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1. Introduction 

 It is generally agreed that the “Phillips Curve” relationship—i.e., the component 

of a macroeconomic model that describes the way in which price adjustments are made—

is crucial for understanding the link between monetary policy actions and the behavior of 

real macroeconomic aggregates such as output and employment.  Indeed, this is in effect 

agreed to even by real-business-cycle (RBC) proponents, when they specify that price 

adjustments are virtually complete within each period, for they are thereby implicitly 

adopting a limiting case of the Phillips curve—one that implies that the effects of 

monetary policy on the cyclical behavior of these real aggregates are almost non-existent.  

 In addition, it is currently the case that a discrete-time version of the Calvo (1983) 

model of staggered price-setting is by far the leading—indeed, dominant—specification 

of the Phillips curve relationship.1  There are reasons, however, to be somewhat 

dissatisfied with this state of affairs.  First, it has been persuasively argued by critics 

including Mankiw (2001), Mankiw and Reis (2002), Estrella and Fuhrer (2002), and 

Rudd and Whelan (2007) that the basic form of the Calvo model is drastically 

inconsistent with crucial properties of the basic time-series data on inflation, output, and 

employment.  Arguably effective counter-arguments have been developed by Woodford 

(2003), Sbordone (2006), Gali, Gertler, and Lopez-Salido (2005), and others, but it 

remains troublesome that sophisticated analysis is required to avoid serious discrepancy 

with the most basic facts.  In addition, there are a priori reasons for objection to the Calvo 

specification, including the highly stylized timing structure, the emphasis on costs of 

price adjustments per se, the absence of any implied autoregressive components, and the 

                                                 
1 This claim probably needs little justification, but is supported by the extensive use of the Calvo model in 
Woodford’s (2003) seminal treatise and in Walsh’s (2005) excellent graduate-level textbook.   
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model’s failure to satisfy the natural-rate hypothesis.  There is ample reason, accordingly, 

to give consideration to alternative models of price adjustment.   

 In what follows, such consideration is given to one particular alternative, namely, 

the “P-bar” model utilized by McCallum and Nelson (1999a, 1999b), which is based on 

previous work by McCallum (1980, 1994), Mussa (1981), and Barro and Grossman 

(1976).  This specification lacks certain features favored by proponents of the Calvo 

model,2 but has three significant advantages.  First, the P-bar model satisfies the strict 

version of the natural rate hypothesis, whereas the Calvo model does not satisfy even the 

weaker “accelerationist” version.3  Second, the P-bar model relies on costs of adjusting 

output or employment, which are more tangible and better documented than menu costs 

of changing prices.  Third, the unadulterated version of the P-bar model implies the 

existence of autoregressive components in the implied time-series processes for output 

and inflation.  Consequently, in several respects it produces more realistic autocorrelation 

patterns for crucial variables (including output and inflation) than does the basic Calvo 

specification in a standard three-equation macro model consisting of the price adjustment 

equation, an optimizing IS-type demand relationship, and a Taylor-style monetary policy 

rule for the nominal interest rate. 

 One non-standard feature of the investigation of dynamics conducted below is its 

attention to the possibility that U.S. monetary policy practice has changed significantly 

over the last 25 years, with the Volcker disinflation of 1979-1984 leading to a subsequent 

improvement that can be approximated as the elimination of a random-walk component 

in the Fed’s implicit inflation target.  This type of change could be responsible for the 

                                                 
2 The main such feature is the hypothesized distribution of different prices by sellers of differentiated 
goods, which gives rise to resource misallocation resulting from inflation. 
3 See McCallum and Nelson (1999a) or Mankiw and Reis (2002), as well as Section 6 below. 
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significant reduction in inflation persistence that is found in the post-1987 data, which the 

P-bar model matches somewhat better than data pertaining to the previous era—for 

example, 1954-1986. 

 The paper’s organization is as follows.  In Section 2 the basic features of the P-bar 

model are presented in an informal manner.  Sections 3 and 4 then develop a more formal 

analysis of a flexible-price economy and a general approach to the introduction of sticky 

prices with demand-determined output into the foregoing framework.  For comparative 

purposes, the more familiar Calvo model is discussed in a parallel manner in Section 5 

after which Section 6 contrasts the status of the Calvo and P-bar models with respect to 

the fundamental natural-rate hypothesis of Lucas (1972).  Section 7 develops a 

calibration to be used in the dynamic investigation of these two models that is conducted 

in Section 8, and Section 9 provides a short conclusion. 

2. Basic Features of the P-Bar Model 

 The simplest and most basic way of introducing price stickiness into a macro 

model is to specify that prices for each period t are set at the start of that period, on the 

basis of information available from previous periods, at their expected market-clearing or 

“natural-rate” levels.4  Then quantities demanded at those prices are supplied by sellers 

even when shocks result in conditions different from those expected.  Letting pt denote 

the log of a typical seller’s price Pt, this specification would be that t t 1 tp E p−= , where 

t 1 t t t 1E p E(p )− −≡ Ω with tp  denoting the market-clearing price and Ωt including 

observations on all variables in periods t, t−1, t−2, ....  Thus the basic adjustment friction 

is simply that current-period observations are not available to agents when setting prices 

                                                 
4 These levels may reflect the influence of market power, as mentioned by Friedman (1968). 
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for that period.  The dynamics resulting from the foregoing specification are excessively 

limited, however, so some additional structure is needed to have any hope of matching 

actual price-output data.  In that regard, the Rotemberg (1982) model posits quadratic 

costs of changing nominal prices from one period to the next, and leads to a reduced-form 

expression that is almost exactly the same as that pertaining to the aggregate price level 

in the Calvo model.  It would seem, however, that the costs of adjusting employment (or 

output) between periods are more tangible and more significant that those of changing 

prices.  Accordingly, the P-bar model assumes instead that there are (quadratic) costs of 

changing output.  More precisely, there is a quadratic cost of changing the output gap, 

t t ty y y= − , where yt is the log of output and ty  is the log of the natural rate of output, 

i.e., the flexible-price rate of output.5  Let us now consider the implications for price 

adjustment. 

