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ABSTRACT

At each age an organism produces energy by foraging and allocates this energy among reproduction,
survival, growth, and intergenerational transfers. We characterize the optimal set of allocation decisions
that maximizes reproductive fitness. Time preference (the discount rate) is derived from the marginal
rate of substitution between energy obtained at two different times or ages in an individual’s life, holding
reproductive fitness constant. We show that the life history may have an initial immature phase during
which there is body growth but no fertility, and a later mature phase with fertility but no growth, as
with humans. During the immature phase, time preference depends only on the compounding effect
of body growth, much like returns on a capital investment, but not on fertility, or the intrinsic population
growth rate. During the mature phase, time preference depends on the costliness of fertility, and on
endogenous survival and intrinsic growth rate, and not at all on body growth. During the transition
between the two phases, fertility, mortality, body growth, and intrinsic growth rate all matter. Using
these results, we conclude that time preference and discount rates are likely to be U-shaped across
age. We compare our results to Hansson and Stuart (1990), Rogers (1994, 1997) and Sozou and Seymour
(2003). Wastage and inefficiencies aside, in a single sex model a system of intergenerational transfers
yields Samuelson’s (1958) biological interest rate equal to the population growth rate. When the rate
of time preference exceeds this biological rate, inter- generational transfers will raise fitness and evolve
through natural selection, partially smoothing out the age variations in time preference.
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Once upon a time, there was a monkey-keeper who fed the mon-

keys with acorns. When he said that he would give them three

bushels of acorns in the morning and four bushels of acorns in

the evening, all the monkeys were angry with his arrangement.

However, when he said he would give them four bushels of acorns

in the morning and three bushels of acorns in the evening, all the

monkeys were pleased with his arrangement.

Zhuangzi, Qiwu lun 233B.C.

1 Background

Economists generally take the framework of the human life cycle as given:

the age patterns of fertility and mortality; the low level of fertility relative

to other species and the long period of child dependency; bodily growth

limited to the �rst part of life and fertility limited to a later period; extended

parental support of their children, and the rate of time preference. Arguably,

however, these features were shaped by natural selection in our evolutionary

past and may be at least partially understood in an optimization framework,

one approach to what biologists call �life history theory�. In the fable quoted

above, even �ancient monkeys�had a time preference for (4,3) over (3,4). In

this paper, we shall investigate how such preferences are shaped by evolution.

Robbins famously de�ned economics as �the science which studies human

behaviour as a relationship between ends and scarce means which have al-

ternative uses." In evolutionary theory, the end is clear: reproductive �tness,

or the propagation of genes into the future. Here we use economic reasoning

to analyze how humans have evolved to allocate the scarce resource, energy,

among the alternative uses of fertility, survival, body growth, and transfers

to others so as to maximize the propagation of genes into the future, and

how time preference emerges from this process. Economic reasoning thus

3



illuminates the evolutionary theory of life histories. But evolutionary the-

ory, in turn, also sheds light on central problems in economics. Research

in behavioral economics and neuroeconomics has found that intertemporal

choices are governed by a set of disparate and con�icting emotions, cogni-

tive processes, and neural functions (Frederick et al, 2002; Camerer et al,

2005). Evolutionary theory is a foundational approach to thinking about

intertemporal choice in a uni�ed way, leading to predictions about how this

apparent hodgepodge of in�uences should lead to a coherent set of outcomes.

For example, Sozou (1998) has shown how hyperbolic discounting and prefer-

ence reversals may evolve through natural selection when discounting re�ects

risk. Intertemporal rates of preference and intergenerational transfers have

an obvious relevance to economic growth.

1.1 Prior Literature

Economics increasingly recognizes that the biological nature of humans shapes

their development, health, emotions, reproduction, altruism and cognitive

processes. Evolutionary theory provides a fundamental organizing theory for

understanding the interrelations of such human traits, and economists have

begun to use their tools to analyze the evolutionary processes that shaped

them. This paper seeks to understand the evolution of time preference, and

it joins a growing number of papers that have taken an economic approach

to the evolution of the life cycle or life history (Hansson and Stuart, 1990;

Rogers, 1994; Sozou, 1998; Sozou and Seymour, 2003; Kaplan and Robson,

2002; Robson and Kaplan, 2003; Lee, 2003; Galor and Moav, 2002, 2004;

Chu and Lee, 2006; Lee, 2008; Robson and Szentes, 2008). They ask what

patterns of these life history traits would maximize reproductive �tness, typ-

ically measured either by the steady state population growth rate or by the

expected number of births over a life time. In this paper we focus on the
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evolution of time preferences, but we begin by analyzing the optimal life cy-

cle. The general idea, as developed by Hansson and Stuart (1990), Rogers

(1994), and Sozou and Seymour (2003) is that time preferences should have

evolved in the past so that the marginal rate of substitution (MRS) between

a good received at two di¤erent ages should be the MRS in �tness. We assess

the MRS in �tness by analyzing the optimal life history.

Of course, economists�concept of human time preference does not refer

to reproductive �tness, but rather to the variation of utility that is associ-

ated with di¤erent sequences of consumption amounts. But one may argue

that the association of utility with consumption sequences evolved to guide

individual decision making so as to enhance reproductive �tness. It is in this

sense that our analysis informs the evolution of time preference. As Camerer

et al (2005 p.27) remind us, �... humans did not evolve to be happy, but to

survive and reproduce�. Economists typically represent the objective func-

tion for intertemporal choice as an atemporal utility function multiplied by

an age-time discount factor derived from a cumulated rate of time preference.

It is this latter that we seek to understand here. Of course, the level of energy

use and consumption is vastly higher now than in our evolutionary past, but

we believe that human discounting today has some biological commonality

with our ancient relatives, and it is this that we attempt to characterize.

We analyze and discuss intertemporal tradeo¤s in terms of energy, but

the actual tradeo¤s are between the things into which energy can be con-

verted: fertility, survival, bodily growth, and transfers to others. By way

of illustration, consider human hunter-gatherers who chose between immedi-

ate childbearing versus building up somatic reserves of self and earlier born

children to raise the probability of longer term survival and future reproduc-

tion. That was a decision about long term intertemporal tradeo¤s. Short

birth intervals undermined the health of both the mother and her previously

born child, so these decisions were pervasive for humans in our evolution-
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ary past. Consider individual members of some species of birds that must

choose as yearlings whether to disperse, risking mortality from predation

but gaining a shot at reproducing during the current breeding season, versus

staying as �helpers at the nest� to assist their parents to raise new gener-

ations of siblings. Staying reduces their mortality risk while allowing them

to gain experience before dispersing the following year, and keeping them in

the running to inherit the breeding site if their parents die. These kinds of

decisions involve intertemporal tradeo¤s.

