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Data from college admissions tests can provide a valuable measure of student achievement, but the
non-representativeness of test-takers is an important concern. We examine selectivity bias in both
state-level and school-level SAT and ACT averages.  The degree of selectivity may differ importantly
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strong selectivity of test-takers in "ACT states," where most college-bound students take the ACT,
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advantage of a policy reform in Illinois that made taking the ACT a graduation requirement.  Estimates
based on this policy change indicate substantial positive selection into test participation both across
and within schools.  Despite this, school-level averages of observed scores are extremely highly correlated
with average latent scores, as across-school variation in sample selectivity is small relative to the underlying
signal.  As a result, in most contexts the use of observed school mean test scores in place of latent
means understates the degree of between-school variation in achievement but is otherwise unlikely
to lead to misleading conclusions.
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Selection Bias in College Admissions Test Scores 
 

I. Introduction 

Data from the two leading college admissions tests—the SAT and the ACT—can provide 

a valuable measure of student achievement for researchers studying the economics of education.  

Both the SAT and ACT have been administered in approximately the same forms for several 

decades, to students from nearly every high school.  This permits comparisons between and 

within states, in cross-section and over time.  This is an important advantage over alternative 

tests administered by individual states or school districts, which change frequently and differ 

substantially across space. 

A central concern about the use of ACT and SAT scores for research is the non-

representativeness of test-takers.  Both exams are taken primarily by college-bound students, 

who most likely perform better than would their non-college-bound peers.  As a result, 

comparisons of mean SAT or ACT scores between states or between schools may be misleading 

about mean latent scores – that is, the average that would be observed were scores available for 

all students.  Previous researchers have concluded that state-level mean SAT scores are 

substantially biased by selection, and have suggested selection-correction procedures for state-

level data (Dynarski, 1987; Dynarski and Gleason, 1993).  These rely on strong exclusion 

restrictions, and fail to make an important distinction between states where the SAT is the 

dominant exam and those where the ACT is dominant and only the strongest students (who hope 

to attend out-of-state colleges) take the SAT.  There is no evidence available about within-school 

selection, and therefore little guidance for researchers conducting analyses with test score 

microdata (see, e.g., Krueger and Whitmore, 2001; Card and Payne, 2002; Rothstein, 2006; 

Abraham and Clark, 2006; and Hanushek and Taylor, 1990).   
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We provide new evidence on the selectivity of test participation, with an eye toward the 

impact of selection on measured mean SAT and ACT scores.  We distinguish between selection 

within and between schools; with substantial sorting of students across schools, the degree of 

selection into test-taking may differ across these two margins.   

We begin by examining state-level test score averages, for which the relevant selectivity 

combines between- and within-school selection in the state.  Dynarski (1987) documents a strong 

negative across-state correlation between SAT participation rates and mean scores.  We show 

that this largely reflects the contrast between what we call “SAT states,” where most college-

bound seniors take the SAT rather than the ACT, and “ACT states,” where traditionally only 

students hoping to attend elite, private, out-of-state colleges took the SAT.  Among SAT states, 

there is relatively little evidence of selectivity of test participation.  However, in ACT states both 

ACT- and (especially) SAT-takers are quite highly selected.  To evaluate the exclusion 

restriction needed to identify selectivity from cross-sectional data, we also examine a “control 

function” estimator that uses state-level scores on the NAEP exam, administered to a random 

sample of students in each state, to absorb potential correlations between test participation rates 

and average latent achievement.  This yields very similar estimates, suggesting that the pure 

cross-sectional estimator is sufficient to identify the selectivity of test participation. 

We then turn to an analysis of selectivity within and between schools, within states.  An 

important concern is that school-level test participation rates may be correlated with the 

unobserved quality of the school or of its students.  Indeed, estimates based on observational 

variation in test participation yield the implausible result that test-takers are negatively selected 

within schools, while those based on changes in participation rates over time indicate little 

selectivity.   
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These results suggest that an exogenous source of variation in test participation is needed 

to identify the selectivity parameter of interest.  We take advantage of a policy reform in Illinois 

that substantially increased ACT participation rates but, plausibly, did not have important effects 

on underlying student achievement.  Beginning with the high school class of 2002, the ACT 

exam was required for graduation; the participation rate in 2002 was 99%, up from 71% in 2001. 

The impact of the new requirement varied substantially across schools, with larger increases in 

participation rates in schools that initially had low participation—so were far from compliance—

and smaller increases in schools that already participated at high rates.  Initial participation rates 

covaried strongly with the school racial composition, with a strong positive association between 

the school white share and the participation rate in 2000.  This association was substantially 

attenuated by 2004.  Racial composition is thus a strong predictor of the change in participation 

rates between 2000 and 2004.1  Under the plausible assumption that the relationship between a 

school’s racial composition and the latent achievement of its students did not change over this 

four-year period, the former is a valid instrument for the change in participation rates. Results 

from this analysis indicate strong positive selection into test participation, both within and across 

schools:  Schools with the highest mean latent achievement have the highest participation rates, 

and within schools those students who would score highest are most likely to write the exam.  

In our concluding section, we consider the implications of our estimates for analyses that 

do not have access to natural experimental variation in test participation.  Across-school 

variation in latent test scores is large relative both to within-school variation and to variation in 

test participation rates, and is highly correlated with the latter.  As a consequence, observed mean 

scores are nearly perfectly correlated with latent means, though less variable.  As a result, 

school-level analyses that fail to account for selectivity are likely to yield attenuated 
 

1 It is not, however, a strong predictor in states that did not undergo a policy change. 
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relationships between test scores and other variables, but if a straightforward correction for this 

attenuation is made there are unlikely to be large additional biases.  

 

II.  Data 

Our primary data come from microdata samples of SAT and ACT-takers, matched to the 

high schools that they attended.  Our SAT data set includes 100 percent of test-takers in 

California and Texas, 100 percent of black and Hispanic test-takers, and a 25 percent random 

sample of test-takers of other races.  The ACT data set includes 50 percent of non-white students 

and a 25 percent of white students who took the ACT exam.2  We focus on school- and state-

level mean scores on each exam.  Our school-level analyses use data on students who graduated 

from high school in 1996, 2000, and 2004; we focus on 1996 data for our state-level analysis. 