 We have in mind, as is standard, use of the Dixit-Stiglitz consumption index, 

based on the assumption that the typical household has CES preferences for individual 

goods with a common elasticity of substitution of θ (it is assumed that θ > 1).  This setup 

gives rise to aggregate demands for each good with price elasticities of θ.  Therefore, for 

each seller one can define the (log) price tp such that t t t tp p (1 / )( y y ).− = θ −  

Thus, tp  is the price that would make the demand for the seller’s product equal to its 

“natural-rate” quantity.  In a symmetric equilibrium, then, tp becomes the price that 

would prevail if prices adjusted promptly to current conditions, in other words, the 

flexible-price price level (associated with the flexible-price level of output, ty ).   

                                                 
5 It is the change in the gap that is relevant because it is costly to change employment levels while changes 
in labor productivity, brought about by technology shocks, do not require changes in the work force. 
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 In a given period t, a seller will incur adjustment costs if t ty y− differs from 

t 1 t 1y y− −− and will also incur basic allocational costs whenever t ty y−  differs from 

zero.  Treating these costs as quadratic, it follows that the optimal choice of t ty y−   is a 

weighted average of zero and t t t 1 t 1( y y) ( y y ).− −− − − 6  Thus we assume that sellers set 

prices so as to make the expected value of t t ty y y≡ −  equal to a weighted average of 

zero and t t 1y y −− , and then produce quantities that will satisfy the demand that is 

forthcoming in t at that price.  In short, sellers set prices so as to make t 1 t t 1E y y− −= φ , 

where φ  is a positive fraction whose value depends upon the relative costs of (i) 

adjusting output and (ii) having output differ from its natural-rate value.     

 This behavior can equivalently be specified in terms of pt and tp by inserting 

t t 1 tp E p−−  in place of t 1 tE y− in the foregoing equation and t 1 t 1p p− −−  in place of t 1y − , 

the θs and −1’s cancelling out.7  Thus we obtain t t 1 t t 1 t 1p E p (p p )− − −− = φ − and from 

this, rearrangement yields 

(1) t t 1 t 1 t 1 t 1 t t 1p p (1 )(p p ) E (p p )− − − − −− = − φ − + − , 

which is the relationship that was termed the “P-bar model” by McCallum (1994).8  

Intuitively, the two right-hand side terms represent the extent of price “disequilibrium” in 

period t−1 and the change in the “equilibrium” value between t−1 and t.  A more formal 

derivation is provided below, in Appendix A. 

 
                                                 
6 This is true even if the price setting decision is based on dynamic optimizing behavior that takes account 
of implications for all future periods; see McCallum and Nelson (1999a) or Appendix A below.  The value 
of φ is different than it would be if the forward-looking nature of behavior were not taken into account. 
7 Note that pt = Et-1pt, since the former is predetermined. 
8 The model was developed and utilized by Herschel Grossman, Robert Barro, Michael Mussa, and 
McCallum in the 1970s and early 1980s; for references see McCallum (1994, pp. 251-252). 
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3. Flexible-Price Relations 

 The foregoing discussion concerns departures of current prices and quantities 

from their flexible-price (natural-rate) values that would prevail in the absence of any 

price stickiness.  To develop the picture more analytically, it is therefore useful to 

examine the nature of the flexible-price values that serve as points of reference.  We do 

so with a rather simple model of optimizing behavior on the part of households that 

consume Dixit-Stiglitz bundles of consumption goods and specialize in production of a 

single good, in the sale of which they have some market power. Accordingly, consider a 

typical household with consumption ct, labor supply nt, and utility function 

(2) 
1 1
t tc n

1 1

−σ +γ

− Ψ
− σ + γ

 

where σ > 0 is the inverse of its intertemporal elasticity of substitution and γ > 0 is the 

labor supply elasticity.  The household can sell its labor on the market for a real wage of 

wt and can buy or sell bonds (bt+1) at a real interest rate of rt.  Also, the household 

operates a production facility and sells its output a 1 a
t t tY A k nd −=  at the nominal price Pt 

according to the demand function A A
t t tY (P / P )−θ , where A A

t tY  and P  are aggregate 

demand and the aggregate price level, respectively, with ndt = labor used in production.  

Then, with txt = lump-sum tax payments, the household’s budget constraint for t is  

(3) wt(nt − ndt) + A A 1
t t tY (P / P ) −θ − t 1

t

b
1 r

+

+
 + bt − txt − ct = 0 

and there is a second constraint to require that sales be equal to production, viz., 

(4) a 1 a
t tA k nd −  − A A

t t tY (P / P )−θ  = 0. 

 From these we write a Lagrangian function that is the discounted present value of 
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(2) over the infinite future, plus the discounted present values of the left-hand sides of (3) 

and (4), multiplied by the Lagrange multipliers λt and ξt, respectively.  Then taking 

derivatives with respect to ct, nt, ndt, bt+1, and Pt we obtain—abstracting from the 

difference between expected values and realizations—the first-order conditions: 

(5) t tc 0−σ − λ =  

(6) t t tn w 0γ−Ψ + λ =  

(7) 1
t t t t tw (1 )A k nd 0α −α−λ + ξ − α =  

(8) t
t t 1

t

E 0
1 r +

λ
+ β λ =

+
 

(9) 
1

A A At t
t t t t t t t tA 1 A

t t

P P(1 )Y Y ( ) 0  P P
(P ) (P ) 1

−θ −θ−

−θ −θ

θ
λ − θ − ξ −θ = ⇒ λ = ξ

θ −
 . 

