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1 Introduction

The usual rationale for deterrence is closely related to the rationale behind grim trigger pun-

ishment in a repeated prisoners’ dilemma. Imagine two neighboring groups that repeatedly

decide whether to be peaceful or to launch a surprise attack on the other. A peaceful equi-

librium can only be sustained if the short run gains from a surprise attack are balanced by

the long run costs of triggering conflict. The logic of deterrence is that as groups accumulate

weapons, the cost of conflict increases thereby improving incentives for peaceful behavior.

This reflects the idea frequently highlighted in the literature on repeated games that harsher

punishments should improve incentives for cooperation.1

Although the argument for deterrence is simple and convincing, evidence for the effec-

tiveness of deterrence is less than conclusive. On the one hand, there is a general agreement

on the fact that nuclear weapons largely contributed to the absence of direct confrontation in

the Cold War.2 On the other hand, there is an equally wide agreement that the proliferation

of semi-automatic weapons is fuelling the chronic civil wars that plague Africa.3 Why do

the intuitions we obtain from a standard repeated prisoners’ dilemma seem to hold in some

settings but not in others? This paper attempts to shed some light on this mixed evidence

by taking seriously the idea of strategic risk.

We model conflict as a dynamic exit game. In each period, players decide whether to

be peaceful or attack. When both players choose to be peaceful, they enjoy the economic

benefits of peace and the game moves to the next period. However, if one of the players

attacks, conflict begins and players are assigned exogenous continuation values.4 The essence

of our approach is to contrast how the accumulation of weapons affects whether peace is

1See for instance Abreu (1988) on penal codes.
2See, for instance, Jervis (1989).
3Among others, see the Oxfam Report (2007), and Flint and de Waal (2006).
4Because the players’ payoffs upon conflict are exogenously specified, this game is not a repeated game.

However, trigger strategies of a repeated game are naturally mapped into an exit game in which continuation
values upon conflict are those that players obtain from repeatedly playing (Attack, Attack). Therefore, this
exit framework is sufficiently flexible to capture the insights we typically obtain from a repeated prisoners’
dilemma.
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sustainable or not under complete information and under strategic risk.

Our model of strategic risk follows the global games literature.5 More precisely, we

consider a situation in which payoffs upon peace depend on an uncertain state of the world

about which players obtain very informative but noisy signals. Because players do not have

the same assessment of the state of the world this creates strategic uncertainty in equilibrium,

so that one player may choose peace while the other one is attacking. As a consequence, the

sustainability of peace will depend both on how tempting attacking a peaceful opponent is –

this is the predatory motive for conflict – and on how costly it is to be attacked when peaceful

– this is what we call the preemptive motive for conflict. In fact, while only predatory motives

matter under complete information, we show that even as the players’ information becomes

arbitrarily precise, whether peace is sustainable under incomplete information will depend

significantly on the magnitudes of both the predatory and the preemptive incentives. The

paper then contrasts comparative statics obtained with and without strategic uncertainty

and highlights how taking into account the preemptive motive for attack enriches and nuances

our intuitions about the determinants of conflict.

Our first result considers groups with symmetric stocks of weapons. In this setting

we show that increasing weapon stocks will always have a deterrent effect under complete

information but that they may very well be destabilizing under strategic risk. This happens

because upon conflict, the increased destruction caused by weapons decreases the payoffs of

both the attacker and the victim of the surprise attack. Because they diminish payoffs to

the attacker, weapons reduce the predatory motive for conflict. However, as the victim of

a surprise attack also fares worse, weapons may increase the benefits of preemptive strikes,

which can result in overall destabilization. We show that under general conditions, the effect

of weapons accumulation on peace is non-monotonic and that very destructive weapons

(i.e. nuclear bombs) will typically be deterrent whereas intermediate weapons (i.e. semi-

automatic guns) may be destabilizing.

Our second result explores how inequality in military strength may affect the sustain-

5See for instance Carlsson and van Damme (1993) and Morris and Shin (1997).
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ability of peace. We show that unequal military strength always pushes towards conflict

under complete information but that the picture becomes more nuanced once strategic risk

is introduced. Unequal military strength is destabilizing under complete information be-

cause it increases the predatory temptation of the stronger player. Inequality, however, may

reduce the preemptive motive for conflict. First, the stronger group knows it has little to

fear from the weaker group. Second, the weaker group knows that it can only gain very little

by launching a preemptive attack. As a consequence, under strategic risk, peace might be

possible between unequal contenders in circumstances under which equally armed opponents

would fight. This result, however should not be interpreted as making a case for complete

monopoly of violence. Indeed, while inequality can help, peace is only sustainable if the

weaker group keeps enough weapons to limit the stronger group’s predatory incentives.

Finally, we examine the impact of peace-enforcing interventions on peace and conflict.6

We first highlight that under complete information, unless intervention is immediate so that

war is prevented altogether, intervention will always have a destabilizing impact. Indeed, it

is precisely the perspective of a long and painful conflict that deters groups from attacking.

This conclusion, however, is not robust to strategic risk. By alleviating the costs of being

the victim of a surprise attack, intervention reduces the need for preemptive strikes. In that

setting we show that the promise of intervention may promote peace even if it can only

happen with delay.

Because we examine deterrence in a model where agents are fully rational, this paper

is related to the “realist” strand of the International Relations literature.7 Our model can

actually be seen as formalizing and systematically exploring the impact of “reciprocal fears

of surprise attack” as discussed by Schelling (1960). In that sense, the paper is also related to

the spiral theories of war of Jervis (1976, 1978) and Kydd (1997).8 Our model is also closely

6See Collier et al (2003) for a study of the causes and consequences of civil war. Doyle and Sambanis
(2006) present an analysis of peace-keeping operations.

7This literature includes many non-formal theories of war. For an early formal model in this tradition
see Bueno de Mesquita (1981).

8While these models were originally developed to understand interstate conflict, Posen(1993) and Snyder
and Jervis(1999) have shown they can also help understand civil wars and ethnic conflict. We believe our
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related to Baliga and Sjöström (2004) who analyze the role of cheap talk in a model where

incomplete information about the players’ types triggers conflict via a contagion process.

Our goal in this paper is to highlight the importance of strategic risk when analyzing

the impact of weapons on peace. As a result, we choose to abstract from a number of

other realistic dimensions of conflict already emphasized in the literature, such as bargain-

ing failures (see Fearon (1995)), leader bias (see Jackson and Morelli (2007)), commitment

problems (see Powell (2004)), or renegotiation issues (in the context of nuclear deterrence

see Schelling (1966), Jervis (1979, 1989) or Powell (1990)).9 Also, unlike Garfinkel (1990),

Grossman (1991) or Skaperdas (1992) we do not consider the question of endogenous invest-

ment in weapons. Rather, our purpose here is to revisit a more primitive question: how does

the accumulation of weapons affect the sustainability of peace?

The paper is organized as follows. Section 2 describes the framework and provides neces-

sary and sufficient conditions for the sustainability of peace under complete and incomplete

information. Section 3 contrasts the mechanics of deterrence with and without strategic risk.

Section 4 studies how inequality in military strength affects conflict. Section 5 explores the

impact of intervention on peace. Section 6 concludes. Proofs are contained in the appendix.

2 The model

2.1 A Simple Model of Peace and Conflict

We consider two groups i ∈ {1, 2} that play an infinite horizon trust game, with discrete

time t ∈ N, and share a common discount factor δ. Each period t, the players simultaneously

decide whether to be peaceful (P) or to attack (A). If both players are peaceful at time t,

they obtain a flow payoff π and the game moves on to period t+1. When any of the players

attacks, conflict begins and the players receive exogenously given conflict payoffs. The stage

results are relevant to the analysis of both types of conflict.
9Fearon (1995) shows that in the presence of bargaining and transfers, a rational unitary model that yields

war on the equilibrium path needs either private information, bargaining indivisibilities or a commitment
problem. Here we have both private information and commitment problems.
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payoffs are denoted as follows

P A

P π S(ki, k−i)

A F (ki, k−i) W (ki, k−i)

where payoffs are given for row player i, and ki ∈ R+ is the stock of weapons held by player

i. Payoff π represents the flow benefits of peace10, while payoffs F (ki, k−i), S(ki, k−i) and

W (ki, k−i) correspond to the reduced form payoffs group i obtains upon conflict.11 These

payoffs depend on the timing of attacks. More specifically F (ki, k−i) denotes the payoff

obtained by group i if it can launch a surprise attack. S(ki, k−i) is the payoff if group i suffers

a surprise attack and is therefore a second mover. Finally, W (ki, k−i) denotes i’s payoff when

groups launch simultaneous attacks. We choose to keep these payoffs in a reduced form since

it allows us to remain agnostic about the specific pattern of conflict. Note that our formalism

is consistent with F , W and S being players’ payoffs upon defection when they play trigger

strategies of a repeated prisoners’ dilemma.

