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1 Introduction

The New-Keynesian model (the NK model, for short) has emerged as a powerful

tool for monetary policy analysis in the presence of nominal rigidities. Its adop-

tion as the backbone of the medium-scale models currently developed by many

central banks and policy institutions is a clear reflection of its success. This pop-

ularity may be viewed as somewhat surprising given that standard versions of

the NK paradigm do not generate movements in unemployment, only voluntary

movements in hours of work or employment.1

This provides the motivation for our paper. We extend the NK model by in-

troducing a more realistic labor market, with frictions similar to those found in

the Diamond-Mortensen-Pissarides search and matching model of unemployment

(the DMP model, henceforth). This extension allows us to characterize the effects

of productivity shocks on both unemployment and inflation, and to show how

these effects depend both on monetary policy and on the nature of labor market

frictions. It also allows us to derive optimal monetary policy, and characterize its

dependence on labor market frictions, to answer for example how monetary policy

should differ, depending on whether, for example, the labor market is fluid—as

in the United States—or sclerotic instead—as in Continental Europe.

The paper is organized as follows:

Section 2 sets up the basic model with frictions, leaving out nominal rigidities.

We capture labor market frictions through hiring costs increasing in labor market

tightness—defined as the ratio of hires to the unemployment pool. We then char-

acterize the constrained-efficient allocation: Frictions lead to unemployment, but

the unemployment rate is invariant to productivity shocks. The reason is that,

as in the corresponding model without frictions, income and substitution effects

cancel, leading to no change in employment, and in unemployment. Frictions do

not affect this outcome.

Section 3 characterizes the decentralized equilibrium under alternative wage-

setting mechanisms. As is well understood, frictions create a wage band, within

1. Paradoxically, this was viewed as one of the main weaknesses of the RBC model, but was
then exported to the NK model.
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which any real wage is consistent with private efficiency. We thus explore two al-

ternatives. We first assume Nash-bargaining. In this case, the unemployment rate

is typically different from the constrained-efficient rate, but, like the constrained-

efficient rate, it is also invariant to productivity shocks. We then allow for more

rigid real wages, and show that in this case, productivity shocks lead to inefficient

fluctuations in unemployment. We characterize these fluctuations as a function

of the labor market frictions and the degree of real wage rigidity.

Section 4 introduces nominal rigidities, in the form of staggering of price decisions

by firms. Productivity shocks now affect both the inflation rate and the unemploy-

ment rate. We derive the relation between inflation and unemployment implied

by the model, and contrast it to the standard NK formulation. Put crudely, the

model implies a relation between inflation and labor market tightness. This in

turn implies a relation between inflation and both the level and the change in the

unemployment rate.

Section 5 turns to the implications for monetary policy. It shows that stabilizing

unemployment in response to productivity shocks requires allowing for transito-

rily higher inflation. It shows how stabilizing inflation leads to large and inefficient

movements in unemployment (recall that constrained-efficient unemployment is

constant) . It shows how the persistence of unemployment is higher in more scle-

rotic markets, i.e. markets in which the separation and the hiring rate are lower.

It then derives optimal monetary policy, showing its dependence on labor market

characteristics

Section 6 offers two calibrations of the model, one aimed at capturing the United

States, the other aimed at capturing continental Europe, with its more scle-

rotic labor markets. In each case, it presents the implications of pursuing either

inflation-stabilizing, unemployment-stabilizing, or optimal monetary policy. We

also study the extent to which a simple interest rate rule can approximate the

optimal policy outcomes.

Section 7 indicates how our model relates to the existing–and rapidly growing–

literature on the relative roles of labor market frictions, real wage rigidities, and

nominal price rigidities in shaping fluctuations. This literature started with Mon-
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ica Merz’s (1995) integration of labor market frictions in an RBC model, and

now encompasses a number of medium size DSGE models with labor market

frictions, and real and nominal wage and price rigidities. We see the compara-

tive strength of our paper as being in its simplicity. This simplicity allows for an

analytical characterization of fluctuations, and an analytical derivation of opti-

mal policy. It makes clear the separate role of frictions, real wage rigidities, and

monetary policy, in mediating the effects of productivity shocks on inflation and

unemployment.

Section 8 concludes.

2 The Basic Model

2.1 Assumptions

Preferences

The representative household is made up of a continuum of members represented

by the unit interval. The household maximizes

E0

∑
βt

(
log Ct − χ

Nt
1+φ

1 + φ

)
(1)

where Ct is a CES function over a continuum of goods with elasticity of substi-

tution ε, and Nt denotes the fraction of household members who are employed.

The latter must satisfy the constraint

0 ≤ Nt ≤ 1 (2)

Note that such a specification of utility differs from the one generally used in the

DMP model, where the marginal rate of substitution is assumed to be constant.

Our specification is, instead, one often used in models of the business cycle, given

its consistency with a balanced growth path and the direct parametrization of

the inverse of the Frisch labor supply elasticity by φ.
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Technology

We assume a continuum of firms indexed by i ∈ [0, 1], each producing a differen-

tiated final good. All firms have access to an identical technology

Yt(i) = Xt(i)

where Xt(i) is the quantity of the (single) intermediate good.