Hansson and Stuart (1990) considered individuals living a single period

and investing in their o¤spring through intergenerational transfers in order to

maximize their steady state population growth rate. They showed that such

individuals would optimally discount the future at that maximum rate. We

can view the saving and capital accumulation in the Hansson-Stuart model as

investment in the body and particularly the brain of the developing o¤spring

(Robson and Kaplan 2003). Other kinds of investment such as heritable

dwellings, storage facilities, dams, and food stocks occur in some non-human

species but do not seem relevant for most human hunter-gatherers in the

evolutionary past. Because individuals lived only one period in Hansson

and Stuart�s analysis, generations did not overlap and variations within the

individual life cycle were not considered.

By contrast, a pioneering paper by Rogers (1994, 1997) calculated the

�tness preserving MRS for demographic outcomes at di¤erent ages, where

�tness tradeo¤s were assessed through analysis of demographic accounting

identities. Rogers also argued that the relevant intergenerational MRS was

not the population growth rate as in Hansson and Stuart, but rather should

re�ect the dilution of genetic relatedness across generations in sexually re-

producing populations, concluding that the annual rate of evolved time pref-

erence should be about 2%. Robson and Szentes (2008), while supporting

Rogers�general approach, argue that this speci�c conclusion is not correct.
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While Rogers took the age speci�c birth and death rates as given, an

elegant paper by Sozou-Seymour (1993) extended Rogers by endogenizing

the age patterns of fertility and mortality through life history optimization

theory and assessed the evolution of time preference relative to these. They

concluded that time preference rates should rise at older ages because of the

accelerating decline in fertility and the increase in mortality, and that time

preference rates should be higher for organisms that evolved in regimes of

higher unavoidable background mortality.

1.2 Incorporating Energy, Somatic Investment and In-

tergenerational Transfers

In nature, energy is the closest thing to money, and time preference refers

most generally and fundamentally to the allocation of energy over the life

cycle or across time. Both Rogers and Sozou-Seymour calculated the �tness

preserving MRS for demographic outcomes at di¤erent ages without explic-

itly introducing an energetic budget constraint. However, the same outcome

at a di¤erent age might have quite di¤erent energetic costs. At older ages

an incremental birth may require enduring several prior miscarriages and

other health costs and mortality risks, and in early childhood no amount of

energy can achieve a birth. Similarly, reducing mortality at older ages may

be more energetically costly than at younger ages due to senescent decline.

Thus �tness tradeo¤s based on demographic accounting rather than resource

inputs necessarily omit some relevant considerations. Furthermore, these de-

mographic outcomes are not fungible and are non-tradable. Tradeo¤s of this

kind between demographic outcomes are relevant for some real-world choices,

but arguably these are special cases. Here we will consider time preference

in relation to the allocation of energy across age and time.

Time preference is not a feature of the underlying utility function alone.
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It also depends on the initial age-time trajectory of consumption over the life

course, since this enters into the marginal utility at each age and hence the

MRS. If individuals at all ages had access to intertemporal markets in the

evolutionary past, then we might expect that their typical age trajectory of

resource use would have evolved so as to set the MRS equal to the market

discount factor for all pairs of ages, in which case the rate of time preference

would be constant across age. But even in the modern industrial world

children do not have access to intertemporal credit markets, and typically

markets are restricted, for example they do not permit negative net worth.

These limitations prevent this equalization from occurring.

In nature, intertemporal markets do not exist at all. However, two non-

market mechanisms for intertemporal reallocation might work toward this

equalization. First, energy can be reallocated forward in age and time when

an individual invests in its own somatic growth in body size or brain (Robson

and Kaplan, 2003) or simply stores fat. However, if the optimal life cycle

requires downward or backward reallocations of energy, somatic investment

cannot help. Because young organisms are small and immature, and are in

mortal danger from predation and environmental �uctuations, they should

optimally borrow against the future. In this case, somatic growth has a

limited role in equalizing the MRS across ages.

The second non-market mechanism in nature is downward intergener-

ational transfers to the young from older relatives, particularly parents,

but also older siblings, grandparents, and other unrelated individuals. Hu-

mans appear to surpass all other species in this regard, with hunter-gatherer

children receiving net transfers and remaining nutritionally dependent until

around age 20 (Kaplan, 1994). However, there are also obstacles to evolving

an e¢ cient allocation of resources across ages through transfers. Transfers

from fathers might be limited by their uncertainty about paternity. More gen-

eral kinds of free-riding might arise in cooperative breeding groups. When
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o¤spring are heavily dependent on continuing parental investment, o¤spring

survival depends on parental survival, leading to ine¢ cient resource wastage

following parental death. The upshot is that the �tness MRS for the evolved

human will vary with age.

In virtually all species individuals invest in their own growth, but while

some species continue to grow throughout their lives, others such as humans

exhibit �determinate growth�. That is, in the �rst life cycle stage there

is growth but no fertility, and in the second stage there is fertility, but no

growth. None of the preceding studies of the evolution of time preference

incorporate body size and growth, so none incorporates the special case of

determinate growth. Biologists classify all mammals including humans, all

birds, most insects, and most annual plants as species exhibiting determinate

growth, although some of them, like humans, may have a short transitional

period that connects the two life cycle stages. Consistent with some prior

literature (Taylor et al. 1974 and Vaupel et al. 2004), we �nd that the

optimal life history may have a corner solution in which an organism �rst

grows without reproducing and then reproduces without further growth. We

�nd that incorporating growth and the determinate growth pattern changes

the conclusions of the earlier studies.

In sum, this study breaks new ground by explicitly incorporating en-

ergy resource constraints, body growth and the corner solution known as

determinate growth, transfers of energy from older to younger individuals

as constrained by the population age distribution, and by considering the

consequences of these life cycle features for the evolution of time preference.

1.3 Plan of Paper

The next section of the paper discusses some issues in modeling that are

preliminary to the main analysis. The �rst analytic section, labeled Theory
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I., speci�es a model of physiological tradeo¤s across age and time during the

evolutionary process, with size and energy treated as exogenous and the bud-

get constraint autarchical. The optimal solution to this model provides us

with an age-speci�c path of energy allocations to fertility and maintenance.

