, if not all, of these comparison tasks invoke a common cognitive 
process localized in the parietal lobes (Pinel et al., 2001, 2004). 

In this paper we find that response times can be used to infer economic 
preferences. Specifically, we use laboratory data to measure temporal discount 
                                                            
1 Rubinstein (2007) measures response times during a wide range of games, but does not use 
them to infer underlying preference parameters. 



rates in two ways. First, we measure intertemporal preferences using data from 
27 binary choices, each of which has an immediate reward option and a 
mutually exclusive delayed reward option (Kirby et al., 1999). Second, we infer 
intertemporal preferences using only response times measured in the same 
experiment. With this second approach, we infer that subjects are indifferent 
between two mutually exclusive alternatives—an immediate reward and a 
delayed reward—when the observed response time in the choice task is 
relatively long compared to other intertemporal choices in our experiment. 

Remarkably, the parametric discount function that we infer directly 
from the choice data closely matches the parametric discount function that we 
infer indirectly from the response time data. We also find that response time 
analysis predicts subsequent choice data almost as well as choice data predict 
subsequent choice data. We conclude that response time is an operational and 
effective measure of preferences. Response time data appear to reveal 
preferences by revealing key attributes of the cognitive processes that 
implement those preferences. 

This paper is divided into five sections. Following this introduction, 
Section 2 discusses our data, which are taken from three different experiments 
involving 712 total subjects. Section 3 presents our modeling framework, and 
explains how we infer intertemporal preferences first from choice data and 
second from response time data. Section 4 reports our results comparing the 
preference estimates derived from choice data and the preference estimates 
derived from response time data. Section 5 concludes.  
 
2. Data description 

We created a computerized version of a 27-question delay-discounting 
task developed by Kirby et al. (1999). Each question asks the subject to choose 
between a smaller, immediate reward (SIR) and a larger, delayed reward 
(LDR), both denominated in U.S. dollars. For example, the first question asks 
“Would you prefer $54 today, or $55 in 117 days?” Rewards range from $11 
(the smallest SIR) to $85 (the largest LDR). Delays range from 7 to 186 days. 
Nine trials involve “small” LDRs ($25–35), nine involve “medium” LDRs 
($50–60), and nine involve “large” LDRs ($75–85). Following Kirby et al. 
(1999), we refer to these sets of nine trials as reward size categories.  

We administered the questions as described by Kirby et al. (1999), 
except that we also recorded the time that each subject took to answer each 
question, starting from the time it was displayed on the screen. Responses were 
entered by pressing the B key for the SIR or the N key for the LDR. 

This task was included in three separate studies that yielded data from a 
total of 712 subjects: (1) The Weight study examined associations between 
body mass index (BMI) and discounting, as well as other measures of reward-
related behavior. (2) The Cognition study examined individual differences in 
cognitive abilities, decision-making, and personality. (3) The Web study 



examined differences in cognition and personality that may be associated with 
differences in academic disciplines and career choices.2 

In all three studies, each subject had a 1-in-6 chance of having one 
randomly-selected question played out for real stakes. In the Weight and 
Cognition studies, the subject rolled a six-sided die at the end of the testing 
session. If a 6 was rolled, the subject blindly drew a card from a box containing 
cards labeled 1–27, corresponding to the 27 trials of the discounting task. If the 
subject chose the SIR on the randomly-drawn trial, the amount of the SIR was 
added to the subject’s show-up fee for participating, and a check request for the 
total was submitted to the research administration office within one business 
day. If the subject chose the LDR, a separate check request for the LDR amount 
was made after the specified delay. In the Web study, a spreadsheet was used to 
generate the necessary random numbers, and “winning” subjects received 
payment through an Amazon.com gift certificate, which was e-mailed by the 
next business day (SIRs) or after the specified delay (LDRs). 

In the Weight and Cognition studies, the questions were presented, and 
choices and response times recorded, using PsyScope 1.2.5 (Cohen et al., 1993) 
running under OS 9 on Apple Macintosh computers. For the Web study, this 
PsyScope implementation was converted into a Flash movie that ran in each 
subject’s web browser on his or her own computer and transmitted data back to 
a central server. Because the three studies varied in recruitment strategies, 
participant characteristics, payment methods, and apparatus used to measure 
response time, we analyze them separately in this paper. 
 
3. Models and estimation techniques 
3.1. Discount function 

We use a generalized hyperbola to model time preferences. We assume 
that the discounted value of a one unit reward delayed τ days is  

1
( )

1
D τ

ατ
=

+
. 