The latter is produced by a large number of identical, perfectly competitive firms,

indexed by j ∈ [0, 1], and with a production function2

Xt(j) = At Nt(j)

Variable At represents the state of technology, which is assumed to be common

across firms and to vary exogenously over time.

Employment in firm j evolves according to

Nt(j) = (1− δ) Nt−1(j) + Ht(j)

where δ ∈ (0, 1) is an exogenous separation rate, and Ht(j) represents the measure

of workers hired by firm j in period t. Note that new hires start working in the

period they are hired.

Labor Market

Flows and Timing.

At the beginning of period t there is a pool of jobless individuals who are avail-

able for hire, and whose size we denote by Ut. We refer to the latter variable as

beginning-of-period unemployment (or just unemployment, for short). We make

assumptions below that guarantee full participation, i.e. at all times all individ-

uals are either employed or willing to work, given the prevailing labor market

2. The motivation for the separation between final goods producers with monopoly power and
perfectly competitive intermediate good producers is to avoid interactions between price setting
and wage bargaining at the firm level.
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conditions. Accordingly, we have

Ut = 1−Nt−1 + δNt−1 = 1− (1− δ)Nt−1 (3)

Among those unemployed at the beginning of period t, a measure Ht ≡
∫ 1

0
Ht(j) dj

are hired and start working in the same period. Aggregate hiring evolves accord-

ing to

Ht = Nt − (1− δ) Nt−1 (4)

where Nt ≡
∫ 1

0
Nt(j) dj denotes aggregate employment.

We introduce an index of labor market tightness, xt, which we define as the ratio

of aggregate hires to unemployment

xt ≡ Ht

Ut

(5)

This tightness index xt will play a central role in what follows. It is assumed

to lie within the interval [0, 1]. Only workers in the unemployment pool at the

beginning of the period can be hired (Ht ≤ Ut).

Note that, from the viewpoint of the unemployed, the index xt has an alternative

interpretation: It is the probability of being hired in period t, or, in other words,

the job-finding rate. Below we use the terms labor market tightness and job-

finding rate interchangeably.

Hiring costs.

Hiring labor is costly. Hiring costs for an individual firm are given by Gt Ht(j),

expressed in terms of the CES bundle of goods. Gt represents the cost per hire,

which is independent of Ht(j) and taken as given by each individual firm.

While Gt is taken as given by each firm, it is an increasing function of labor

market tightness. Formally, we assume

Gt = At Bxα
t
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where α ≥ 0 and B is a positive constant.3 It is convenient, for later use, to define

gt ≡ Bxα
t , so Gt = At gt.

Note that, under our formalization, vacancies are assumed to be filled immediately

by paying the hiring cost, which is a function of labor market tightness. By

contrast, in the DMP model, the hiring cost is uncertain, with its expected value

corresponding to the (per period) cost of posting a vacancy times the expected

time to fill it. This expected time is an increasing function of the ratio of vacancies

to unemployment, which can be expressed in turn as a function of labor market

tightness. Thus, while the formalism used to capture the presence of hiring costs

is different, both approaches share the basic characteristic that the cost of hiring

is increasing in labor market tightness.

Finally, it is useful, for future reference, to define an alternative measure of un-

employment, denoted by ut, and given by the fraction of the population who are

left without a job after hiring takes place in period t. Formally, and given our

assumption of full participation, we have

ut = 1−Nt

2.2 The Constrained-Efficient Allocation

We derive the constrained-efficient allocation by solving the problem of a benev-

olent social planner who faces the technological constraints and labor market

frictions that are present in the decentralized economy. The social planner, how-

ever, internalizes the effect of variations in labor market tightness on hiring costs

and, hence, on the resource constraint.

Given symmetry in preferences and technology, efficiency requires that identical

quantities of each good be produced and consumed, i.e. Ct(i) = Ct for all i ∈ [0, 1].

Furthermore, since labor market participation has no individual cost but some

social benefit (it lowers hiring costs, for any given level of employment and hiring),

3. The motivation for the presence of At in the expression for Gt is to avoid effects of produc-
tivity shocks on the cost of hiring relative to the cost of producing, an effect we believe is best
left out of the model.
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the social planner will always choose an allocation with full participation (though

not necessarily full employment, since higher employment generates disutility and

raises hiring costs).

Hence the social planner maximizes (1) subject to (2) and the aggregate resource

constraint

Ct = At (Nt −Bxα
t Ht) (6)

where Ht and xt are defined in (4) and (5).

The optimality condition for the planner’s problem can be written as

CtN
φ
t ≤ At − (1 + α)AtBxα

t

+β(1− δ) Et

{
Ct

Ct+1

At+1 Bxα
t+1 (1 + α(1− xt+1))

}
(7)

which holds with equality if Nt < 1. Henceforth, we restrict our analysis (both

of the social planner’s problem and the equilibrium) to allocations characterized

by Nt ∈ (0, 1) for all t (and, hence, positive unemployment).