The SAT reports two subscores for each student, math and verbal, and a composite score.  

Each of the subscores is reported on a scale with mean 500 and standard deviation around 100 

among tested students (with a maximum score of 800 and a minimum of 200).  We focus on the 

sum of math and verbal scores, which has mean 1000 and standard deviation around 200.  The 

ACT reports several subscores, including one for a natural science subtest that has no SAT 

analogue.  We focus on the ACT “composite” score that averages over all subjects.  We convert 

this from its native scale (ranging from 1 to 36) to the more familiar SAT scale.3   

The SAT and ACT are competing exams, and market shares vary substantially across 

states.  In some states—the Northeast, some of the South, and the Pacific coast—most college-
 

2 In both data sets, minority students were over-sampled to permit more accurate 
estimation of race-specific models.  Due to errors in the processing of the data files, students who 
failed to report a race are missing from the SAT data (except in California and Texas, where they 
are included) but are sampled at a 100 percent rate in the ACT data.   

3 The concordance comes from Dorans (1999).  The correlation between the state-level 
ACT averages constructed from the student-level data and averages reported by the ACT 
Corporation is 0.98.  
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bound students take the SAT, while in others—the Midwest and Plains, and portions of the 

South—the ACT is more common.  Colleges that enroll primarily nearby students (public 

universities, for example) typically prefer the dominant test in their state, while national, elite 

universities tend to prefer the SAT but often accept either.  When a college will accept either test 

score, students can sometimes arbitrage between the two, taking both tests and reporting only the 

higher score.4  As a result, students who take the less-popular test in their state—particularly 

SAT-takers in ACT states—tend to be those who hope to attend the most selective schools. 

State-level test participation rates come from The Digest of Education Statistics (National 

Center for Education Statistics, various years) for the SAT and from the ACT Corporation 

(2003) for the ACT.  We define a state as an “ACT state” if its ACT participation rate exceeds 

40% and as an “SAT state” if the SAT participation rate exceeds this threshold.5  We also use 

state-level mean scores from the National Assessment of Educational Progress (NAEP; National 

Center for Education Statistics, 2006) mathematics exam administered to 8th graders in 1992, 

merged to SAT and ACT data from 1996—the same cohort of students four years later.  

Both the SAT and ACT micro data sets contain high school identifiers that can be linked 

to records from the Common Core of Data (CCD), an annual census of public schools.6  From 

the CCD, we extract the number of 12th graders at the school, the racial composition, and the 

fraction of students receiving free school lunches.  Because sampling rates are so high in both the 

SAT and ACT data, the simple ratio of the number of (weighted) observations at the school in 
 

4 The tests’ content differs somewhat, with more of a focus on knowledge rather than 
aptitude on the ACT, so a student may select into the test on which he has a comparative 
advantage. Scores can also be manipulated by re-taking the same exam, as most colleges 
consider only the highest score (Vigdor and Clotfelter, 2003).  Our data report the last recorded 
score on each exam.  We cannot link individual observations between the SAT and ACT data, so 
are unable to measure how much overlap there is between participation on the two exams. 

5 No state exceeds both thresholds, while two—Arizona and Nevada—exceed neither and 
are counted toward neither category.  See the online Appendix. 

6 Our school-level analysis excludes private schools. 
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our test-taker data sets to the number of 12th graders provides an accurate estimate of the 

participation rate at all but the smallest schools.7  All of our school-level analyses exclude 

schools with participation rates below 0.02. 

Table 1 presents descriptive statistics for the school-level data sets.  Average SAT scores 

are much higher in ACT states than in SAT states.  The same is true, to a much lesser degree, for 

ACT scores in SAT states.  Within SAT states, however, schools with high participation rates 

tend to have higher scores than those with low participation rates, on both the SAT and the ACT.  

Similarly, within ACT states, schools with high participation rates tend to have higher scores 

than those with low participation rates on both exams.  

 

III.  A Model of Self-Selection and Average Test Scores  

College entrance exams are not compulsory, and students who take them incur both 

financial and time costs – perhaps $45 for test registration, plus several hours on a Saturday 

morning to take the exam.  For students who do not plan to attend college or who plan to apply 

only to non-selective colleges that do not require entrance exam scores, there are few benefits to 

offset these costs.  By contrast, students who hope to attend a selective college will likely find 

that the benefits exceed the costs. 

Let μij be the net benefit of taking the exam for student i from group j (where a group 

might be a school or a state).  Let θj be the mean of this in group j, so that uij = μij – θj has mean 
 

7 Students who take exams prior to 12th grade are coded by the year they attend 12th grade 
– a student who takes the SAT or ACT as an 11th grader in 2003 is counted toward the 2004 
participation measure. The ratio of test takers to 12th grade enrollment overstates the cohort 
participation rate in schools with large dropout rates.  To address this, our denominator for the 
participation rate is the maximum of the number of 12th graders and the average number of 
students per grade in grades 9 through 12.  The latter average excludes grades with very low 
enrollment, defined as those with enrollment less than 10% of total enrollment in grades 9-12 at 
the school.  In the schools where still we count more test-takers than students, we set the 
participation rate to 1 if the difference is less than 10% and drop the school otherwise. 



zero in each group.  θj will tend to be higher in schools where more students are college bound; 

within schools, uij will be higher among the college bound than among students not planning to 

attend college.  Both θj and uij may vary across tests as well, and θj will generally be higher for 

the test preferred by local public universities.  Students for whom the net benefits of taking the 

exam are positive (μij > 0, or uij > -θj) will take the exam.   

Let αj be the average achievement of students in group j, and let tij
* = αj + εij (where εij 

has mean zero in each group) be the latent achievement of student i.  For many analytical 

purposes, it would be useful to observe αj, and this is the parameter of interest for our 

investigation of selectivity of test participation.  Unfortunately, when test participation is non-

random, this is not observed.  Instead, the average of observed scores is  

(1) t j = αj + E[εij | μij > 0] = αj + E[εij | uij > -θj]. 