Previous studies linking discount rates to behavior have adopted this function 
as well (e.g., Mazur, 1987; Kirby & Marakovic, 1996; Kirby et al., 1999; de 
Wit et al., 2007; Myerson & Green, 1995; Rachlin et al., 1991). 

                                                            
2 In total 751 subjects were tested, but 18 subjects were excluded from the Weight study and 16 
subjects were excluded from the Cognition study for one or more of the following reasons: 
reported brain injury; reported mental illness; reported drug use; had difficulty understanding 
directions; was unable to complete the protocol; was previously tested. Additionally, any subject 
who had three or more responses faster than 200 milliseconds on the discounting task was 
excluded; a total of five subjects from the Web study were excluded based on this criterion. The 
average ages of remaining participants in the Weight, Cognition, and Web studies were, 
respectively, 32, 27, and 31 years; the average numbers of years of education were 15.0, 14.3, 
and 18.4; the percentages of female participants were 50%, 52%, and 67%. Complete details of 
the study procedures can be found in Chabris et al. (2008). 



This discount function ( )D τ  is a special case in the family of 
hyperbolic discount functions derived by Loewenstein and Prelec (1992): 

/( ) ( .1 )D γ ατ ατ −= +  
In this family of discount functions, the discount rate—the rate of 

decline of the discount function—is given by 
( ) / .

( ) 1
D

D
τ τ γ
τ ατ

∂ ∂
=

+
 

Hence, the discount rate is decreasing with horizon τ . The falling discount rate 
generates dynamically inconsistent preferences (Strotz, 1957; Ainslie, 1992). 
 Our specification imposes the common restriction γ = α. Thus at 
horizon τ = 0, the discount rate is α. To simplify notation, we sometimes refer 
to parameter α as the “discount rate,” though it is actually the instantaneous 
discount rate at horizon τ = 0. 
 
3.2. Choice data model 

We assume that time preferences are homogeneous within each of our 
three datasets.3 A subject chooses delayed reward Y in τ days over an 
immediate reward X if and only if the net present value of Y exceeds X: 
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We assume that subjects experience preference shocks with the logistic 
distribution, so subjects choose the delayed reward with probability 
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where 1/ω  is the variance of the logistic distribution. The estimated 
discounting parameters, α̂ andω̂ , are obtained in each dataset by maximizing 
the likelihood function 
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3 Even though the choice data allow us to estimate a distinct discount rate for each subject as in 
Chabris et al. (2008), we were not able to do the same with the response time data. Because the 
response time model contains many more parameters and because the response time data is 
naturally noisier than the choice data, there are not enough observations per subject to estimate 
the model well. Accordingly, all analysis in this paper is at the group level.  



where T is the number of trials, N is the number of subjects, 
and 1 ,1{ }it i N t Td d ≤ ≤ ≤ ≤= is the set of the NT binary decisions made by the 

N subjects. In trial t , dummy variable 1itd =  if subject i chose the delayed 
reward tY  in τ t  days over the immediate reward tX  (otherwise 0itd = ). 
 
3.3. Response time (RT) model 
 Following the framework in Gabaix and Laibson (2005) and Gabaix et 
al (2006) we assume that subjects take longest to decide when the two options 
are most similar in their discounted values. For example, a choice between $10 
immediately or $40 in a week would not be difficult, whereas a choice between 
$10 immediately or $15 in a week would take more time.  
 Formally, subjects should take longest on those trials t for which the 
difference in the discounted values of the choices on trial t ,   

1
t

t t
t

Y X
ατ

Δ ≡ −
+

,  (3) 

is closest to 0. The proxy for decision difficulty, ( ) [0,1]tΓ Δ ∈ , that we 
actually use is given by the transformation   

( )( ) 2 / 1 t
t eωΔΓ Δ +≡ .  (4) 

This transformation has three desirable properties. First, Γ is convex 
and decreasing, which means that as the difference between the discounted 
values of the options grows larger, Γ exhibits less sensitivity to changes in Δ . 
Second, this transformation is based on the logit distribution function (1); 
another interpretation of Γ is that subjects take longest to decide when the 
probability of choosing one or the other reward is close to ½. Third, the 
precision parameterω  incorporates the effect of the variance of taste shocks on 
response time—greater variance in taste shocks corresponds to a smaller 
precision parameterω , which corresponds to larger response times.  