These seven equations (3)-(9) determine the household’s choices for the variables ct, nt, 

ndt, bt+1, Pt, λt, and ξt in response to the exogenous (to the household) variables At, wt, rt, 

txt, A A
t tY ,  and P .  Actually, of course, these are seven difference equations that govern the 

paths of the seven variables, given an initial condition on bt and relevant transversality 

conditions. 

 Now we consider general market equilibrium, resulting when a large number of 

households, similar to the one just described but each producing and selling its own 

differentiated good, interact competitively.  The symmetric monopolistic competition 

equilibrium will have the same values for each household for the various variables and 

will also satisfy A
t tP P= and nt = ndt.  In addition, the government determines values for 

its per-capital consumption gt and txt, and is subject to the government budget constraint 
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(10) gt − txt = t 1

t

b
1 r

+

+
 − bt. 

Thus we can add an additional equation, the Fisher identity 

(11) Rt = rt + Etπt+1, 

where 

(12) πt+1 = pt+1 − pt, 

and then specify that the nominal one-period interest rate Rt is controlled by the central 

bank according to a monetary policy rule such as 

(13) t 0 1 tR ( )= µ + µ π  

with µ1 > 1.  Then the system (3)-(13) can be considered as governing the behavior of ct, 

nt, bt+1, Pt, λt, ξt, wt, Yt, rt, Rt, and πt, given exogenous determination of  gt, txt, and At, the 

first two by policy and the latter by technology.9 

4. Sticky Prices 

 We now wish to modify the system at hand to reflect the phenomenon of price 

level stickiness.  In order to do this, let us use tY to represent the values of Yt that are 

determined by the system (3)-(13).  Notice that these values can be regarded as 

determined by a time-invariant function of the system’s exogenous variables At and gt, 

the tax/transfer variable txt being irrelevant because the specified system has the property 

of Ricardian equivalence.10  With the path for tY  and therefore ty  given, we can return 

to our system (3)-(13) but with (9) replaced by a specification of price adjustment 

                                                 
9 Here we write Yt in place of A

tY . 
10 In the counting exercise above, we can replace (3) with the overall resource constraint in which bt and txt 
do not appear, in which case the only role for (10) is to determine b for given values of tr. 
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behavior that reflects the presumed nominal stickiness.  In the case at hand, that equation 

is (1).  It adds the endogenous variable tp but we also have the demand relationship  

(14) t t t tp p (1 / )( y y )− = θ −  

and in addition the linearized overall resource constraint11 

(15) t c t g ty c g= ω + ω  

to complete the sticky-price system.  That is, equations (1), (5), (8), and (11)-(15) 

determine, with P-bar price behavior, the eight endogenous variables ct, pt, ttp  λt, yt, rt, 

Rt, and πt. 

 But what about the labor market variables, one might ask: are they determined by 

including (3), (4), (6), and (7) to explain nt, ndt, wt, and ξt?  Clearly not, for with nt = ndt 

inclusion of these relations would overdetermine the system.  That is because we have 

specified the model to include (14), which makes output essentially demand determined.  

Thus our assumptions imply that one or more of the relations (3), (4), (6), (7), and nt = ndt 

must be violated. 

 Our preferred specification in that regard is as follows.  With yt determined as 

outlined above, labor employed, ndt, is dictated by the production function in (4).  We 

then suppose that the labor supply and demand relations (6) and (7) are irrelevant for the 

determination of employment within each period, although they play essential roles in 

determining ty .  That is, we visualize workers and producers agreeing in advance (i) that 

employment in period t will be whatever it needs to be to satisfy the employment (ndt) 

magnitude required by the production function (given yt as specified above) and (ii) that 

bargaining between producers and workers determines, in advance of t, the nominal wage 
                                                 
11 Obviously, ωc and ωg are the steady-state shares of consumption and government in national income. 
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in relation to expected values of employment and the real wage rate wt.  These values will 

be related, in some fashion determined by this bargaining, to the flexible-price values tw  

and t tn nd=  that are implied (as functions of At) by (6) and (7).  Thus the nominal wage 

Wt for t is set at the value that equals this expected real wage [say, (1+δw) tw ] times the 

expected price level.  In symbols, ndt = a 1/(1 a )
t t(Y / A k ) − , nt = ndt, Et-1(log wt) = 

t 1 t wE (log w )− + δ , and log Wt = Et-1(log wt + log Pt). 

 In passing, it might be noted that this last method of demand-determination of 

output could be applied to a Calvo-type form of price adjustment.  In that case, we would 

have t t 1 t tp p [p p ]+∆ = β∆ + κ − , with tp being the price under full price flexibility.  And if 

one followed the usual analysis, tp − pt would move proportionately with real marginal 

cost.  But one can assume instead that (14) holds, with output being demand determined 

and the labor market functioning as specified in the previous paragraph.  It would seem, 

accordingly, that this latter version of the Calvo equation should perhaps be termed the 

“New Keynesian” model of the Phillips curve, with the usual version then designated as 

the “New Neoclassical Synthesis” model, as in Goodfriend and King (1997). 

5. Comparison with Calvo Model 

 The development of the P-bar model just given treats the labor market quite 

differently from typical discussions in the recent literature.  Accordingly, it may be 

helpful to demonstrate that, as asserted in the previous paragraph, an analogous 

specification can be applied as well to the Calvo model.  Let tp∗  denote the (log of the) 

nominal price that would be optimal in period t if prices were fully flexible.  Our present 

objective, then, is to derive the relationship between these tp∗  values and the prices pt that 
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are chosen when the Calvo frictions are operative.  We do this first for a typical seller, 

assuming that sellers are alike but behave independently. 