The final term here is the mean of εij among students for whom the net benefit of test 

participation is positive.  Because benefits and latent achievement are unlikely to be independent 

– students who hope to attend college probably have higher achievement levels than those who 

do not – this will in general be non-zero.  As a consequence, analyses that take t j as a measure of 

average achievement in group j may be uninformative about the determinants and consequences 

of true average achievement, αj. 

If εij and uij are assumed to be bivariate normal with correlation ρ within each group j, 
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then the group-level participation rate, pj, indicates the mean test taking propensity in the group:  

pj = Pr(μij > 0) = Pr(uij > -θj) = Φ(θj), so θj = Φ-1(pj).   This gives (1) a convenient form: 

(3) t j = αj + ρ * σ * λ(pj), 
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where λ(p) ≡ φ(Φ-1(p)) / p is the Inverse Mills Ratio (hereafter, IMR) and φ() and Φ() are the 

standard normal PDF and CDF, respectively.8  Thus, if β = ρσ were known, the true mean 

achievement in group j could be recovered:  αj = t j - β * λ(pj). The challenge is in obtaining a 

consistent estimate of β.9   

 

IV. Alternative Empirical Strategies for Identifying the Selectivity of Test Participation 

We examine several strategies for identifying within-group selectivity.  These differ in 

their imposed assumptions about the between-school relationship between latent performance 

and test participation.  

A.  Cross-sectional analysis 

We begin with the case where only a single cross section of test scores is observed.  The 

only available strategy for estimating β is via a regression of group average observed scores on 

the group-level IMR: 

(4) t j = α + λ(pj) β + ((αj – α) + e j). 

This yields a consistent estimate of β if and only if αj is uncorrelated with λ(pj). 10   

                                                 

8 This is a well-known framework, introduced by Gronau (1974).  See also Heckman 
(1979).  Normality of student achievement within schools is a plausible assumption.  Normality 
of u is not restrictive:  If F(u) is the true CDF of net benefits of test-taking within the school, one 
can always convert u to a normal distribution with v=Φ-1(F(u)).  In this framework, ρ is defined 
as corr(ε, v) rather than corr(ε, u).  The assumption that ε and u are bivariate normal is somewhat 
more restrictive, but also plausible.  We present diagnostic analyses in the Appendix which 
suggest that the distributional assumption is approximately correct. 

9 Given β, the two components ρ and σ can be readily distinguished from the within-
group variance of observed scores, which can be shown to equal σ2 - β2δ(pj) where 
δ(p)=λ(p)*[λ(p) + Φ-1(p)].  Inference on ρ and σ is somewhat complex.  We focus on inference 
for β; since σ > 0, β = 0 if and only if ρ = 0. 

10 Sampling error in pj is negligible in our data, and the estimates of the sampling error of 
β reported below neglect it.  When we take account of it using the approach proposed by Murphy 
and Topel (1985), the estimated variance of the coefficients of (4) is essentially unchanged. 
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This strategy assumes away between-school selectivity:  While participation rates may 

vary across groups, there a group’s participation rate (or a monotonic function of it) must be 

uncorrelated with its average latent achievement.  This is not particularly plausible.  There are 

likely unobserved factors that vary across groups and influence both the test participation rate 

and average performance.  For example, suppose that groups are schools, and that one school 

enrolls academically-strong, college-bound students while another enrolls weaker students who 

are less likely to want to attend college.  The former school will have higher αj and θj (so lower 

λ(pj)) than the latter, producing a downward bias in β and leading to an underestimate of the 

degree of within-school selectivity of test participation. 

B.  Control function estimator 

If a proxy for latent mean performance is available, bias deriving from non-independence 

of group-level participation rates and latent achievement can be reduced.  We can write: 

(5) t j = α + λ(pj) β + Xj κ + ((αj – Xj κ ) + e j), 

where α + Xjκ is the best linear predictor of αj given proxy Xj.  The bias in a regression of t j on 

λ(pj) and Xj depends on the variance of (αj – Xjκ) and on its correlation with λ(pj).  The better the 

proxy, the smaller will be the remaining variance in achievement, and therefore the bias.  

C.  First-differenced estimates 

School-level proxies for latent achievement are rarely available, and other methods are 

necessary.  One option is to take advantage of multiple observations on the selection-test score 

relationship at the same school from different years.  The difference between the expressions for 

school mean scores given by (4) in t=0 and t=1 is 

(6) t j1 – t j0 = (λ(pj1) – λ(pj0)) β + ((αj1 – αj0) + ( e j1 – e j0)). 

This first-differenced regression estimates β without bias if  

(7) corr(αj1 – αj0, λ(pj1) – λ(pj0)) = 0. 
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That is, while there may be a cross-sectional correlation between a school’s IMR and its latent 

average score, there can be no correlation between the change in a school’s IMR and the change 

in its latent mean score.11  This assumption is somewhat more plausible than the corresponding 

assumption about levels, but absent an exogenous source of variation in IMRs it is still 

problematic:  School quality (and the quality of a school’s students) presumably evolves over 

time, producing shifts in both αjt and λ(pjt). 

D.  First-differenced estimates, with instruments 

Let Zj be a variable that predicts the change in IMRs.  If Zj is uncorrelated with the 

change in latent performance, it can serve as an instrument in (6), allowing for consistent 

estimation of β.  Below, we form such an instrument by taking advantage of a policy change in 

Illinois that mandated that all high school graduates starting with the class of 2002 take the ACT.  

Because demographic characteristics of schools were correlated with pre-implementation 

participation rates, the “bite” of these policies varied with school demographics.  In particular, 

schools with higher minority shares had lower pre-implementation participation rates and larger 

increases in participation (and larger reductions in IMRs) surrounding implementation of the 

policy.12  Of course, minority share is correlated with mean latent test scores, but it is plausible 

that the base-year minority share is uncorrelated with the change in mean latent scores 

surrounding the implementation of the policies.  If so, this base-year minority share forms a valid 

instrument for the change in IMRs surrounding the policy implementation. 