The response time model is 
0 1 2 ( )it t itRT b b t b ε= + + Γ Δ +   (5) 

where t  is trial number, itRT is the response time of subject i  on trial t , and 

itε is the subject and trial specific noise term (section 4.1 motivates the 

1b t term). We make no assumptions about the errors except that the random 
vectors 1( , , )i i iT= …ε ε ε are mutually independent. Our approach to estimating 
the model is simply to minimize the sum of squared residuals; in other words, 
we seek the vector 0 1 2

ˆ ˆ ˆ ˆ ˆ( , , , , )b b b α ω that minimizes 
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4. Results 
4.1. Using choice data to predict response times 

Table 1 shows the estimates α̂ obtained by using choice data to 
estimate the discount function. Specifically, we maximize the choice-based 
likelihood function in equation (2) for each of our three studies. We also 
estimate separately the discount rates for each of the three different reward size 
categories. Consistent with others (e.g., Kirby et al., 1999; Kirby and 
Marakovic, 1996; Jaroni et al., 2004) we find that subjects’ discount rates 
decrease with reward size category. Moreover, we find that subjects in the 
Weight study have higher discount rates than subjects in the Cognition study, 
and that subjects in the Cognition study have slightly higher discount rates than 
subjects in the Web study. This is probably at least partially due to 
demographic differences between the samples.4 

We find that we can use the discount function estimates from choice 
data to predict response times. Specifically, for each study we use the estimated 
parameters α̂ and ω̂ to define ˆ

tΔ as in equation (3), apply Γ as in equation (4) 

to get our proxy for decision difficulty, ˆ( )tΓ Δ , and then show that ˆ( )tΓ Δ  
correlates with response times. We also control for the effect of experience—as subjects become 
accustomed to the format of the discounting task, they answer the questions 
more quickly. We find that subjects take a disproportionate amount of time on 
the first two trials but that the effect of experience is approximately linear for 
the subsequent trials. Therefore, we leave the first two trials out of the response 
time analysis and control for the linear learning effect in the remaining 25 trials. 
Finally, we trim our dataset by cutting observations with extremely high 
response times—we demean response times at the subject level and drop 

                                                            
4 For example, the Weight study recruited subjects with high BMI whereas the Web study 
recruited college graduates. The differences in the group-level discount rates are reduced when 
we exclude overweight and obese subjects (BMI ≥  25) from the estimation samples. Chabris et 
al. (2008) estimate discount rates at the individual level and show statistically significant 
relationships between the estimated discount rates and composites of variables such as BMI, 
smoking, and exercising.  



observations that are in the top 2% of the distribution of the demeaned response 
times.5 We apply these exclusions to all subsequent analysis. 

The columns labeled choice data in Tables 2 and 3 show the estimated 
discounting parameters when the model is estimated with choice data that is 
taken from the trimmed sample.6 We form the decision difficulty measure, 

ˆ( )tΓ Δ , using these parameters. 

To test our hypothesis that ˆ( )tΓ Δ  predicts response time, we estimate 
the linear regression model 

0 1 2
ˆ( )it t itRT b b t b ε= + + Γ Δ + . 

The effect of ˆ( )tΓ Δ is highly significant (p < 0.001) and positive in the 
regression. Figure 1 shows, for each of the three datasets, a plot of 

1itRT b t− (averaged by trial) against ˆ( )tΓ Δ , and the corresponding regression 
lines. When we average by trial and control for the learning effect, 

ˆ( )tΓ Δ accounts for 51.2%, 49.8%, and 61.3% of the variance, respectively, in 
the Weight, Cognition, and Web studies. When we estimate a different α for 
each of the different reward categories, the results are even more statistically 
significant—the corresponding 2R values are 74.8%, 64.1%, and 70.8%. 
 
4.2. Using response times to predict choice 
 We also estimate the discount function using only the response time 
data. Specifically, we estimate equation (5) by minimizing the sum of squared 
residuals (6). Table 2 shows the estimates of α̂ and ω̂ for each of the three 
datasets, with the choice data columns showing estimates obtained by 
estimating the choice data model (2) and the RT data columns showing 
estimates obtained by estimating the RT model (5). Overall, the estimates based 
on choice data covary closely with the estimates based on response times. The 
correlation between the α̂’s estimated from choice data and the α̂’s estimated 
from response time data is 0.97.7  

                                                            
5 Response time is a very noisy variable because of the many ways in which it can be affected on 
any given trial. An example of an outlier is a 59-second response in the Weight study (compared 
to a mean of 3.4 and SD of 2.8 seconds in this dataset). In other analyses, varying the cutoff point 
from 2% yielded similar results to those reported here. 
6 These estimates are nearly identical to those in Table 1.  
7 In contrast, the ω̂  estimates do not move together because of a discrepancy that arises in the 

Weight study. The correlation between theω̂ ’s estimated from choice data and the ω̂ ’s 
estimated from response time data is –0.66. 
 



