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important implications for regulation of automobile emissions.
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 The primary goal of pollution abatement is to protect human health, but there is still much debate 

about the specific health effects.  This paper addresses this issue by examining the impact of air pollution 

on infant health in New Jersey over the 1990s.  Policy makers and the public are highly motivated to 

protect these most vulnerable members of society.  There is increasing evidence of long-term effects of 

poor infant health on future outcomes; for example, low birth weight has been linked to future health 

problems and lower educational attainment (see Currie (2008) for a summary of this research).  Studying 

infants also overcomes several empirical challenges because, unlike adult diseases that may reflect 

pollution exposure that occurred many years ago, the link between cause and effect is more immediate. 

 Our analysis improves upon much of the previous research by improving the assignment of 

pollution exposure from air quality monitors to individuals.  Most observational analyses that assess the 

impact of air pollution on health assign exposure to pollution by either approximating the individual’s 

location as the centroid of a geographic area or computing average pollution levels within the geographic 

area.  In our data we know the exact addresses of mothers, enabling us to improve on the assignment of 

pollution exposure.   

Despite this improvement in pollution measurement, we must still confront the problem that air 

pollution is not randomly assigned, making potential confounding a major concern.  Since air quality is 

capitalized into housing prices (Chay and Greenstone, 2003) families with higher incomes or preferences 

for cleaner air are likely to sort into locations with better air quality, and failure to account for this will 

lead to overestimates of the effects of pollution.  Alternatively, pollution levels are higher in urban areas 

where there are often more educated individuals with better access to health care, which can cause 

underestimates of the effects of pollution  Our data permits us to follow mothers over time, so we include 

both pollution monitor and maternal fixed effects to capture all time-invariant characteristics of the 

neighborhood and mother.  In our richest specification, the effects of pollution are identified using 

variation in pollution exposure between children in the same families, after controlling flexibly for time 
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trends, seasonal patterns, weather, pollution monitor locations, and several observed characteristics of the 

mother and child.   

Infants at higher risk of poor outcomes may be differentially affected by pollution, so we also 

examine whether pollution has a differential impact on infant health depending on maternal 

characteristics, such as whether the mother smoked during pregnancy and older maternal age.  Previous 

research has suggested that smoking might exacerbate the effect of air pollution by increasing 

inflammatory responses and airway reactivity (Wang and Xu, 1998).  Alternatively, since cigarette smoke 

contains high levels of pollutants, including carbon monoxide, infants may already be exposed to high 

levels so that the marginal impact may be smaller in smokers than in non-smokers if the effects of 

pollutants are non-linear.  Previous work has also suggested that infants of older mothers might be more 

susceptible to problems related to smoking (Cnattingius, 1997), so it is also possible that these infants are 

more vulnerable to the effects of pollution.  To our knowledge, this is the first study to ask whether there 

are such differential effects. 

 Our estimates confirm that carbon monoxide (CO) has a significant effect on fetal health even at 

the relatively low levels of pollution experienced in New Jersey in recent years, and that it has further 

effects on infant mortality conditional on measures of health at birth.  In particular, we estimate that a one 

unit change in mean CO during the last trimester of pregnancy increases the risk of low birth weight by 8 

percent. Furthermore, a one unit change in mean CO during the first two weeks after birth increases the 

risk of infant mortality by 2.5 percent relative to baseline levels.  These findings for CO are robust to 

many different specifications.  We also find that the effects of CO on infant health at birth are two to six 

times larger for smokers and for mothers over age 35.  Since the major source of CO in urban areas is 

automobile exhaust, these findings have implications for regulations of automobile emissions.   

The rest of the paper is laid out as follows: Section I provides necessary background about the 

ways in which pollution may affect infant health and the previous literature.  Section II describes our 
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methods, while data are described in Section III.  Section IV presents our results, and Section V details 

our conclusions.  

 I. BACKGROUND   

A link between air pollution and infant health has long been suspected although the exact biological 

mechanisms through which it occurs are not well understood.  Carbon Monoxide (CO) is an odorless, 

colorless gas that primarily comes from transportation sources, with as much as 90 percent of CO in cities 

coming from motor vehicle exhaust (Environmental Protection Agency, January 1993, 2003b).  CO bonds 

with hemoglobin more easily than oxygen, reducing the body’s ability to deliver oxygen to organs and 

tissues.  While CO is poisonous to healthy adults at high levels, infants are particularly susceptible 

because they are smaller and often have existing respiratory problems.  In pregnant women, exposure to 

CO reduces the availability of oxygen to be transported to the fetus.  Moreover, carbon monoxide readily 

crosses the placenta and binds to fetal haemoglobin more readily than to maternal haemoglobin and is 

cleared from fetal blood more slowly than from maternal blood, leading to concentrations that may be 10 

to 15 percent higher in the fetus’s blood than in the mother’s.  Indeed, much of the negative effect of 

smoking on infant health is believed to be due to the CO contained in cigarette smoke (World Health 

Organization, 2000).  

Particulate matter can take many forms, including ash and dust, and motor vehicle 

exhaust is a major source.  The smallest particles are widely believed to cause the most damage 

since they are inhaled deep into the lungs and can possibly enter the bloodstream [Environmental 

Protection Agency, 2003b].  The mechanisms through which particles harm health are 

controversial, with a leading theory being that they cause an inflammatory response that weakens 

the immune system [Seaton, et al. 1995].  Since particles cannot cross the placenta, they would 

have to damage the fetus indirectly by provoking inflammation in the mother.  
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   Ozone (the major component of smog) is formed through reactions between nitrogen oxides and 

volatile organic compounds (which are found in auto emissions, among other sources) in heat and 

sunlight.  Ozone is a highly reactive compound that damages tissue, reduces lung function, and sensitizes 

the lungs to other irritants.  For example, exposure to ozone during exercise reduces lung functioning in 

adults and causes symptoms such as chest pain, coughing, and pulmonary congestion.  It is not clear why 

ozone would affect the fetus, though like PM10 it might indirectly affect the infant by compromising the 

mother’s health.  

 The discussion suggests that one might well expect CO to have larger effects than other pollutants 

because of its ability to cross the placenta and accumulate in the blood of the fetus.  However, pollution 

exposure could indirectly affect the fetus through the health of the mother by, for example, weakening her 

immune system.  Moreover, all three pollutants can directly affect infants after birth.1  Although the 

available research points towards potential impacts, it provides little guidance about the necessary levels 

of pollution to induce negative effects or when fetuses or infants are most vulnerable. 

 Many epidemiological studies have demonstrated links between very severe pollution episodes 

and increased mortality of infants and others.  One of the most famous focused on a “killer fog” in 

London, England and found dramatic increases in cardiopulmonary mortality [Logan and Glasg, 1953].  It 

has been less clear whether levels of air pollution that are common in the U.S. today have effects on 

infant health. 

Previous epidemiological research on the effects of moderate pollution levels on prenatal health 

suggest negative effects but have produced inconsistent results.  Chart 1 provides a list of previous studies 

examining this relationship, limiting our review to developing countries that are likely to have 

comparable levels of pollutions to New Jersey  For example, Ritz and Yu (1999) report that CO exposure 

 
1 Alternatively, since motor vehicle exhaust is a major contributor of CO and PM10, these pollutants may 
themselves be markers for other components of exhaust which injure infants.  Components such as polycyclic 
aromatic hydrocarbons (PAHs), acetonitrile, benzene, butadiene, and cyanide (see 
http://www.epa.gov/ttn/atw/hapindex.html) have been shown to have effects on developing fetuses in animal 
studies, such as retarded growth.  Studies in humans have shown elevated levels of an enzyme induced by PAHs in 
women about to have preterm deliveries [Huel et al, 1993].   

http://www.epa.gov/ttn/atw/hapindex.html
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in the last trimester of pregnancy increased the incidence of low birth weight (defined as birth weight less 

than 2,500 grams), while Ritz et al. (2000) report that CO exposure in the six weeks before birth is 

correlated with gestation in some regions of southern California but not in others.  Ritz et al. (2000) report 

that PM10 exposure 6 weeks before birth increases preterm birth, while Mainsonet et al. (2001) find that 

PM10 has no effect on low birth weight. 

Studies of the effects of pollution on infant mortality also yield mixed results.  For example, 

Woodruff et al. (1997) report that infants with high exposure to PM10 are more likely to die in the post 

neonatal period.  But Lipfert et al. (2000) find that although they can reproduce some earlier results 

showing effects of county-level pollution measures on infant mortality, the results are not robust to 

including controls for maternal characteristics.   

An important limitation of these studies is that the observed relationships could reflect 

unobserved factors correlated with both air pollution and child outcomes.  Many of the studies in Chart 1 

have very minimal (if any) controls for potential confounders.  Families with higher incomes or greater 

preferences for cleaner air may be more likely to sort into neighborhoods with better air quality.  These 

families are also likely to provide other investments in their children, so that fetuses and infants exposed 

to lower levels of pollution also receive more family inputs, such as better quality prenatal care.  If these 

factors are unaccounted for, this would lead to an upward bias in estimates.  Alternatively, pollution 

emission sources tend to be located in urban areas, and individuals in urban areas may be more educated 

and have better access to health care, factors that may improve health.  Omitting these factors would lead 

to a downward bias, suggesting the overall direction of bias from confounding is unclear. 