For simplicity, we will denote Fi = F (ki, k−i), Si = S(ki, k−i) and Wi = W (ki, k−i).

Whenever arm stocks are symmetric (ki = k−i = k), we will also denote F (k) = F (k, k),

S(k) = S(k, k) and W (k) = W (k, k). The payoff difference Fi − 1
1−δ

π corresponds to the

predatory incentives of player i, that is, how much player i would gain from attacking a

consistently peaceful opponent. The payoff difference Wi−Si corresponds to the preemptive

incentives of player i, that is, how much player i would gain from attacking a consistently

aggressive opponent. We make the following assumption.

10We look at a situation where the benefits of peace π are symmetric for the purpose of simplicity.
Extending the model to a setting with asymmetric benefits presents no conceptual difficulty.

11These reduced form payoffs summarize the history of fighting that starts after (A) is chosen by a player.
It might help intuition to think of these conflict payoffs as discounted sums of flow payoffs that depend on
who initiated conflict. In this case, we would write

F (ki, k−i) =
+∞∑
t=0

δtft(ki, k−i) ; S(ki, k−i) =
+∞∑
t=0

δtst(ki, k−i) ; W (ki, k−i) =
+∞∑
t=0

δtwt(ki, k−i).

.
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Assumption 1 (First Strike Advantage) For all weapon stocks ki and k−i, payoffs upon

conflict are such that F (ki, k−i) > W (ki, k−i) > S(ki, k−i).

Assumption 1 states that there is an advantage in attacking first and that there is a preemp-

tive motive for war as the payoffs from a simultaneous attack dominate those from being a

second mover.

Throughout the paper, we contrast a situation in which the flow benefits of peace π are

common knowledge and a situation in which players make private but very precise assess-

ments of the value of π. In the first case, common knowledge of payoffs allows players to

coordinate their actions effectively. Under incomplete information however, coordination

becomes difficult as players attempt to second guess one another’s value for peace before

making decisions.

2.2 Peace and Conflict under Complete Information

By Assumption 1, since Si < Wi, attacking simultaneously is always an equilibrium of the

game whether or not there is incomplete information about π. The question of interest,

therefore, is whether or not peace is sustainable. In this section we focus on the case of

complete information: payoff π is fixed and common knowledge between players. Let us

denote this game by ΓCI . The following result holds.

Proposition 1 (peace under complete information) Peace is an equilibrium outcome

of ΓCI if and only if

∀i ∈ {1, 2}, Fi − 1

1− δ
π ≤ 0. (1)

Furthermore, whenever inequality (1) holds, then permanent peace is sustainable in equilib-

rium.

Recall that the difference Fi− 1
1−δ

π corresponds to the predatory temptation of player i.

It represents how much player i can gain by attacking a peaceful opponent. All that matters

for peace to be sustainable under complete information is that the predatory incentives of
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both players be low enough. Payoffs Si and Wi do not matter in determining whether or not

peace is sustainable.

Let us denote by πCI the smallest value of π such that peace is sustainable under complete

information. It follows from Lemma 1 that πCI = (1 − δ) maxi Fi. Thus, if Fi is high,

cooperation can only be sustained if the returns to peace are high as well.

2.3 Peace and Conflict under Strategic Risk

2.3.1 Framework

Under complete information, players never fear the possibility of suffering a surprise attack.

Indeed, in equilibrium the likelihood of being attacked while peaceful is zero. Our model

of strategic risk follows the literature on global games and introduces the possibility of

miscoordination in equilibrium by considering a situation in which the returns to peace are

not common knowledge.12 More precisely we follow the framework of Chassang (2007) and

consider a slightly perturbed exit game with flow payoffs

P A

P π̃t Si

A Fi Wi

where π̃t is an i.i.d. random variable with finite variance, distribution f and support

(−∞, +∞). This peace payoff π̃t is not directly observable by the players when they make

their decision at time t. Instead, players observe signals of the form xi,t = π̃t + σεi,t where

{εi,t}i∈{1,2}, t∈N is an i.i.d. sequence of centered errors with support [−1, 1]. For simplicity we

assume that π̃t is observable in period t + 1 via the flow payoffs. Let us denote this game by

Γσ,f .

12See for instance Carlsson and van Damme (1993) or Morris and Shin (2003) for an extensive literature
review. Note that for our results it does not matter much whether uncertainty concerns payoff from peace
π or the temptation of attack Fi.
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2.3.2 Structural properties

In this game, a history hi,t for player i is a sequence of past signals and past realizations

of π̃ taking the form hi,t = {xi,1, π̃1, · · · , xi,t−1, π̃t−1, xi,t}. Denote by H the set of all such

histories. A strategy for player i is simply a mapping si : H → {P, A}. We give a few

structural results before discussing the framework.

Definition 1 (Order on strategies) We define a partial order ¹ on strategies as follows:

s ¹ s′ ⇐⇒ {a.s.∀h ∈ H, s(h) = P ⇒ s′(h) = P}.

In words, one strategy is greater than another if and only if it is always more peaceful. Our

first result establishes the existence of lowest and highest equilibria taking a simple form.

Lemma 1 (extreme equilibria) There exists σ > 0 such that

(i) For all σ > 0, attacking always is the lowest equilibrium strategy. It is asso-

ciated with the lowest pair of equilibrium values (Wi, W−i).

(ii) For all σ ∈ (0, σ), the set of perfect Bayesian equilibria admits a highest equi-

librium with respect to ¹, denoted by sH
σ = (sH

i,σ, s
H
−i,σ). This highest equilibrium

is associated with the highest pair of equilibrium values VH
σ = (V H

i,σ, V
H
−i,σ).

(iii) For all σ ∈ (0, σ), sH
σ is characterized by fixed thresholds (xH

i,σ, x
H
−i,σ) ∈ R2

such that player i plays peace if and only if xi,t ≥ xH
i,σ.

This setup captures the idea of strategic risk in equilibrium by allowing players to have

different perceptions of their environment. Although strategies are common knowledge in

equilibrium, the fact that perceptions are private implies that there is no common knowledge

of which actions will be taken. As a consequence, there is some risk of miscoordination

(outcome (P,A)) in equilibrium. This leads players to second guess each other’s assessment

of the situation, and given that a surprise attack is always possible, preemptive incentives will
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play an important role in determining players’ behavior. Moreover, as the next section shows,

preemptive incentives continue to matter significantly even when the players have arbitrarily

good information about π̃t and the likelihood of actual miscoordination is vanishing. In that

sense preemptive incentives have a selection effect on what equilibrium players choose to

play, even when they do not enter payoffs on the equilibrium path directly.

2.3.3 Sustaining peace under strategic risk

We are now interested in the properties of game Γσ,f when its payoffs and information struc-

ture become arbitrarily close to those of the complete information game ΓCI with constant

benefit π. For this purpose, we consider a sequence of distributions {fn}n∈N such that for

all n ∈ N, fn has support (−∞, +∞) and {fn}n∈N converges in mean to dπ, the degenerate

distribution that puts a unit mass at π. Then, we have

Proposition 2 (sustainability of peace under strategic risk) For each distribution fn

and noise level σ > 0, denote VH
σ,fn

the highest sustainable pair of values of Γσ,fn. We have

that

∏

i∈{1,2}

(
1

1− δ
π − Fi

)+

>
∏

i∈{1,2}
(Wi − Si) =⇒ lim

n→∞
lim
σ→0

VH
σ,fn

=

(
1

1− δ
π,

1

1− δ
π

)

∏

i∈{1,2}

(
1

1− δ
π − Fi

)+

<
∏

i∈{1,2}
(Wi − Si) =⇒ lim

n→∞
lim
σ→0

VH
σ,fn

= (Wi,W−i)

In words, peace is robust to the introduction of small amounts of incomplete information on π

if and only if (peace, peace) is the risk-dominant equilibrium of the 2×2 augmented one-shot

game in which the continuation value upon peace is that of permanent peace. If this isn’t the

case and (attack, attack) is the risk-dominant equilibrium of the augmented one-shot game,

then immediate conflict is the only equilibrium that’s robust to the introduction of small

amounts of noise. Hence we say that cooperation is sustainable under strategic uncertainty
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if and only if
∏

i∈{1,2}

(
1

1− δ
π − Fi

)+

>
∏

i∈{1,2}
(Wi − Si) . (2)

Let us denote by πSU the smallest value of π such that cooperation is sustainable under

strategic uncertainty. It is clear from (1) and (2) that πSU is always greater than πCI . In

other words, peace is always more difficult to sustain under strategic risk. When payoffs are

symmetric (ki = k−i), condition (2) takes a particularly simple form:

F − 1

1− δ
π + W − S < 0. (3)

Condition (3) makes very clear how introducing strategic risk will affect comparative statics

on the sustainability of peace. While only predatory incentives (F − 1
1−δ

π) matter under

complete information, both predatory and preemptive incentives (W − S) matter under

strategic risk. Whenever the two incentives move in different directions, strategic risk will

significantly change our intuitions about the determinants of peace and conflict.