 Additionally, we estimate α and ω for each of the three reward 
categories. We simply estimate the choice model separately for each reward 
size category. The response time model is similar to expression (6), except that 
we allow a distinct discount rate, k̂α  , and precision parameter, ˆkω , for each of 
the three reward size categories—small, medium, large. Therefore, we seek the 
vector 0 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , , )s m l s m lb b b α α α ω ω ω that minimizes 
2
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and { , , }k s m l∈  indexes the reward size categories. 
 Table 3 shows the estimates of α̂ and ω̂ for each of the three reward 
categories in each of the three studies. Again, the estimates based on choice 
data covary closely with the estimates based on response times. The correlation 
between the α̂’s estimated from choice data and the α̂’s estimated from 
response time data is 0.82.8  
 
 
4.3. Monte-Carlo horse race 
 As a final test, we compare the predictive power of models estimated 
using choice data and models estimated using RT data. The idea of the 
procedure is to estimate α and ω  on a subsample of the data using the choice 
model and also using the RT model, and then compare the out-of-sample 
predictions for choice data of the two estimated models. This places the RT 
model at a disadvantage because we are using RT data to make predictions 
about subsequent choice behavior.  
 We run Monte Carlo simulations with1000 trials for each of the three 
studies. On each trial, we choose M subjects randomly and without replacement 
from the N subjects in the study. Using data from those M subjects we find 
ˆchoiceα and ˆchoiceω by maximizing expression (2) and we find ˆRTα and ˆRTω  by 

minimizing expression (6).  
 For the other N–M subjects, we first calculate the mean squared 
residual from the choice-estimated and RT-estimated parameters. We define the 
squared residual on trial t of subject i  induced by parameters α and ω as 
                                                            
8  The correlation between theω̂ ’s estimated from choice data and theω̂ ’s estimated from 
response time data is 0.94. 
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where the variance of the logistic distribution is 1/ω  and where itd is a binary 
0-1 variable that equals 1 if and only if subject i chooses the delayed reward on 
trial t . Next, we calculate the fraction of responses predicted correctly by the 
two sets of parameters. We say that a response itd  is predicted correctly by the 
discounting parameters α and ω if the probability of that response is at least ½ 
under the choice model: 

Logit 1 / 2
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t
it t

t

Yd F X
ατ
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− − ≤⎜ ⎟+⎝ ⎠

. 

  For each study, we run the Monte Carlo procedure for M = 25, M = 50, 
and M = 75 and we compute the average of the mean squared residual and the 
fraction of responses predicted correctly across the 1000 trials. Table 4 shows 
the mean squared residual and the fraction of responses predicted correctly for 
the two sets of parameters estimated from choice and RT data, respectively. 
The discounting parameters estimated using RT data predict out of sample 
responses almost as well as the parameters estimated using choice data.  
 When we estimate the discounting parameters for each of the three 
reward categories, the results are qualitatively similar. The difference is that the 
discounting parameters estimated using RT data do not predict out of sample 
responses very well when the sample size is small (M = 25). This could be due 
to the addition of more parameters to the model and the inherently noisy nature 
of response time data. 
 
5. Conclusion 

We have used two different approaches to measure preferences. First 
we adopted the classical approach of inferring preferences from choices. 
Second we adopted the novel approach of inferring preferences using only 
response time data. Remarkably, these two approaches yielded nearly identical 
preference estimates for our aggregated subjects. We conclude that response 
time data sheds light on both our preferences and on the cognitive processes 
that execute those preferences. 

Future work should extend this analysis by asking related questions at 
the individual subject level. Can response time data also predict variation in 
preferences at the subject level? Are there sources of data, whether response 
times or other indices of information processing such as neural activity, that can 
be used to improve our ability to predict an individual’s choice behavior? Fully 
exploiting all of the behavioral and physiological information that we can 
measure during intertemporal choice should enable us to construct more 
accurate models that yield more novel and precise predictions. 



References 
 

Ainslie, George (1992). Picoeconomics. New York: Cambridge University 
Press. 