Of course, the interpretation of the IMR coefficient in a model for average observed 

scores as a measure of selectivity arises from our assumption that latent achievement and the 

propensity to write the exam have a bivariate normal distribution within schools (or states).  If 
                                                 

11 Note that this approach requires that β not vary with t. 
12 The instrument does not predict changes in test taking rates in states that did not have a 

policy change.  See Appendix Table 1. 



this assumption is incorrect, even with fully exogenous variation in λ(θj) the coefficient that we 

obtain will not have a useful interpretation and will not permit a consistent estimate of αj.  In the 

appendix, we present several informal diagnostics meant to identify important violations of 

normality.  We find no indication that the bivariate normality assumption is importantly violated 

– polynomials in pj are not significant predictors of t j conditional on λ(θj), and the distribution of 

observed scores is quite similar to that implied by normality of pre-selection scores.   

 

V.  State-Level Analysis 

We begin by examining the selectivity of test participation within states.  Figure 1A 

displays the scatterplot of state-level SAT participation rates and mean SAT scores for the 1996 

cohort, distinguishing between SAT and ACT states. Consistent with previous analyses by 

Dynarksi (1987) and Dynarski and Gleason (1993), there is a strong inverse relationship between 

average scores and participation rates.  This inverse relationship is driven to a surprising degree, 

however, by the inclusion of ACT states; within the SAT states the participation-score 

correlation is much smaller.  The graph is thus suggestive of strong positive selection into SAT-

taking in the ACT states, as higher participation rates are associated with lower scores, and with 

weaker selection in SAT states.  This is consistent with the idea that in ACT states only high-

performing students who hope to attend elite out-of-state colleges take the SAT, while in SAT 

states all or most college-bound students take the exam.  Figure 1B displays the same scatterplot 

for the ACT (concorded to the SAT scale).  The overall negative correlation between test taking 

rates and average scores shown in the SAT data is not as apparent in the ACT data.   

Of course, it is possible that latent ability is correlated with test taking rates, which would 

affect the observed correlations between test-taking rates and observed scores.  For instance, if 

states with better schools manage to persuade more of their students to attend college, the 
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correlation between participation and observed scores is inflated, potentially masking a negative 

causal effect of participation on mean scores arising from positive within-state selection.   

To examine this, we turn to state-level NAEP scores, which are from tests taken by 

random samples of students in each state and are therefore not subject to the selection bias that 

may be reflected in SAT and ACT averages.  Table 2 presents regressions relating state-level 

score averages to inverse Mills ratios computed from state-level participation rates.  The top 

panel shows results for SAT states, with models for SAT scores in columns 1-3 and models for 

ACT scores in columns 4-6, and the bottom panel shows parallel results for ACT states. 

The estimates in columns 1 and 4 are consistent with the results shown in Figures 1A and 

1B:  Selection into participation is strongly positive for the SAT in ACT states, and nearly as 

strong (but much less precisely estimated) for ACT scores in ACT states.  Selection is weaker in 

SAT states, for both exams, and indistinguishable from zero for the ACT.  Columns 2 and 5 limit 

the sample to the set of states for which NAEP data on the math performance of random samples 

of 1992 8th graders – the cohort that took entrance exams in 1996 – are available.  This has little 

effect, save that the insignificant SAT participation coefficient in SAT states changes sign.   

Columns 3 and 6 attempt to absorb the potential correlation between state-level 

participation rates and mean achievement by controlling for the average performance of the 

cohort in the state on the 8th grade NAEP math exam in 1992.  The inclusion of this control does 

not dramatically change the point estimates (excepting again SAT scores in SAT states, where 

the IMR coefficient returns to its original value, still insignificant), though it does dramatically 

increase the regression goodness-of-fit and the added precision makes the IMR coefficient for 

ACT scores in ACT states significant.  There is clear evidence of positive selection into taking 

both exams in the ACT states, where the propensity to take each exam is correlated around 0.5 
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with a student’s potential score.  Any selection is much weaker in SAT states, where the 

correlation is estimated around 0.1-0.2 but zero is well within the confidence intervals. 

 

VI.  Observational Analyses of Within-School Selection 

For many purposes, it is useful to distinguish between across-school variation in test 

participation rates and within-school selection, each of which can produce selectivity bias in state 

average scores.13  In this section, we present observational analyses that distinguish these two 

sources of selection, first using cross-sectional analyses of the relationship between school-level 

test taking rates and average scores, then examining changes over time.  Each yields implausible 

estimates of the key within-school selectivity parameter, ρ, suggesting that the identifying 

restrictions are violated.  In the next section, we exploit the Illinois policy reform to identify 

within-school selectivity under more plausible assumptions.   

A.  Cross-sectional estimates 

Columns 1-4 of Table 3 present cross-sectional estimates of selectivity in 2000, as in 

equation (4).  The top panel shows results for SAT states, with two specifications estimated on 

SAT scores in columns 1-2 and the same specifications repeated for ACT scores in columns 3-4, 

while the bottom panel repeats the analysis for ACT states.  The first specification in each pair 

controls only for state fixed effects, while the second adds controls for the school racial 

composition and for the fraction of students at the school who are eligible for free school 

lunches.14  The inverse Mills ratio coefficients are uniformly negative, though all are reduced 

                                                 
13 If the mean latent achievement is independent of the participation rate at the state level, 

the IMR coefficient from a state-level regression estimates (σα2 + σε2)1/2 corr(α + ε, θ + u) = (σθ2 
+ σu

2)-1/2(σεσuρ + σασθcorr(α, θ)). 
14 Results from models that include county fixed-effects are quite similar. 



 

14

notably by the addition of the demographic controls.  The IMR coefficient for ACT scores in 

SAT states is insignificant and near zero in this specification. 

If school participation rates are independent of mean latent scores, the negative 

relationship between IMRs and average scores indicates negative selection into test participation 

within schools—that is, that the weakest students in each school are the most likely to take the 

college entrance exams.  The ρ estimates are strongly negative for the dominant exam in a state 

and smaller for the secondary exam.  Estimates of the selectivity of SAT-writing in SAT states 

and of ACT-writing in ACT states are nearly identical.  As it is unlikely that test writers are 

actually negatively selected within schools, we conclude that the assumptions of the model are 

violated by strong across-school correlations between test-taking rates and mean achievement. 

B.  Time-differenced estimates 

One strategy for removing bias from endogeneity of the school-level participation rate is 

to focus only on changes over time in school-level participation rates and scores.  This strategy 

removes any fixed components of school quality, and identifies the selectivity parameters if 

changes in test participation are unrelated to changes in a school’s latent score.   