 Let 1−α denote the fraction of sellers permitted to change their prices within any 

period and also the probability that a given seller can change his price in any specific 

period.  Now tp∗  is the price that a seller would choose in period t if it could be changed 

again in t +1; but with probability α the seller will not be able to do so.  If he knew that 

he would in this case be able to change his price in t+2, then in t he would choose a 

weighted average of tp∗  and t t 1E p∗
+  with weights 1 and αβ, namely, Et 

* *
t t 1p p
1

++ αβ
+ αβ

.  

(With probability 1−α, t 1p∗
+ is irrelevant in t.)  Here the β terms are discount factors 

pertaining to events in the future.12  Similarly, if instead the seller could with certainty 

change his price in t+3, he would choose Et 
* * 2 2 *
t t 1 t 2

2 2

p p p .
1

+ ++ αβ + α β
+ αβ + α β

  But, continuing, 

since there is no future period in which he will for certain be able to change his price, in 

period t the seller charges 

(16) Et 
* * 2 2 *
t t 1 t 2

2 2

p p p .
1

+ ++ αβ + α β +
+ αβ + α β +

 

 Consequently, since 1 + αβ + α2β2  + ··· = (1 − αβ)-1, the optimal reset price xt is a 

probabilistically discounted present value of expected current and future values of p*t+j: 

(17) xt = (1 − αβ) Et[p*t + αβ p*t+1 + (αβ)2 p*t+2 + …]. 

 Here xt is the same for all sellers, but since some do not get to change their price 

                                                 
12 This result (and those below) depends upon the presumption that for pt ≠ tp∗ , the seller’s loss is quadratic 
in pt − tp∗ , which makes “certainty equivalence” results applicable.   A presentation similar to ours is given 
by Walsh (2003, pp. 225-7).  
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in t, we need to determine the average price pt (i.e., the price level) in t.  Since the 

fraction of sellers charging xt will be (1 − α), and the fraction charging xt-j will be 

 (1 − α)αj, we see that 

(18) pt = (1 − α)[xt + αxt-1 + α2xt-2 + …]. 

 Now, by using (17) to eliminate the xt+j terms in (18) we can find the relationship 

between price levels pt and those tp∗  values that would be optimal in the absence of the 

Calvo price adjustment frictions.  This result can be expressed in the familiar form 

(19) ∆pt = βEt∆pt+1 + κ(p*t − pt), 

where κ > 0.  The object now is to demonstrate that together (17) and (18) imply (19). 

 First we write (17) and (18), using the lag operator L, defined by zt-j = Lj zt, as13  

(17’) xt = (1−αβ)[1 + αβL-1 + α2β2L-2 + …] tp∗  = (1− αβ) 1

1
1 L−− αβ tp∗  

 (18’) pt = (1−α)[1 + αL + α2L2 + …]xt = (1− α) 1
1 L− α

xt. 

Substituting (17’) into (18’) we obtain 

(20) 1
t t(1 L)(1 L )p (1 )(1 )p− ∗− α − αβ = − α − αβ . 

Now multiply the terms in parentheses on the left-hand side and subtract t(1 )(1 )p− α − αβ  

from each side.  Then four terms can be cancelled out on the left-hand side, yielding 

(21) 1
t t t( L L )p (1 )(1 )[p p ]− ∗α − α − αβ + αβ = − α − αβ − . 

Next factor out α on the left-hand side and obtain 

(22) 1
t t t[(1 L) (L 1)]p (1 )(1 )[p p ]− ∗α − −β − = − α − αβ − . 

Finally, the latter can be expressed as 

                                                 
13 Here I am ignoring the expectation operator; this matter will be discussed below. 
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(23) t t 1 1 t tp p [p p ]∗
+∆ = β∆ + κ −    ,                                            1

(1 )(1 )− α − αβ
κ =

α
.   

This is much like the familiar Calvo formula, except for the absence of the Et operator on 

∆pt+1.  But we could just as well have applied Et to both (17) and (18) before beginning, 

which would eliminate that difference and give the desired relationship between pt and 

tp∗  values. 

 But how does the term t t[p p ]∗ −  relate to the term that usually appears in 

presentations of the Calvo model, the price markup times marginal cost?  To determine 

this, let us refer to the flexible-price model presented in (3)-(13) above.  There the price 

being chosen is labeled Pt and the seller relates it optimally, under price flexibility, to the 

economy-wide average price, denoted A
tP , according to equation (9), which we write as 

A
t t t t P / P ( / )[ /( 1)]= ξ λ θ θ − .  But equation (7) shows unambiguously that the ratio 

t t ( / )ξ λ equals real marginal cost for the producer, so (9) is the exact counterpart of 

t t[p p ]∗ −  = t tlog ( / ) log[ /( 1)]ξ λ + θ θ − , log of the markup times real marginal cost.  Thus 

the approach developed in this section yields the same price equation, when the Calvo-

type friction is present, as the version utilized by Woodford (2003), Gali and Gertler 

(1999), Sbordone (2002), Walsh (2003), and many others. 

 Note, however, that the specification of tp∗  − pt in (23) should depend upon the 

labor market structure in the economy being modeled.  If workers are hired on a spot 

market, it is appropriate to specify that  tp∗  − pt is given by the departure of marginal cost 

from its steady-state (and flexible price) value, as we have just done.  But if workers are 

employed via contracting arrangements of the type specified above in Section 4 for the  
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P-bar model, then the relation t t[p p ]∗ − = t t t tp p (1 / )(y y )− = θ −  is again appropriate, 

and the value of the coefficient attached to t t[p p ]∗ −  in the price adjustment equation 

t t 1 1 t tp p (1/ )[y y ]+∆ = β∆ + κ θ −  is determined mainly by demand, not supply, conditions.   