Along this optimal path, we evaluate the marginal rate of substitution for

exchanging energy between any two age-time points, which reveals intertem-

poral time preferences or discount rates. We implicitly assume that the same

tradeo¤s that operated during evolutionary time also characterize the �tness

costs and rewards of behavioral decisions. We con�rm earlier results from

the literature in this new model incorporating energy.

In the next section, Theory II, the mature size of an organism is en-

dogenously determined by investments in growth but still with an autarchic

budget constraint, leading to a possible corner solution in which there is �rst

growth without fertility until sexual maturity, after which there is fertility

without growth, as in humans and many other species. The discount rates

derived here di¤er from the earlier literature and have richer interpretations.

The �nal analytic section, Theory III, relaxes the autarchic budget constraint

by permitting intergenerational transfers. The age-time MRS together with

the marginal rate of transformation provided by a cooperative breeding group

determines whether transfer behavior will be selected, smoothing across age

generations in the MRS. The last section summarizes our conclusions and

compares them to features of the standard discounted utility approach.

2 A Model of Sel�sh Genes

The standard approach in life history theory models a con�ict between an

individual�s age-speci�c consumption of energy for its current reproduction

and for its own maintenance and survival, which are preconditions for its

future reproduction, as in Abrams and Ludwig (1995). Natural selection
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by de�nition favors the life history con�guration with the highest reproduc-

tive �tness, which is typically measured by the numerical predominance of

replicates in the future. Most models assume asexual reproduction, so all

descendents except mutants are clones, and it makes no di¤erence whether

we think of replicates of the phenotype (actual life history arrangement) or

genotype (which produces that arrangement). In practice, theorists gen-

erally maximize the steady-state intrinsic growth rate, also known as the

Euler-Lotka parameter. In what follows, we put more emphasis on the allo-

cation of energy in di¤erent age-time spans, and this helps us envisage the

time preferences behind such a maximization.

2.1 A Species�Dynamic Maximization

Let �a be the instantaneous mortality rate at age a (Table 1 summarizes our

notation). The probability that an individual survives from birth to age a is

denoted `a. By de�nition, `a is given by exp(�
R a
0
�sds). The fertility rate of

an individual at age a is denoted ma

At age a, a typical individual expects to have energy or resources which,

following Abrams and Ludwig (1995), she divides between fertility and re-

ducing mortality through body maintenance and repair. There is typically

a tradeo¤ between energies devoted to reproduction and to survival: Having

higher fertility in early life reduces probability of survival to later life, which

in turn reduces the probability of realizing later-life fertility.

The foraging success of an individual at age a is a function of her size,

denoted wa. Body size can be interpreted broadly to include development

of the brain, for example (Kaplan and Robson, 2002; Robson and Kaplan,

2003). Speci�cally, her energy budget constraint at age a is:

fa(�a;ma) � �a(wa); 8a: (1)

Let fa;� and fa;m denote the partial derivatives of fa w.r.t. �a andma, respec-
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tively. These derivatives represent the marginal energy costs of improving

�a or ma. The marginal increase in the net energy �ow resulting from a

marginal increase in body-size is given by �a;w � � 0a. For the time being, we

treat wa as given; later we shall allow the growth of wa to be endogenous.

Consider how marginal survival costs fa;� might vary with age. Real time

biological processes such as oxidative damage and somatic mutations will

tend to raise the marginal costs of achieving a given level of mortality with

age, which means that �fa;� is increasing in a. Higher levels of external

risks due to predators, disease, or climate would raise fa;� at all ages. Re-

production may also become more costly for an older individual, as re�ected

in a larger fa;m, due to the deterioration of quantity and quality of eggs in

mammals, for example, and the deterioration of reproductive organs through

the processes mentioned above. As for energy production per body weight,

�a;w, this clearly �rst rises and then declines in old age in many species.
2

In applications of this optimal life history approach which start from a zero

baseline, such variations might be treated as endogenous, while in other ap-

plications such features might be treated as having been �xed in an earlier

evolutionary stage and therefore treated as constraints as we think about the

evolutionary processes through which humans, for example, developed from

an earlier primate form.

How do we characterize the optimal life history? Here we de�ne a life

history, (�a;ma)
1
a=0, as optimal if it maximizes the intrinsic rate of population

growth, �. An alternative measure of an organism�s ability to survive and

reproduce is Fisher�s reproductive value, va � (1=`a)
R1
a
e��(s�a)`smsds, for

an age-a individual (Fisher, 1958). It is straightforward to demonstrate that

an arbitrary life history corresponds to a certain steady state growth rate.

2Human infants are completely helpless, indicating that �a;w is nearly zero for small a.
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Evaluating va at a = 0 and equating it to 1, we have:

v0 �
Z 1

0

e��s`smsds = 1: (2)

Consider that value of � for which the maximum value of v0 is 1. That is, we

seek the solution to:

max

Z 1

0

e��s`smsds subject to (1): (3)

Taylor et al. (1974) show that the corresponding life history is optimal. The

solution to (3) will be presented in the following section.

2.2 The Solution

The state variable for the dynamic problem is `a, with dynamics speci�ed by

d`a=da = �`a�a. The control variables are �a and ma, which are regulated

by the energy constraints in (1). Under appropriate regularity conditions,

we can rewrite (1) as �a = �a(ma; wa) and thereby eliminate the constraint.

The present-value Hamiltonian is

H = e��a`ama � �a`a�a; (4)

where the costate variable �a satis�es�

d�a
da

= �@H
@`a

= �e��ama + �a�a: (5)

Solving the di¤erential equation (5) yields

�a`a =

Z 1

a

e��s`smsds+ c; (6)

which can be rewritten as �a = e��ava since the integration constant c equals

zero.3 To maximize the Hamiltonian, the �rst order conditions are
@H
@ma

= e��a`a��a`a
@�a
@ma

= e��a`a+�a`a
fa;m
fa;�

� 0; and @H
@ma

ma = 0: (7)

3An alternative approach to derive �a is to note that the value function
R1
a
e��s`smsds

can be written as e��a`ava. Since �a is the derivative of the value function w.r.t. the

corresponding state variable `a, we obtain �a = e��ava.
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The conditions in (7) reduce to 1+vafa;m=fa;� � 0 and (1+vafa;m=fa;�)ma =

0, which provide the necessary conditions for the solution. These results can

also be interpreted in terms of achieving the maximum population density in

an environment and driving other gene lines extinct.4

3 Theory I: Time Preference and the Biolog-

ical Discount Rate with Exogenous Body

Growth

An advantage of our approach is that we can solve analytically for the use

of energy, so that time preference by age and time can be studied without

having to resort to arbitrary assumptions. We shall analyze the meaning of

time preferences below.