Note that the left-hand side of (7) represents the marginal rate of substitution

between labor and consumption, whereas the right-hand side captures the corre-

sponding marginal rate of transformation. The latter has two components: The

first component corresponds to the additional output, net of hiring costs, gener-

ated by a marginal employed worker. The second captures the savings in hiring

costs resulting from the reduced hiring needs in period t + 1.4

The solution to this equation is easy to characterize:

• Consider first the case where labor market frictions are absent (i.e. B =

0). In that case we have Ct = AtNt, and the equilibrium condition (7)

4. Note that hiring costs (normalized by productivity) at time t are given by Bxα
t Ht . The

term Bxα
t in (7) captures the increase in hiring costs resulting from an additional hire, keeping

cost per hire unchanged. The term αBxα
t reflects the effect on hiring costs of the change in

the tightness index xt induced by an additional hire (given Ht). The savings in hiring costs at
t+1 also have two components, both of which are proportional to 1− δ, the decline in required
hiring. The first component, Bxα

t+1, captures saving resulting from a lower Ht+1, given cost per
hire. The (negative) term αBxα

t (1−xt+1) adjusts the first component to take into account the
lower cost per hire brought about by a smaller xt+1 (the effect of lower required hires, Ht+1,
more than offsetting the smaller unemployment pool, Ut+1).
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simplifies to

χN1+φ
t = 1 (8)

if χ ≥ 1, or Nt = 1 if χ < 1. In either case, the constrained-efficient

allocation implies a level of employment invariant to productivity shocks.

This invariance is the result of offsetting income and substitution effects

on labor supply. Absent capital accumulation, consumption increases in

proportion to productivity; given a specification of preferences consistent

with balanced growth, this increase in consumption leads to an income

effect that exactly offsets the substitution effect.

When labor market frictions are present (i.e. B > 0), the solution to

(7) involves a constant job finding rate x∗, which, assuming an interior

solution, is implicitly determined by

(1−δBxα) χN(x)1+φ = 1−(1−β(1−δ))(1+α) Bxα−β(1−δ)α Bx1+α (9)

where N(x) ≡ x
δ+(1−δ)x

is the level of employment given x. Thus, the

constrained-efficient allocation implies a constant unemployment rate given

by:5

u =
δ(1− x∗)

δ + (1− δ)x∗

The implied levels of consumption and output are proportional to produc-

tivity, and given by C∗
t = AtN

∗(1− δBx∗α) and Y ∗
t = At N∗.

Thus, the equilibrium inherits the main property of the equilibrium without fric-

tions, namely the invariance of employment to productivity shocks. It does so be-

cause, at an unchanged employment level, both the marginal rate of substitution

and the (social) marginal rate of transformation increase in the same proportion

as productivity, given our assumptions on preferences and technology.

5. The condition for an interior solution to (9) is that the marginal rate of substitution be
greater than the (social) marginal rate of transformation, both evaluated at full employment
(i.e. evaluated at N = 1, x = 1,H = δ):

χ(1− δB) > 1− (1 + α− β(1− δ))B
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This invariance result is obviously a special one (e.g. it would no longer hold if we

introduced capital accumulation). It is, however, very convenient for our purposes,

since it establishes a simple benchmark. And it contains a more general lesson.

Even in a model with labor market frictions, the behavior of the marginal rate

of substitution remains central to the outcome.

The next step is to characterize the equilibrium in the decentralized economy. We

consider first the case of flexible prices, leaving the introduction of price rigidities

to the following section.

3 Equilibrium Under Flexible Prices

3.1 Price setting

Let Pt be the price level (the price index associated with Ct), P I
t be the price of

the intermediate good, and Wt be the real wage (the wage in terms of the bundle

of final consumption goods).

Intermediate goods firms take the price of their good as given. Profit maximiza-

tion requires that the following condition be satisfied for all t:

(
P I

t

Pt

)
At = Wt + Gt − β(1− δ) Et

{
Ct

Ct+1

Gt+1

}
(10)

Note that the left-hand side represents the real marginal revenue product of labor,

while the right-hand side denotes the real marginal cost (including the component

associated with hiring costs).

Profit maximization by final goods firms requires Pt = M P I
t for all t, where

M≡ ε
ε−1

is the optimal gross markup. Replacing in (10) and reorganizing gives

Bxα
t =

(
1

M − Wt

At

)
+ β(1− δ) Et

{
Ct

Ct+1

At+1

At

Bxα
t+1

}
(11)

Solving (11) forward, it follows that the rate at which labor is hired, and hence

labor market tightness, depends on the expected discounted stream of marginal
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profits generated by an additional hire. Marginal profit depends in turn on the

ratio of the wage to productivity.

Next we turn to wage determination. The presence of labor market frictions

generates a surplus associated with established employment relationships. The

wage determines how that surplus is split between workers and firms. We consider

two alternative wage-determination regimes.