  Two studies by Chay and Greenstone [2003a,b] deal with the problem of omitted confounders by 

focusing on “natural experiments” provided by the implementation of the Clean Air Act of 1970 and the 

recession of the early 1980s.2  Both the Clean Air Act and the recession induced sharper reductions in 

 
2  These studies are similar in spirit to a sequence of papers by C. Arden Pope, who investigated the health effects 
of the temporary closing of a Utah steel mill [Pope, 1989; Ransom and Pope, 1992; Pope, Schwartz, and Ransom, 1992] 
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particulates in some counties than in others, and they use this exogenous variation in levels of pollution at 

the county-year level to identify its effects.  They estimate that a one unit decline in particulates caused by 

the implementation of the Clean Air Act (recession) led to between five and eight (four and seven) fewer 

infant deaths per 100,000 live births.  They also find some evidence that the decline in TSPs led to 

reductions in the incidence of low birth weight.  However, the levels of particulates studied by Chay and 

Greenstone are much higher than those prevalent today; for example, PM10 levels have fallen by nearly 

50 percent from 1980 to 2000.  Furthermore, only TSPs were measured during the time period they 

examine, which eliminates their ability to examine other pollutants that are correlated with particulates 

emissions.   

Currie and Neidell (2005) extend this line of research by examining the effect of more recent 

levels of pollution on infant health, and by examining other pollutants in addition to particulates.  Using 

within-zip code variation in pollution levels, they find that a one unit reduction in carbon monoxide over 

the 1990s in California saved 18 infant lives per 100,000 live births.  However, they were unable to find 

any consistent evidence of pollution effects on health at birth.  This paper improves on Currie and Neidell 

(2005) by using more accurate measures of pollution exposure, controlling for mother fixed effects, and 

investigating the interaction of air pollution with smoking and other risk factors.3   

II. METHODS 

As discussed in the previous section, air pollution may affect infants differently before and after birth.  

Before birth, pollution may affect infants either because it crosses the protective barrier of the placenta or 

 
and to Friedman et al. [2001] who examine the effect of changes in traffic patterns in Atlanta due to the 1996 Olympic 
games.  However, these studies did not look specifically at infants. 
3 Smoking data was not available in the California data used by Currie and Neidell (2005).  An additional issue is 
that this paper (like the others discussed above) examines the effect of outdoor air quality measured using monitor in 
fixed locations.  Actual personal exposures are affected by ambient air quality, indoor air quality, and the time the 
individual spends indoors and outdoors.  One might expect, for example, that infants spend little time outdoors so 
that outdoor air quality might not be relevant.  Research on the relationship between indoor and outdoor air quality 
[Spengler, Samet and McCarthy, 2000; Wilson, Mage, and Grant, 2000] suggests that much of what is outdoors 
comes indoors.  Furthermore, although the cross-sectional correlation between ambient air quality and personal 
exposure is low (between .2 and .6 in most studies of PM10 for e.g.), the time-series correlation is higher.  This is 
because for a given individual indoor sources of air pollution may be relatively constant and uncorrelated with 
outdoor air quality.  So for a given individual much of the variation in air quality comes from variation in ambient 
pollution levels. 



because it has a systemic effect on the health of the mother.  After birth, infants are directly exposed to 

inhaled pollutants.  Hence, our analysis proceeds in two parts:  First we examine the effects of pollution 

on health at birth as measured by birth weight and gestation.  Second, we examine the effect of pollution 

on infant mortality conditional on health at birth. 

Modeling Birth Outcomes 

 In order to examine the effect of pollution on health at birth, we restrict the sample to women 

who lived within 10 kilometers (about 6.2 miles) of a monitor and estimate baseline models of the 

following form: 

(1) ( )∑
3

1=s
ijmttijmt

ss
mt

ss
mtijmt ε+Y+δx+γw+βP=O  

where O is a birth outcome, i indexes the individual, j indexes the mother, m indexes the nearest monitor, 

and t indexes time periods.  The vector Pmt contains measures of ambient pollution levels in each of the 

first, second, and third trimesters of the mother’s pregnancy, denoted by s, using the monitor closest to the 

mother’s residence.  We construct the trimester measures by taking the average pollution measure over 

the trimester4, so βs reflects the effect from a change in mean pollution levels for trimester s.5  The wmt 

represents daily precipitation and daily minimum and maximum temperature averaged over each trimester 

of the pregnancy.  We control for weather in the vector w because it may have independent effects on 

birth outcomes and is correlated with ambient pollution levels (Samet et al. 1997). 

The vector xijmt includes mother and child specific characteristics taken from the birth certificate 

that are widely believed to be significant determinants of birth outcomes.  These characteristics include 

dummy variables for the mother’s age (19-24, 25-34, 35+), mother’s education (12, 13-15, or 16+ years), 

and birth order (2nd, 3rd, 4th or higher), an indicator for whether it is a multiple birth, whether the mother is 

married, whether the child is male, whether the mother is African-American, Hispanic, and other or 

                                                           
4 We describe these trimester measures in more detail in the following section. 
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5 While this measure captures high ambient levels sustained over a period of time, we also estimated models using 
the maximum daily value of pollution over the same intervals, but found that it was not statistically significant in 
any of our models. 



unknown race, and whether the mother smokes, and the number of cigarettes if she smokes.  Since these 

variables are all categorical, to preserve sample size we control for missing values by including an 

additional “missing” category for each variable.  Appendix Table 1 shows the complete specification for 

one of our models that includes the coefficients on the dummy variables for missing controls.  Given that 

family income is not included on the birth certificate, we also include a measure of median family income 

and the fraction of poor households in 1989 in the mother’s census block group as a proxy.  The vector Yt 

includes month and year dummy variables to capture seasonal effects (pollution is strongly seasonal and 

birth outcomes may also be) as well as trends over time, such as improvements in health care. 

As previously mentioned, a limitation of model (1) is that pollution exposure is likely to be 

correlated with omitted characteristics of families that are related to infant health.  In order to control for 

omitted characteristics of neighborhoods and for differential seasonal effects in these characteristics (for 

example, coastal areas experience less economic activity in winter than in summer relative to inland 

areas), we estimate models of the form: 

(2) ( )∑ ∗
3

1=s
ijmttmttijmt

ss
mt

ss
mtijmt ε+Q+Y+δx+γw+βP=O ϕ  

where now φmt is a fixed effect for the closest air pollution monitor and φmt*Qt is an interaction between 

the monitor effect and the quarter of the year.  In this specification, we compare the outcomes of children 

who live in close proximity to each other and are born in the same quarter to capture average 

neighborhood characteristics within a season to the extent. 

Model (2) may still suffer from omitted variables bias.  In particular, unobserved characteristics 

of mothers, such as her regard for her own health, may be important for her infant’s health and may also 

be correlated with her choice of neighborhoods.  Hence, in our richest specification we estimate: 

(3) ( )∑ ∗
3

1=s
ijmtjtmttijmt

ss
mt

ss
mtijmt ε+ς+Q+Y+δx+γw+βP=O ϕ  

where ζj  is a mother-specific fixed effect.  These models control for time-invariant characteristics of both 
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neighborhoods and mothers, so that the effects of pollution are identified by variation in pollution at a 

particular monitor between pregnancies.  Much of this variation is driven by changes in pollution levels 

over time, due to air quality regulations, and within the year, due to seasonal patterns in pollution and 

unpredictable variations in human activity.  

 A necessary condition to identify the impact of pollution is that variation in infants’ pollution 

exposure is uncorrelated with other characteristics of the infant or the infant’s families that may affect 

infant health.  It would be a problem, for example, if first children were more likely to be low birth weight 

and mothers systematically moved to cleaner environments between the first and second births because 

their incomes increased.  In order to check that the variation in pollution is uncorrelated with mobility, we 

performed the following exercise.  We first estimated the actual “within family” variation in each 

pollutant.  We then estimated what the within family variation would have been if each mother had stayed 

in the location in which she was first observed.  The within family variances were virtually identical: the 

actual and simulated within standard deviations for ozone are .939 and .947, respectively, for CO are .301 

and .271, respectively, and for PM10 are .410 and .407, respectively, for ozone.  This suggests that 

mothers do not appear to be systematically moving to cleaner or dirtier areas between births. 

Model for Infant Mortality 

In order to examine infant mortality conditional on health at birth, we modify the birth outcomes 

model to capture the fact that birth outcomes are a one-time occurrence but mortality is a continuously 

updated outcome.  For example, the risk of death is highest in the first week or two of life and drops 

sharply thereafter.  Therefore, we estimate a weekly hazard model with time-varying covariates to 

account for a varying probability of survival and levels of pollution over the infants’ first year of life.  To 

do this, we treat an infant who lived for n weeks as if they contributed n person-week observations to the 

sample. The dependent variable is coded as 1 in the period the infant dies, and 0 in all other periods. Each 

time-invariant covariate (such as birth parity) is repeated for every period, while the time-varying 

covariates (such as pollution and weather) are updated each period.   



Based on this data structure, we estimate a model in which the probability of death Dijmt is 

specified as: 

(4) ( )∑ ∗
4

1=τ
ijmtjtmttijmtijmt

ss
mt

τ
mt

τ
ijmt ε+ς+Q+Y+πO+δx+γw+βPθ+α(t)=D ϕ  

where α(t) is a measure of duration dependence, specified as a linear spline function in the weeks since 

the infant’s birth.  We choose break points after 1, 2, 4, 8, 12, 20, and 32 weeks to capture the shape of the 

actual empirical hazard.  Pmt measures exposure to the three pollutants in a given week. Since the infant 

death hazard varies greatly with time since birth, it is likely that an effect of pollution on infant death, if it 

exists, would also vary with the baseline hazard. We allow for such differential effects by interacting the 

weekly pollution measure Pmt with 4 dummy variables θτ indicating time since birth. θ1 equals one if time 

since birth is between 0 and 2 weeks, θτ  between 2 and 4 weeks, θ3 between 4 and 6 weeks, and θ4 for 

over 6 weeks. Thus the effect of pollution as measured by βτ can differ arbitrarily over these four 

intervals. 

 Because infant death might be affected by pollution before birth as well as by pollution after 

birth, we add birth weight as a measure of infant health outcomes at birth (Oijmt) to the list of independent 

variables.  We control for birth weight flexibly by including a series of dummy variables (<1500 grams, 

1500-2500 grams, 2500-3500 grams, and over 3500 grams)6.  To the extent that birth weight is a 

sufficient statistic for health at birth, βτ from equation (4) will capture the independent effect of pollution 

after birth conditional on health at birth.   