Columns 5-8 of Table 3 present estimates of the first-differenced regression, (6).  The 

coefficients on the change in inverse Mills ratio (and estimated ρ’s) are nearly all positive, but 

quite small.  This is particularly true in SAT states, where the estimated ρs are all less than 0.05.  

βs and ρs are somewhat larger in ACT states, but still indicate only minimal selectivity.   

The first-differenced specifications do not impose assumptions about the cross-sectional 

correlation between school mean latent scores (αjt) and propensity to write the exam (θjt), 

assuming only that the projection of αjt on λ(pjt) is the same in the two years.  It is thus possible 

to estimate the between-school selectivity of test participation, which we measure as corr(αjt, θjt).  

This is reported in the last row of each panel.  As our restriction that β be constant across years 
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prevents this correlation from varying substantially over time, we report only the average 

correlation across 1994 and 2000.  This is substantial for the dominant test in each group of 

states – indicating that better schools have more test writers – but small for the secondary test. 

These first-differenced results, while more plausible than those obtained from the purely 

cross-sectional analysis, cannot be presumed to be consistent.  There is no particular reason to 

think that school quality is constant over this period, nor that changes in quality are for some 

reason unreflected in participation rates.  Changes in quality (or in school composition) would 

most likely produce a positive correlation between the change in θ and the change in α, biasing 

the selectivity estimates downward.   

 

VII.  The Illinois Policy Reform 

To isolate participation rate changes that are exogenous to changes in school quality, we 

take advantage of a policy change in Illinois, an ACT state.  Beginning in Spring 2001, all 

juniors in Illinois public high schools took the “Prairie State Assessment Examination” (PSAE), 

which included the ACT exam as one component.15  The ACT was administered under the same 

conditions as are used for ordinary ACT administrations, and scores derived from the ACT 

component of the PSAE are counted as valid for most admissions purposes. 

The new requirement led to large increases in test participation in Illinois.  Changes in 

average observed scores accompanying this change in participation rates can identify the 

selectivity of test participation before the policy change.  This requires some care, as changes in 

IMRs cannot be treated as entirely exogenous to changes in school quality.  First, initial test-

taking rates varied substantially across schools.  As the new requirement had more “bite” in 
 

15 Students are not required to “pass” the PSAE, and the introduction of the test was not 
related to any other statewide changes in school policies.  Colorado introduced a similar program 
around the same time, but we focus on Illinois because the sample size is so much larger there. 
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schools with lower initial participation rates, one might expect that schools with lower quality 

would have tended to see larger participation increases as they complied with the policy.  Any 

mean reversion in school quality would bias a first-differenced analysis that treated the change in 

IMRs as exogenous.  Second, compliance with the policy was incomplete.  The average 

participation rate, as calculated in our data, rose from 57% in 2000 to 89% in 2004.16  If schools 

that complied fully differed in their quality from those that did not, this would again be a source 

of potential endogeneity of the change in test participation rates. 

Fortunately for our analysis, there are clear patterns in the impact of the policy that are 

plausibly unrelated to changes in school quality.  Figure 2 shows the scatterplot of participation 

rates against the school fraction white for Illinois high schools in 2000, before the Prairie State 

Assessment Exam was introduced, and in 2004.  We distinguish between the Chicago Public 

Schools and those in other Illinois districts, as the two groups differed substantially on both 

dimensions in 2000.17  In the left panel, which uses 2000 data, there is a strong relationship 

between test participation rates and school racial composition, with much higher participation 

rates in schools with more white students.  This pattern is still present, but much weaker, in 

2004.18  Thus, the increase in participation between 2000 and 2004 was most dramatic for the 

schools with the lowest white shares.   

 
16 The ACT Corporation reports that 99% of seniors in 2004 took the exam.  The 

difference likely has to do with the denominator.  We calculate the denominator from the 
Common Core of Data as the greater of the number of 12th graders and the average number of 
students per grade.  If dropout rates are high, the average number of students per grade may 
over-state the number of potential test takers and lower the test taking rate. 

17 Chicago also implemented a variety of reforms in the years studied that might affect 
scores, test participation, or the distribution of students across schools.  See Jacob (2005).  All of 
our analyses of Illinois data allow for unrestricted differences between Chicago schools and the 
rest of the state in test score and participation changes between 2000 and 2004. 

18 The basic shape of the data is invariant to the use of the school’s 2000 racial 
composition on the horizontal axis in both years. 
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We exploit this feature of the data to generate variation in the “bite” of the Prairie State 

requirement that is plausibly exogenous to changes in school’s latent test scores.  Specifically, 

we use the school fraction black and fraction Hispanic in 2000 as instruments for the change in 

the school-level IMR between 2000 and 2004.19  These are valid instruments if the relationship 

between school racial composition and mean latent score did not change over this time period.20  

Table 4 presents several analyses of school ACT averages in Illinois.  The first column 

reports a cross-sectional model using 2000 data.  This is quite similar to the analogous model in 

Table 3, and like that indicates strong negative selection into test participation.  The second 

column replicates the first-differenced specification from Table 3 using changes between 1996 

and 2000 and just the Illinois data.  Like the earlier first-differenced models, this indicates 

approximately zero within-school selectivity and strong positive between-school selectivity. 

The remaining columns of Table 4 report first-differenced estimates from data spanning 

the Illinois policy change, relating changes in school mean test scores between 2000 and 2004 to 

changes in inverse Mills ratios.  Column 3 presents OLS estimates.  These combine the 

potentially endogenous variation that identifies the estimates in column 2 with exogenous 
 

19 Appendix Table 1 presents first-stage regressions of the change in school IMRs on the 
base-year school racial composition.  These have the sign implied by Figure 2.  The table also 
presents a first stage equation estimated using all ACT states except Illinois and Colorado (which 
implemented a similar policy change, but where we have been unable to identify a plausibly 
exogenous source of variation in the policy’s bite).  In this sample, the year-2000 racial 
composition of the school is not predictive of the 2000-2004 change in the school’s IMR.   