 It is interesting to note that the formulation developed in this section corresponds 

quite closely in several respects to the original presentation in Calvo (1983), although 

here in discrete time.  Specifically, Calvo’s equations (2) and (3) are continuous-time 

analogs of (17) and (18) above, but with symbols Vt, Pt, and Pt + βEt in place of our xt, pt, 

and pt*.14  The meaning of these symbols will therefore be exactly the same if Calvo’s  

Pt + βEt  is taken to be the same as our pt*, the price in the absence of the nominal 

friction.  His interpretation is that Pt reflects “the average price set by competitors” and Et 

represents “excess demand.”  Since the latter will be zero with full price flexibility, his 

expression reduces to ours when Et = 0 and serves the same function under other 

conditions. 

6. The Natural Rate Hypothesis 

 As suggested above, a fundamental concept in monetary macroeconomics is the 

“natural-rate hypothesis,” introduced by Friedman (1966, 1968) and refined by Lucas (1972).  

Friedman’s version of this hypothesis is that differing steady-state inflation rates will not 

keep output (or employment) permanently high or low relative to the “natural-rate” levels 

that would prevail in the absence of nominal price stickiness in the relevant economies.  

Lucas’s version is stronger; it asserts that there is no monetary policy that can permanently 

keep output (or employment) above its natural-rate value, not even with an ever-increasing 

(or ever-decreasing) inflation rate.  It should be noted that both of these concepts are distinct 

                                                 
14 Calvo’s parameter β is positive but is not the discount rate. 
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from monetary superneutrality: an economy can be one in which superneutrality does not 

obtain, in the sense that different permanent inflation rates lead to different steady-state 

levels of capital and thus natural rates of output, without any implied failure of the natural-

rate hypothesis (NRH), which concerns the difference between actual and natural-rate levels 

of output (and other real variables).    

 The validity of the NRH—or of Friedman’s weaker version, the “accelerationist” 

hypothesis—was a matter of much analysis and debate in the late 1970s and early 1980s.  

The earliest empirical tests were not supportive of the NRH, but the arguments of Lucas 

(1972) and Sargent (1971), emphasizing that the utilized test procedures would be 

inappropriate under rational expectations, led to a reversal of typical findings and by 1980 

even self-styled Keynesian economists were agreeing to the proposition that the NRH was 

basically valid.  In recent years, however, this agreement has seemingly been implicitly 

overturned, not by explicit argument but mainly by practice, via the widespread adoption of 

the Calvo (1983) adjustment mechanism.  As stated above, the Calvo model posits that price 

adjustments can be made during any period by only a fraction of all sellers, with all others 

holding their nominal prices fixed at their previous-period values.  Then, with a Cobb-

Douglas production function, the adjustment equation (23) above can be written as follows, 

where yt is the log of output and y t is its natural-rate value (Walsh, 2005, pp. 238-9): 

(24) πt = βEtπt+1 + κ(yt − y t)                                                      κ ≠ κ1 

Here β is the discount factor satisfying 0 < β < 1 so, in a steady state, we have an implied 

relationship between inflation and the (constant) output gap, i.e., the constant value of  

yt − y t.  Therefore the Calvo model does not satisfy even the accelerationist hypothesis, 

much less the stronger NRH.  It is surprising to me that relationships similar to (24) would be 
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used so frequently in today’s analysis.15  I would think that analysts would, at a minimum, 

replace (24) with something like the following: 

(24’) πt − π = β(Etπt+1 − π) + κ(yt − y t). 

Here π represents the steady-state inflation rate under an existing policy rule, assumed to be 

one that permits a steady-state inflation rate.16  Such a relationship would result if it is 

assumed that those sellers that do not have an opportunity (in a given period) to reset their 

prices optimally, have their prices change automatically at the ongoing inflation rate (rather 

than being held constant).  From a steady-state perspective, (24’) would imply yt − y t = 0, 

thereby satisfying the accelerationist hypothesis, Friedman’s weaker version of the NRH.  

(Even so, specification (24’) does not satisfy the stronger Lucas version, which pertains to 

inflation paths more general than deterministic steady states.)  

 In what way would this change affect current reasoning regarding monetary policy?  

Basically, it would imply that different steady-state inflation rates would not induce different 

steady-state output gaps.  In the influential analysis of Woodford (2003, Ch. 6), the optimal 

steady-state inflation rate is zero, in the absence of traditional shoe-leather costs of inflation 

(due to transaction frictions which give money its medium-of-exchange role).17  Thus with 

these frictions included, as in Friedman (1969), the optimal rate will lie between zero and the 

negative value implied by Friedman’s analysis.  But with our suggested change to price 

adjustment specification (24’), different inflation rates will not have any permanent effect on 

the (zero) output gap, and the Friedman rate (which reduces the opportunity cost of holding 

money to zero) would seem to be implied from the steady-state perspective. 

                                                 
15 I have used them several times myself, but mainly for illustrative purposes (as below). 
16 Other reference values for inflation yield similar results.  For some discussion, see Woodford (2003, pp. 
213-7 and 347-52) and references given there. 
17 Also see King and Wolman (1999). 
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 To complete this section, let us note that the P-bar model does satisfy even the strict 

version of the NRH, arguing as follows.  In the model, the output gap conforms to the 

relation t 1 t t 1E y y− −= φ , as we have seen above.  But φ is a positive fraction, so expectationally 

ty  behaves as a stable autoregressive process, with the gap approaching zero asymptotically.  