 This model can be thought of as a flexible, discrete-time, hazard model that allows for time-

varying covariates, non-parametric duration dependence, monitor-specific quarter effects and mother 

fixed effects.  Allison [1982] shows that estimates from models of this type converge to those obtained 

from continuous time models.   

This procedure yields a very large number of observations since most infants survive all 52 weeks 

                                                           

 11
6 Our results are, however, insensitive to including birth weight as a continuous variable. 
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of their first year.  In order to reduce the number of observations, we limit this part of the analysis to 

mothers who lost at least one child.  In terms of observable characteristics, families with a death are more 

likely to have mothers who are African American (30% vs. 19% overall), unmarried (62% vs. 72% 

overall) and who are smokers (13% vs. 9.5% overall).  However, mean ozone, CO, and PM10 measures 

in the trimester before birth are virtually identical in families with deaths and those without.7

One way to think about these estimates is in terms of underlying heterogeneity in the 

vulnerability of infants.  Although the average family with a death is different than the average family 

without one, we are concerned about the impacts of pollution on the infant at the life/death margin.  If the 

characteristics of the marginal infant who dies because of an increase in pollution is similar to the 

characteristics of the marginal infant who survives the same increase in pollution, then our results will tell 

us about the effects of variations in pollution for the range of pollution we observe. 

III. DATA 

Detailed data on atmospheric pollution come from the New Jersey Department of environmental 

protection Bureau of Air Monitoring, accessed from the technology transfer network air quality system 

database maintained by the U.S. Environmental Protection Agency (EPA).8  The location of each of 57 

monitors and what each one measures is shown in Figure 1.  Unfortunately, it is more the exception than 

the rule for a monitor location to measure all three of the pollutants that we study.  PM10 is the most 

frequently monitored pollutant, followed by O3 and CO.  Because of this limitation of the data, we will 

examine the impact of each pollutant in separate models (and samples), though we will also show one 

specification that includes both CO and O3, the two pollutants that have the largest effects individually.  

Figure 1 demonstrates that monitors are heavily clustered in the most populated areas of the state, which 

lie along the transportation corridor between New York and Philadelphia.    

For each monitor, we construct measures of pollution by taking the mean of the daily values 

either over the three trimesters before birth (for the birth outcomes models) or for each week after birth 

 
7 To the extent these conditions are not met, we will instead identify a local average treatment effect. 
8 The data is available at: <http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm> 
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(for the infant mortality model).  For the pollutants of interest, the daily measures we use are the 8-hour 

maximums of CO and O3 and the 24-hour average of PM10, which correspond with national ambient air 

quality standards.9  County level weather data come from the Surface Summary of the Day (TD3200) 

from the National Climatic Data Center.10   

Data on infant births and deaths come from the New Jersey Department of Health birth and infant 

death files for 1989 to 2003.  Vital Statistics records are a very rich source of data that cover all births and 

deaths in New Jersey.  Birth records have both detailed information about health at birth and background 

information about the mother, such as race, education, and marital status.  We traveled to Trenton, New 

Jersey to use a confidential version of the data with the mother’s address, name, and birth date.  The use 

of this data allows us to more precisely match mothers to pollution monitors and to identify siblings born 

to the same mother.  Births were linked to the air pollution measures taken from the closest monitor by 

using the mother’s exact address and the latitude and longitude of the monitors.  It was also possible to 

link birth and death records to identify infants who died in the first year of life. 

Descriptive statistics for infant health outcomes, pollution measures, and control variables are 

shown in Table 1.  The first four columns show means for all births in New Jersey, the sample of births 

with residential address that were successfully geocoded, the sample of births within 10 kilometers of an 

ozone monitor, and the sample of births to smoking mothers within 10 kilometers of an ozone monitor.  

Because different monitors measure different pollutants, the subsamples used in the regression models are 

slightly different.11  Of the 1.75 million births in New Jersey over our sample period, 36% were 

successfully geocoded and within 10 kilometers of an ozone monitor, with roughly 10% of these births to 
 

9 The 8-hour maximum corresponds to taking the maximum 8-period moving average within a 24 hour period.  
Although we choose these measures because they are based on air quality standards, the measures are highly 
correlated with other common measures of short-term spikes in pollutants.  For example, the correlation between the 
maximum 8 hour reading for CO with the maximum 1 hour average for CO and daily mean for CO is 0.91 and 0.94, 
respectively.  Comparable correlations for ozone are 0.98 and 0.93.  These correlations are even higher within 
monitor, and our models incorporate monitor fixed effects.  Since PM10 is not measured every day, the weekly 
mean for PM10 may be noisier than those for other pollutants. 
10 This data is available at http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW~MP#MR. If weather data was not 
available for a county and date, we interpolated using data from surrounding counties.  Our tests of this procedure 
(using counties with weather data) indicated that it was highly accurate. 
11 Sample sizes also vary slightly for different outcomes because of missing values for the outcomes. 

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW~MP#MR.)
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mothers who smoked.  Column 5 restricts the sample further to children with a sibling within the sample, 

which is the final sample we use in our analysis.  Almost 20% of the total births are in the sibling sample 

and within 10 kilometers of a monitor.  Finally, column 6 further restricts the final sample to the subset of 

mothers who smoked at both births, with the sample becoming much smaller but still sizable at 21,099 

births. 

A comparison of columns 1 and 2 shows no differences in maternal characteristics between 

successfully and unsuccessfully geocoded mothers.  A comparison of columns 2, 3, and 4 of Panel A 

shows that infant health is worse in the population closer to monitors, and much worse in the sample of 

smokers.  For example, the death rate is 6.9 per 1,000 births overall, 7.7 in the sample closer to monitors, 

and 9.9 among the smokers.  Comparing column 3 to column 5 or column 4 to column 6 suggests, 

however, that infants with siblings in the sample do not differ systematically from those without, which 

improves our ability to generalize results from the sibling regression models. 

Panels B and C give means of the pollution measures for the subsets of the geocoded sample.  A 

comparison of columns 3 and 4 suggests no systematic difference in air quality between the areas where 

smokers and nonsmokers live.  Similarly, mothers with more than one birth over the sample period live 

are exposed to comparable levels of air quality as mothers with a single birth.12   

It is also important to note that the means in Table 1 mask considerable variation in pollution 

levels both across monitors and over time.  In the most polluted areas, mean CO levels started at 4 ppm at 

the beginning of the sample period, but declined to roughly 1 ppm by 2005.  Figures 2 through 4 plot 

pollution levels at one particular pollution monitor (the Camden Lab monitor in Camden) over time and 

residual pollution levels after controlling for the time and monitor effects and the weather variables 

 
12 Although these mean pollution levels are far below air quality standards, the standards are based on daily 
maximum concentrations.  For determining compliance with air quality standards for CO, the EPA calculates 8 hour 
moving average values, and then asks whether the daily maximum of this moving average ever exceeds 9 ppm 
during the year.  For ozone, the 3-year moving average of the fourth-highest daily maximum 8-hour average ozone 
concentrations must be less than .08 ppm.  For PM10, the 24 hour average must not exceed 150 μg/m3 more than 
once per year on average over three years (see http://www.epa.gov/air/criteria.html).  For the period of our sample, 
several CO monitors experienced AQS violations in the period (e.g. 4 out of 13 monitors in 1989) but none after 
1995; there were 2 ozone monitors in violation (1995 and 1998); and no PM10 monitors in violation. 

http://www.epa.gov/air/criteria.html
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included in our regression models. 13  The “a” series plot 3 month moving averages (corresponding to the 

measures of pollution we use in birth outcome models), while the “b” series plot 7 day moving averages 

(corresponding to the measures of pollution we use in the infant mortality models).  These plots show that 

although adjusting for these factors accounts for seasonal and annual trends, there is still considerable 

variation left to identify the effects of pollution.14Panel D of Table 1 shows means of the control variables 

available in the Vital Statistics data, the decennial census, and the weather data.   

Mothers within 10 kilometers of a monitor are almost a year younger on average than the sample 

mean.  It is striking that mothers within 10 kilometers of a monitor are also much more likely to be 

African American or Hispanic and have a half year less education on average compared to the full 

sample.  They are also less likely to be married, but only slightly more likely to smoke than mothers who 

live further away from monitors.  Furthermore, census tracts near monitors are lower income and have a 

higher fraction of poor inhabitants than further census tracts. These patterns are consistent with residential 

sorting based on air quality: monitors are generally located in more polluted areas, and the characteristics 

of those closer to the monitors are generally worse than those farther from the monitors.   

The pattern of relative disadvantage is even more pronounced for the population of mothers who 

smoke.  These mothers are much more likely to be African-American (though less likely to be Hispanic), 

have a year less education, are much less likely to be married, and live in the poorest census tracts 

compared to non-smoking mothers who live within 10 kilometers of a monitor.  In contrast, mothers with 

more than one birth in the sample look quite similar to mothers observed to have had only one birth. 

  These systematic differences demonstrate the importance of adequately controlling for 

characteristics of neighborhoods and families, as we do in our specifications. 