20 Data from the NAEP indicate that the black-white mathematics test score gap among 
Illinois 8th graders grew by 2 points (on a scale with standard deviation 36) between 1990 and 
2005, while the Hispanic-white gap fell by 8 points over the same period.  If this trend holds 
equally across and within schools and if there are no spillover effects on white students in high-
minority-share schools, we will tend to overstate the within-school selection into participation 
slightly.  A back-of-the-envelope calculation indicates that this might account for as much as one 
fifth of the ρ estimates that we report below.  A second threat to the instruments’ validity is that 
racial composition in 2000 may be correlated with the change in racial composition over the next 
four years, which could be reflected in (or could itself reflect) changes in a school’s mean latent 
score.  Specifications reported in Appendix Table 1 control directly for the change in school 
racial composition, with little effect on the selectivity parameter of interest. 
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variation deriving from the policy change.  The estimates differ dramatically from those in 

Column 2, indicating a within-school correlation between participation and scores of 0.48.  

Column 4 presents the IV specification.  This indicates that falling IMRs (rising participation 

rates) produce large reductions in observed average test scores, corresponding to strong positive 

selectivity (ρ = 0.75) of students into test-taking within schools. 

We allow the across-school correlation between participation and latent scores – the 

between-school selectivity of test participation – to vary between 2000 and 2004.  Estimates of 

between-school selectivity are shown at the bottom of Table 4.  Those that take advantage of the 

policy change indicate year-2000 correlations that are notably larger than those from the 1996-

2000 analysis.  Correlations in 2004 are smaller than in 2000, consistent with the idea that the 

policy served to reduce the “signal” variation in test participation that might correlate with the 

quality of the school or its students. 

 

VIII. Implications for Analyses of Unadjusted Means 

The final component of our analysis is to draw out the implications of our results for 

analyses that, because they lack a source of exogenous variation in participation like that 

produced by the Illinois policy change, are unable to correct for selectivity of test participation.  

We cannot estimate the precise bias that this produces in analyses of observed averages without 

producing the exact specification that a researcher might attempt to estimate, but we can report 

some relevant correlations.  

The key parameters for school-level analyses are the correlation between the observed 

mean score at a school and the underlying latent mean, α, and the relative variances of the two 

measures.  To the extent that the correlation between the measures is large, schools with high 

observed scores will tend also to have high latent scores, and analyses that treat the observed 



mean score as a measure of the school’s quality will not be unduly affected by selection bias.  

That is, coefficient signs will likely be correct; if the variances of the two measures differ, the 

magnitude of estimated effects will be affected, in predictable ways.  

To see this, consider a regression that would be correctly specified if the dependent 

variable was true mean latent scores α, but suppose that the observed mean score t  is used 

instead.  Let R be the coefficient from a projection of jt  onto αj.  Then if the true model is: 

(8) αj = Xj*γ + νj,  

we can write (neglecting intercepts) 

(9) jt  = αjR + ( jt  – αjR) = Xj* γ *R + νj + ( jt  – αjR).  

There are two biases introduced by using jt  in place of αj as the dependent variable in 

(9).  First, the X coefficient, γ, is biased by a factor R due to the different scales of the two 

measures.  Second, the regression coefficient will be further biased if ( jt  – αjR) is correlated 

with X.  This correlation will vary with the choice of variables to include in X, of course.  The 

resulting bias, however, depends on this correlation as well as on the variance of ( jt  – αjR); the 

bias will necessarily be small if Var( jt  – αjR) = Var( jt )*(1-(corr( jt , αj))2) is small. 

Table 5 presents various relevant parameters that are implied by the IV estimates in 

Table 4.  The first row repeats the within-school correlation, ρ.  The next several rows show 

estimates of the across-school standard deviations of average observed scores, mean latent 

scores, the school-level participation parameter θ, and the selection term in models for observed 

average scores, ρ*σ*λ(p).  All are computed from the same Illinois data used in Table 4.  In both 

2000 and 2004, the across-school standard deviation of mean observed scores is about 112 SAT 

points.  This is notably smaller than the standard deviation of latent scores, which is around 150 

in 2000 and 130 in 2004; comparing this to the within-school standard deviation (σ) of around 
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185 indicates that about 35% of the variance of latent test scores is between schools.  By 

comparison, the standard deviation of θ is around 0.6.  As the within-school variation in test 

participation is normalized to have variance one, this indicates that only about one quarter of the 

variation in test-taking propensity is between schools.  

The next row displays the overall selectivity of test participation, combining the across- 

and within-school components.  The estimate from the pre-reform period is 0.76, suggesting that 

test takers are strongly positively selected on the whole.  This is the relevant parameter for 

correcting state mean scores, supposing that the relative importance of within- and between-

school components of selectivity do not vary across states.  It is somewhat larger than the 

estimate obtained for all ACT states from our control function approach in Table 2. 

The next rows of Table 5 show the correlation between observed and latent scores, first 

unconditionally and then conditional on the school racial composition.  Unconditional 

correlations are 0.97 and 0.98 in the two years.  Conditional correlations are somewhat lower, 

but remain well above 0.9.  With such high correlations, (1-(corr( jtt , αj))2 is quite small, 

implying that the omitted variable introduced by the use of observed means rather than latent 

means, ( jtt  – αjtR), has a standard deviation of only about 20 points.  Bias from the omission of 

this variable is likely to be negligible. 

The final row of the table shows R, the coefficient of a projection of latent means onto 

observed means.  This is 0.74 in 2000 and 0.86 in 2004.  Thus, coefficients in regressions like (9) 

will be attenuated relative to the true β by 14-26 percent, with the larger number more relevant in 

situations where test taking is optional.   

Of course, all of these estimates derive from models estimated from data on Illinois ACT-

takers.  They are dependent on the validity of the exclusion restrictions underlying our IV 

estimates, and even if these are valid, they may not generalize to other states or to SAT scores.   
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On the other hand, several patterns in the data suggests that the basic conclusion—that 

selection bias is unlikely to be an important determinant of the qualitative results of analyses that 

take school-mean test scores as the dependent variable—is likely to be quite robust.  Because 

test-taking rates are less variable than observed scores and because the two are so highly 

correlated, observed test scores are unlikely to be seriously misleading about rankings of states 

or schools even if selection into test participation is much more extreme than our estimates 

indicate.  As a final exercise, we computed latent scores under various assumptions about the 

selection coefficient, ρ.  Table 6 reports summaries of the association between these latent scores 

and observed school means in 2000, limiting the sample to schools with at least 50 students.  The 

first column reports the correlation between αj and jt .  The second column reports the 

coefficient of a regression of the latter on the former.  The third and fourth columns repeat these 

measures, after first residualizing both α and jt  against the school fraction white.   