4Consider the carrying capacity constraint imposed by the size and richness of the

relevant environment. The solution to the optimization problem will only by chance be a

growth rate of zero, yet we know that a positive growth rate is not possible in the long

run and a negative one spells extinction. To address this problem, de�ne density to be the

ratio of the total body mass of a population to the environmental resource, call this ratio

D. For a given body weight, the rate per capita at which energy can be extracted from

the environment depends on D, say � (D), with � 0(D) < 0. Under suitable assumptions,

for any given life history strategy there will be some equilibrium value of D for which the

implied intrinsic growth rate is zero.

The life history strategy with the highest equilibrium density will be selected in the

long run, because at that density, the growth rates of all other life history strategies will

be negative. Searching for the strategy with the highest steady state growth rate will

be equivalent to searching for the strategy capable of sustaining the highest equilibrium

population density. More complicated situations are possible, as when some lines have

faster growth at low densities but slower growth at high densities, and for these the basic

argument should be modi�ed.
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3.1 Deriving the Time Preference

Following Zhuangzi�s fable quoted at the beginning of this paper, we can

consider the following experiment. Suppose we take away some energy Ra
when the individual is aged a, and give back some energy Ra+� when she is

aged a+ � . Then, what is the jdRa+�=dRaj ratio if we are to keep the �tness
index � constant? Evidently, jdRa+�=dRaj can be written as���dRa+�

dRa

��� = ���� @�

@Ra

�.� @�

@Ra+�

����:
When variations in energy Ra are introduced, the constraint in (1) be-

comes:

fa(�a;ma) � �a(wa) +Ra; 8a: (10)

The partial derivatives of � are proportional to those of H:

@H
@Ra

=

�Z 1

0

se��s`smsds

�
@�

@Ra
;

and thus the ratio jdRa+�=dRaj can be expressed in terms of H. Applying
the envelope theorem to (4) and assuming that (7) leads to interior solutions,

we have
@H
@Ra

= ��a`a
@�a
@Ra

= ��a`a
fa;�

=
e��a`a
fa;m

: (8)

Similarly, for the same individual who receives Ra+� at age a+ � , the impact

is
@H
@Ra+�

=
e��(a+�)`a+�
fa+�;m

;

which yields the following formula for the �tness-oriented time preference���dRa+�
dRa

��� = `a
`a+�

� fa+�;m
fa;m

� e�� : (9)

In terms of the �tness index, expression (9) speci�es how increments in

Ra and Ra+� are valued di¤erently in the maximization process. In terms of

economics, jdRa+�=dRaj is the gene�s MRS between the endowments of two
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di¤erent periods, which should evidently be the gene�s discount factor from

one age to the other.

Since the current model is continuous, it is natural to consider the dis-

count rate in continuous form: taking natural logarithm, dividing it by � and

then taking the limit with � ! 0, we obtain the instantaneous age speci�c

discount rate:

�a = �a +
_fa;m
fa;m

+ �; (90)

We will discuss the meaing of this result in relation to the existing literature.

Sometimes the discount rate may be expressed per generation rather than

per year, equal to the annual rate multiplied by Af , the average age of child-

bearing in the steady state population. Note that we derived our formula for

the discount factor based on the simple assumption of maximizing �tness,

without relying on any assumption of stationary population or golden-rule

growth, as in Hansson and Stuart (1990). Another feature of our approach is

the explicit characterization of �tness maximization, which was not explicitly

speci�ed in the previous literature. Below we compare this result with the

previous literature.

3.2 Comparison to the Literature

First, Hansson and Stuart (1990) found that the intergenerational discount

rate should be the intrinsic growth rate �, which appears in (9�). Other

factors also appear in (9), because in our intragenerational framework, �

must be adjusted by some age-speci�c factors. As in Strotz (1956), the age

and time separation factors are multiplied to form the discount rate: the

factor depending only on the time separation between the two time points in

question is our �, and the other factor depending on absolute age or time is

the intragenerational discount rate between speci�c ages.

Second, Sozou and Seymour (2003 p.1047) correctly suggested that the
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discount rate across age should depend on the mortality rate over the relevant

age range. This is re�ected by �a in (9�). It also follows that higher external

mortality risks will lead to higher discount rates, since they will lead to

lower survival in the optimal life history, again as suggested by Sozou and

Seymour. In the context of the fable at the beginning of this paper, if the

monkey expects a high mortality rate at noon, the discount factor will be

small and the discount rate will be high.

Third, Rogers (1994 p.447) and Sozou and Seymour (2003 p.1049) also

found that the discount rate should be higher when the rate of senescent

decline in age-speci�c fertility is greater. This is re�ected in our
_fa;m
fa;m

in

(9�). If
_fa;m
fa;m

> 0 then the energetic cost of fertility is rising with age due

to senescent decline. If, however,
_fa;m
fa;m

< 0 as when fecundity is increasing in

youth, then this declining cost of fertility reduces the discount rate.

Consider an age a just at sexual maturity. In the neighborhood of a,

evidently fa;m and fa+�;m belong to di¤erent life-history regimes, and hence

the formula in (9) must be revised to accommodate this important case,

which we take up in a later section.

4 Theory II: Autarchic Energy Budget With

Endogenous Body Size

The analysis so far has been based on the framework of Abrams and Ludwig

(1995), which incorporates tradeo¤s between fertility (ma) and repair/maintenance

(�a). In applying the envelope theorem to (4), we did not take into account

the possible regime changes of the life-history maximization. But for humans

and other mammals as well as birds and some other organisms, there is a long

juvenile period in which individuals grow in size but do not reproduce fol-

lowed by a period in which they reproduce but do not grow, a pattern known
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as determinate growth which holds for �most insects, birds, mammals, and

annual plants�(Stearns 1992:93) (although there may be some growth after

sexual maturation, as with humans). In this section we shall show how the

biological discount rate derived from this modi�ed model may be di¤erent

from the formula in (9).

4.1 A Revised Maximization Problem

Let us consider the same age-speci�c setup except that, following Cichon and

Kozlowski (2000), individuals at each age are assumed to divide their energy

use among fertility (ma), repair and maintenance (�a) and body size increase

(za). Introducing the additional variable za, we can write an individual�s

energy budget constraint at age a as

fa(�a;ma; za) � �a(wa); 8a: (10)

We expect the �rst derivatives of such functions to be positive for ma and

za and negative for �a. If reducing �a incurs increasing marginal cost, then

@2fa=@�
2
a should be positive; other second derivatives can be speci�ed simi-

larly. The body size of an individual grows according to dwa=da = za.