 
13 The patterns, not shown here, are very similar for the other monitors. The time period for these graphs (1994 to 
1998) is restricted to improve exposition.  
14 While these figures are on the monitor level, we also checked how much of the variation in pollution is absorbed 
by our regression controls on the mother level. For example for CO the standard deviation is 0.7 in the full sample. 
After taking out the controls in equation (1), this is reduced to 0.5. Taking out monitor * quarter fixed effects and 
mother fixed effects reduces the standard deviation to 0.21 and 0.17, respectively. As a group the controls account 
for a significant part of the variation in pollution, mostly because of the inclusion of seasonal controls and monitor 
dummies, but there is a substantial amount of variation remaining to identify health effects. 
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IV. RESULTS 

Estimates of the effects of pollution on all mothers within 10 kilometers of a monitor are shown in Table 

2.  Each group of 3 columns shows estimates of equations (1), (2), and (3) for a different pollutant. The 

mother fixed effects model, equation (3), is only identified from mothers with at least 2 children in the 

sample. To assure that the differences between the models are not driven by changes in the sample 

composition, the sample for estimating all three equations is restricted to children with at least one sibling 

in the sample (corresponding to column (5) of Table 1).  In all models we cluster standard errors at the 

census tract level to allow for common shocks to mother’s exposed to comparable levels of pollution. 

Table 1 suggests that the models that do not adequately control for characteristics of the mother’s 

location and for her own characteristics can be misleading.  For example, although urban mothers are 

typically exposed to higher levels of pollution, they are also wealthier and more educated in our data and 

may have better access to health care.  Failure to control for these factors could yield estimated 

coefficients that are biased down and possibly even wrong-signed.  Few of the pollution measures in 

columns (1), (4), and (7) are statistically significant, and when they are, they are as likely to suggest 

positive effects on birth weight and gestation as negative ones.  

 However, once we include monitor*quarter fixed effects (as in columns (2), (5), and (8)) the 

estimates suggest that CO in the last trimester of the pregnancy reduces birth weight, increases the 

probability of low birth weight, and shortens gestation.  Now the only wrong-signed coefficient suggests 

that increases in PM10 in the first trimester of pregnancy increase gestation.   

Finally, when we control for mother fixed effects in columns (3), (6), and (9), the estimates for 

CO become even larger.  Ozone in the second trimester now has a statistically significant negative effect 

at the ten percent level on birth weight and gestation.  For PM10 the first trimester in the low birth weight 

regression is statistically significant at the 10 percent level.  This pattern of results across specifications 

suggests the importance of controlling for both maternal and neighborhood fixed effects to account for 

confounding factors.  It also suggests that in New Jersey, conditional on other observable characteristics 
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of mothers, mothers in more polluted areas have unobserved characteristics that make them more likely to 

have healthy infants. 

To summarize: third trimester CO has statistically significant, negative effects on infant health in 

all of our specifications, with the estimated effect gradually increasing as we control more thoroughly for 

potential confounders.  In contrast, the estimated effects of PM10 and ozone are inconsistent across 

specifications, with none statistically significant at the 95% level in the models that control for mother 

fixed effects .The estimates in Table 2 imply that a one unit increase in the mean level of CO during the 

last trimester (where the mean is 1.64 and standard deviation is .79) would reduce average birth weight by 

16.65 grams (from a base of 3,236 grams) — a reduction of about a half a percent.  The proportional 

effects are greater for low birth weight where a one unit change in mean CO would lead to an increase in 

low birth weight of .0083 (from a base of .106) – an eight percent increase in the incidence of low birth 

weight.  The greater effect for low birth weight than for mean birth weight suggests that infants at risk of 

low birth weight are most likely to be affected by pollution, an observation that we explore further below 

by examining infants with various risk factors.  Additionally, a one unit change in mean CO is estimated 

to reduce gestation by .074 weeks (from a base of 38.55 weeks) – a reduction in mean gestation of .2 

percent.  

One way to put these estimates into perspective is to compare them to the effects of smoking.  

The coefficients on smoking and number of cigarettes from the models for CO are shown in Table 3 (the 

estimated effects of smoking in models for other pollutants are very similar but are not shown).  In 

models that do not include maternal fixed effects, smoking is estimated to have extremely negative effects 

on infant health, consistent with much of the prior literature.  For example, being a smoker is estimated to 

reduce birth weight by 162 grams in models that include monitor fixed effects, and each additional 

cigarette smoked reduces birth weight by 5 grams, for a total reduction of approximately 212 grams at the 

mean of 10 cigarettes per day.  However, as Almond, Chay and Lee (2003) and Tominey (2007) point 

out, these estimates are likely to be contaminated by omitted characteristics of the mother that are 
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associated with her smoking behavior.   

Including mother fixed effects, which controls for unobserved characteristics of the mother, 

reduces the estimated effects of smoking considerably, though they remain large: being a smoker is 

estimated to reduce birth weight by 38.9 grams, and each cigarette reduces it a further 2.2 grams for a 

total reduction of about 61 grams in infants of women who smoke 10 cigarettes per day.  Hence it would 

take a roughly 3.7 unit change in mean CO levels to have an equivalent impact on birth weight as that 

from smoking 10 cigarettes per day.  Similarly, the effect of smoking 10 cigarettes per day is a bit more 

than twice as large as the impact of a one unit change in mean CO in terms of the effect on the incidence 

of low birth weight. 

As discussed above, infants of smoking mothers could be either more or less affected than other 

infants.  We investigate this issue in Table 4, which shows estimates for mothers who smoked during both 

pregnancies.  The point estimates in Table 4 are generally much larger than those in Table 2, suggesting 

the same level of pollution exposure is more harmful to the infants of smokers.  Although the effects of 

CO are no longer statistically significant in the model for birth weight, the point estimate of -39.2 in the 

model with mother fixed effects is twice as large as the Table 2 coefficient.  The coefficient on CO in the 

models of low birth weight is .044 compared to .008 in Table 2.  For gestation, the Table 4 coefficient on 

CO is -.43 compared to -.074 in Table 2.  These estimates indicate that the harmful effects from CO are 

two to six times greater for smoking mothers than for non-smoking mothers, depending on the outcome.  

Similarly, the impact of ozone is four to six times larger for smoking mothers.  Furthermore, we now also 

find that PM10 in the second and third trimesters has a statistically significant impact on birth weight, 

while PM10 in the first and second trimesters are both estimated to increase the incidence of low birth 

weight.  PM10 in the second trimester is also estimated to reduce gestation significantly. 

Table 5 places the results for smoking mothers in context by showing estimates of the differential 

effects of CO on other subsets of mothers who may be vulnerable to poor birth outcomes. Since some 

demographic groups are fairly small, differential effects were estimated using the full sample of births and 
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interacting the vector of pollution measures with the relevant characteristic of the mother.  For example, 

column 1 of Table 5 is based on the same regression as column 3 in Table 2 except that the three pollution 

measures are also interacted with an indicator for whether the mother was 19 years or younger at the time 

of birth. Only the estimates on these interactions are shown, as the “main effects” (the estimates that 

apply to the rest of the sample) are generally comparable to those shown in the main specification 

(column 3, Table 2). The point estimates are substantially larger for very young and very old mothers and 

for births that had other risk factors.15  However, there do not seem to be stronger negative effects of 

pollution on African-American, less educated, or low income mothers. Along with the results for 

smokers, these estimates suggest that infants at higher risk of poor outcomes for other biological reasons 

face higher risks from pollution.   

Hence, the effects of pollution appear to be amplified by biological risks but not by non-

biological risks.  This result also bolsters the case that our identification strategy is working -- including 

the mother fixed effects has taken out the main effect of confounding socioeconomic factors but has not 

taken out a greater sensitivity to pollution that is linked to biological factors.  

Table 6 shows estimates of the effects of pollution on infant mortality from models based on 

equation (4).  In these models, we control for birth weight with a series of indicator variables to isolate the 

effect of pollution after the birth on health.  Consistent with the results discussed above, Table 6 suggests 

that CO matters, rather than exposure to PM10 or ozone.  Table 6 suggests that high CO exposures in the 

first two weeks of life increase the risk of death.  Since we control for the fact that more deaths occur in 

the first two weeks with our baseline hazard, this estimates reflects the extent to which death within that 

time is hastened by pollution exposure.  We do not, however, find any statistically significant impacts of 

ozone and PM10 on mortality.   

To gauge the magnitude of this estimate, we need to account for the fact that we estimated the 

 
15 Risk factors are anemia, hypertension (chronic or pregnancy associated), diabetes, heart or lung disease, herpes, 
hydramnios, previous preterm infant, previous large infant, renal disease, incompetent cervix, rh-sensitivity, uterine 
bleeding, eclampsia, hemoglobinopathy, or "other complications". 
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impact on the sample of mothers with at least one death, so the base risk of death in this subsample is 

about 40% (2334 deaths divided by 5848 births).  Therefore, we multiply our estimate by the ratio of the 

overall sample IMR of 6.88 per 1000 births to the subsample IMR of 399 per 1000 births.  This 

calculation suggests 17.6 averted deaths per 100,000 births from a 1 ppm decrease in CO.16  This estimate 

is remarkably similar to the 16.5 averted deaths per 100,000 births reported in Currie and Neidell (2005). 

 As discussed above, we believe that a major contribution of our study is that we can improve the 

accuracy of our pollution measures because we have the mother’s exact addresses.  In Table 7 we offer 

two investigations of  this claim.  If being closer to a monitor improves measurement, then being farther 

from a monitor should yield weaker results.  Table 7 shows that this is indeed the case: we do not find 

significant effects on health at birth (or, not shown, on infant mortality) for mothers 10 to 20 kilometers 

from a monitor.17  Similarly, studies often do not have an exact address of the mother but only the zip 

code of residence, and therefore assign pollution to the zip code centroid using an inverse distance 

weighted average of monitors near the zip code.  In the last three columns of Table 7, we assign pollution 

to the mother assuming we only know her zip code.  In this less precisely merged sample we find 

generally smaller estimates that are statistically insignificant.  Both of these results are consistent with 

improved measurement from knowing the mother’s exact address.   