3.2 Nash-Bargained Wages

The first regime, following much of the literature, is Nash bargaining. Note that

the value of an employed member to a household, denoted by VN
t , is given by

VN
t = Wt − χCtN

ϕ
t + β Et

{
Ct

Ct+1

[(1− δ(1− xt+1)) VN
t+1 + δ(1− xt+1) VU

t+1]

}

where VU
t is the value of an unemployed member, given in turn by

VU
t = β Et

{
Ct

Ct+1

[xt+1 VN
t+1 + (1− xt+1) VU

t+1]

}

It follows that the household’s surplus from an established employment relation-

ship, SH
t ≡ VN

t − VU
t , can be written as

SH
t = Wt − χCtN

ϕ
t + β(1− δ) Et

{
Ct

Ct+1

(1− xt+1) SH
t+1

}
(12)

On the other hand, the firm’s surplus from an established employment relation-

ship, denoted by SF
t , is simply given by

SF
t = AtBxα

t (13)

since any current worker can be immediately replaced with someone who is un-

employed by paying the hiring cost, Gt.

The Nash bargain must satisfy

SH
t = ϑ SF

t
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where ϑ represents the relative bargaining power of workers. Combining this

condition with (12) and (13), yields the following wage schedule

Wt = χCtN
ϕ
t + ϑ

(
AtBxα

t − β(1− δ) Et

{
Ct

Ct+1

(1− xt+1) At+1Bxα
t+1

})
(14)

The bargained wage is equal to the marginal rate of substitution plus—to the

extent that workers have some bargaining power (ϑ > 0) and labor market fric-

tions are present (B > 0)—an additional term reflecting labor market conditions.

This term is increasing in current labor market tightness xt (since this raises

the firm’s surplus associated with an existing relationship) and decreasing in ex-

pected future hiring costs, At+1Bxα
t+1, and the probability of not finding a job if

unemployed next period, (1 − xt+1), since those raise the continuation value to

an employed worker, thus reducing the required wage today.

Equation (11) implicitly gives the wage consistent with price setting. Equation

(14) gives the wage consistent with Nash bargaining. Combining the two gives

the equilibrium condition

χCtN
φ
t =

At

M− (1+ϑ)AtBxα
t +β(1− δ) Et

{
Ct

Ct+1

At+1 (1 + ϑ(1− xt+1))Bxα
t+1

}

(15)

It can easily be checked that the equilibrium implies again a constant job finding

rate x, given implicitly by the solution to

(1−δBxα) χN (x)1+φ =
1

M− (1−β(1−δ))(1+ϑ) Bxα−β(1−δ)ϑ Bx1+α (16)

where, as before, N(x) ≡ x
δ+(1−δ)x

.6 This, in turn, implies a constant unemploy-

ment rate

u =
δ(1− x)

δ + (1− δ)x

6. The condition for an interior solution is now given by

χ(1− δB) >
1
M − (1 + ϑ− β(1− δ))B
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Consumption, output, and the real wage all vary in proportion to productivity.

In particular, the real wage is given by

Wt =

(
1

M − (1− β(1− δ))Bxα

)
At (17)

The condition for full participation is given by Wt > χCt for all t, since χCt corre-

sponds to the marginal rate of substitution evaluated at “full employment” (i.e.

at Nt = 1). Under our assumption that wages are Nash-bargained, so employment

is constant, this condition reduces to ( 1
M − (1−β(1− δ))g) > χN(x)(1− δg). We

shall assume that this condition holds throughout (and verify that it is the case

for the calibrations below).

Note the two main characteristics of the equilibrium with Nash-bargained wages:

The equilibrium unemployment rate generally differs from the constrained-efficient

rate. Comparing (9) and (16) shows that the two unemployment rates coincide if

M = 1 and ϑ = α

i.e. in the absence of effective market power by final goods firms, and when the

relative bargaining power of workers matches the elasticity of hiring costs relative

to the labor market tightness index—a Hosios-like condition, familiar from DMP

models.

Whether or not the equilibrium unemployment rate is equal to the constrained-

efficient rate, it shares however its property that it is invariant to productivity

shocks. The source of the invariance again comes from the offsetting income and

substitution effects, leading to a one-for-one response of the wage to productivity,

and resulting in constant employment and unemployment rates.

This invariance result is different from the Shimer puzzle, the argument by Shimer

(2005) that the DMP model implies small movements in unemployment in re-

sponse to movements in productivity. To see how the two results are related,

return to the wage schedule under Nash bargaining, equation (14). Shimer’s re-

sult was derived under the assumption that the first term—the marginal rate of
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substitution—was constant. He then argued that, under reasonable values of the

parameters characterizing labor market frictions, the second term—the term due

to frictions—was likely to imply large movements in wages in response to produc-

tivity, and, by implication, small movements in profit, job creation, employment,

and unemployment. In contrast, our neutrality result follows entirely from move-

ments in the marginal rate of substitution. Under our assumptions, the marginal

rate of substitution moves one-for-one with productivity, so employment does not

change, and labor market frictions have no role to play. It is clear that, under

more general assumptions (for example in models where consumption increases

less than one-for-one with productivity, because of the presence of investment),

both the marginal rate of substitution and labor market frictions will determine

the wage response. Because the marginal rate of substitution is likely to increase

with productivity (although not necessarily one-for-one as it does here), the wage

response will be stronger than in the DMP model. Put another way, the Shimer

puzzle will be even stronger than in the original Shimer set-up.