4.2 The Corner Solution Pattern

The determinate growth pattern described above implies that ma and za

cannot both be interior solutions at the same time. As is well known from

Taylor et al (1974), Chu and Lee (2006) and Vaupel et al (2004), a su¢ cient

condition for such a corner solution is that the constraints in (10) are lin-

ear. When (10) is nonlinear, determinate growth can still occur, as we will

demonstrate below.

As in the previous section, we rewrite (10) as �a = �a(ma; za; wa) to

eliminate the budget constraint. The present-value Hamiltonian, which is

18



similar to (4), is:

H = e��a`ama � �a`a�a +  aza; (11)

where �a and  a are costate variables associated with `a and wa, respectively.

(11) di¤ers from (4) in the extra term  aza, which arises since we now allow

the body size to grow endogenously with the dynamics characterized by _wa =

za.

The costate equations for the dynamic problem are:

d�a
da

= �@H
@`a

= �e��ama + �a�a; (12)

d a
da

= � @H
@wa

= �a`a
@�a
@wa

= �a`a
�a;w
fa;�

:

The �rst equation in (12) is identical to (5), which leads to �a = e��ava.

Substituting �a in the second equation yields the solution for  a.

The �rst order conditions are

@H
@ma

= e��a`a + �a`a
fa;m
fa;�

� 0; and @H
@ma

ma = 0; (13)

@H
@za

= �a`a
fa;z
fa;�

+  a � 0; and
@H
@za

za = 0:

We can apply (13) to establish the pattern of determinate growth. Suppose

the optimalma and za are both strictly positive. In this scenario, (13) implies

that @H=@ma = 0 and @H=@za = 0. These equations result in di¤erent value
functions va:

va = �
fa;�
fa;m

and va = �
fa;�
fa;z

�  a
e��a`a

= �fa;�
fa;z

� c

e��a`a
exp

�Z
a

�s;w
fs;z

ds

�
; (14)

which cannot hold simultaneously. The expression for  a is derived as follows.

 a = ��a`afa;z=fa;� if za > 0. Along with the second equation in (12), we

obtain (@ a=@a)= a = ��a;w=fa;z, and hence  a = c � exp[
R
a
(�s;w=fs;z)ds],

where c is an integration constant to be determined later.
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We have demonstrated that ma and za cannot both be strictly positive.

In what follows, we skip the technical discussion concerning which corner

solutions arise, and concentrate on the scenario in which the organism grows

until age J , and then stops growing. In this case, we have ma = 0 (za > 0)

for earlier ages (a � J), and za = 0 (ma > 0) for subsequent ages (a > J).

We shall consider a transfer of resources (positive or negative) received

at age-a; which we denote Ra. Because fertility is zero in the early periods

of life, the budget constraint becomes

fa(�a; 0; za) � �a(wa) +Ra; 8a � J:

And because growth stops for a > J , we know that

fa(�a;ma; 0) � �a(wJ) +Ra; 8a > J:

The latter expression is similar to (10), for which we assumed that the body

size is exogenous and does not grow.

4.3 Discount Rates and Demography

Now let us consider the impact of Ra on the value functions, starting with

a � J . Applying the same method as in Section 4.1, we obtain

@H
@Ra

= ��a`a
fa;�

=
 a
fa;z

=
c

fa;z
exp

�Z J

a

�s;w
fs;z

ds

�
for a � J: (15)

The �rst equality holds true for any a, while the second equality follows from

(13) and employs the fact that za > 0 for a � J . The expression for  a in

the �nal equality can be found in (14).

The �rst order conditions in (13) suggest that term �a`a has di¤erent

expressions depending on whether za > 0 or ma > 0. With ma > 0, we have

@H
@Ra

= ��a`a
fa;�

=
e��a`a
fa;m

for a > J: (16)
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We �rst study the time preference within juvenile ages a to a + � < J .

In this scenario, we have �a`a = �a+�`a+� according to (6) since both terms

equal
R1
J
e��s`smsds. It follows that���dRa+�

dRa

��� = fa+�;�
fa;�

: (17)

As one can see from (17), the discount rate between two ages within the

immature period depends neither on the intrinsic growth rate � nor on the

survival probabilities `a or `a+� , in sharp contrast to the previous literature.

An energy increment a¤ects the reproductive �tness of an immature individ-

ual only if she survives to reproductive age. The timing of mortality before

that age is irrelevant, so neither `a nor `a+� enters the MRS expression di-

rectly. Similarly, postponing the energy increment from age a to age a + �

does not postpone its e¤ect on reproduction, which in any case does not occur

until after age J , hence � is irrelevant.5

However, an energy increment received earlier permits earlier body growth

which has a compounding e¤ect since it leads to more energy acquisition each

instant and further increases in size which raise energy acquisition even more.

Applying the last equality of (15) to both a and a + � yields an alternative

expression of the MRS, which illustrates such an e¤ect.���dRa+�
dRa

��� = fa+�;z
fa;z

exp

�Z a+�

a

�s;w
fs;z

ds

�
: (170)

Getting the energy increment Ra at age a enlarges the feasible set earlier in

life than an increment Ra+� at age a + � , leading to a larger body size at

5In fact, a determinate growth pattern implies a dichotomy of optimal growing and

fertility in the following sense. Suppose a mutation e¤ectively reduces the marginal fertility

cost of age J , so that fJ;m decreases, and the intrinsic growth rate � increases. The

organism�s tradeo¤s and strategies in the growing period will not be a¤ected by this

parameter change of the fertile period. This is intuitive, for under determinate growth,

whatever marginal fertility cost the species is to face at age J is not going to a¤ect its

optimal strategy of somatic growth in its earlier ages of growing.
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age a+ � and therefore greater energy production and a compounding of the

gain as indicated in the exponential term.