 In Table 8, we estimate models that include both CO and ozone.  Since the sources of these 

pollutants are similar and often therefore vary together, it is important to isolate which pollutant drives 

our results.  Although the sample size is somewhat reduced, the estimates for CO are even stronger than 

those shown in Table 2, as we once again find significant effects of CO on all three infant outcomes.  We 

also find a negative effect of ozone on gestation, though now it is exposure in the last trimester rather than 

 
16 We do not show separate estimates of the effect of pollution on deaths among infants of smokers because 
restricting the sample to smokers who had at least one death in the family results in very small sample sizes. 
17 We have also estimated models using mothers who are closer to pollution monitors (within 5 kilometers).  
Unfortunately, the resulting reduction in sample size increases our standard errors substantially, making it more 
difficult to draw a clear inference from this exercise. 
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the second trimester which seems to matter.18  

V. DISCUSSION AND CONCLUSIONS  

In order to begin to evaluate the costs and benefits of tighter pollution regulation, it is necessary to 

understand how changes from current, historically low levels of air pollution are likely to affect health.  

This paper examines the effects of air pollution on infant health using recent data from New Jersey.  Our 

models control for many potential confounders, with our richest model identified using variation in 

pollution between births among mothers located near particular monitors.   

Our strongest and most consistent set of results show that CO has negative effects on infant health 

both before and after birth.  Since most CO emissions come from transportation sources, these findings 

are germane to the current contentious debate over proposals to further tighten automobile emissions 

standards.  For example, the state of California’s most recent proposal to increase emissions standards has 

been blocked by the Environmental Protection Agency.  The Agency first argued that it had no authority 

to regulate the greenhouse gases in auto exhaust.  When that argument was dismissed by the Supreme 

Court in April 2007, the agency then denied California’s request for the waiver necessary to implement its 

law, claiming that uniform federal standards were superior to the piece-meal approach offered by the 

state.  The state is currently suing the federal government over the issue.  Should the state prevail, at least 

16 other states are set to implement California’s regulations (Maynard, 2007; Barringer, 2008).   

It is noteworthy that we find negative effects of exposure to CO even at the low levels of ambient 

CO currently observed.  Some areas in our study saw a reduction in mean CO levels from 4 ppm to 1 ppm 

over our sample period.  Our estimates of the effects of CO on birth weight and gestation suggest that this 

reduction had an effect roughly equivalent to getting a women smoking 10 cigarettes a day to quit.  We 

also find that infants of smokers are at much greater risk of negative effects from CO exposure.  We also 

find some evidence of significant effects of PM10 and ozone on health at birth, particularly among 

 
18 We also estimated our models including an interaction with CO and an indicator for years after 1995 (midway 
through our sample) to assess if the effects change over time, but the interaction term was insignificant, suggesting 
the effects of CO are constant over the period. 
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smokers, though these estimates are less robust than our CO estimates.  We further find that a one unit 

decrease in mean CO levels in the first two weeks of life saves roughly 18 lives per 100,000 births, which 

represents a reduction in the probability of infant death of about 2.5 percent.   

To value the impact of recent declines in CO throughout the U.S., we perform the following 

illustrative calculations.19  To value the improvements in birth weight, we compute the percentage change 

in birth weight from a unit change in pollution by dividing the estimated impact of third-trimester CO on 

birth weight (-16.65) by the mean birth weight in our sibling sample (3236).  We multiply this by the 

estimated elasticity between birth weight and earnings of 0.1 from Black et al. (2007) to obtain the 

percentage change in earnings.  We then multiply this by the average earnings of all full time workers per 

state in 200320 and the total number of births per state in 2003 to get the change in earnings per birth 

cohort per state from a one ppm change in CO.  We then multiply this by the change in annual average 8-

hour CO concentrations from 1989 to 2003 per state to obtain the increase in annual earnings for the 2003 

birth cohort.  Finally, we compute the present discounted value of the annual earnings increase assuming 

a 6 percent discount rate and 30 years of labor force participation, which gives us an estimated increase in 

nationwide earnings of $720 million for the 2003 birth cohort due to the fact that CO had fallen from 

1989 levels. This is clearly a lower bound, since the assumed discount rate of 6 percent is relatively high  

and we ignore the fact that mean earnings for this cohort will certainly grow in the future. Furthermore 

the decline in actual exposure was likely larger  than is indicated by the mean decline over the monitors, 

since at least in New Jersey, people tend to live in the more heavily polluted areas that experienced the 

largest declines.  

In order to value the improvements in infant mortality, we multiply our estimate of 17.6 lives 

saved per 100,000 births for a 1 ppm change in CO by the number of births per state and the decreases in 

 
19  For these calculations we assume a homogeneous relationship between pollution and birth weight or infant 
mortality.  While it is not possible to properly assess this, we do note that the marginal impact of CO on infant 
mortality we estimate here is virtually identical to the marginal impact of 17 deaths per 100,000 births found in 
Currie and Neidell (2005). 
20 Available from the Bureau of Labor Statistics at http://www.bls.gov/cew/. 
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CO levels per state to obtain the nationwide number of deaths avoided.  This gives us a total of 449 deaths 

averted in 2003 by the reduction in CO from 1989 levels.  We compute the benefits from these avoided 

deaths using a value of statistical life of $4.8 million as used by the EPA, which yields an estimated $2.2 

billion in annual savings.21   

While we recognize the strong assumptions behind these calculations, the magnitude of these 

benefits suggests potentially substantial benefits from the improvements in CO over time.  Moreover, 

there are several reasons why our estimates may understate the health impact from pollution exposure.  

Unlike small-scale epidemiological studies that use personal air quality monitors strapped to persons, we 

use a crude proxy for individual exposures.  Our noisier measures of exposure may lead us to falsely 

accept a null hypothesis.  And since the literature does not give much guidance about the type of 

exposures that are most likely to be harmful (in terms of length of exposure, when it occurred during 

pregnancy, or intensity of exposure) it is possible that more precise measures taken at key points in the 

pregnancy would uncover larger effects.  Furthermore, our study is based on the population of live births.  

It is possible that pollution causes fetal losses or it impairs fertility.  If high levels of pollution cause 

vulnerable fetuses to be lost, or cause women who might have had low birth weight babies not to become 

pregnant, then mean levels of birth weight and gestation will be increased.  For all these reasons, we 

regard these estimates as lower bounds on the benefits of pollution control to infants.  As such, they may 

still provide a useful benchmark for assessing the benefits of further reductions in air pollution in terms of 

infant health. 

 
21 Full details of these calculations are available from the authors’ upon request. 
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Chart 1: Selected Epidemiological Studies of Effects of Pollution on Infant Health, Developed Countries

Study Location Years Outcomes Pollutants Effects
Lipfert et al. (2000) All of U.S. 1990 infant mortality PM10, CP, SO2, SO4, 

PM2.5
County level annual avg. pollution measures did not have robust relationships to 
pollutants when maternal variables were controlled.

Liu et al. (2003) Vancouver, Canada 1985-1998 low BW, preterm 
birth, growth retard.

CO, NO2, SO2, O3 SO2 in 1st month increases LBW. SO2 and CO in last month increases preterm 
birth. Growth retardation associated with CO, NO2, SO2 in 1st month.

Mainsonet et al. (2001) Northeastern U.S. 1994-96 low BW CO, PM10, SO2 CO in last trimester and SO2 in 2nd trimester increase LBW. No effect of PM10.

Ritz et al. (2000) Los Angeles 1989-1993 preterm birth CO, NO2, O3, PM10 PM10 exposure 6 weeks before birth increases preterm birth. CO exposure in same 
interval has effects only in some areas.

Ritz and Yu (1999) Los Angeles 1989-1993 low BW CO, NO2, O3, PM10 CO exposure in last trimester increased incidence of low BW.
Woodruff et al. (1997) 86 U.S. MSAs 1989-91 infant mortality PM10 Infants with high exposure more likely to die in postneonatal period.
Bell et al. (2007) MA, CT 1999-2002 low BW PM10&2.5, SO2, NO2, CO All pollutants at various trimesters related to birthweight

Brauer et al. (2008) Vancouver, BC 1999-2002 low BW, gestation PM10&2.5, SO2, NO2, 
CO, O3

gestation associated with all but O3, birthweight associated with PM2.5

Chen et al (2002) Washoe County, NV 1991-99 low BW PM10, CO, O3 no associations after adjusting for confounding
Huynh et al. (2006) California 1999-2000 gestation PM2.5, CO Exposure to PM2.5 but not CO associated with preterm birth
Lee et al. (2008) London, UK 1988-2000 gestation PM10, O3 no association
Liu et al. (2007) Calgary, Edmonton, 

Montreal
1985-2000 IUGR SO2, NO2, CO, O3, 

PM2.5
CO, NO2 & PM2.5 associated with IUGR

Parker et al. (2008) Utah 1984-90 low BW, gestation Steel mill closure association with gestation but not birthweight
Parker et al. (2005) California 2000 low BW PM2.5, CO Exposure to PM2.5 but not CO associated with birthweight
Parker & Woodruff (2008) US 2001-03 low BW PM10&2.5 Association with PM10 but not PM2.5; varied by region

Ritz et al. (2007) LA County, CA 2003 gestation CO, NO2, O3, PM2.5 CO & PM2.5 assocaited with preterm birth
Ritz et al. (2006) LA County, CA 1989-2000 mortality CO, NO2, O3, PM10 CO and PM10 associated with mortality
Sagiv et al. (2005) 4 Pennsylvania 

counties
1997-2001 gestation PM10, SO2 Both associated with preterm birth

Salam et al. (2005) California 1975-87 low BW CO, PM10, O3, NO2 O3 during 2nd and 3rd trimester, CO during first
Woodruff et al. (2008) US counties > 250k 1999-2002 mortality (by cause) PM2.5, PM10, CO, O3, 

SO2
PM10 associated with respiratory; O3 associated with SIDS

Rogers & Dunlop (2006) Rural counties in 
Georgia

1986-1988 very low BW PM10 PM10 associated with very low BW

Rogers et al. (2000) Rural counties in 
Georgia

1986-1988 very low BW SO2, TSP Above median exposure associated with increase in very low BW