Thus the only possible steady-state value for ty  is zero.  In this sense, accordingly, the model 

satisfies the NRH.   Alternatively, one can see from (1) that on average we have 

t tE[p p ] 0− = , implying that t tE[y y ] 0− = .18     

 Are there other price adjustment specifications that satisfy the NRH?  Yes, the 

Fischer-Gray-Lucas relation t t 1 t t 1 t 2 t 1 t 1y y (p E p ) (y y )− − −− = φ − + φ −  of the decade 1975-1985 

does, as well as the more recent Mankiw-Reis (2002) “sticky information” formulation.19  

Unfortunately, some of the attractive features of the latter—delayed and hump-shaped 

impulse responses to monetary shocks—do not obtain when policy is modeled realistically as 

being conducted via an interest rate instrument, rather than the AR(1) nominal income 

growth relation used by Mankiw and Reis in place of a policy rule.  [See Keen (2007).] 

7. Calibration of the Basic Models 

 Let us now calibrate a benchmark version of the P-bar model for use in 

quantitative exercises designed to explore its dynamic properties, both alone and in 

relation to an analogous model that replaces the P-bar price-adjustment equation with the 

Calvo equation.  The relevant equations, sufficient for determination of the key variables 

πt, ty  , and Rt, are as follows: 

                                                 
18 Given its justifiably great influence, it is ironic that Lucas’s model in (1972b) features a Phillips Curve 
specification, yt = φ3(pt − Etpt+1), that does not obey the NRH. 
19 Of course, the real-business-cycle version of the Phillips curve, t ty y= , satisfies the NRH trivially. 
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(25) t t t 1 t t t 1 ty E y b(R E ) v+ += + − π +  

(26) t 1 t tt 1E y y− −= φ  

(27) 2
t 3 1 t t 3 t 1 tR (1 )[(1 ) y ] R e

4 −

µ
= − µ + µ π + + µ +  

Here (25) is the expectational IS equation that arises from the combination of (5), (8), and 

(15) above, in the manner familiar in the literature (e.g., McCallum and Nelson, 1999a). 

For its slope parameter we set σ = 1.0 and ωc = 1.00, obtaining b = −1.0.20  In the P-bar 

equation (26), we set φ at 0.89, the value estimated by McCallum and Nelson (1999a).  

The remainder of the basic calibration pertains to the disturbance processes.  We take the 

monetary policy shock et to be white noise with a standard deviation SD(e) = 0.002, close 

to the value estimated in McCallum and Nelson (1999a).21   The shock process in the IS 

function, vt, is more complex as it incorporates both preference shocks v1t—not explicitly 

mentioned in the discussion above—and unexpected changes in the levels of both 

government spending and natural-rate output ty .  In the exercises below, we specify the 

preference shock to be white noise with SD(v1) = 0.01, as in McCallum and Nelson 

(1999a), and the ty  process to be AR(1) with AR coefficient equal to 0.95 and innovation 

SD of 0.007—close to values reported in the RBC literature.  Also, we take 1/γ to be 

approximately zero, which makes the ty process result entirely from technology shocks.   

We neglect government spending, thereby treating all output as if it were consumption.   

 For the second model, with Calvo price adjustments, the only change is to replace 

                                                 
20 This value is several times as large as in McCallum and Nelson (1999a), but is only about 1/5 as large as 
the values used by Rotemberg and Woodford (1997, 1999) and Woodford (2003).  It represents an 
intermediate position more generally, I believe, in terms of the literature circa 1999-2006 on quantitative 
monetary policy analysis.  
21 In this calibration section, SDs are given in quarterly fractional units, not annualized percentage units as 
in Tables 1 and 2 below. 
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the P-bar equation with the Calvo equation as in (24), with slope coefficient κ = 0.03.  

This value is just slightly higher than typically used by Woodford (2003), and seems 

quite representative of the recent literature.  

 With both models we will consider various parameter values for the monetary 

policy rule (27).  The original Taylor rule, put forth in Taylor (1993), has µ1 = 0.5,  

µ2 = 0.5, and µ3 = 0.0 but results with other values are explored as well.  In particular, the 

inclusion of interest rate smoothing is represented by a setting of µ3 = 0.8.  Furthermore, 

we shall—for reasons mentioned above—consider cases in which a randomly changing 

target inflation rate is included.  It is modeled as a random walk with innovation SD of 

0.001, and appears inside the square brackets in (27).  The inclusion of this last term is 

reported in Tables 1 and 2 below by the indication µ4 = 1.     

 In these exercises the object will be to see how well—or how poorly—the 

calibrated P-bar and Calvo models produce simulated time series that match the most 

basic dynamic facts of the U.S. time series data.  The facts that we have in mind are the 

ones given in the following Table 1, which pertain to the standard deviations and (first) 

autocorrelation coefficients of quarterly observations on the three basic variables 

inflation, output gap, and nominal interest rate.  The measures used for these variables are 

the change in the log of the consumer price index, the Hodrick-Prescott cycle component 

of the log of real GDP, and the federal funds rate.22  The historical period considered is 

1954.1-2005.4, but we are interested in the two subperiods 1954.1-1987.3 and 1987.4-

2005.4, whose break date corresponds to the date at which Alan Greenspan became 

Chairman of the Board of Governors of the Federal Reserve System.  This is a convenient  

                                                 
22 I am highly aware of various weaknesses of the H-P cycle measure of the output gap, but have adopted it 
to keep from departing too much from standard practice. 
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Table 1: U.S Statistics 

Cell entries are standard deviations (per cent p.a.) and AR(1) coeffs for t t tp , y ,  and R∆  

 inflation rate 
SD/autocorr 

output gap 
SD/autocorr 

interest rate 
SD/autocorr 

1954.1-2005.4 3.00 
0.841 

1.58 
0.848 

3.36 
0.955 

1954.1-1987.3 3.51 
0.863 

1.82 
0.842 

3.74 
0.947 

1987.4-2005.4 1.37 
0.463 

1.00 
0.890 

2.26 
0.970 

 

Table 2: Properties of Basic Model with P-Bar Price Adjustment 

Cell entries are standard deviations (per cent p.a.) and AR(1) coeffs for t t tp , y ,  and R∆  