As before, we can also express this as an instantaneous rate of time pref-

erence

�a =
_fa;z
fa;z

+
�a;w
fa;z

: (1700)

>From (1700), one observes that the discount rate � during immature

ages is independent of age-speci�c mortality and fertility, and depends only

on the rate of return to investment in growth (the second term) and the rate

of change in the costliness of growth (the �rst term). We have no reason to

expect any partiular age pattern in the proportional rate of change in the

costliness of growth; our expectation is that it is constant. However, we do

expect diminishing �tness returns to body size, �a;w, as the optimal size wJ is

approached. We also expect that the costs of increasing body size, fa;z, will

rise as the opitmal body size is approached. For these reasons, we expect that

the discount rate will be high following birth, when the returns to growth

are large, and energetic inputs are readily converted into weight gains, and

will then decline to lower levels as the age of maturity is approached.6

To be more precise, assume that body size increases with age up to ma-

turity. Assume that the costs of growth do not grow at more than an ex-

ponential rate during the juvenile years, so that the �rst term declines with

a or is constant. Assume further that
�a;w
fa;z

is decreasing in age. This would

be so, for example, if the marginal e¤ect of body weight on productivity is

decreasing with body size, or if the marginal cost of body growth is increas-

6This conclusion hinges upon an implicit assumption in (10) that the energy constraint

only contains �ow variables but not stock variables, such as the size of body. If this is

taken into account, the formula in (17) will be more complicated. Right now we assume

that the stock variable is embodied in the age subscript a, but not independently as an

argument.
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ing with body size, or both. In addition, we must assume that the partial

derivatives of ffa; zg w.r.t. �a, ma, and za are negligible in comparison to

the partial derivative of ffa; zg w.r.t. a (i.e., _ffa; zg). A similar condi-

tion should also be true for ffa;mg.These conditions are su¢ cient for �a to
decline from birth to maturity.

Now let us look at the discount rate within mature ages between a and

a + � for a > J . Since both ma and ma+� are strictly positive, the formula

is identical to (9) derived in Section 3.1:���dRa+�
dRa

��� = `a
`a+�

� fa+�;m
fa;m

� e�� : (18)

and the instantaneous discount rate is

�a = �a +
_fa;m
fa;m

+ �; (9")

The term
_fa;m
fa;m

is the proportional rate of change of the marginal energetic

cost with age of fertility, similar to the observation by Sozou and Seymour

(2003 p.1049). This may initially be negative following J but will eventu-

ally rise as a result of deteriorating ovarian function which causes conception

delay and more frequent fetal loss.7 If the marginal cost rises more than

exponentially with age, then � tends to rise as well. The authors have shown

elsewhere (Chu et al, 2008).that the endogenous death rate, �a, also may

decline or remain steady until some age after J , re�ecting continuing mat-

uration and the e¤ects on productivity of increasing foraging experience.

Thereafter, however, it rises at all ages. Therefore �, the rate of time prefer-

ence, also eventually rises with age after maturity.consistent with Sozou and

Seymour (2003).

7The declining marginal cost of fertility phase in humans is re�ected in early repro-

ductive ages when fecundity (biological potential fertility or natural fertility) rises. The

rising marginal cost phase clearly holds for mammals which move toward deterioration

and exhaustion of their oocyte stores as they age (Finch 1990).
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To put these conditions more precisely, if the proportional rate of increase

with age in marginal fertility costs declines more slowly than �a, declines,

and given the earlier conditions on the partial derivatives of f , then �a rises

with age starting at some point after sexual maturity. Together, these two

sets of conditions for the ages before and after sexual maturity are su¢ cient

to establish that the instantaneous rate of time preference is U-shaped.

We conclude, therefore, that the discount rate will be U-shaped, declin-

ing from birth to the age of maturity and perhaps a bit longer, and rising

thereafter. In reality, the transition between immaturity and maturity may

be blurred, as it surely is in humans, where a few years of adolescent growth

overlap with the early reproductive ages.

Finally, let us consider a transfer from a mature individual to a juvenile,

that is the case where a < J and a+� > J . From (15) and (16), the discount

factor between ages a and a+ � is given by���dRa+�
dRa

��� = c(a)

e��(a+�)`a+�=fa+�;m
; (19)

where the coe¢ cient c(a) equals 1
fa;z
exp(

R J
a

�s;w
fs;z

ds) �
R1
J
e��s`s

�s;w
fs;m

ds,8 which

is the e¤ect of a unit of energy received at age a. The initial factor is the

increase in size that results from the unit of energy, with the exponential

factor as the compounding impact of increase in size at age a on the recipient�s

continuing growth of body size from age a up to age J ; and the last factor

accounts for the e¤ect of this ultimate increase in body size on the donor�s

reproduction from Juntil death, weighted by probability of survival at each

8c(a) = @H=@Ra, which equals  a=fa;z with a < J . The solution to the costate variable

 a is given by c�exp
R J
a

�s;w
fs;z

ds as shown in (14). Substituting a = J in the formula, we �nd

that c =  J . In order to derive  J , recall that  J is the derivative of the value function

w.r.t. wJ :  J � @(
R1
J
e��s`smsds)=@wJ . Moreover, ms can be considered as a function

of wJ , which in e¤ect eliminates the energy constraints. Since the constraint implies that

@ms=@wJ = �s;w=fs;m, we obtain  J =
R1
J
e��s`s

�s;w
fs;m

ds.
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age and discounted to birth. The denominator of (19) is the e¤ect of a unit

of energy received at age a+ �which raises fertility at that age by 1
fa+�;m

and

this is weighted by the probability of surviving to this age and discounted

back to birth. Thus (19) provides the discount rate bridging the age-ranges

of growing size and reproducing.

There are a couple of points about this result that are worth mentioning.

If the energy increment is received at age a+ � it has no e¤ect on body size,

and the sole e¤ect is on fertility or survival at age a + � . However, if it is

received at age a then it a¤ects size, and therefore a¤ects fertility or survival

at all ages beyond J and indeed beyond a+� as well. In contrast to previous

results in (18), it is only survival from J to a+ � that matters; survival from

a to J is irrelevant. As explained earlier, unless the individual survives from

a to J it does not reproduce at all, and conditional on survival to J , the age

pattern of earlier mortality is irrelevant.

The earlier literature found that the MRS was positively related to �, the

intrinsic growth rate. Our result is di¤erent, since an energy increment at age

a increases body size and therefore raises fertility at every age above age J .

If most of this survival weighted and discounted incremental fertility occurs

before age a + � , then the MRS is positively related to � as in the previous

literature. However, if most of it occurs after age a + � , then the MRS is

negatively related to �, contrary to the previous literature. Thus when the

mature age a+ � is closer to sexual maturity J the e¤ect of � on the MRS is

more likely to be negative (because most of the fertility increment comes at

later ages), and when the mature age under consideration is farther beyond

sexual maturity, then this e¤ect is more likely to be positive (because more

of the increment to fertility comes at earlier ages).