Chabris, Christopher F., David Laibson, Carrie L. Morris, Jonathon P. Schuldt, 
and Dmitry Taubinsky (2008). “Individual Laboratory-Measured Discount 
Rates Predict Field Behavior.” Forthcoming, Journal of Risk and 
Uncertainty. 

Cohen, Jonathan D., Brian MacWhinney, Matthew Flatt, and Jefferson Provost 
(1993). “PsyScope: A new graphic interactive environment for designing 
psychology experiments.” Behavioral Research Methods, Instruments, and 
Computers, 25, 257–271. 

de Quervain, Dominique J.-F., Urs Fishbacher, Valerie Teyer, Melanie 
Schellhammer, Ulrich Schnyder, Alfred Buck, and Ernst Fehr (2004). “The 
Neural Basis of Altruistic Punishment.” Science, 305, 1254–1258. 

de Wit, Harriet, Janine D. Flory, Ashley Acheson, Michael McCloskey, and 
Stephen B. Manuck (2007). “IQ and Nonplanning Impulsivity are 
Independently Associated with Delay Discounting in Middle-aged Adults.” 
Personality and Individual Differences, 42, 111–121. 

Edgeworth, Francis (1881). Mathematical Psychics: An Essay on the 
Application of Mathematics to the Moral Sciences. New York: Augustus 
M. Kelly. 

Gabaix, Xavier and David Laibson (2005). “Bounded Rationality and Directed 
Cognition.” Unpublished paper, Harvard University. 

Gabaix, Xavier, David Laibson, Guillermo Moloche, and Stephen Weinberg 
(2006). “Costly Information Acquisition: Experimental Analysis of a 
Boundedly Rational Model,” American Economic Review, 96, 1043–1068. 

Henmon, Vivian A.C. (1906) “The Time of Perception as a Measure of 
Differences in Sensations.” Archives of Philosophy, Psychology, and 
Scientific Methods, 8. 

Jaroni, Jodie L., Suzanne M. Wright, Caryn Lerman, and Leonard H. Epstein 
(2004). “Relationship between education and delay discounting in 
smokers.” Addictive Behaviors, 29, 1171–1175. 

Johnson, D.M. (1930). “Confidence and speed in the two-category judgment.” 
Archives of Psychology, 241, 1–52. 

Kirby, Kris N., and Nino N. Marakovic (1996). “Delay-discounting 
probabilistic rewards: Rates decrease as amounts increase.” Psychonomic 
Bulletin and Review, 3, 100–104.  

Kirby, Kris N., Nancy M. Petry, and Warren K. Bickel (1999). “Heroin addicts 
have higher discount rates for delayed rewards than non-drug-using 
controls.” Journal of Experimental Psychology: General, 128, 78–87. 



Loewenstein, George, and Drazen Prelec (1992). “Anomalies in Intertemporal 
Choice: Evidence and an Interpretation.” The Quarterly Journal of 
Economics, 107, 573–597. 

Mazur, James E. (1987). “An adjusting procedure for studying delayed 
reinforcement.” In M.L. Commons, J.E. Mazur, J.A. Nevin, & H. Rachlin 
(Eds.), Quantitative Analysis of Behavior: The Effects of Delay and 
Intervening Events on Reinforcement Value, Vol. 5 (pp. 55–73). Hillsdale, 
NJ: Erlbaum. 

Moyer, Robert S., and Thomas K. Landauer (1967). “Time Required for 
Judgements of Numerical Inequality.” Nature, 215, 1519–1520. 

Myerson, Joel, and Leonard Green (1995). “Discounting of Delayed Rewards: 
Models of Individual Choice.” Journal of the Experimental Analysis of 
Behavior, 64, 263–276. 

Pinel, Philippe, Stanislas Dehaene, Denis Riviere, and Denis Le Bihan (2001). 
“Modulation of Parietal Activation by Semantic Distance in a Number 
Comparison Task.” Neuroimage, 14, 1013–1026. 

Pinel, Philippe, Manuela Piazza, Denis Le Bihan, and Stanislas Dehaene 
(2004). “Distributed and Overlapping Cerebral Representations of Number, 
Size, and Luminance During Comparative Judgments.” Neuron, 41, 983–
993. 

Rachlin, Howard, Andres Raineri, and David Cross (1991). “Subjective 
Probability and Delay.” Journal of the Experimental Analysis of Behavior, 
55, 233–244. 

Rubinstein, Ariel (2007). “Instinctive and Cognitive Reasoning: A Study of 
Response Times.” The Economic Journal, 119, 1243–1259. 