 µ3 = 0, µ4 = 0 µ3 = 0.8, µ4 = 0 µ3 = 0, µ4 = 1 µ3 = 0.8, µ4 = 1 
µ1 = 0.5 
µ2 = 0.0 

5.08 
8.00 
7.64 
0.871 
0.871 
0.874 

3.35 
4.69 
6.82 
0.129 
0.875 
0.875 

5.56 
8.05 
8.00 
0.886 
0.870 
0.878 

4.04 
4.90 
3.51 
0.360 
0.871 
0.913 

µ1 = 0.5 
µ2 = 0.5 

5.24 
3.84 
6.24 
0.875 
0.875 
0.791 

3.78 
2.56 
2.49 
0.240 
0.875 
0.859 

5.60 
3.76 
6.56 
0.889 
0.870 
0.805 

4.28 
2.65 
3.20 
0.396 
0.872 
0.904 

µ1 = 2.0 
µ2 = 0.5 

2.56 
6.46 
5.08 
0.874 
0.874 
0.670 

3.04 
5.03 
3.19 
0.254 
0.870 
0.843 

3.35 
6.79 
5.60 
0.915 
0.873 
0.709 

3.76 
5.34 
3.87 
0.468 
0.875 
0.871 

µ1 = 2.0 
µ2 = 1.0 

2.58 
4.25 
4.48 
0.876 
0.875 
0.512 

3.29 
3.80 
3.01 
0.323 
0.874 
0.813 

3.31 
4.38 
4.92 
0.913 
0.871 
0.595 

3.92 
3.95 
3.65 
0.475 
0.873 
0.861 

 

Calibration: b = −1, φ = 0.89, SD(v) = 0.01, SD(a) = 0.007, SD(e) = 0.002, SD(ζ) = 0.001 
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Table 3: Properties of Basic Model with Calvo Price Adjustment 

Cell entries are standard deviations (per cent p.a.) and AR(1) coeffs for t t tp , y ,  and R∆  

 µ3 = 0, µ4 = 0 µ3 = 0.8, µ4 = 0 µ3 = 0, µ4 = 1 µ3 = 0.8, µ4 = 1 
µ1 = 0.5 
µ2 = 0.0 

0.64 
1.28 
1.24 
0.894 
0.082 
0.539 

0.64 
1.54 
1.14 
0.758 
0.409 
0.761 

 

2.45 
1.05 
2.63 
0.965 
0.113 
0.836 

 

2.51 
1.63 
2.58 
0.937 
0.439 
0.931 

µ1 = 0.5 
µ2 = 0.5 

0.46 
0.90 
1.20 
0.875 
0.052 
0.382 

0.46 
1.26 
1.06 
0.748 
0.292 
0.738 

 

2.23 
0.92 
2.49 
0.969 
0.096 
0.791 

 

2.23 
1.32 
2.38 
0.945 
0.329 
0.918 

µ1 = 2.0 
µ2 = 0.5 

0.20 
0.84 
1.11 
0.662 
0.015 
0.216 

0.30 
1.14 
0.965 
0.618 
0.196 
0.698 

 

2.26 
0.86 
2.51 
0.968 
0.049 
0.761 

2.30 
1.19 
2.41 
0.957 
0.249 
0.925 

µ1 = 2.0 
µ2 = 1.0 

0.18 
0.76 
1.30 
0.676 
0.004 
0.160 

 

0.24 
1.05 
0.93 
0.593 
0.133 
0.679 

2.22 
0.79 
2.56 
0.969 
0.064 
0.688 

2.28 
1.10 
2.39 
0.961 
0.180 
0.925 

Calibration: b = −1, κ = 0.03, SD(v) = 0.01, SD(a) = 0.007, SD(e) = 0.002, SD(ζ) = 0.001 
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and fairly standard date to use to separate the recent period of superior monetary policy 

performance from the post-World War II experience more generally.23  To reflect the 

change, a shock to the inflation target will be introduced into (27) by changing π* to  

π* + µ4ζt, with  ζt a random walk and µ4 = 1 for 1987.4-2005.4 and 0 otherwise.    

8. Dynamic Properties of the Models 

 Dynamic properties of the foregoing models were obtained, approximately, by 

means of stochastic simulations.  In each cell in Tables 2 and 3, the reported magnitudes 

are mean values over 200 replications with each simulation pertaining to a sample of 200 

periods (quarters), with 50 start-up periods discarded in each case.  The magnitudes in 

each cell are, for the case at hand, the standard deviations of inflation, the output gap, and 

the interest rate (respectively) plus the first univariate autocorrelation coefficient for each 

of these same three variables.  The standard deviations, which may be thought of as 

reflecting root-mean-square targeting errors for inflation and the output gap, are 

expressed as annualized percentages.24     

 Table 2 reports results for several variants of the policy rule.  In the first column 

both µ3 and µ4 are kept equal to zero, so the rule does not feature interest rate smoothing 

or a time-varying inflation target.  In the first row, µ1 equals 0.5 to represent mild policy 

response to inflation deviations, well above the 0.0 value needed to reflect adherence to 

the Taylor principle, while µ2 = 0 represents an absence of response to the output gap.  In 

this case, variability of all three variables—inflation, gap, and interest rate—is 

considerably greater than is found in the U.S. data.  All three of these variables have 

                                                 
23 This dating does not imply any disagreement with the notion that a (perhaps “the”) crucial step in the 
move toward responsible monetary policy took place over 1979-1984 as the Volcker disinflation.  
24 For the output gap the figure is of course not annualized, since it has no time-unit dimension.    
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(first) autocorrelation coefficients of approximately 0.87, representing strong—and 

reasonably realistic—persistence in their time series properties. 