These results modify the previous wisdom on the relationship between

ageing and the discount rate. Sozou and Seymour (2003 p.1047) argued that

ageing is partly a consequence of a life-history strategy that discounts the
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future. This is particularly correct for mature ages. In view of (17)�(19),

however, we need to modify the previous results if we want to consider the

whole range of a species�life cycle. When individuals are still growing, the

mortality factors (`a�s) do not a¤ect the marginal rate of substitution between

age-speci�c resources, and the population growth rate has no e¤ect on the

rate of time preference.

5 Theory III: Arbitrage in Nature? The Evo-

lution of Intergenerational Transfers

For many species, this is the end of the story. The young, particularly new-

borns, have a very high rate of time preference, because increased investments

in their body growth would substantially raise reproductive �tness. While

the young would do better if they could borrow from the old, repayment could

never evolve because it would diminish reproductive �tness rather than im-

proving it. But as in Samuelson�s (1958) classic analysis of a consumption

loan economy, intergenerational transfers (here from old to young rather than

the reverse) can lead to a better outcome. In Samuelson, intergenerational

transfers yield the biological interest rate � which is the marginal rate of

transformation (MRT). In the context of energy transfers within a cooper-

ative breeding group, the MRT is determined by the energy transformation

technology between the adults and the juveniles, which in turn depends on

the age structure of the group. If MRS>MRT then transfers would be en-

hance �tness and therefore might evolve. In the limit, transfers would evolve

to the point where they would equalize the MRS across the entire life cycle,

equating it to the MRT.

Many species, including mammals, birds, many insects and some �sh

invest in their young after birth through transfers from one or both parents,
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older siblings, grandparents, or others. The simplest case is parental care,

but more complicated arrangements occur for cooperatively breeding species,

including humans. We shall investigate when this kind of transfer behavior

will be selected and its relationship to the age-speci�c MRS.

The optimal life history satis�es the identity (2):
R1
J
e��s`smsds = 1.

Totally di¤erentiating this equation9 leads toZ 1

J

se��s`smsds �
d�

dRa
=

Z 1

J

e��s`s
@ms

@wJ

dwJ
dRa

ds+ e��(a+�)`a+�
@ma+�

@Ra+�

dRa+�
dRa

=

Z 1

J

e��s`s
�s;w
fs;m

ds � dwJ
dRa

+
e��(a+�)`a+�
fa+�;m

dRa+�
dRa

=
 a
fa;z

+
e��(a+�)`a+�
fa+�;m

dRa+�
dRa

:

(20)

The integral on the left equals the average age of fertility, denoted Af , which

measures the length of a generation. Multiplying this by d�
dRa

converts the

e¤ect of dRa from an annual rate of change to a change per generation, which

is expressed on the right side of the equation. The second equality follows

from the energy constraints, with @ms

@wJ
=

�s;w
fs;m

and @ms

@Rs
= 1

fs;m
. Meanwhile,

the marginal e¤ect of the transfer on size, dwJ
dRa
, is given by 1

fa;z
exp(

R J
a

�s;w
fs;z

ds)

from the argument in Section 4.3. The expression, along with the argument

in footnote 8, yields the last equality in (20).

For dRa+�
dRa

we �rst consider how the population age distribution constrains

the size of the transfers given relative to the transfer received, which depends

on the relative number of individuals making transfers at age a + � and

9To understand the meaning of d�
dRa

, given that in the long run the steady state growth

rate must be zero in any case, refer back to footnote 4 on carrying capacity, density, and

the steady state growth rate. If intergenerational transfers can generate a more rapid

population growth rate in a context without carrying capacity constraints, then in the

presence of constraints they should lead to equilibration at a denser population that would

crowd out the rival genetic line.
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receiving them at age a. We introduce a function ga(:) which characterizes

the e¢ ciency with which an organism at age a converts a transfer that it

receives into a usable form of energy, in the same units as �a(wa). In a

stable population if each surviving adult at age (a + �) gives out one unit

of energy to its o¤spring at age a then each o¤spring receives a proportional

share equal to e���`a+�=`a of the energy given by each adult.10 However, a

juvenile at age a cannot be fed too much or too fast in a given period without

wastage. This constraint on the ability of an individual to utilize a transfer

is characterized by ga(:), with ga(:) > 0 and g0a(:) > 0.
11 For an individual at

age a to acquire Ra units of usable energy, ga(Ra) units must be received.

Taking into account the stable (steady state) population constraint on

relative numbers at the two ages,12 the transfers Ra+� made by adults at

age a + � to juveniles at age a who receive Ra, are linked by the following

identity:

�`a+�dRa+� = e��`adga(Ra) = e��`ag
0
a(Ra)dRa: (21)

Let us de�ne K as the RHS of (20) multiplied by e�a. Substituting the

derivatives obtained so far, we can compute K with simple algebra:

K =
e�a a
fa;z

� `a
fa+�;m

g0a(Ra);

where  a=fa;z is the numerator in (19). We know from (20) that K has the

10Here we assume that transfers go from parents to o¤spring, but in cooperative breeding

groups the relatedness between donor and recipient is often less close, which we ignore here

for simplicity.
11g0a > 0 since a transfer outlet from age-(a+ �) (negative dRa+� ) is needed to produce

an increase of Ra at age-a (positive dRa). That g00a > 0 is needed for an interior solution

of transfers.
12The stable population assumption is appropriate for cooperative breeding groups in-

volving multiple related adults, but for the case of simple parental care it should be viewed

as a necessary simpli�cation for characterizing the relative numbers of those in the two

age groups in parent-o¤spring sets.
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same sign as d�=dRa. Therefore a transfer from age a + � to age a will be

selected (d� > 0) if and only if K > 0.

The �rst term of K is the weighted fertility increase at ages beyond J

arising from the increase in weight at age a, which is in turn caused by the

transfer of energy from the adult aged a + � . The second term of K is

the fertility loss to the adult aged a + � caused by her energy transfer to

an o¤spring aged a. The net bene�t is positive if the net fertility gain is

positive.