This large response of the wage to productivity movements appears counterfac-

tual. This has led several authors to introduce some form of real wage rigidity in

order to match the small movements in the wage and the large movements in un-

employment.7 Following their lead, the next subsection introduces wage rigidity,

and analyzes its implications for equilibrium unemployment.

3.3 Real Wage Rigidities

As emphasized by Hall (2005), the presence of a surplus associated with existing

relations implies that many wages may be consistent with equilibrium. More

specifically, existing employment relationships will be privately efficient so long

as they generate a positive surplus to both parties involved. Thus, and using

the notation introduced in the previous subsection, any wage path such that

SH
t ≥ 0 and SF

t ≥ 0 for all t is consistent with equilibrium. Nash-bargaining

generates only one such path.

7. See Shimer (2005), Hall (2005), and Gertler and Trigari (2006). For a view that such
rigidities may not be needed, see Hagedorn and Manovskii (2006).
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In the context of our model, a sufficient condition for SH
t ≥ 0 is given by Wt ≥

χCtN
φ
t for all t, which is in turn already implied by the full participation condition

Wt ≥ χCt. On the other hand, a sufficient condition for SF
t ≥ 0 is given by

Wt ≤ P I
t

Pt
At = At

M for all t, i.e. the existence of non-negative profits (gross of hiring

costs) for intermediate goods firms. It follows that any wage path satisfying

χCt ≤ Wt ≤ At

M
for all t is consistent with equilibrium. Note that, under our assumptions, the pre-

vious condition is satisfied when the wage is determined through Nash bargaining.

In what follows, we shall assume the economy fluctuates in a neighborhood of the

steady state under Nash bargaining. In that case, and to the extent that shocks

are not too large, the previous condition will also be satisfied.

How to formalize real wage rigidity is still very much an open research question.

To keep the analysis as simple as possible, we assume a wage schedule of the form

Wt = Θ A1−γ
t (18)

where γ ∈ [0, 1] is an index of real wage rigidities, and Θ is a positive constant.

Clearly, the above formulation is meaningful only if technology is stationary, an

assumption we shall maintain here. Denoting the unconditional mean of At by A,

we assume that Θ ≡ ( 1
M−(1−β(1−δ))Bxα) Aγ. This implies that the mean wage

coincides with the mean wage under Nash-bargaining. Note then that for γ = 0,

the wage corresponds exactly to the equilibrium wage under Nash bargaining (as

given by (17)). At the other extreme, when γ = 1, equation (18) corresponds to

the canonical example of a rigid wage analyzed by Hall (2005).

Combining the wage equation (18) with the equation for the wage implied by

price setting, equation (11), gives us the equation for the equilibrium under

real wage rigidity.

Θ A−γ
t =

1

M −Bxα
t + β(1− δ) Et

{
Ct

Ct+1

At+1

At

Bxα
t+1

}
(19)
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Rearranging, and solving forward yields

Bxα
t =

∞∑

k=0

(β(1− δ))k Et

{
Λt,t+k

(
1

M −Θ A−γ
t+k

)}
(20)

where Λt,t+k ≡ (Ct/Ct+k) (At+k/At).

The previous equation makes clear the central role of labor market tightness xt in

this economy with labor market frictions and rigid real wages. As long as wages

are not fully flexible (γ > 0), labor market tightness, and, by implication, move-

ments in employment and in unemployment, depend on current and anticipated

productivity. Shimer (2005), Hall (2005), and the research which has followed

their two articles, studied the implications of equations similar to (20) for fluc-

tuations in wages, employment, and unemployment in response to productivity

shocks. By contrast, our goal here is to study the implications in an economy

with nominal rigidities, and the role for monetary policy. To do so, we need to

introduce price stickiness. This is what we do in the next section.

4 Introducing Nominal Rigidities

Following much of the recent literature on monetary business cycle models, we in-

troduce sticky prices in our model with labor market frictions using the formalism

due to Calvo (1983). Each period, only a fraction 1− θ of the final goods produc-

ers, selected randomly, reset prices. The remaining final goods producers, with

measure θ, keep their prices unchanged. Thus, the aggregate price level satisfies

Pt =
(
(1− θ)(P ∗

t )1−ε + θ(Pt−1)
1−ε

) 1
1−ε (21)

where P ∗
t denotes the price newly set by a final goods producer at time t.

The optimal price setting rule for a firm resetting prices in period t is given by

Et

{ ∞∑

k=0

θk Qt,t+kYt+k|t (P ∗
t −M Pt+k MCt+k)

}
= 0 (22)
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where P ∗
t denotes the price newly set by at time t, Yt+k|t is the level of output in

period t+ k for a firm resetting its price in period t, M≡ ε
ε−1

is the gross desired

markup, and MCt is the real marginal cost for final goods producers.