Regardless of the value of ρ assumed, the correlation between observed and latent school 

means remains quite high, 0.95 when ρ = 1 and higher for smaller values of ρ.  Even after 

residualizing scores against the school racial composition – likely an important control variable 

in many analyses – these correlations are never lower than 0.88.  Regression coefficients are 

slightly more sensitive, reflecting the dependence of the variance of α on the ρ parameter, but 

even these are quite stable across a wide range of ρ values around the estimated value of 0.75. 

 

21

We also explore specifications that vary the comparison group.  While the first panel of 

Table 6 uses all Illinois schools, the second panel limits computation of the statistics to the 

relatively homogenous subset of schools that serve the Chicago suburbs, and the third panel 

broadens the sample to all schools in ACT states (demeaning αj and jt  separately for each state).  

While correlations are somewhat reduced in these samples, all remain extremely high:  When we 

use our estimated ρ, they range from 0.88 to 0.95; even when we assume that ρ = 1 the range is 
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0.80 – 0.92.  With such high correlations, there is little room for substantive bias even when test 

scores are not corrected for selection into test participation. 

 

IX.  Conclusion 

Researchers often use college admissions test scores as measures of student achievement.  

But since only a select group of students take these tests, analyses that use observed score 

averages as a proxy for the mean latent test score may be biased.  Correcting the selection bias 

has been difficult: important unobserved variables likely impact both the propensity to take the 

test and the latent test score, and as a result standard selection corrections perform poorly.   

In this paper, we examine selectivity biases in both state-level and school-level SAT and 

ACT scores.  At the state level, selection appears to introduce important biases only in ACT 

states; in SAT states the correlation between the propensity to take the test and the latent score is 

small and the resulting selection bias is also small.  

Our school-level analysis uses a policy change in Illinois requiring all high school juniors 

to take the ACT as a source of plausibly exogenous variation in changes in participation rates 

over time.  We find that test takers are strongly positively selected both across and within 

schools:  Participation rates are higher at higher-performing schools, and within schools higher-

achieving students are more likely to take the test.  The across-school variation in latest test 

scores is large relative both to within-school variation in latent scores and to across-school 

variation in participation rates.  As a result, observed mean scores are highly correlated with 

latent means, and selectivity bias serves to attenuate variations in school mean scores but is 

unlikely to introduce further bias.  Thus, despite the strong selectivity of test participation, 

simple analyses using observed school-level test scores without controls for selectivity are 

unlikely to produce misleading results.  
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  It remains for further analysis to investigate the validity of our Illinois-based estimates 

for data from other states.  Based on the patterns seen here, our expectation is that the results will 

generalize reasonably well to other ACT states.  If so, researchers would be justified in using 

unadjusted ACT averages as measures of student achievement, correcting for attenuation but not 

further adjusting for selection.  
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Figure 1A.  Average 1996 SAT Score versus SAT Participation Rate 
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Figure 1B. Average 1996 ACT Score versus ACT Participation Rate 
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Figure 2.  ACT Participation vs. School Racial Composition in Illinois 
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Table 1.  Summary statistics

Above 
average 

participation

Below 
average 

participation

Above 
average 

participation

Below 
average 

participation

Mean S.D. Mean Mean Mean S.D. Mean Mean
(1) (2) (3) (4) (5) (6) (7) (8)

SAT
Mean score 978 100 1037 958 1104 145 1117 1096
School size 285 201 304 279 239 153 270 218
No. of test-takers 130 109 209 104 35 55 65 15
Participation rate 46% 21% 71% 38% 13% 14% 22% 7%
Fr. white 68% 31% 78% 64% 83% 23% 82% 84%
# of schools 5,167 1,291 3,876 1,882 756 1,126

ACT
Mean score (SAT scale) 970 122 983 962 963 89 999 949
School size 296 202 254 323 174 144 179 173
No. of test-takers 42 49 56 32 99 92 132 86
Participation rate 16% 15% 26% 9% 57% 16% 75% 50%
Fr. white 68% 30% 74% 64% 82% 26% 90% 78%
# of schools 4,143 1,654 2,489 4,050 1,147 2,903

Notes:  All data pertain to the 2000 cohort.  Sample includes only public schools with participation rates (on the SAT in the first 
panel or the ACT in the second panel) above 2%.  All statistics are computed from unweighted school-level data.  Samples in 
columns 3, 4, 7, and 8 are schools with participation rates on the relevant exam above and below the state-level participation rate.  
School size is the size of a single grade cohort at the school; see text for details.

All schools All schools
SAT States ACT states
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Table 2.  Cross-sectional estimates of state-level selectivity into test-taking, 1996

(1) (2) (3) (4) (5) (6)
Panel A:  SAT States

45.0 -40.7 38.7 28.4 30.5 21.2
(36.2) (26.7) (33.8) (10.9) (11.9) (18.4)

NAEP 8th grade math scores, 1992 2.0 1.0
(0.8) (1.4)

Exclude states without NAEP data? n y y n y y
N (states) 23 19 19 23 19 19
R2 0.06 0.05 0.39 0.11 0.19 0.21
Underlying parameters
  ρ 0.22 -0.20 0.19 0.15 0.16 0.11
  σ 200.4 199.9 199.6 195.0 195.3 194.3

Panel B:  ACT States
110.4 122.0 121.2 77.4 77.5 89.9
(21.6) (26.0) (16.4) (85.2) (96.5) (25.7)

NAEP 8th grade math scores, 1992 1.7 3.3
(0.4) (0.2)

Exclude states without NAEP data? n y y n y y
N (states) 25 21 21 25 21 21
R2 0.52 0.56 0.78 0.04 0.03 0.92
Underlying parameters
  ρ 0.52 0.56 0.55 0.40 0.40 0.46
  σ 213.8 219.0 218.6 193.4 193.4 196.3

Note:  Average ACT scores are computed from ACT micro-data, concorded to the SAT scale 
using the concordance developed by Dorans et al. 1999.