Dugandzic et al. (2006) Nova Scotia, CA 1988-2000 low BW PM10, SO2, O3 No relationship after adjusting for confounders
Basu et al. (2004) California 2000 low BW PM2.5 PM2.5 associated with lower birthweight; fairly comparable across methods
Wilhelm & Ritz (2005) LA County, CA 1994-2000 low BW, gestation PM10, PM2.5, CO CO and PM10 associated with both if within 1 mile
Notes: BW = birth weight
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Table 1: Sample Means
[1] [2] [3] [4] [5] [6]

<10km like (3) like (4)
 <10km monitor & but >=1 but >=1

All Geocoded monitor smoking sibling sibling
Number of observations 1754861 1502205 628874 61996 283393 21099
Panel A: Outcomes
Birth weight in Grams 3320.2 3319.8 3267.3 3054.6 3236.4 2937.4

[617.4] [615.4] [630.6] [656.1] [660.6] [682.2]
Infant death 0.0073 0.0069 0.0078 0.0099 0.0086 0.0128
Gestation 38.86 38.83 38.71 38.28 38.55 37.84

[2.672] [2.302] [2.475] [2.892] [2.643] [3.212]
Low birth weight 0.077 0.076 0.089 0.157 0.107 0.210
Panel B: Pollution Measures Last Trimester Before Birth
Ozone (8 hour moving average in .01 ppm) 3.73 3.60 3.61 3.60 3.57

[1.498] [1.492] [1.524] [1.503] [1.528]
CO (8 hour moving average in ppm) 1.59 1.64 1.55 1.60 1.51

[0.703] [0.792] [0.772] [0.758] [0.732]
PM10 (24 hour moving average in 10 ug/m3) 2.97 2.99 2.99 2.97 3.01

[0.746] [0.737] [0.744] [0.739] [0.748]
Panel C: Pollution Measures One Week After Birth
Ozone (8 hour moving average in .01 ppm) 3.74 3.60 3.60 3.62 3.55

[1.800] [1.791] [1.822] [1.805] [1.825]
CO (8 hour moving average in ppm) 1.58 1.64 1.55 1.60 1.51

[0.796] [0.881] [0.862] [0.848] [0.817]
PM10 (24 hour moving average in 10 ug/m3) 2.96 2.98 2.97 2.95 2.99

[1.507] [1.495] [1.491] [1.480] [1.504]
Panel D: Control Variables
Mother Age in Years 28.72 29.22 28.25 27.44 27.75 26.92

[5.938] [5.995] [6.164] [5.992] [6.003] [5.645]
Mother African American 0.187 0.19 0.30 0.41 0.35 0.54
Mother Hispanic 0.172 0.18 0.23 0.14 0.20 0.10
Mother Years of Education 13.35 13.27 12.79 11.77 12.74 11.46

[2.600] [2.632] [2.681] [1.946] [2.565] [1.843]
Multiple Birth 0.0338 0.032 0.029 0.026 0.060 0.069
Mother married 0.725 0.72 0.61 0.36 0.59 0.29
Birth parity 1.956 1.98 2.00 2.46 2.44 3.33

[1.145] [1.148] [1.186] [1.615] [1.288] [1.856]
Child Male 0.512 0.51 0.51 0.52 0.51 0.51
Mother smoking 0.129 0.09 0.10 1.00 0.12 1.00
Number of cigarettes per day 1.035 1.01 1.03 10.06 1.16 10.35

 [3.971] [3.903] [3.911] [7.625] [4.105] [7.571]
Median family income census 4.66 4.05 3.53 3.97 3.25
  tract 1989 ($10,000) [1.766] [1.584] [1.375] [1.621] [1.307]
Fraction poor in census tract 1989 0.09 0.13 0.17 0.14 0.20

[0.103] [0.120] [0.137] [0.129] [0.143]
Mean precipitation in previous 13.02 13.05 13.11 12.98 13.03
  90 days [4.211] [4.149] [4.158] [4.080] [4.074]
Mean of daily max temperature 63.70 64.09 64.42 64.10 64.67
  previous 90 days [14.65] [14.74] [14.70] [14.74] [14.74]
Mean of daily min temperature 21.34 22.04 22.26 21.87 22.43
  previous 90 days [15.18] [15.15] [15.11] [15.18] [15.12]

Notes: Standard deviations in brackets. Column [6] contains births where the mother smoked during the pregnancy for at least 
one sibling.
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Table 2: Effects of Air Pollution on Health at Birth - All Mothers < 10 km from a Monitor

[1] [2] [3] [4] [5] [6] [7] [8] [9]

A. Models of Birth Weight
3rd trimester pollution -11.94 -13.81 -16.65 6.31 -3.57 -3.98 -1.91 0.19 -3.66

[5.521]* [6.343]* [7.980]* [2.753]* [3.824] [4.812] [2.355] [2.863] [3.509]
2nd trimester pollution 10.13 -2.01 4.90 0.70 -1.45 -7.98 -4.22 -0.87 -2.17

[6.510] [7.325] [8.492] [3.166] [3.846] [4.518]+ [2.542]+ [3.008] [3.450]
1st trimester pollution -1.04 -7.24 -6.38 5.32 3.14 -3.34 -3.31 0.66 -1.69

[5.447] [6.503] [7.785] [2.914]+ [4.050] [4.574] [2.386] [2.981] [3.478]
Observations 312589 312589 312589 268701 268701 268701 285239 285239 285239

B. Models of Low Birth Weight (Coefficients and standard errors multiplied by 100)
3rd trimester pollution 0.48 0.71 0.83 -0.35 -0.05 0.18 0.08 0.00 0.15

[0.245]+ [0.282]* [0.384]* [0.137]* [0.196] [0.251] [0.113] [0.132] [0.183]
2nd trimester pollution -0.34 -0.14 -0.36 -0.15 -0.15 -0.11 0.11 0.10 0.07

[0.310] [0.346] [0.453] [0.162] [0.193] [0.252] [0.124] [0.150] [0.186]
1st trimester pollution -0.04 0.11 0.49 -0.01 0.19 0.43 0.12 0.10 0.34

[0.247] [0.304] [0.401] [0.141] [0.188] [0.234]+ [0.116] [0.144] [0.194]+
313504 313504 313504 269485 269485 269485 286206 286206 286206

C. Models of Gestation (Coefficients and standard errors multiplied by 100)
3rd trimester pollution -4.11 -4.78 -7.41 3.19 -0.96 -0.33 2.11 3.77 2.06

[2.221]+ [2.603]+ [3.635]* [1.249]* [1.769] [2.255] [1.023]* [1.233]** [1.599]
2nd trimester pollution 3.31 0.06 4.05 0.22 -3.23 -3.28 -2.46 -0.35 -1.12

[2.624] [3.130] [3.955] [1.480] [1.793]+ [2.124] [1.127]* [1.352] [1.714]
1st trimester pollution -0.11 -1.18 -3.95 4.66 2.07 -1.17 -1.70 1.10 -0.07

[2.273] [2.678] [3.582] [1.319]** [1.782] [2.191] [1.009]+ [1.227] [1.613]
Observations 305530 305530 305530 262117 262117 262117 276691 276691 276691
Monitor*quarter fixed effects no yes yes no yes yes no yes yes
Mother fixed effects no no yes no no yes no no yes

CO Ozone PM10

Notes: Standard errors in brackets, clustered on the census tract level. + indicates statistical significance at the 10 percent level, * at 
the 5 percent level, and ** at the 1 percent level.  All regressions include indicators for maternal age (19-24, 25-34, 35+) education 
(high school, 13-15 years, 16+), multiple birth, birth order (2, 3, 4+), marital status, male child, maternal race (African American, 
Hispanic, other race), and maternal smoking as well as the number of cigarettes per day, median family income in the Census tract in 
1989, average precipitation and daily minimum and maximum temperature in each trimester before the birth, month dummies, and year 
dummies. Regressions also include indicators for missing values of the control variables.  
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[1] [2] [3]
A. Models of Birth Weight
Mother smokes                 -161.8 -161.5 -38.89
                              [6.375]** [6.352]** [8.265]**
# Cigarettes per day          -5.014 -5.05 -2.243
                              [0.482]** [0.482]** [0.620]**
# Observations                312589 312589 312589

B. Models of Low Birth Weight (Coefficients and standard errors multiplied by 100)
Mother smokes                 4.708 4.671 0.497
                              [0.344]** [0.343]** [0.496]
# Cigarettes per day          0.196 0.196 0.129
                              [0.0265]** [0.0265]** [0.0393]**
# Observations                313504 313504 313504

C. Models of Gestation (Coefficients and standard errors multiplied by 100)
Mother smokes                 -31.59 -31.15 -2.724

[2.800]** [2.797]** [4.118]
# Cigarettes per day          -1.165 -1.171 -0.667
                              [0.227]** [0.228]** [0.339]*
# Observations                305530 305530 305530
Monitor * Quarter Fixed Effects no yes yes
Mother Fixed Effects no no yes

Table 3: Effects of Smoking on Health at Birth - All Mothers < 10 km from a Monitor 
(Coefficients from Models Including CO as Pollutant in Table 2)

Notes: See notes to Table 2. These coefficients are from the models in columns (1)-(3) in 
Table 2  
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[1] [2] [3]
CO Ozone PM10

A. Models of Birth Weight
3rd trimester pollution -39.22 -19.1 -24.41

[32.58] [17.20] [14.08]+
2nd trimester pollution 10.37 -32.66 -36.42

[34.15] [17.82]+ [15.22]*
1st trimester pollution 0.317 -15.29 3.433

[30.25] [17.18] [13.45]
Observations                  20435 20464 20041

B. Models of Low Birth Weight (Coefficients and standard errors multiplied by 100)
3rd trimester pollution 4.413 -0.262 0.429

[2.219]* [1.144] [0.950]
2nd trimester pollution -4.276 1.647 1.773

[2.311]+ [1.164] [1.027]+
1st trimester pollution 0.846 1.837 1.636

[1.982] [1.081]+ [0.938]+
Observations                  20465 20501 20083

C. Models of Gestation (Coefficients and standard errors multiplied by 100)
3rd trimester pollution -42.89 -11.69 -3.209

[17.92]* [9.448] [7.920]
2nd trimester pollution 20.19 -18.5 -14.78

[18.57] [9.561]+ [8.102]+
1st trimester pollution -14.33 -15.15 -8.27

[17.14] [9.465] [7.185]
Observations                  19930 20118 19494
Monitor * Quarter Fixed Effects yes yes yes
Mother Fixed Effects yes yes yes
Notes: See notes to Table 2.