There is a close relationship between the the MRSa;a+� we derived in (19)

and the condition for transfers to be selected. On the one hand, we have

the time preference result derived earlier, which is analogous to the MRS

in an intertemporal utility function. It describes the slope of an iso-�tness

contour for energy increments at age a and age a + � , Ra and Ra+� . On

the other hand, we have MRTa;a+� � e��g0a(Ra) � `a=`a+� from (11), which

is analogous to a market rate of interest earned by participation in parental

care or the cooperative breeding group. It describes the rate at which energy

given up at age a+ � can be converted into energy received by individuals at

age a through intergenerational transfers, given the demographic constraints

and the transfer conversion constraint. If the MRSa;a+� in �tness is greater

than the MRTa;a+� through the intergenerational transfer technology, then

intergenerational transfers from age a + � to age a can raise reproductive

�tness and a mutation causing this transfer behavior will be selected. It is

easy to see that this di¤erence is given by:

MRSa;a+� �MRTa;a+� = e��
fa+�;m
`a+�

K:

Thus, the transfer will be selected if and only if K > 0. If the second order

condition is satis�ed, there is an optimal level of transfers from individuals

age (a+ �) to age a, when the MRSa;a+� = MRTa;a+� .

>From the expression for K we can infer the factors that favor larger K
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and therefore favor the evolution of intergenerational transfers in a species.

Lower costs of juvenile body growth and larger productivity gains from body

size favor the evolution of transfers as do lower costs of fertility across the

adult ages. However, high costs of fertility at the speci�c age making the

transfers also favors the evolution of transfers at that age, with menopause an

extreme example. Higher adult survival across the fertile ages also promotes

the evolution of transfers, as does a low population growth rate. Of course,

these very features of a life history are endogenous. But thinking of evolution

as a sequential process which works to improve existing life histories, these

features favoring the evolution of intergenerational transfers are of interest.13

6 Discussion

The neurological equipment that guides our intertemporal decisions evolved

to enhance �tness in our pre-Neolithic past (Camerer et al, 2005), before

capital and storage were important features of our economic life. We have

built on an earlier literature to explore what patterns of time preference

could be inferred from this premise. Our approach integrates optimal life

history theory with time preference theory, explicitly incorporating energy

constraints, resource tradeo¤s, and intergenerational transfers that were not

included previously and consequently reaching rather di¤erent conclusions.

Beginning with a framework in which body size and energy constraints

by age are exogenous (Theory I), we have con�rmed earlier results: 1) The

rate of time preference across generations equals the population growth rate

(Hansson and Stuart, 1994). 2) Higher mortality between two ages implies

13Interpretations of this sort are based on a feature of the life history that from a tabula

rasa (0-base) analysis would be viewed as endogenous. However, actual evolutionary

processes are heavily constrained by the preceding life history on which they build, and

from this perspective, these statements about fa;z and �a;w have causal force.
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a higher rate of discount between them (Sozou and Seymour, 2003). 3) The

discount rate should be higher when the rate of senescent fertility decline

between two ages is higher (Rogers, 1994; Sozou and Seymour, 2003).

We then developed a more general model with endogenous body size and

energy production so that fertility and survival tradeo¤not only against each

other but also against growth and future body size (Theory II). This frame-

work leads to quite di¤erent conclusions. Now the optimal life history can

involve two corner solutions: �rst growth with zero fertility (the immature

stage), and then fertility with zero growth (the mature stage), a pattern

called determinate growth, which is in fact characteristic of many animals

including mammals. In particular, we �nd that:

1) Before reproductive maturity, neither survival nor the intrinsic growth

rate enters into time preference, in both respects contrary to earlier results.

Reallocating resources within the immature ages does not directly advance

or retard fertility, and therefore the intrinsic growth rate does not directly

in�uence discounting. To be sure, the intrinsic growth rate is endogenous

and depends on allocations during the premature phase, but our result is

di¤erent than the previous literature where the intrinsic growth rate enters

the MRS formula directly.14 And reproduction depends on not dying before

maturity, but within immaturity there is no tradeo¤ between dying earlier

or later. Instead, the discount rate derives from di¤erences in the ability to

convert energy into body growth, and then to convert body size into energy.

2) For tradeo¤s between immature and mature ages, only survival up to

and beyond sexual mortality (`J) matters, and the age pattern of mortality

before J is irrelevant, consistent with the previous discussion. Furthermore,

when the older age is not long after sexual maturity then a higher intrinsic

growth rate actually reduces the MRS rather than raising it, contrary to all

14For example, if fa;m for a > J changes then the intrinsic growth rate will also change,

but the MRS between juveniles will not change.
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previous literature. The reason is that resources received during the imma-

ture stage raise fertility throughout the entire mature reproductive life span

by raising body size, and on average this increase may actually occur later

than the mature age under consideration.

3) Within the mature ages, the discount rate depends on the rate of

reproductive senescence, on the intrinsic growth rate, and on survival, as

suggested by the earlier literature (Rogers, 1994; Sozou and Seymour, 2003).

4) We �nd that the optimal discount rate is U-shaped with age: high at

birth, declining until the age of maturity and perhaps a bit longer (depending

on whether and for how long after maturity the marginal energetic costs of

fertility continue to fall), and then rising thereafter as the pace of fertility

decline and mortality increase accelerates.

A high and variable rate of time preference across the life cycle suggests

that autarchy is ine¢ cient and that intergenerational transfers could raise

reproductive �tness (Theory III). In the limiting evolutionary equilibrium

the MRS would equal the MRT with a discount rate equal to the steady

state population growth rate, typically zero. But as discussed earlier, various

frictions such as paternity uncertainty and parental mortality would prevent

this limit from being reached. The outcome, therefore, will be a �atter U

shape for the rate of time preference than in the world without transfers.

Understanding how people actually make intertemporal choices is an im-

portant topic on the agenda of behavioral economics (Frederick et al, 2002;

Camerer et al, 2005). Life history theory can provide a foundation for fur-

ther work. Building on a valuable earlier literature we have found that the

relationship between the discount rate and demography is more complicated

than has been previously realized.
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Table 1. De�nitions of variables and functions.

fa(�a;ma; za) Energy budget constraint at age a excluding transfers.

fa;�;fa;m;fa;z Partial derivatives of fa with respect to �;m; z

ma Birth rate

�a Instantaneous death rate = d ln (la) =da

la Probability of surviving from birth to age a = exp
�
�
R a
0
�sds

�
�a (wa) Energy �ow generated as a function of body size

� Steady state population growth rate or intrinsic rate of natural increase.

�a Costate variable associated with la
 a Costate variable associated with wa
wa Body size

za Rate of change of body size, _wa
�a Rate of instantaneous time preference at age a

Ra Transfer made or received

ga(Ra) Amount of usable energy derived from receipt of a transfer Ra
K If K > 0 then transfers raise reproductive �tness (for speci�c pair of ages)
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