2.4 A benchmark model

Most of the results given in the paper can and will be stated in terms of reduced form payoffs

F , W and S, however we find it useful for intuition to have a benchmark model of payoffs

upon conflict.

Definition 2 (benchmark model) Payoffs upon conflict F , S and W are such that

(i) W (ki, k−i) = ki

ki+k−i
m−D(k−i).

(ii) F (ki, k−i) = W (ρF ki, ρSk−i) and S(ki, k−i) = W (ρSki, ρF k−i)

where ρF > 1 > ρS ≥ 0.

The first term of W (ki, k−i) corresponds to a classic contest function.13 It corresponds

to the idea that players are competing for a prize m and that the likelihood of obtaining m

13See for instance Hirshleifer (1995).
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depends on the relative stocks of arms. The second term D : R+ → R+ is a continuously

differentiable increasing function that represents the amount of destruction incurred by player

i upon conflict, independently on whether she wins prize m or not. We capture the strategic

advantage or disadvantage of being a first or a second mover by allowing weapon stocks to be

inflated or deflated by factors ρF and ρS depending on the timing of attacks. The difference

ρF − 1 is positive and corresponds to the first mover advantage; the difference 1− ρS is also

positive and corresponds to the second mover disadvantage.

As of now we don’t specify D any further, but we think of it as bounded (i.e. in the

event of a complete nuclear holocaust, the number of atomic bombs used in the process does

not seem relevant for payoffs). D may also display convex parts. This is natural if as k

increases, both the quantity and the nature of weapons are changing. For instance, imagine

that a low capital stock k0 corresponds to the traditional weapons of a tribal society while

a higher capital stock k1 corresponds to the introduction of machine guns. In this case, a

marginal increase in capital stocks will have a much larger impact on damages D at capital

k1 than at capital k0. Altogether, the typical damage function we envision is bounded with

S-shaped portions.

3 Deterrence

3.1 Deterrence when weapon stocks are symmetric

3.1.1 General results

This section investigates how a symmetric increase in weapon stocks affects the sustainability

of peace. More precisely we will be studying the comparative statics of thresholds πCI and

πSU . These thresholds correspond to the minimum flow return to peace π necessary for

peace to be sustainable. The lower these thresholds, the easier it is to sustain peace. We say

that weapons are deterrent if and only if the symmetric accumulation of weapons reduces

the minimum value of π required to sustain peace. The following assumption is maintained
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throughout the paper.

Assumption 2 (weapons are destructive) Payoffs Fi, Si and Wi are increasing in ki

and decreasing in k−i. Furthermore, F (k), S(k) and W (k) are all decreasing in k.

This is a natural assumption: conditional on conflict, player i’s payoff is increasing in her own

stock of weapons and decreasing in her opponent’s stock of weapons. Moreover, a symmetric

increase in the amount of weapons makes conflict more painful on all sides. Note that payoffs

F , S and W corresponding to the benchmark model of Definition 2 satisfy Assumption 2.

When ki = k−i = k cooperation thresholds are πCI = (1−δ)F and πSU = (1−δ)[F +W−
S]. As discussed above, sustaining peace is always more difficult under strategic uncertainty.

More interestingly, the deterrent effect of weapons may differ across strategic settings.

Proposition 3 (deterrence under complete and incomplete information) Consider

a situation in which ki = k−i = k. Under Assumption 2, we have that

(i) πCI is always strictly decreasing in k.

(ii) πSU is decreasing in k if and only if

dF

dk
+

dW

dk
− dS

dk
< 0. (4)

Point (i) of Proposition 3 highlights that in a complete information setting, increasing

weapon stocks unambiguously improves the sustainability of peace. This happens because

under complete information, peace is sustainable if and only if the payoff F of a first mover

attack is lower than the value of permanent peace 1
1−δ

π. Because accumulating weapons

decreases F , it also facilitates the sustainability of peace.

This prediction does not necessarily hold anymore once strategic risk is taken into ac-

count. Indeed under strategic risk the sustainability of peace depends both on the predatory

and the preemptive motive for conflict. Hence, while an increase in weapons may reduce F ,

it may also greatly worsen the payoffs of suffering a surprise attack (starting conflict as a
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second mover). This may increase the value of W −S, thereby increasing the temptation to

launch preemptive strikes. Whenever the cost S of being a second mover rises more steeply

than the cost W of simultaneous war and the cost F of initiating conflict, weapons will be

destabilizing instead of deterring.

3.1.2 Deterrence in the benchmark model

To better understand the circumstances in which weapons will be destabilizing, we now

examine the meaning of condition (4) when conflict payoffs are those of our benchmark

model. The threshold πSU takes the form

πSU = (1− δ)[W (k, k) + W (ρF k, ρSk)−W (ρSk, ρF k)]

= (1− δ)

[
1

2
m +

ρF − ρS

ρF + ρS

m−D(k)−D(ρSk) + D(ρF k)

]
.

Therefore, in this case weapons are deterrent under strategic uncertainty if and only if

D′(k) + ρSD′(ρSk)− ρF D′(ρF k) ≡ φ > 0.

Accumulating weapons is counter-productive otherwise. The question is now to understand

what may affect the sign of φ. In particular we are interested in how the first strike advantage

ρF −1 and the second strike disadvantage 1−ρS may affect the deterrent impact of weapons.

The effect of parameters ρF and ρS however is subtle and may depend on the shape of function

D.

Lemma 2 If D is convex over the range [ρSk, ρF k], then φ is decreasing in ρF and increasing

in ρS.

Lemma 2 suggest that a large first strike advantage and a large second strike disadvantage

will tend to make weapons destabilizing. A partial intuition goes as follows: if the first mover

advantage and the second mover disadvantage are large, it is likely that when weapon stocks
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increase the amount of destruction suffered by second movers will rise by more than the

amount of destruction suffered by a first mover. Hence when the first mover advantage and

second mover disadvantage are large, one should expect that weapons will be destabilizing.

Lemma 2 however is more subtle than this simple reasoning suggests, and the shape of D

also plays a role in determining whether weapons are destabilizing or not. Indeed, assume for

instance that D is concave around ρF k. This means that the destruction suffered by a second

mover increases at a diminishing rate when ρF k increases. It follows that a further increase

in ρF will decrease the sensitivity of S to weapon stocks. Hence, if D is concave around ρF k,

increasing the first mover advantage might improve the deterrent effect of weapons.

Because the deterrent effect of weapons depends on the local shape of the destruction

function D, the predictions of our model can potentially accommodate varied patterns of

deterrence. In the following section, we highlight that under reasonable assumptions our

model predicts that very destructive weapons (i.e. nukes) are deterrent while intermediate

weapons (i.e. guns) may be destabilizing.

3.2 Guns vs. Nukes

This section explores the possibility that different levels of weapons may have different

deterrent effects. We start by imposing a natural assumption on conflict payoffs.

Assumption 3 (destruction) As weapon stocks become large, the payoff difference between

being a second mover and simultaneous conflict is minimized:

lim
k→+∞

W (k)− S(k) = inf
k≥0

W (k)− S(k)

This assumption corresponds to the idea that when weapon stocks are very large, the

gains from launching preemptive attacks are small. This is consistent with the idea of

mutually assured destruction. Imagine for instance that limk→+∞ F (k) = limk→+∞ W (k) =

limk→+∞ S(k) = infk≥0 S(k). In that case, when weapon stocks are large, destruction is
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complete and payoffs upon conflict are independent on who initiated the first attack. As a

result, neither predatory nor preemptive attacks make sense and incentives for conflict are

minimized when destructive capacity is high. This yields the following result.