Table 4: Effects of Air Pollution on Health at Birth - All Smoking Mothers<10 km from 
a Monitor (Mother Fixed Effects Models Only)
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Table 5: Effects of CO on Health at Birth - Mothers from Vulnerable Groups < 10 km from a Monitor
Models with Mother Fixed Effects

[1] [2] [3] [4] [5] [6]
Risk factors Income

<age 19 >= age 35 for the preg. Black <12 yrs ed. <30,000
A. Models of Birth Weight
3rd trimester pollution -20.52 -37.81 -24.88 -2.144 -9.186 -10.6

[12.75] [11.82]** [11.15]* [10.15] [11.47] [10.55]
2nd trimester pollution 6.638 20.27 -1.447 12.73 7.131 9.118

[15.99] [13.37] [13.16] [11.89] [12.97] [12.28]
1st trimester pollution -9.448 0.553 -23.08 -9.429 -12.05 -15.14

[12.79] [12.20] [10.89]* [9.736] [11.18] [10.47]
Observations                  312589 312589 312589 312589 312589 312589

B. Models of Low Birth Weight (Coefficients and standard errors multiplied by 100)
3rd trimester pollution 1.075 1.767 1.18 0.322 0.697 0.729

[0.653]+ [0.640]** [0.545]* [0.545] [0.570] [0.573]
2nd trimester pollution -1.06 -0.815 -0.327 -0.581 -1.108 -0.575

[0.920] [0.754] [0.716] [0.701] [0.718] [0.698]
1st trimester pollution 1.107 0.345 1.411 0.423 1.03 0.785

[0.690] [0.616] [0.554]* [0.567] [0.609]+ [0.563]
Observations                  313504 313504 313504 313504 313504 313504

C. Models of Gestation (Coefficients and standard errors multiplied by 100)
3rd trimester pollution -11.92 -11.83 -10.74 -6.692 -5.438 -5.378

[5.694]* [5.479]* [5.192]* [4.981] [5.009] [4.651]
2nd trimester pollution 6.601 7.081 1.29 1.343 4.245 1.476

[8.562] [5.863] [6.221] [5.888] [6.256] [5.695]
1st trimester pollution -4.014 -3.129 -11.7 -5.119 -4 -4.384

[6.703] [5.129] [5.103]* [4.865] [5.690] [5.138]
Observations                  305530 305530 305530 305530 305530 305530
Notes: The columns show specifications that allow the effect of pollution to vary by characteristics of the mother. The 
models are estimated as in Table 2, but the pollution measures are interacted with a dummy variable for the characteristic 
of the mother. For example, in the second column the regression include each trimester CO measures interacted with 
whether the mother is under age 19, with only the interactions shown. The main effects (not shown) are comparable to the 
main effects in the corresponding specification in Table 2.        
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Table 6: Effects of Air Pollution after Birth on the Probability of Infant Death
All Mothers < 10 km from a Monitor 
(Coefficients and standard errors multiplied by 10,000)

[1] [2] [3]
                              CO Ozone PM10
Mean pollutant weeks 0-2 101.9 8.274 -10.97

[36.11]** [18.20] [25.58]
Mean pollutant weeks 2-4 -21.61 4.478 -6.42

[15.47] [9.194] [10.93]
Mean pollutant weeks 4-6 12.88 9.177 8.122

[10.77] [5.543]+ [5.419]
Mean pollutant weeks >6 -8.261 3.266 -0.564
                              [5.819] [3.411] [1.809]
Brith weight < 1500 grams -804.6 278.3 -122.6

[740.1] [381.8] [533.3]
Brith weight 1500-2500 grams -1515.3 -483.6 -908.6

[737.0]* [369.5] [523.0]+
Brith weight 2500-3500 grams -1637.4 -620 -1041.8

[738.2]* [371.0]+ [525.1]*
Brith weight >= 3500 grams -1685.6 -664.4 -1066.1

[739.6]* [370.9]+ [525.0]*
Week after birth              -1713.7 -1710 -1776.5
                              [55.69]** [57.69]** [62.64]**
1(Week after birth >= 1) 1814.8 1643.7 1671.5

[97.20]** [111.8]** [121.8]**
1(Week after birth >= 2) -178.1 16.58 21.51

[83.57]* [97.69] [109.6]
1(Week after birth >= 4) 75.55 41.24 79.84

[23.81]** [26.34] [29.55]**
1(Week after birth >= 8) -0.404 8.272 5.087

[7.681] [7.814] [8.314]
1(Week after birth >= 12) -1.394 -4.28 -5.07

[4.156] [4.829] [5.089]
1(Week after birth >= 20) 1.174 2.775 0.917

[1.379] [1.493]+ [1.888]
1(Week after birth >= 32) 1.736 1.293 2.459

[0.594]** [0.620]* [0.786]**
Observations                  192184 163392 131837
Number of Births              5848 5078 4556
Number of Deaths              2334 2038 1870
Number of Mothers             2252 1962 1803

Notes: See notes to Table 2. Standard errors are clustered on mother level in all models. All 
models include mother fixed effects.  
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[1] [2] [3] [4] [5] [6]
CO Ozone PM10 CO Ozone PM10

A. Models of Birth Weight
3rd trimester pollution -1.11 -5.353 -8.613 -14.16 -2.097 -6.207

[9.537] [4.467] [4.846]+ [9.536] [5.184] [4.546]
2nd trimester pollution -11.25 2.696 -3.964 7.449 -7.957 -4.087

[9.937] [4.624] [5.651] [9.811] [4.814]+ [3.941]
1st trimester pollution -17.47 -2.464 -7.223 -0.551 1.6 -3.082

[10.02]+ [4.410] [5.079] [8.695] [4.662] [3.681]
Observations                  248230 270668 137123 312589 268701 285239

B. Models of Low Birth Weight (Coefficients and standard errors multiplied by 100)
3rd trimester pollution 0.43 0.303 0.317 0.85 0.167 0.298

[0.474] [0.207] [0.246] [0.463]+ [0.273] [0.236]
2nd trimester pollution 0.152 -0.156 -0.0303 -0.447 -0.0535 0.149

[0.492] [0.215] [0.242] [0.506] [0.254] [0.208]
1st trimester pollution 0.406 0.146 0.346 0.246 0.23 0.388

[0.478] [0.203] [0.241] [0.463] [0.228] [0.210]+
Observations 249163 271605 137748 313504 269485 286206

C. Models of Gestation (Coefficients and standard errors multiplied by 100)
3rd trimester pollution -0.618 0.0659 -2.434 0.71 1.028 1.413

[4.359] [1.993] [2.195] [4.192] [2.387] [2.034]
2nd trimester pollution 0.991 -0.142 0.0585 4.939 -3.561 -1.347

[4.385] [2.059] [2.395] [4.464] [2.242] [1.942]
1st trimester pollution -1.241 0.762 -1.737 3.263 -0.121 0.842

[4.109] [1.849] [2.041] [3.892] [2.195] [1.769]
Observations                  243028 263952 133723 305530 262117 276691

Table 7: Effects of Air Pollution on Health at Birth – Alternative Ways to Assign Pollution

Mothers > 10 km and < 20 km from a Monitor Assigning Pollution using Zip Code

Notes: See notes to Table 2.  All models include mother fixed effects. The models in columns [4] to [6] assign pollution to the child assuming 
we only knew the mother's zip code of residence and computing the inverse distance weighted average of monitor values from the zip code 
centroid.  
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Table 8: Effects of Air Pollution on Health at Birth - All Mothers < 10 km from a Monitor
Models control for both CO and O3

[1] [2] [3]
Birth Low Birth

Weight Weight Gestation
3rd trimester CO (in ppm) -20.77 1.056 -9.416

[8.973]* [0.429]* [4.044]*
2nd trimester CO (in ppm) 7.646 -0.784 5.366

[9.427] [0.507] [4.414]
1st trimester CO (in ppm) -5.765 0.79 -5.044

[8.443] [0.445]+ [3.917]
3rd trimester ozone (in .01 ppm) -5.365 0.16 -3.115

[4.269] [0.232] [2.104]
2nd trimester ozone (in .01 ppm) 0.271 -0.117 -1.591

[4.624] [0.257] [2.157]
1st trimester ozone (in .01 ppm) -4.384 0.275 -0.849

[4.172] [0.241] [2.032]
Observations                  274358 275193 267818

Notes: See Table 2.  Coefficients and standard errors are multiplied by 100 in columns 2 and 3. 
All models include mother fixed effects.  
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[1] [2] [3] [4] [5] [6] [7] [8] [9]

3rd trimester pollution -11.94 -13.81 -16.65 6.312 -3.566 -3.978 -1.906 0.19 -3.657
[5.521]* [6.343]* [7.980]* [2.753]* [3.824] [4.812] [2.355] [2.863] [3.509]

2nd trimester pollution 10.13 -2.009 4.904 0.695 -1.453 -7.975 -4.219 -0.865 -2.174
[6.510] [7.325] [8.492] [3.166] [3.846] [4.518]+ [2.542]+ [3.008] [3.450]