Real marginal cost is turn given by P I
t /Pt. Under the maintained assumption of

flexible prices in the market for intermediate goods, so, using equation (10) for

the price of intermediate goods, and equation (18) for wage setting, real marginal

cost is given by

MCt = Θ A−γ
t + Bxα

t − β(1− δ) Et

{
Ct

Ct+1

At+1

At

Bxα
t+1

}
(23)

Equations (22) and (23) embody the essence of our framework:

• The optimal price setting equation (22) takes the same form as in the

standard Calvo model, given the path of marginal costs: It leads firms to

choose a price that is a weighted average of current and expected marginal

costs, with the weights being a function of θ, the price stickiness parameter.

• The marginal cost in equation (23) depends on labor market frictions (as

captured by hiring cost parameters B and α) and on real wage rigidities

(measured by γ).

To make progress requires log-linearizing the system, the task to which we now

turn.

4.1 Log-linearized Equilibrium Dynamics

Let lower case variables with hats denote log deviations of the corresponding

upper case variables from their steady state values.

• From equations (21) and (22), we get, after log-linearization around a zero

inflation steady state, an expression for inflation8

πt = β Et{πt+1}+ λ m̂ct (24)

8. See, e.g., Gaĺı and Gertler (1999) for a derivation.
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where λ ≡ (1− βθ)(1− θ)/θ.

• From equation (23), we get an expression for marginal cost,

m̂ct = αgM x̂t−β(1−δ)gM Et{(ĉt− ât)− (ĉt+1− ât+1)+α x̂t+1}−Φγ ât

(25)

where Φ ≡MW/A = 1− (1− β(1− δ))gM < 1.

• From equation (5), we get an expression for labor market tightness as a

function of current and lagged employment

δ x̂t = n̂t − (1− δ)(1− x) n̂t−1 (26)

• From equation (6), we get an expression for consumption

ĉt = ât +
1− g

1− δg
n̂t +

g(1− δ)

1− δg
n̂t−1 − αg

1− δg
δ x̂t (27)

• From the first order conditions of the consumer (which we have ignored

until now), we get:

ĉt = Et{ĉt+1} − (it − Et{πt+1} − ρ) (28)

where ρ ≡ − log β.

The equilibrium is characterized by equations (24) to (28), together with a process

for productivity and a description of monetary policy.

4.2 Unemployment and Inflation

Before we turn to the analysis of alternative policies using the previous equilib-

rium conditions, we focus on the “Phillips curve” relation between unemployment

and inflation implied by our model.

In order to facilitate intuition (and only in this subsection), we do so under two

approximations. The first is that hiring costs are small relative to output (g is

small), so we can approximate consumption by ĉt = ât + n̂t, and by implication,
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we can approximate (ĉt − ât) − (ĉt+1 − ât+1) in equation (25) by n̂t − n̂t+1. The

second is that the separation rate, δ, is small, so, from equation (26), fluctuations

in x̂t are large relative to those in n̂t. This in turn implies that we can ignore the

terms n̂t − n̂t+1 in equation (25). Using these two approximations, and the fact

that, if δ is small, β(1− δ) ≈ β, equation (25) can be approximated by:

m̂ct = αgM (x̂t − β Et{x̂t+1})− Φγ ât (29)

Combining equation (29) and equation (24) then gives us a relation between

inflation, labor market tightness, and productivity:

πt = αgMλ x̂t − λΦγ

∞∑

k=0

βk Et{ât+k} (30)

Note that, despite the fact that expected inflation does not appear in (30), infla-

tion is a forward looking variable, through its dependence on current and future

at’s, and current xt, which itself depends on current and expected real marginal

costs.9

Using equation (26), letting ût ≡ ut − u denote the deviation (not the log devi-

ation) of the unemployment rate (after hiring) from its steady state value, and

using the approximation ût = −(1 − u) n̂t, gives us in turn a relation between

labor market tightness and the unemployment rate:

(1− u)δ x̂t = −ût + (1− x)(1− δ) ût−1 (31)

The relation of labor market tightness to current and lagged unemployment will

play an important role in what follows. To see what it implies, consider two labor

markets. One, with high values of both δ and x, so with high flows and low unem-

ployment duration, which we shall call “fluid.” We think of that characterization

as capturing the U.S. labor market. The other, with low values of δ and x, so

with low flows and high unemployment duration, which we shall call “sclerotic”

9. This can be seen by solving (29) forward, to get αgM x̂t =
∑∞

k=0 βk Et{m̂ct+k +Φγ at+k}.
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and think of as capturing continental European labor markets. In the fluid labor

market, (1−x)(1− δ) is small, so relative labor market tightness moves with the

(negative) of the unemployment rate. In the sclerotic labor market, (1−x)(1− δ)

is large, so relative labor market tightness moves more with the (negative) of the

change in the unemployment rate. The intuition is as follows: In a fluid labor mar-

ket, average flows are high and, given the constant separation rate, depend on the

level of employment rate (equivalently, on the level of unemployment). Changes

in employment (equivalently, changes in unemployment) lead to small relative

changes in the flows, thus to small relative changes in labor market tightness. In

a sclerotic labor market, average flows are low. Changes in employment (equiva-

lently, in unemployment) lead to large relative changes in the flows. Thus, relative

labor market tightness depends more on the change in employment (equivalently,

on the change in unemployment).