Proposition 4 (nukes are deterrent) If Assumptions 2 and 3 hold, peace is most sus-

tainable under strategic risk when the stock of weapons becomes arbitrarily large. More for-

mally

lim
k→+∞

πSU(k) = inf
k≥0

πSU(k).

Note that our benchmark model satisfies Assumption 3 whenever the destruction function D

is bounded above. Hence, when weapon stocks are symmetric, sufficiently destructive power

will guarantee the highest possibly sustainable level of peace.

This result however does not imply that weapons monotonically increase stability in a

world with strategic risk. In fact we now consider a very stark example highlighting how

convexities in the destruction function D may cause intermediate stocks of weapons to be

destabilizing.

Assumption 4 (disruptive technology) There exists a weapon level k∗ such that D′(k∗) =

+∞ while D′ < +∞ everywhere else.

This assumption is consistent with D being S-shaped.

Proposition 5 (disruptive weapons precipitate war) Whenever Assumption 4 holds,

there exists an open interval I ⊂ R containing k∗/ρF such that πSU is strictly increasing in

k over I.

When the joint stock of weapons is exactly k∗/ρF , the destruction experienced by a second

mover is equal to D(k∗), hence a marginal increase in weapon stocks hurts a second mover

much more than a first mover. As a consequence, any marginal increase in destructive

capacity is destabilizing. While Assumption 4 facilitates the statement of Proposition 5, the

assumption that D′ be infinite for some stock of weapons k∗ is by no means necessary. For
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instance if function D was S-shaped with a sufficiently steep inflexion point a similar result

would hold.

It follows from this that the effect of weapons on conflict may well be non-monotonic:

while very destructive weapons always have a deterrent effect, intermediate levels of weapons

can be destabilizing. This helps reconcile the seemingly contradictory evidence on the effect

of weapons on the sustainability of peace.

4 Stabilizing Inequality

In the previous section we have analyzed the case of two contenders with equal weapons

stocks. We now turn to the question of how inequality in military strength affects the

sustainability of peace. Inequality is parameterized by a constant λ ∈ [1, +∞) so that

ki = λk and k−i = k. The following result is immediate.

Proposition 6 (inequality is bad under complete information) Keeping k constant,

greater inequality makes peace harder to sustain. More formally, πCI is increasing in λ.

This follows simply from the fact that πCI = (1 − δ) maxi∈{1,2} Fi. As player i becomes

stronger, his payoff Fi from initiating conflict increases and since only predatory incentives

matter under complete information, peace becomes harder to sustain.

In contrast, Proposition 7 below shows that in a setting with strategic uncertainty, in-

equality in military strength can facilitate peace rather than generate war. This comes from

the fact that while military inequality increases the stronger player’s incentives to launch

predatory attacks, it also reduces both players’ incentives to launch preemptive attacks. To

see this formally, we must compute threshold πSU . When weapon endowments are unequal,

πSU is the only root of the second degree equation

(
1

1− δ
π − Fi

)(
1

1− δ
π − F−i

)
= (Wi − Si)(W−i − S−i)

17



that is also greater than (1− δ) maxi∈{1,2} Fi.

We present our results in two steps. Lemmas 3 and 4 first provide conditions under

which the destabilizing impact of inequality is mitigated under strategic risk compared to

the complete information case. Proposition 7 then shows that under strategic uncertainty,

peace may be possible between unequal contenders while equally strong groups would end

up fighting.

Lemma 3 (mitigated impact of inequality) Whenever (Wi−Si)(W−i−S−i) is decreas-

ing in λ, we have that
∂πSU

∂λ
<

∂πCI

∂λ
.

In words, whenever the product (Wi − Si)(W−i − S−i) is decreasing in λ, strategic risk

dampens the adverse impact of inequality on the sustainability of peace.

The term Wi − Si corresponds to player i’s incentives to launch preemptive attacks.

The fact that the product of these preemptive incentives affect equilibrium selection can be

roughly assigned to the idea that the players’ fear of suffering a surprise attack compound.

Indeed, when the difference W−i − S−i is large, player i may worry that player −i is likely

to launch a preemptive attack. This makes player i’s own incentives to launch preemptive

strikes become more salient. As a result the effect of each player’s preemptive incentives

are complementary.14 When the product of the preemptive incentives is decreasing in λ,

inequality reduces the overall destabilizing effect of preemptive incentives. Next we show

that in our benchmark model, large levels of inequality will in fact minimize the preemptive

temptation.

Lemma 4 (appeasing inequality) Assume that conflict payoffs F , S and W are gen-

erated by the benchmark model of Definition 2 and that D is bounded above. Then, the

preemptive incentives of both players i and −i are minimized when inequality parameter λ

14For a more detailed discussion of why it is specifically the product of preemptive incentives that matters,
the interested reader is referred to Harsanyi and Selten (1988).
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grows arbitrarily large:

lim
λ→+∞

Wi − Si = inf
λ≥1

Wi − Si and lim
λ→+∞

W−i − S−i = inf
λ≥1

W−i − S−i.

It is interesting to note that both players’ incentives to launch preemptive attacks can di-

minish with λ. The stronger player’s incentives diminish because she gets a share of the

spoils close to 1 whether she acts second or simultaneously. The weaker player’s incentives

to launch preemptive attacks also diminish because when facing an overwhelmingly stronger

opponent, she obtains the same payoffs whether she is a second mover or attacks simultane-

ously. Proposition 7 now shows that this positive effect of inequality can be strong enough

that in some circumstances, peace is sustainable only when weapon stocks are sufficiently

unequal.

Proposition 7 (stabilizing inequality) Assume that D is bounded above. Whenever

1

1− δ
π <

[
1

2
+

ρF − ρS

ρF + ρS

]
m−D(ρSk)−D(k) + D(ρF k) (5)

and
1

1− δ
π > m−D(ρSk) (6)

then under strategic risk, peace is unsustainable for λ = 1 but sustainable for λ = +∞.

Proposition 7 provides conditions under which peace is not sustainable if both groups have

the same stock of weapons k but becomes sustainable if one of the players becomes over-

whelmingly strong.15 Condition (5) ensures that peace is not sustainable under strategic

risk when λ = 1. This simply corresponds to the negation of condition (3) for our bench-

mark model. Inversely, condition (6) implies that when a player becomes arbitrarily strong,

predatory attacks remain unattractive. When these conditions hold together then peace is

sustainable only if players are sufficiently unequal.

15For a given k and ρF , there is always a ρS small enough such that these two conditions hold simultane-
ously for some π.
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Note that the term corresponding to the players’ preemptive incentives has dropped out

in inequality (6). The only term that matters now corresponds to the deviation temptation

of the stronger player. This highlights two important points: first, asymmetry can be sta-

bilizing because it rules out preemption as a motive for conflict, second, for asymmetry to

be beneficial, it is still necessary for the weaker party to keep sufficient military capacity so

that predatory attacks are unattractive for the stronger player. In that sense, Proposition 7

relates to, but nuances, the idea that a monopoly of violence facilitates peace.

5 Conflict and intervention

This section explores the impact of peace keeping interventions on the sustainability of

peace.16 First, note that if peace keeping interventions reestablished peace immediately,

it is clear they would be beneficial. However, problems arise if peace keeping operations

only reestablish peace with delay. Indeed, a complete information model would predict that

delayed peace keeping operations are in fact destabilizing. We show that this need not be

the case anymore under strategic risk.

To understand whether late intervention can be effective, we unbundle payoffs upon

conflict as a discounted sum of flow payoffs, and ask how the timing of third-party peace-

enforcing interventions affects peace and conflict. We consider the case of symmetric weapon

stocks. Payoffs take the form

F =
+∞∑
t=0

δtft ; S =
+∞∑
t=0

δtst ; W =
+∞∑
t=0

δtwt

where {ft}t∈N, {st}t∈N and {wt}t∈N are exogenously given streams of payoffs upon conflict.