1st trimester pollution -1.039 -7.24 -6.379 5.321 3.139 -3.34 -3.31 0.662 -1.691
[5.447] [6.503] [7.785] [2.914]+ [4.050] [4.574] [2.386] [2.981] [3.478]

Mother age 19 to 24           40.51 40.92 31.89 40.63 41.34 30.69 44.56 45.19 35.16
                              [6.195]** [6.210]** [6.840]** [6.445]** [6.480]** [7.959]** [5.989]** [6.002]** [7.329]**
Mother age 25 to 34           61.3 62.14 32.54 50.51 51.57 29.4 61.17 62.08 33.73
                              [6.975]** [7.001]** [8.655]** [7.120]** [7.158]** [9.810]** [6.735]** [6.746]** [9.267]**
Mother age 35 or higher       62.36 63.5 32.94 49.92 51.2 35.63 61.62 63 36.98
                              [7.702]** [7.708]** [11.22]** [7.933]** [7.984]** [13.09]** [7.528]** [7.554]** [12.36]**
High School                   27.47 27.39 -1.738 23.99 23.58 4.496 25.37 25.43 -1.139
                              [3.642]** [3.651]** [5.436] [4.113]** [4.143]** [5.819] [3.795]** [3.796]** [5.517]
13 - 15 Years Education       52.29 52.25 7.928 50.31 49.35 8.641 49.56 49.33 8.576
                              [4.108]** [4.099]** [7.200] [4.808]** [4.841]** [7.771] [4.301]** [4.284]** [7.466]
16 or more Years of Education 57.5 57.32 -5.929 56.64 56.11 6.044 54.54 55.06 -6.013
                              [4.523]** [4.523]** [9.059] [5.290]** [5.291]** [10.54] [4.892]** [4.882]** [9.418]
Multiple Birth                -1029.8 -1029.9 -1009.7 -1029.2 -1028.6 -1004.7 -1031.6 -1030.9 -1011.3
                              [6.913]** [6.923]** [14.48]** [7.770]** [7.778]** [14.67]** [7.636]** [7.636]** [14.57]**
Birth order 2                 87.06 87.64 57.06 100.4 99.92 57.53 91.73 92.3 56.36
                              [4.300]** [4.308]** [5.558]** [4.926]** [4.947]** [6.429]** [5.252]** [5.258]** [6.776]**
Birth order 3                 99.97 100.6 32.66 112.2 111.4 21.36 103.2 103.4 20.71
                              [5.954]** [5.968]** [7.960]** [6.589]** [6.629]** [9.236]* [6.803]** [6.786]** [9.331]*
Birth order 4 or higher       71.27 72.04 -11 85.23 83.79 -24.14 69.01 68.95 -19.5
                              [7.842]** [7.867]** [10.01] [8.016]** [8.088]** [10.79]* [8.239]** [8.247]** [10.40]+
Mother married                86.22 85.88 31.67 90.94 90.73 40.1 87.27 86.99 36.69
                              [3.349]** [3.341]** [5.503]** [3.682]** [3.704]** [5.999]** [3.547]** [3.519]** [5.769]**
Mother is smoking             -161.8 -161.5 -38.89 -156 -156.7 -41.42 -160.7 -161.4 -43.47
                              [6.375]** [6.352]** [8.265]** [6.385]** [6.399]** [8.630]** [6.348]** [6.349]** [8.328]**
Number of cigarettes per day  -5.014 -5.05 -2.243 -5.845 -5.88 -3.03 -5.566 -5.592 -2.979
                              [0.482]** [0.482]** [0.620]** [0.504]** [0.504]** [0.614]** [0.503]** [0.502]** [0.606]**
Male                          114 113.8 120.1 114.9 114.8 122.5 115 114.8 120.8
                              [2.166]** [2.159]** [2.503]** [2.336]** [2.331]** [2.841]** [2.296]** [2.293]** [2.684]**
Med fam income 1989 in $10,000 3.463 1.543 3.994 1.018 2.576 7.333 2.738 5.668 3.844
                              [1.675]* [1.844] [2.639] [1.644] [1.727] [3.003]* [1.794] [1.834]** [2.883]
Fraction of people poor in 1989 -197.6 -199.6 -1.40 -173.7 -164.9 9.063 -195.5 -151.4 -1.10
                              [21.25]** [22.49]** [29.51] [20.50]** [20.84]** [30.99] [22.86]** [23.78]** [30.32]
Precipitation third trimester 0.239 -0.0704 0.02 -0.056 -0.554 -0.564 0.26 0.00816 0.0491
                              [0.315] [0.330] [0.376] [0.335] [0.347] [0.429] [0.337] [0.352] [0.413]
Precipitation second trimester -0.301 -0.368 0.26 -0.0863 0.0536 -0.134 -0.328 -0.124 0.501
                              [0.333] [0.338] [0.392] [0.364] [0.368] [0.440] [0.338] [0.345] [0.430]
Precipitation first trimester 0.0421 -0.015 -0.208 -0.358 -0.254 -0.428 -0.0606 -0.0329 -0.511
                              [0.308] [0.314] [0.387] [0.348] [0.353] [0.423] [0.347] [0.360] [0.434]
Mean daily min temp third trimester -0.414 0.151 -0.118 -0.852 -0.555 -0.677 -0.332 0.181 -0.101
                              [0.284] [0.292] [0.360] [0.315]** [0.322]+ [0.399]+ [0.301] [0.308] [0.394]
Mean daily min temp second trimester -0.19 0.226 0.0736 0.049 0.264 0.0783 -0.014 0.147 -0.183
                              [0.287] [0.310] [0.369] [0.312] [0.335] [0.400] [0.303] [0.315] [0.372]
Mean daily min temp first trimester -0.653 -0.245 -0.269 -0.718 -0.421 -0.204 0.0284 0.186 -0.0115
                              [0.271]* [0.279] [0.343] [0.315]* [0.326] [0.392] [0.293] [0.315] [0.394]
Mean daily max temp third trimester 1.448 -0.147 -0.105 1.057 -0.0419 0.423 1.778 -0.27 -0.25
                              [0.476]** [0.558] [0.647] [0.559]+ [0.608] [0.750] [0.517]** [0.577] [0.669]
Mean daily max temp second trimester 0.855 -0.132 -0.373 0.64 -0.237 0.585 1.00 0.199 -0.0112
                              [0.444]+ [0.459] [0.561] [0.517] [0.574] [0.708] [0.482]* [0.486] [0.564]
Mean daily max temp first trimester 2.172 0.74 0.393 1.361 -0.242 -0.365 1.799 0.437 -0.377
                              [0.424]** [0.521] [0.643] [0.483]** [0.572] [0.725] [0.459]** [0.546] [0.702]
Mother Age missing            -197.9 -196.5 21.44 -728.2 -749.1 -10.31 354.3 346.8 ---
                              [377.5] [371.1] [13.54] [15.74]** [17.51]** [13.16] [14.29]** [15.87]**
Education Variable Missing    -35.39 -39.11 -51.4 -39.01 -43.79 -57.71 -31.79 -36.58 -57.57
                              [7.283]** [7.175]** [9.412]** [7.273]** [7.298]** [9.087]** [7.291]** [7.238]** [8.802]**
Multiple Birth missing        -262.2 -263 -174.1 -144.6 -143 3.059 -181.8 -179 -90.88
                              [55.45]** [55.14]** [91.12]+ [58.52]* [58.40]* [86.42] [51.78]** [51.36]** [89.62]
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[1] [2] [3] [4] [5] [6] [7] [8] [9]

Birth order missing           36.62 40.88 15.89 106.1 103.8 37.01 63.41 64.4 -6.089
                              [38.14] [38.22] [42.23] [37.28]** [37.36]** [43.80] [38.67] [38.81]+ [43.08]
Mother Married missing        -240.8 -239.7 -175 -151.3 -148.6 -97.11 -293 -290 -171.6
                              [85.85]** [85.62]** [92.86]+ [76.33]* [76.04]+ [83.20] [77.53]** [77.09]** [92.98]+
Male missing                  -713.5 -712.6 -175.8 -1681.8 -1676.6 -1324.5 -940.2 -926.4 -457.8
                              [419.1]+ [415.6]+ [433.1] [506.3]** [502.7]** [671.3]* [420.8]* [416.7]* [507.4]
Mother is smoking missing     -102.6 -107.4 -44.53 -113.5 -115.5 -46.31 -108 -115.8 -49.11
                              [8.471]** [8.501]** [9.788]** [8.562]** [8.555]** [10.08]** [8.419]** [8.428]** [9.503]**
Mother African American       -198.2 -193.6 -211.8 -204.6 -204.5 -197.9
                              [4.028]** [4.189]** [4.176]** [4.177]** [4.167]** [4.272]**
Mother Hispanic               -43.51 -42.93 -61.36 -56.8 -51.91 -47.36
                              [4.027]** [3.953]** [4.333]** [4.393]** [4.154]** [4.034]**
Other race or race missing    -230.3 -228.1 -232.4 -226.4 -234.9 -228.7
                              [6.147]** [6.337]** [7.343]** [7.465]** [7.061]** [7.310]**
Constant                      3174.2 3438.1 3319.5 2947.5 3191.9 3363.6 2626 2825.8 3280.2
                              [380.4]** [372.3]** [85.77]** [67.47]** [75.56]** [107.7]** [60.59]** [72.16]** [106.1]**
Observations                  312589 312589 312589 268701 268701 268701 285239 285239 285239
Monitor*quarter fixed effects no yes yes no yes yes no yes yes

Mother fixed effects no no yes no no yes no no yes

Notes: The table corresponds to the same regressions as Table 2 Panel A, but display all covariates (except for year, month and monitor dummies).

Appendix Table 1: Effects of Air Pollution on Health at Birth - All Mothers < 10 km from a Monitor – Showing All Controls (Continued)
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Figure 1: Location of Air Monitors in New Jersey
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