 Increasing µ2 to 0.5 in the second row reduces the variability of ty but leaves the 

SDs high for inflation and interest.  Adoption of µ1 = 2.0 and µ2 = 1.0 in the fourth row 

reduces the variability of inflation to a realistic level.  It leaves SD( ty ) and SD(Rt)  

higher than is realistic, but not by an excessive margin, and produces serial correlation 

coefficients for inflation (ρπ) and the gap that are quite realistic, and for Rt that is low but 

not terribly so. 

 In the second column, interest rate smoothing is introduced in all cases.  This has 

the effect of reducing the variability of all three reported variables. Persistence remains 

high for ty  and Rt measures, but falls to rather low values for inflation.  For that reason, 

columns 3 and 4 are included to investigate the possibility that πρ would be increased to 

realistic levels by inclusion of the random-walk inflation target (by setting µ4 = 1).   As 

will be seen, these values are increased but not to the strong-persistence magnitudes 

observed in actual data for the years prior to 1987. 

 In Table 3, we have similar exercises for the model but with the Calvo price 

adjustment equation used instead of the P-bar relation.  Here the difficulties are even 

more serious for the calibration at hand.  In the first two columns the SD values for all 

three variables are well below realistic values; for inflation the SD is less than 1.0 in all 

cases (falling as low as 0.18).  Furthermore, the autocorrelation coefficients are very low 

for the output gap in both columns and for the interest rate in column 1.  When we turn to 

columns 3 and 4, with the variable inflation target, inflation rate and interest rate SD 
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values rise to realistic levels, but SD( ty ) remains rather low.  Most significantly, 

however, the autocorrelation coefficient for the output gap is quite low in all cases, 

reaching a moderate level only in row 1, column 4, where it still remains below 0.5.  

Overall, the impression conveyed by these results is that the basic version of the Calvo 

model performs more poorly than the basic version of the P-bar model.    

9. Conclusion 

 Let us now conclude with an overview of the arguments developed in the 

preceding sections.  Basically, we have compared the P-bar model of price adjustment 

with the currently dominant Calvo specification.  From a theoretical perspective, we have 

argued that the P-bar model is more attractive, since it depends upon adjustment costs for 

physical quantities rather than nominal prices, while incorporating a one-period 

information lag.  Furthermore, the resulting adjustment relation is more completely free 

of “money illusion,” in terms of dynamic relationships, and therefore satisfies the natural 

rate hypothesis of Lucas (1972a), which is arguably a property that any neoclassical 

model should possess—but which is not satisfied by the Calvo model in any of its 

variants.  Along the way, we have shown that both the P-bar and Calvo models can be 

formulated in versions in which current real wages are, or are not, allocative—i.e., in 

which the labor market clears each period or depends upon some form of prior contracts 

according to which sellers choose quantities to satisfy demand at predetermined prices 

with those prices set to maximize revenue to be divided between the seller and his 

contracted workers according to some rule set by bargaining. 

 Quantitatively, we have examined crucial dynamic properties of a calibrated 

model in which the P-bar and Calvo equations are alternatively included.  For a given 
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calibration of the demand parameters, the implied time series properties of the inflation 

rate, output gap, and nominal interest rate are determined for various policy parameters, 

and are compared with quarterly data for the U.S. economy.  Neither model dominates; 

the P-bar model tends to imply more variability than actually observed for both inflation 

and output, whereas the Calvo model implies less variability than actual, especially for 

inflation.  In terms of serial correlation, the P-bar model implies a realistically high 

degree of first-order autocorrelation of the output gap but somewhat less than actual 

autocorrelation of inflation in those cases in which interest-rate smoothing is included in 

the policy rule.  The Calvo specification, on the other hand, does a better job of matching 

inflation persistence (i.e., serial correlation) but a much poorer job with respect to the 

output gap.   

 Overall, our comparison seems somewhat more favorable to the P-bar model and, 

in any case, certainly does not provide support for the dominant position held by the 

Calvo model in current monetary policy analysis.    
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Appendix A 

 Here the purpose is to derive the P-bar equation (1) from the cost-of-adjustment 

model of Section 2.  The seller’s objective is to minimize, at time t, 

(A1) j 2 2
t 1 t j t j 2 t j t j 1

j 0

E [(p p ) c (y y ) ]
∞

− + + + + −
=

β − + −∑  

where the first term for period t+j represents the cost of having a selling price different 

from the value that would obtain in the absence of price stickiness, with the second term 

representing the cost of changing output.25  Letting t t tp p p= −  and using the Dixit-

Stiglitz demand relationship t ty p= −θ , (A1) becomes 

(A2) j 2 2 2
t 1 t j 2 t j t j 1

j 0
E [p c (p p ) ]

∞

− + + + −
=

β + θ −∑ . 

The first-order condition for minimization is then 

(A3) t 1 t t t 1 t 1 tE [p c(p p ) c (p p )] 0,− − ++ − − β − =  

where c = c2θ2, or, equivalently, 

(A4) t t 1 t 1p p p− += α + αβ  

where c /(1 c c )α = + + β —not the Calvo probability of Section 5—and the expectation 

operator is implicit.  We can see that the relevant solution is of the form t t 1p p −= φ , 

implying that 2
t 1 t 1p p+ −= φ , so substitution into (A4) shows that φ must satisfy  

αβφ2  − φ + α = 0, and the relevant solution is 

(A5) 
21 1 4

2
− − α β

φ =
αβ

. 

Thus we have, recognizing again the expectation operator, 

                                                 
25 The constant c2 reflects the importance of the second cost relative to the first. 
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(A6) t t 1 t t 1 t 1p E p (p p ),− − −− = φ −  

as was argued informally in Section 2.  It is shown in McCallum and Nelson (1999a, 

p. 25) that φ is real and satisfies 0 < φ <1.   
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