Peace keeping interventions are characterized by a date T , at which players anticipate that

16Note that we never consider the opportunity cost or direct social benefit of such peace keeping operations,
but rather focus on how they affect peace and conflict. However, although we do not endeavor to do a full
fledged welfare assessment of interventionist policies, we think of our analysis as an important input for such
an assessment.
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civil war will be interrupted. Some settlement is then imposed and players obtain flow payoffs

π′ ≤ π from then on. Hence, if intervention occurs at time T ≥ 1, players’ payoffs upon civil

war are

F T =
T−1∑
t=0

δtft +
δT

1− δ
π′ ; ST =

T−1∑
t=0

δtst +
δT

1− δ
π′ ; W T =

T−1∑
t=0

δtwt +
δT

1− δ
π′.

When intervention occurs at time T , the minimum value of π for peace to be sustainable

under complete information is

πT
CI = (1− δ)

T−1∑
t=0

δtft + δT π′. (7)

For simplicity we make the following assumption.

Assumption 5 (conflict as punishment) We assume that f0 > π and for all t ≥ 1,

ft < π′.

This corresponds to the idea that there are short term benefits to attacking followed by

painful conflict payoffs. The following result shows how an expected intervention affects the

sustainability of peace under complete information.

Proposition 8 (intervention under complete information) Consider the complete in-

formation game in which intervention occurs at time T . The following hold,

(i) whenever T = 0, peace is sustainable for any value π ≥ π′;

(ii) whenever T ≥ 1, then the cooperation threshold πT
CI is decreasing in T . Hence

if T ≥ 1, πT
CI is minimized for T = +∞.

Point (i) of Proposition 8 highlights that if intervention were immediate, then peace would

be sustainable for any value of π. This happens because a first mover attacker never gets

the one shot benefit f0 but only ever gets settlement payoffs π′ ≤ π. Point (ii) shows
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however that anticipating a delayed intervention is always destabilizing under complete in-

formation. Moreover it shows that if it is only feasible to intervene with some delay, then

artificially increasing this response delay improves the sustainability of peace, to the point

that committing not to intervene sustains the highest level of peace.

We now examine the impact of intervention under strategic risk. The minimum value of

π for which cooperation is sustainable is

πT
SU = (1− δ)

T−1∑
t=0

δt(ft + wt − st) + δT π′.

Proposition 9 (intervention under strategic risk) If intervention occurs at time T then

under strategic risk, the following hold,

(i) whenever T = 0, peace is sustainable for any value π > π′,

(ii) for any T ≥ 1, the cooperation threshold under strategic risk πT
SU is increasing

in T if and only if fT + wT − sT > π′.

Point (ii) of Proposition 9 highlights that even when only delayed intervention is feasible, in-

tervention can facilitate the sustainability of peace and that artificially increasing anticipated

delays may foster conflict. This occurs because under strategic risk, intervention affects the

sustainability of peace via two channels. On the one hand it replaces flow predatory payoffs

ft by π′ which is destabilizing. On the other hand, intervention replaces flow preemptive

incentives wt−st by 0, which is stabilizing. Whenever ft+wt−st > π′ the second effect dom-

inates and the promise of intervention – even delayed – improves the sustainability of peace.

The following corollary reinterprets these results in the specific case where flow payoffs wt

upon simultaneous conflict are constant.

Corollary 1 (converging and diverging conflicts) Assume that for all t ≥ 0, wt = w0.

We have that

(i) if ft − st is increasing in t for all t ≥ 0, then πT
SU is increasing in T ;
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(ii) if ft − st is decreasing in t for all t ≥ 0 and there exists T ∗ such that fT ∗ +

wT ∗ − sT ∗ ≤ π′, then for all T ≥ T ∗, πT
SU is decreasing in T .

Point (i) of Corollary 1 states that when flow payoffs between first and second movers diverge

with time, the promise of intervention at some time T will always improve the stability of

peace, and that even if it is delayed, intervention should occur as early as possible. This

corresponds to a setting where the first mover advantage and second mover disadvantage are

durable, so that war becomes worse and worse for the victim of the first attack. In contrast,

point (ii) of Corollary 1 states that whenever flow payoffs between first and second movers

converge – in other words, when the victims can effectively retaliate – then only the promise

of sufficiently early intervention can foster peace. If intervention cannot occur before some

delay T ∗, intervention unambiguously reduces the stability of peace. In this second case

the intuition obtained under complete information survives: intervention only improves the

sustainability of peace if it is expected to happen sufficiently early. If intervention can only

happen with delay greater than T ∗, then artificial delay (or abstaining from intervening) will

improve the chances of peace. This suggests that intervention is most suited when conflicts

follow a diverging pattern.

6 Conclusion

The purpose of this paper is to contrast the mechanics of conflict with and without strategic

risk. It shows that under complete information, the sustainability of peace depends only

on the players’ predatory incentives. Under strategic risk however, the sustainability of

peace depends both on predatory and preemptive incentives. Taking strategic risk seriously

highlights the role of fear – rather than just temptation – in the determination of peace and

war. This changes intuitions about deterrence and intervention in a number of ways. We

focused on three particular insights.

First, while weapons are deterrent under complete information this need not be the case

under strategic risk. Indeed, while weapons diminish players’ temptation to launch predatory
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attacks, they may also increase the temptation to launch preemptive attacks. As a result we

show that weapons need not always be deterrent. We show that under natural conditions,

sufficiently destructive weapons (i.e. nuclear warheads) will be deterrent, while intermediary

weapons (i.e. guns) may be destabilizing. In particular we highlight the danger of disruptive

weapons which hurt second movers much more than first movers in times of conflict.

Our second set of results pertains to the impact of unequal military strength on conflict.

We show that under strategic risk, inequality may very well facilitate the sustainability of

peace. Indeed, while inequality always increases one of the players’ predatory temptation,

it may also decrease both players’ preemptive incentives: if one of the contenders is over-

whelmingly stronger than the other, the timing of conflict doesn’t change payoffs by much.

As a result peace may be sustainable if groups are unequal and unsustainable if groups are

equal. The model however doesn’t suggest that monopoly of violence sustains the highest

level of peace. Indeed, it is necessary in our framework that the weaker party keep sufficient

weapon stocks to dissuade the stronger party from unilateral attacks. This result suggests

that policies that attempt to level the playing field between conflicting groups may in fact

be misguided and that restrained superiority may foster the greatest level of peace.

Finally we consider the relationship between intervention and conflict. We show that un-

der complete information, unless intervention occurs immediately, it will make peace harder

to sustain. This isn’t true anymore under strategic risk as intervention may reduce players’

fear of being the victim of a surprise attack. More precisely, we show that when conflict is

diverging, in the sense that second movers fare worse and worse compared to first movers,

then intervention will always facilitate the sustainability of peace. This result suggests that

interventionist policies may improve the sustainability of peace even though they appear to

worsen the players’ predatory incentives.

The model we use to make these points is particularly simple. On the one hand, we view

this as a strength of the paper. It highlights the importance of strategic risk as a fundamen-

tal determinant of peace and conflict, that can potentially yield rich comparative statics.

Intuitions from our model also apply to many different circumstances of conflict, whether it
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occurs between countries, armed groups within a country, or even between individuals. On

the other hand, because it is so simple, our model leaves open a number of questions which

need to be addressed if we are to gain a comprehensive understanding of the determinants

of war and peace. In particular, we think that endogenizing weapon stocks and linking the

economic benefits of peace to investment and the likelihood of future conflict are obvious

directions for future research.

A Appendix: Proofs

A.1 Proofs for Section 2

Proof of Lemma 1: Since for all i ∈ {1, 2}, Fi > Wi > Si, the highest continuation value

player i can expect is max{Fi,
1

1−δ
π}. If peace is an equilibrium action for player i, this

implies that π + δ max{Fi,
1

1−δ
π} ≥ Fi, which yields that necessarily 1

1−δ
π ≥ Fi. Finally,

since Si < Wi, peace is an equilibrium action only if both players choose peace. This shows

that whenever peace is an equilibrium outcome, then for all i ∈ {1, 2} we have 1
1−δ

π ≥ Fi.

The reverse implication is straightforward: whenever 1
1−δ

π ≥ Fi, then being always peaceful

is an equilibrium. ¥

The proof of Lemma 1 and Proposition 2 is inspired from Chassang (2007) and Chassang

(2008). However, because we have only one dominance region, the proofs must be adapted

in non-trivial ways. We first introduce some notation and prove intermediary results in

Lemmas 5 and 6.