Samuelson, Paul. (1938). “A Note on the Pure Theory of Consumers’ 
Behaviour.” Economica, 5, 61–71. 

Strotz, Robert H. (1957). “The Empirical Implications of a Utility Tree.” 
Econometrica, 25, 269–280. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1: Discount rates estimated using choice data 
  Weight Cognition Web  

0.0090 0.0060 0.0050 Alpha  
[0.0005] [0.0003] [0.0001] 
0.0248 0.0143 0.0104 Alpha small  

[0.0021] [0.0011] [0.0005] 
0.0129 0.0063 0.0056 Alpha medium  

[0.0010] [0.0005] [0.0002] 
0.0065 0.0045 0.0037 Alpha large  

[0.0006] [0.0003] [0.0001] 
Notes: Standard errors in brackets. 
 
Table 2: Estimated discounting parameters 

 Weight Cognition Web 
 Choice RT Choice RT Choice RT 
Alpha 0.0094 0.0112 0.0060 0.0043 0.0050 0.0051 
 [0.0005] [0.0013] [0.0003] [0.0003] [0.0001] [0.0003] 
Omega 0.0837 0.1545 0.1111 0.0845 0.1199 0.12457 

 [0.0028] [0.0339] [0.0039] [0.0158] [0.0024] [0.0121] 
Notes: Standard errors in brackets. For the RT model, observations are 
clustered by subject and robust standard errors are reported. 
 
 
Table 3: Estimated discounting parameters for each reward category 

 Weight Cognition Web 
 Choice RT Choice RT Choice RT 

0.0207 0.0116 0.0147 0.0089 0.0106 0.0065 Alpha 
small [0.0018] [0.0017] [0.0012] [0.0012] [0.0005] [0.0006] 

0.0102 0.0106 0.0061 0.0042 0.0057 0.0066 Alpha 
medium [0.0009] [0.0020] [0.0005] [0.0006] [0.0002] [0.0006] 

0.0061 0.0073 0.0043 0.0040 0.0035 0.0055 Alpha 
large [0.0006] [0.0013] [0.0004] [0.0005] [0.0002] [0.0005] 

0.1509 0.0945 0.1917 0.1345 0.1898 0.1144 Omega 
small [0.0079] [0.0368] [0.0106] [0.0262] [0.0059] [0.0176] 

0.0804 0.0435 0.1125 0.0773 0.1195 0.0547 Omega 
medium [0.0046] [0.0156] [0.0066] [0.0152] [0.0040] [0.0082] 

0.0699 0.0395 0.0892 0.0682 0.0979 0.0471 Omega 
large [0.0038] [0.0154] [0.0053] [0.0140] [0.0034] [0.0076] 
Notes: Standard errors in brackets. For the RT model, observations are 
clustered by subject and robust standard errors are reported. 



 
 
 
 
 
 
 
 
 
Table 4: Monte-Carlo results 

Mean SR Mean SR Correct Correct Estimation 
Sample Size 

Study  
(Choice) (RT)  (Choice) (RT)  
0.1344 0.1347 0.8338 0.8315 Weight 

[0.0002] [0.0003] [0.0004] [0.0005] 
0.1163 0.1242 0.8471 0.8352 Cognition  

[0.0002] [0.0002] [0.0005] [0.0003] 
0.1152 0.1161 0.8390 0.8400 

75 

Web  
[0.0000] [0.0001] [0.0002] [0.0002] 
0.1349 0.1378 0.8329 0.8263 Weight 

[0.0001] [0.0006] [0.0003] [0.0007] 
0.1168 0.1252 0.8475 0.8362 Cognition  

[0.0001] [0.0002] [0.0005] [0.0003] 
0.1155 0.1169 0.8404 0.8414 

50 

Web  
[0.0001] [0.0001] [0.0002] [0.0003] 
0.1361 0.1490 0.8282 0.8181 Weight 

[0.0001] [0.0018] [0.0004] [0.0010] 
0.1178 0.1292 0.8477 0.8385 Cognition  

[0.0001] [0.0005] [0.0005] [0.0004] 
0.1165 0.1204 0.8418 0.8427 

25 

Web  
[0.0001] [0.0003] [0.0003] [0.0003] 

Notes: Standard errors in brackets. 
 
 
 
 
 
 
 
 



 
 
 

Figure 1: Plots of 1RT b t− versus Γ for each of the three studies 

 