Putting equations (30) and (31) together gives the relation between inflation and

unemployment implied by our model. Assume, for simplicity, that productivity

follows a stationary AR(1) process with autoregressive parameter ρa ∈ [0, 1). We

can then rewrite (30) as

πt = αgMλ x̂t −Ψγ ât (32)

where Ψ ≡ λΦ/(1−βρa) > 0. Thus, inflation depends positively on labor market

tightness, and negatively (if γ > 0) on productivity. The higher the degree of

real wage rigidity, or the more persistent the productivity process, the larger the

effect of productivity on inflation.

Replacing market tightness by its expression from equation (31) gives:

πt = −κ ût + κ(1− δ)(1− x) ût−1 −Ψγ ât (33)

where κ ≡ αgMλ/δ(1− u). Or equivalently

πt = −κ(1− (1− δ)(1− x)) ût − κ(1− δ)(1− x) ∆ût −Ψγ ât

which highlights the negative dependence of inflation on both the level and the
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change in the unemployment rate, with the weights attached to each being a

function of the degree of fluidity of the labor market: The more sclerotic the labor

market, the weaker the effect of the level of unemployment, and the stronger the

effect of the change in unemployment.

Given that the constrained-efficient unemployment is constant, it would be best

to stabilize both unemployment and inflation. Note however that, to the extent

that the wage does not adjust fully to productivity changes (γ > 0), it is not

possible for the monetary authority to fully stabilize both unemployment and in-

flation simultaneously. There is, to use the terminology introduced by Blanchard

and Gaĺı (2007), no divine coincidence. The reason is the same as in our earlier

paper, the fact that productivity shocks affect the wedge between the natural

rate—the unemployment rate that would prevail absent nominal rigidities—and

the constrained-efficient unemployment rate. Stabilizing inflation, which is equiv-

alent to stabilizing unemployment at its natural rate, does not deliver constant

unemployment. Symmetrically, stabilizing unemployment does not deliver con-

stant inflation.

The next two sections examine the implications of alternative monetary policy

regimes, both qualitative and quantitative. In doing so, we go back to the “exact”

log-linearized model, characterized earlier.

5 Unemployment, Inflation, and Monetary Policy

To characterize the effects of monetary policy, we must first derive the exact

version of the Phillips curve. Note first that combining (26) and (27) we obtain

ĉt = ât + ξ0 n̂t + ξ1 n̂t−1

where ξ0 ≡ 1−g(1+α)
(1−δg)

and ξ1 ≡ g(1−δ)(1+α(1−x))
(1−δg)

. Replacing this expression, together

with (31), into (25) gives an expression for marginal cost:

m̂ct = h0 n̂t + hL n̂t−1 + hF Et{n̂t+1} − Φγ ât

22



where

h0 ≡ (αgM/δ)(1 + β(1− δ)2(1− x)) + β(1− δ)gM(ξ1 − ξ0)

hL ≡ −(αgM/δ) (1− δ)(1− x)− β(1− δ)gMξ1

hF ≡ −β(1− δ)gM ((α/δ)− ξ0)

Replacing real marginal cost in equation (24) by the expression above, and using

the fact that ût = −(1−u) n̂t, gives the following Phillips curve relation between

inflation to unemployment:

πt = βEt{πt+1} − κ0 ût + κL ût−1 + κF Et{ût+1} − λΦγ ât (34)

where κ0 ≡ λh0/(1− u), κL ≡ −λhL/(1− u), and κF ≡ λhF /(1− u).

5.1 Two Extreme Policies

We start by discussing two simple, but extreme, policies and their outcomes for

inflation and unemployment.

Unemployment stabilization. Recall that in the constrained efficient alloca-

tion unemployment is constant. A policy that seeks to stabilize the gap between

unemployment and its efficient level requires therefore that ût = 0 for all t (and,

hence, n̂t = x̂t = 0 for all t as well). Thus, it follows from (34) that

πt = −Ψγ ât (35)

where, as above, Ψ ≡ λΦ/(1 − βρa) > 0. The stabilization of unemployment

(and thus of hiring costs) makes the real marginal cost vary negatively with

productivity, according to m̂ct = −Ψγat, generating fluctuations in inflation.

The amplitude of those fluctuations is increasing in the degree of wage rigidities

γ (Ψ does not depend on γ), and in the persistence of the productivity process,

ρa, but is decreasing in the degree of nominal rigidities (which is inversely related

to λ).

Strict inflation targeting. As (24) makes clear, setting πt = 0 for all t requires
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that real marginal cost be fully stabilized, i.e. m̂ct = 0 for all t. Given that

variations in productivity are not fully offset by a proportional adjustment in the

wage, stabilizing the real marginal cost requires that unemployment (and, with

it, hiring costs) varies negatively with productivity. Imposing πt = 0 for all t in

(34) yields the following difference equation for unemployment:

ût = dL ût−1 + dF Et{ût+1} − da ât

where dL ≡ κL/κ0, dF ≡ κF /κ0, and da ≡ (λΦγ/κ0). The stationary solution

takes the form

ût = b ût−1 − cγ ât (36)

where b ≡ 1−√1−4dF dL

2dF
and c ≡ λΦ/κ0

1−dF (b+ρa)
.