Definition 3 For any pair of values (Vi, V−i) ∈ R we denote by xRD(Vi, V−i) the risk-

dominant threshold of the one shot 2×2 game

P A

P x + δVi Si

A Fi Wi

which is defined as the greatest solution of the second degree equation:

∏

i∈{1,2}
(x + δVi − Fi) =

∏

i∈{1,2}
(Wi − Si) (8)
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Definition 4 (i) A strategy si is said to take a threshold-form if and only if there

exists xi ∈ R such that for all hi,t, si(hi,t) = P ⇐⇒ xi,t ≥ xi. A strategy of

threshold x−i will be denoted sx−i
.

(ii) Given a strategy s−i, a history hi,t and continuation value functions (Vi, V−i),

we denote by

UP
i,σ(Vi, hi,t, s−i) = E

[
(π̃t + δVi)1s−i=P + Si1s−i=A | hi,t, s−i,t

]

UA
iσ(hi,t, s−i) = E

[
Fi1s−i=P + Wi1s−i=A | hi,t, s−i,t

]

the payoffs17 player i expects upon playing P and A.

(iii) Given a strategy s−i we denote by Vi,σ(s−i) the value function that player i

obtains from best-replying to strategy s−i.

(iv) Given a strategy s−i, a history hi,t and a value function Vi, we define

∆i,σ(hi,t, s−i, Vi) = UP
i,σ(Vi, hi,t, s−i)− UA

iσ(hi,t, s−i).

(v) Given xi ∈ R and Vi ∈ R, for all α ∈ [−2, 2] we define ∆̂i,σ(xi, α, Vi) =

∆i,σ(xi, sxi−ασ, Vi).

Lemma 5 (intermediary results) There exists σ > 0 and κ > 0 such that for all σ ∈
(0, σ), all the following hold,

(i) Whenever s−i is threshold-form and s′−i ¹ s−i, then Vi,σ(s−i) ≥ Vi,σ(s′−i).

(ii) Consider s−i a threshold form strategy and s′−i any strategy such that s′−i ¹ si.

Whenever ∆i,σ(hi,t, s
′
−i, Vi,σ(s′−i)) ≥ 0 then ∆i,σ(hi,t, s−i, Vi,σ(s−i)) ≥ ∆i,σ(hi,t, s

′
−i, Vi,σ(s′−i))

(iii) For any Vi ∈ [Wi,
1

1−δ
π] , whenever ∆̂i,σ(xi, α, Vi) ≥ 0 then

∂∆̂i,σ

∂xi
> κ and

∂∆̂i,σ

∂α
> 0. Furthermore, if in addition there exists V−i ∈ [W−i,

1
1−δ

π] such that

∆−i,σ(xi − ασ,−α, V−i) ≥ 0, then
∂∆̂i,σ

∂α
> κ.

Proof: We begin with point (i). Let us first show that whenever V is a constant and V ′ a

value function such that for all hi,t, V ′(hi,t) ≤ V then for σ small enough,

max{UP
i,σ(V, hi,t, s−i), U

A
i,σ(hi,t, s−i)} ≥ max{UP

i,σ(V ′, hi,t, s
′
−i), U

A
i,σ(hi,t, s

′
−i)}.

17We drop the σ subscript and the dependency on hi,t whenever doing so does not cause confusion.
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Indeed, since Fi > Wi it follows that UA
i,σ(s−i) ≥ UA

i,σ(s′−i). Also, whenever UP
i,σ(V, s′−i) ≥

UA
i,σ(s′−i) then it must be that for some value of π̃t with positive likelihood conditionally on

hi,t, π̃t + δV ≥ Fi. Since Fi > Si and π̃t has support [xi,t − σ, xi,t + σ] conditionally on hi,t,

this implies that there exists σ1 > 0 such that for all σ ∈ (0, σ1), UP
i,σ(V, s′−i) ≥ UA

i,σ(s′−i)

implies that with probability 1 conditionally on hi,t, π̃t +δV > Si. This yields that whenever

UP
i,σ(V, s′−i) ≥ UA

i,σ(s′−i), then UP
i,σ(V, s−i) ≥ UP

i,σ(V, s′−i). Since UP
i,σ(V, s−i) > UP

i,σ(V ′, s−i),

this yields that indeed for all σ ∈ (0, σ1),

max{UP
i,σ(V, s−i), U

A
i,σ(s−i)} ≥ max{UP

i,σ(V ′, s′−i), U
A
i,σ(s′−i)}. (9)

Since for any strategy s′′−i, the value Vi(s
′′
−i) is the highest solution of the fixed point equation

Vi(s
′′
−i)(hi,t) = max{UP

i (Vi(s
′′
−i), s

′′
−i), U

A
i (s′′−i)), inequality (9) implies that for all σ ∈ (0, σ1),

Vi,σ(s−i) ≥ Vi,σ(s′−i). This proves point (i).

We now turn to point (ii). From point (i), we know that Vi,σ(s−i) ≥ Vi,σ(s−i′). Also,

since Si − Wi < 0, there exists, σ2 > 0 such that for all σ ∈ (0, σ2), ∆i,σ(hi,t, s
′
−i, V ) ≥ 0

implies that π̃t + δV − Fi > Si −Wi. This yields that

∆i,σ(hi,t, s−i, Vi,σ(s−i)) = E[(π̃t + δVi,σ(s−i)− Fi)1s−i=P + (Si −Wi)1s−i=A | hi,t, s−i]

≥ E[(π̃t + δVi,σ(s−i)− Fi)1s′−i=P + (Si −Wi)1s′−i=A | hi,t, s
′
−i]

≥ E[(π̃t + δVi,σ(s′−i)− Fi)1s′−i=P + (Si −Wi)1s′−i=A | hi,t, s
′
−i]

≥ ∆i,σ(hi,t, s
′
−i, Vi,σ(s′−i))

which yields point (ii).

We now turn to point (iii). Denote by fε and Fε the distribution and c.d.f. of εi,t and

define Gε ≡ 1− Fε. Recall that f denotes the distribution of π̃t. We have that

∆i,σ(xi, α, Vi) = E
[
(π̃t + δVi − Fi)1x−i,t≥xi−ασ + (Si −Wi)1x−i,t≤xi−ασ | xi,t

]

=

∫ 1

−1

[(xi − σu + δVi)Fε(α + u) + (Si −Wi)Gε(α + u)]
fε(u)f(xi − σu)∫ 1

−1
fε(u′)f(xi − σu′)du′︸ ︷︷ ︸

≡Ψσ(xi,u)

du.

Since Si − Wi < 0, there exists σ3 > 0 and τ > 0 such that for all σ ∈ (0, σ3), whenever

∆i,σ(xi, α, Vi) ≥ 0 then α ≥ −2 + τ . Otherwise Fε(α + u) would be arbitrarily small and

we would have ∆i,σ(xi, α, Vi) < 0. Standard results on convolution products18 show that

18See for instance Lemma 8 of Chassang (2008)
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as σ goes to 0, the posterior Ψσ(xi, u) converges uniformly to fε(u) and that ∂Ψσ

∂xi
converges

uniformly to 0. This yields that there exists σ4 and κ1 > 0 such that whenever σ ∈ (0, σ4),

then
∂∆i,σ

∂xi
> k1 > 0.

Now assume that we also have ∆−i,σ(xi − ασ,−α, V−i) ≥ 0. Since S−i −W−i < 0 there

exists σ5 > 0 and τ ′ > 0 such that for all σ ∈ (0, σ5), ∆−i,σ(xi − ασ,−α, V−i) ≥ 0 implies

that −α ≥ −2 + τ ′. Altogether this implies that α ∈ [−2 + τ, 2 − τ ′]. From there, simple

algebra yields that there exists σ6 > 0 and κ2 > 0 such that for all σ ∈ (0, σ6),
∂∆̂i,σ

∂α
> κ2.

To conclude the proof, simply pick σ = mini∈{1,··· ,6} σi and κ = min(κ1, κ2). ¥

Proof of Lemma 1: Point (i) is straightforward and simply results from the assumption

that for all i ∈ {1, 2}, S−i < W−i. Points (ii) and (iii) are more delicate and make extensive

use of Lemma 5. We prove (ii) and (iii) together.

Let us first show that if s−i is a threshold-form strategy of threshold x−i, then the best

reply to s−i is also threshold form. The best reply to s−i is to play peace if and only

if ∆i,σ(xi,t, s−i, Vi,σ(s−i)) ≥ 0. Since the value Vi,σ(s−i) is constant, point (iii) of Lemma

5 holds and it follows from simple algebra that ∆i,σ(xi,t, s−i, Vi,σ(s−i)) ≥ 0 implies that
∂∆i,σ

∂xi
> 0. This single crossing condition implies that the best reply is to play peace if and

only if xi,t ≥ xi where xi is the unique solution of ∆i,σ(xi, s−i, Vi(s−i)) = 0. Hence the best

reply to a threshold form equilibrium is a threshold form equilibrium.