SAT scores vs. SAT 
participation

ACT scores vs. ACT 
participation

Inverse Mills Ratio in test-taking rate 
in state

Inverse Mills Ratio in test-taking rate 
in state
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Table 3.  Cross-sectional and first-differenced estimates of within-school selectivity into test-taking

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A:  SAT states

-170.0 -68.5 -45.0 -2.7
(5.1) (4.7) (5.5) (4.2)

4.6 9.3 -0.4 1.2
(5.1) (4.8) (6.9) (6.9)

Controls
State FEs y y y y y y y y
Racial composition, fr. free lunch n y n y n y n y

N (schools) 5,167 5,167 4,143 4,143 4,076 4,076 3,122 3,122
R2 0.33 0.65 0.12 0.47 0.01 0.04 0.02 0.03
Underlying parameters
ρ -0.75 -0.36 -0.25 -0.02 0.03 0.05 0.00 0.01
σ 226.6 189.3 177.4 172.7 181.8 182.0 174.2 174.2
corr(α, θ) 0 0 0 0 0.49 0.50 0.08 0.08

Panel B:  ACT states
-25.0 -19.5 -158.6 -63.8
(6.3) (5.8) (6.4) (5.3)

18.2 20.0 19.4 22.3
(14.0) (14.1) (6.8) (6.8)

Controls
State FEs y y y y y y y y
Racial composition, fr. free lunch n y n y n y n y

N (schools) 1,882 1,882 4,050 4,050 1,132 1,132 3,286 3,286
R2 0.14 0.34 0.44 0.66 0.01 0.02 0.01 0.03
Underlying parameters
ρ -0.15 -0.11 -0.75 -0.36 0.11 0.12 0.11 0.13
σ 171.2 170.6 211.1 179.6 172.0 172.1 173.0 173.2
corr(α, θ) 0 0 0 0 -0.04 -0.03 0.48 0.49

SAT scores ACT scores SAT scores ACT scores
Cross-sectional, 2000 First differenced, 1996-2000

Inverse Mills Ratio in test-taking rate at 
school, 2000
Change in Inverse Mills Ratio in test-
taking rate at school, 1996-2000

Inverse Mills Ratio in test-taking rate at 
school, 2000
Change in Inverse Mills Ratio in test-
taking rate at school, 1996-2000
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Table 4.  Selection estimates from Illinois data

OLS OLS OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

-194.6
(16.8)

8.6 88.0 149.4
(15.6) (12.5) (37.5)

Chicago -160.1 12.2 57.7 67.8 59.6 75.9
(14.1) (5.3) (7.0) (11.8) (11.3) (15.9)

-140.0 -302.6
(22.4) (107.4)

N (schools) 390 390 390 390 390 390
R2 0.73 0.01 0.23 0.16 0.13 0.01

ρ -0.85 0.05 0.48 0.75
σ 228.7 174.9 183.4 199.0
corr(α, θ), 2000 -0.05 0.67 0.75 0.80
corr(α, θ), 2004 0.48 0.54

Notes:  Sample includes public schools with ACT participation rates above 2% and non-missing 
demographic information in each of 1996, 2000, and 2004.  Instruments in columns 4 and 6 are the 
fraction black and fraction Hispanic at the school in 2000.

1st difference, 2000-2004

Change in Inverse Mills Ratio in 
test-taking rate at school

Inverse Mills Ratio in test-
taking rate at school

Cross-
sectional, 2000

1st difference, 
1996-2000

Change in test participation rate 
at school
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2000 2004
(1) (2)

Within-school, individual-level correlation (ρ)
Standard deviation across schools

tbar 112.3 114.7
α 147.8 130.3
θ 0.54 0.60
ρ*σ*λ(p) 45.8 28.3

Net correlation (unconditional)
corr(α + ε, θ + u) 0.76 0.68

Across-school correlations
corr(tbar, α), unconditional 0.97 0.98
corr(tbar, α), conditional on racial composition 0.93 0.96

Regression of α on tbar 0.74 0.86

Table 5.  Relevant statistics for studies with imperfect selectivity 
controls implied by the Illinois analysis

Notes:  All entries computed from the model reported in Column 5 of Table 
4.

0.75
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Correlatio Reg. Correlation Reg. coeff.
(1) (2) (3) (4)

ρ = 0 1 1 1 1
ρ = 0.25 1.00 0.91 0.99 0.89
ρ = 0.5 0.99 0.81 0.97 0.77
ρ = 0.6 0.98 0.77 0.95 0.71
ρ = 0.75 0.97 0.71 0.93 0.63
ρ = 0.9 0.96 0.64 0.90 0.55
ρ = 1 0.95 0.59 0.88 0.49

ρ = 0 1 1 1 1
ρ = 0.25 0.99 0.87 0.98 0.87
ρ = 0.5 0.98 0.74 0.94 0.71
ρ = 0.6 0.97 0.69 0.91 0.65
ρ = 0.75 0.95 0.61 0.88 0.55
ρ = 0.9 0.93 0.54 0.83 0.46

   ρ = 1 0.92 0.49 0.80 0.40

ρ = 0 1 1 1 1
ρ = 0.25 0.99 0.91 0.99 0.91
ρ = 0.5 0.98 0.80 0.95 0.78
ρ = 0.6 0.97 0.75 0.93 0.72
ρ = 0.75 0.95 0.68 0.90 0.63
ρ = 0.9 0.92 0.61 0.86 0.54

   ρ = 1 0.91 0.55 0.83 0.48

Notes:  Schools with fewer than 50 students per cohort are excluded.  
"Residual scores" are residuals from regressions of mean scores and latent 
scores on the school fraction white.  The sample for these regressions is 
Illinois schools in the first two panels; all schools in ACT states (with state 
fixed effects) in the last panel.  Correlation and regression coefficients in the 
final panel are based on variables that have had a state mean removed.

Table 6.  Sensitivity of tbar-α relationship to ρ.

Scores Residual scores

All schools in ACT states 

All schools in Illinois (N=344)

Schools in chicago suburbs 
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