Point (ii) of Lemma 5 also implies a form of monotone best reply. Consider s−i and s′−i

two strategies and denote si and s′i corresponding best replies of player i. Then whenever s−i

is threshold-form and s′−i ¹ s−i, then s′i ¹ si (note that we also know that si is unique and

takes a threshold form). We call this property restricted monotone best-reply. It allows to

replicate part of the standard construction of Milgrom and Roberts (1990) and Vives (1990).

Denote BRi,σ and BR−i,σ the best-reply mappings and sP the strategy corresponding to

playing peace always. We construct the sequence {[BRi,σ ◦ BR−i,σ]k(sP )}k∈N. Since sP is

threshold-form (with threshold −∞) and is the highest possible strategy, this sequence is

a decreasing sequence of threshold form strategies. Restricted monotone best-reply implies

that it also converges to a strategy sH
i,σ that is an upper bound to the set of equilibrium strate-

gies of player i. Furthermore, (sH
i,σ, s

H
−i,σ) is itself an equilibrium (where sH

−i,σ = BR−i,σ(sH
i,σ))

which takes a threshold form. Point (i) of Lemma 5 implies that the associated values are

the highest equilibrium values. This concludes the proof. ¥
Let us now turn to the proof of Proposition 2. We begin by characterizing the most peaceful

equilibrium for fixed f as parameter σ goes to 0.
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Lemma 6 (characterizing the most peaceful equilibrium) For any x ∈ R, define

Vi(x) =
1

1− δprob(π̃ ≥ x)
[E(π̃1π≥x) + δprob(π̃ ≤ x)Wi]

As σ goes to 0, xH
σ converges to a symmetric pair (xH , xH) where xH is the smallest value x

such that for all i ∈ {1, 2}, x + δVi(x) ≥ Fi and

∏

i∈{1,2}
(x + δVi(x)− Fi) =

∏

i∈{1,2}
(Wi − Si) (10)

Proof of Lemma 6: We begin by showing the following result: for any upper bound

for values V ∈ R, there exists σ > 0 such that for any σ ∈ (0, σ), for any (Vi, V−i) ∈
[Wi, V ]× [W−i, V ], the one-shot global game with payoffs

P A

P π̃t + δVi Si

A Fi Wi

has a highest equilibrium that takes a threshold-form denoted by x∗σ(Vi, V−i) = (x∗i,σ, x
∗
−i,σ).

Furthermore as σ goes to 0, the mapping x∗σ : R2 → R2 converges uniformly over [Wi, V ]×
[W−i, V ] to the mapping x∗ : (Vi, V−i) 7→ (xRD(Vi, V−i), x

RD(Vi, V−i)).

The existence of a highest threshold form equilibrium results from point (ii) of Lemma

5. As in the dynamic case, one can prove a restricted for of monotone best-reply. Joint

with the fact that best-replies to threshold-form strategies are also threshold form, iterative

application of the best-reply mapping yields the result.

We now show uniform convergence. The proof uses point (iii) of Lemma 5. The equi-

librium threshold x∗σ can be characterized as a pair (xi, α) where α = (x∗i,σ − x∗−i,σ)/σ and

xi = x∗i,σ. The pair (xi, α) must solve

∆̂i,σ(xi, α, Vi) = 0 (11)

∆̂−i,σ(xi − ασ,−α, V−i) = 0. (12)

As σ goes to 0, ∆̂i,σ converges uniformly to a mapping ∆̂i. Using point (iii) of Lemma 5

equations (11) and (12) imply that there exists σ and κ > 0 such that for all σ ∈ (0, σ) we

must have

∀i ∈ {1, 2}, ∂∆̂i,σ

∂xi

> κ and
∂∆̂i,σ

∂α
> κ.
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This implies that given xi there is at most a unique value ασ(xi) such that ∆i,σ(xi, ασ(xi), Vi) =

0. Since
∂ b∆i,σ

∂α
> κ > 0 we also have that ασ(xi) converges uniformly to the unique solution

in α of ∆̂i(xi, α, Vi) = 0. Furthermore, it must be that ασ(xi) is decreasing in xi. Define

the mapping ζσ(xi) = ∆̂−i,σ(xi − ασ(xi)σ,−ασ(xi), V−i). The equilibrium threshold xi must

satisfy ζσ(xi) = 0. At any such xi, we have that ζσ is strictly increasing with slope greater

than κ. Furthermore as σ goes to 0, ζσ converges uniformly to a mapping ζ. This yields that

as σ goes to 0, x∗i,σ must converge to the unique zero of ζ. We know from the global games

literature that this unique zero is xRD(Vi, V−i). This concludes the first part of the proof.

We now prove Lemma 6 itself. The highest equilibrium sH
σ of the dynamic game is

associated with constant values VH
σ and constant thresholds xH

σ . This threshold has to

correspond to a Nash equilibrium of the one-shot augmented global game

P A

P π̃t + δV H
i,σ Si

A Fi Wi

where payoffs are given for row player i. Furthermore since sH
σ is the highest equilibrium of

the dynamic game, it must be that xH
σ also corresponds to the highest equilibrium of the

one-shot augmented global game. Hence xH
σ = x∗σ(VH

σ ). Let us denote by Vi,σ(x−i) the value

player i obtains from best replying to a strategy sx−i
and Vσ(x) = (Vi,σ(x−i), V−i,σ(xi)).

We have that VH
σ = Vσ(xH

σ ). Together this yields that VH
σ is the highest solution of the

fixed point equation VH
σ = Vσ(x∗σ(VH

σ )). We know that x∗σ converges uniformly to the

symmetric pair (xRD, xRD). Furthermore V σ
i (x) converges uniformly over any compact to

Vi(x). Hence as σ goes to 0, V H
σ must converge to the highest solution VH of the fixed

point equation VH = V(xRD(VH)). Equivalently, xH
σ must converge to the symmetric

pair (xH , xH) where xH is the smallest value such that xH = xRD(V(xH)). This yields

that indeed xH is the smallest value x such that for all i ∈ {1, 2}, x + δVi(x) ≥ Fi and∏
i∈{1,2}(x + δVi(x)− Fi) =

∏
i∈{1,2}(Wi − Si), which concludes the proof. ¥

Using Lemma 6, Proposition 2 follows directly.

Proof of Proposition 2: As fn converges to the Dirac mass dπ, the mapping Vi,fn(x)

converges to the mapping Vi,dπ(x) = 1
1−δ

π1x≤π + Wi1x>π. The conditions of Proposition

2 simply correspond to whether π > xRD(V(π)) or π < xRD(V(π)). If π > xRD(V(π))

then the value of permanent peace generates a cooperation threshold below π and hence

permanent peace is self sustainable. If on the other hand π < xRD(V(π)) then even the
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value of permanent peace generates a cooperation threshold above π so that with very high

probability immediate conflict occurs. This concludes the proof. ¥

A.2 Proofs for Section 3

Proof of Proposition 3: When ki = k−i = k, we have that πCI = (1 − δ)F (k) and

πSU = (1 − δ)[F (k) + W (k)− S(k)]. Under Assumption 2, F is decreasing in k, and hence

πCI is decreasing in k. Clearly, πSU is decreasing in k if and only if F ′(k)+W ′(k)−S ′(k) < 0.

¥

Proof of Lemma 2: Whenever D is convex over the range [ρSk, ρF k], then ρSD′(ρSk) is

increasing in ρS and ρF D′(ρF k) is increasing in ρF . Hence φ is decreasing in ρF and increas-

ing in ρS. ¥

Proof of Proposition 4: When ki = k−i = k, then πSU = (1 − δ)(F (k) + W (k) − S(k)).

We have that

inf
k≥0

πSU(k) ≤ (1− δ) inf
k≥0

F (k) + (1− δ) inf
k≥0

[W (k)− S(k)].

By Assumptions 2, and 3 we get that

inf
k≥0

πSU(k) ≤ (1− δ) lim
k→∞

F (k) + (1− δ) lim
k→∞

[W (k)− S(k)] = lim
k→∞

πSU(k).

This concludes the proof. ¥

Proof of Proposition 5: We have that

dπSU

dk
=

dF

dk
+

dW

dk
− dS

dk
= −D′(ρSk)−D′(k) + D′(ρF k).

Using Assumption 4 and the fact that ρF > 1 > ρS, we obtain that at k = k∗/ρF ,

dπSU/dk = +∞. Since πSU is continuously differentiable in k, this concludes the proof.

¥

Proof of Lemma 3 : Let us compute πSU explicitly in the case where ki may be different
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of k−i. The threshold πSU is the only root of the second degree equation

(
1

1− δ
π − Fi

)(
1

1− δ
π − F−i

)
= (Wi − Si)(W−i − S−i)

that is also greater than maxi Fi. This yields that

πSU =
Fi + F−i +

√
(Fi − F−i)2 + 4(Wi − Si)(W−i − S−i)

2

which can be re written as

πSU = πCI +

√
(Fi − F−i)2 + 4(Wi − Si)(W−i − S−i)−

√
(Fi − F−i)2

2
= πCI + η

where πCI = (1− δ) max{Fi, F−i} and

η =

√
(Fi − F−i)2 + 4(Wi − Si)(W−i − S−i)−

√
(Fi − F−i)2

2
.

Denote µ1 = (Fi − F−i)
2 and µ2 = (Wi − Si)(W−i − S−i). We have that

dη

dλ
=

1

2

[
1

2
√

µ1 + 4µ2

(
dµ1

dλ
+ 4

dµ2

dλ

)
− 1

2
√

µ1

dµ1

dλ

]
.

Since µ1 > 0, dµ1/dλ > 0 and dµ2/dλ ≤ 0, we obtain that dη/dλ < 0. This concludes the

proof. ¥

Proof of Lemma 4: In the benchmark model, we have that

Wi − Si =
λ

1 + λ
m− ρSλ

ρF + ρSλ
m−D(k) + D(ρF k) > −D(k) + D(ρF k).

Hence

lim
λ→+∞

Wi − Si = −D(k) + D(ρF k) = inf
λ≥1

Wi − Si.

We also have that

W−i − S−i =
1

1 + λ
m− ρS

ρS + ρF λ
m−D(λk) + D(ρF λk) > 0.
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Since by assumption D is increasing in k and bounded above, this yields that

lim
λ→+∞

W−i − S−i = 0 = inf
λ≥1

W−i − S−i.

This concludes the proof. ¥

Proof of Proposition 7: When λ = 1, peace is sustainable under strategic risk if and only

if 1
1−δ

π ≥ F (k) + W (k)− S(k). In the benchmark model, this boils down to

1

1− δ
π ≥ ρF

ρF + ρS

m−D(ρSk) +
1

2
m−D(k)− ρS

ρF + ρS

m + D(ρF k).

Hence when condition (5) holds, peace is not sustainable under strategic risk.

When weapon stocks are asymmetric (λ > 1), then peace is sustainable under strategic

risk if and only if
∏

i∈{1,2}

(
1

1− δ
π − Fi

)+

>
∏

i∈{1,2}
(Wi − Si) . (13)

We have just shown that whenever D is bounded above, as λ goes to +∞ the difference

W−i−S−i goes to 0. Since for all λ ≥ 1, Fi ≥ F−i and limλ→+∞ Fi = m−D(ρSk), inequality

(13) boils down to
1

1− δ
π > m−D(ρSk).

Hence condition (6) guarantees that as λ goes to +∞, peace will be sustainable under strate-

gic uncertainty. This concludes the proof. ¥

A.3 Proofs for Section 5

Proof of Proposition 8: Point (i) is obvious. As for point (ii), we have that 1
1−δ

πT
CI =∑T−1

t=0 δtft+
∑+∞

t=T δtπ′. Hence πT+1
CI −πT

CI = δT (1−δ)(fT−π′). This concludes the proof. ¥

Proof of Proposition 9: Point (i) holds since for T = 0, we have that W T
i − ST

i = 0

and 1
1−δ

π − Fi = 1
1−δ

(π − π′) > 0. This implies that (P, P ) is indeed the risk-dominant

equilibrium of the augmented one-shot game.

As for point (ii), we have that 1
1−δ

πT
SU =

∑T−1
t=0 δt(wt + ft − st) +

∑+∞
t=T δT π′. Hence

πT+1
SU − πT

SU = δT (1− δ)(fT + wT − sT − π′), which concludes the proof. ¥
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[6] Chassang, Sylvain, and Gerard Padró i Miquel. 2007. “Mutual Fears and Civil War.”

Working Paper.

[7] Collier, Paul, Lani Elliott, H̊avard Hegre, Anke Hoeffler, Marta Reynal-Querol, and

Nicolas Sambanis. 2003. Breaking the Conflict Trap: Civil War and Development Policy.

Oxford and Washington DC: Oxford University Press and The World Bank.

[8] Doyle, Michael and Nicholas Sambanis. 2006. Making War & Building Peace: United

Nations Peace Operations. Princeton, NJ: Princeton University Press.

[9] Fearon, James D. 1995. “Rationalist Explanations for War.” International Organization

49(3): 379-414.

[10] Flint, Julie and Alex de Waal. 2005. Darfur: A Short History of a Long War. London

and New York: Zed Books.

[11] Garfinkel, Michelle. 1990. “Arming as a Strategic Investment in a Cooperative Equilib-

rium ” American Economic Review 80(4): 50-68.

[12] Grossman, Herschel I. 1991. “A General Equilibrium Model of Insurrections.” American

Economic Review 81(4): 912-921.

34



[13] Harsanyi, John and Reinhart Selten. 1988. A General Theory of Equilibrium Selection

in Games, MIT Press.

[14] Hirshleifer, Jack. 1995. “Theorizing about Conflict.” in Hartley, Keith and Sandler,

Todd eds. Handbook of Defense Economics. Amsterdam: Elsevier Science.

[15] Jackson, Matthew O. and Massimo Morelli. 2007.“Political Bias and War.” American

Economic Review 97(4): 1353-1373.

[16] Jervis, Robert. 1976. Perception and Misperception in International Politics. New Jer-

sey: Princeton University Press.

[17] Jervis, Robert. 1978. “Cooperation under the Security Dilemma.” World Politics 30(1):

167-214.

[18] Jervis, Robert. 1979. “Deterrence Theory Revisited.” World Politics 31(1): 289-324.

[19] Jervis, Robert. 1989. The Meaning of the Nuclear Revolution. Ithaca, N.Y: Cornell

University Press.

[20] Jervis, Robert and Jack Snyder. 1999. “Civil War and the Security Dilemma.” in Sny-

der, Jack and Barbara Walter, eds. Civil War, Insecurity, and Intervention. New York:

Columbia University Press.

[21] John, A. Andrew, Rowena Pecchenino and Stacey L. Schreft. 1993. “The Macroeco-

nomics of Dr. Strangelove.” American Economic Review 83(1): 43-62.

[22] Kydd, Andrew H. 1997. “Game Theory and the Spiral Model.” World Politics 49(3):

371-400.

[23] Morris, Stephen and Hyun Song Shin. 2001. “Global Games: Theory and Applications.”

Cowles Foundation Discussion Paper No. 1275R. http://ssrn.com/abstract=284813.

[24] Milgrom, Paul and John Roberts. 1990. “Rationalizability, Learning, and Equilibrium

in Games with Strategic Complementarities.” Econometrica 58(6): 1255-1277.

[25] Oxfam, IANSA and Safeworld. 2007. “Africa’s Missing Billions: International Arms

Flows and the Cost of Conflict.” Briefing Papers 107.

[26] Posen, Barry R. 1993. “The Security Dilemma and Ethnic Conflict.” Survival 35(1):

27-47.

35



[27] Robert Powell. 1990. Nuclear Deterrence Theory: The Search for Credibility. New York:

Cambridge University Press.

[28] Powell, Robert. 2004. “The Inefficient Use of Power: Costly Conflict with Complete

Information.” American Political Science Review 98(3): 231-241.

[29] Schelling, Thomas. 1960. The Strategy of Conflict. Cambridge, MA: Harvard University

Press.

[30] Schelling, Thomas. 1966. Arms and Influence. New Haven, Conn.: Yale University Press.

[31] Skaperdas, Stergios. 1992. “Cooperation, Conflict, and Power in the Absence of Property

Rights.” American Economic Review 82(4): 720-739.

[32] Vives, Xavier. 1990. “Nash equilibrium with strategic complementarities ”. Journal of

Mathematical Economics 19(3): 305-321.

36