Equation (36) points to a number of properties of strict inflation targeting poli-

cies. First, the volatility of unemployment under that policy regime is propor-

tional to γ, the degree of wage rigidities, since the coefficients b and c are indepen-

dent of that parameter. Second, the unemployment rate displays some intrinsic

persistence, i.e. some serial correlation beyond that inherited from productiv-

ity. The degree of intrinsic persistence is given by coefficient b, which was equal

to (1 − δ)(1 − x) under the simplifying approximations made in the previous

sections, and very close to it under plausible parameter calibrations, as shown

below. Thus, the degree of intrinsic unemployment persistence depends critically

on the separation rate δ and the steady state job finding rate x. In a ”sclerotic”

labor market, that is, a market with low x and low δ, and under strict inflation

targeting, unemployment will display strong persistence, well beyond that inher-

ited from productivity. Persistence will be much lower in a fluid labor market, a

market with high x and high δ.10

Finally, note that the previous equation also characterizes the evolution of unem-

ployment under flexible prices, since the allocation consistent with price stability

replicates the one associated with the flexible price equilibrium.

10. The hypothesis that more sclerotic markets might lead to more persistence to unemploy-
ment was explored empirically by Barro (1988).
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5.2 Optimal Monetary Policy

We are now ready to characterize optimal policy. To simplify the analysis and

avoid well understood but peripheral issues, we assume that unemployment fluc-

tuates around a steady state value which corresponds to that of the constrained

efficient allocation. As shown in Appendix A, a second order approximation to

the welfare losses of the representative household around that steady state is

proportional to:

E0

∞∑
t=0

βt (π2
t + αu û2

t ) (37)

where αu ≡ λ(1 + φ)χ(1− u)φ−1/ε > 0.

Hence the monetary authority will seek to minimize (37) subject to the sequence

of equilibrium constraints given by (34), for t = 0, 1, 2, ... Clearly, given the form

of the welfare loss function, the optimal policy will be somewhere between the

two extreme policies discussed above. The first order conditions take the form:

2πt + ζt − ζt−1 = 0 (38)

2αu ût + κ0 ζt − βκL Et{ζt+1} − β−1κF ζt−1 = 0 (39)

for t = 0, 1, 2, ...where ζt is the Lagrange multiplier associated with period t

constraint, and where ζ−1 = 0.

The dynamical system describing the optimal policy is thus composed of (38)

and (39), together with inflation equation (34), and a process for productivity at.

The solution to that dynamical system can be obtained using standard methods

for linear stochastic difference equations (see, e.g., Blanchard and Kahn (1980)).

The next section gives a sense of the quantitative properties of the model, based

on a rough calibration, and with a focus on the implications of different labor

markets—fluid versus sclerotic—for monetary policy.
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6 Calibration and Quantitative Analysis

We take each period to correspond to a quarter. For the parameters describing

preferences we assume values commonly found in the literature: β = 0.99, φ = 1,

and ε = 6 (implying a gross steady state markup M = 1.2).

We set λ = 1/12, which is consistent with an average duration of prices between

three and four quarters, in accordance with much of the micro and macro evidence

on price setting. Having no hard evidence on the degree of real wage rigidities,

we set γ equal to 0.5, the midpoint of the admissible range.11

In order to calibrate α we exploit a simple mapping between our model and the

standard DMP model. In the latter, the expected cost per hire is proportional

to the expected duration of a vacancy, which in the steady state is given by

V/H where V denotes the number of vacancies. Assuming a matching function

of the form H = Z UηV 1−η, we have V/H = Z
1

η−1 (H/U)
η

1−η . Hence, the para-

meter α in our hiring cost function corresponds to η/(1− η) in the DMP model.

Since estimates of η are typically close to 1/2, we assume α = 1 in our baseline

calibration.

We then choose the remaining coefficients to capture two different types of labor

markets, through two different calibrations. Our baseline calibration attempts to

capture the fluid U.S. labor market. We choose parameters so the unemployment

rate is equal to 5%, and the job finding rate x is equal to 0.7 (this quarterly

job finding rate corresponds, approximately, to a monthly rate of 0.3, consistent

with U.S. evidence).12 The alternative calibration attempts to capture the more

sclerotic continental European labor market. We choose parameters so the unem-

ployment rate is 10%, and x = 0.25 (consistent with a monthly job finding rate

of 0.1).

These choices of x and u determine in turn the separation rate, through the

11. Under an overly strict interpretation of our model, γ can be obtained through a regression
of real wage growth on productivity growth—which is exogenous in our model. Such a regression
yields a coefficient between 0.3 and 0.4 using postwar U.S. data, so a value for γ between 0.6 and
0.7. Stepping outside our model, obvious caveats apply, from the measurement of productivity
growth, to the direction of causality.
12. We compute the equivalent quarterly rate as xm + (1− xm)xm + (1− xm)2xm, where xm

is the monthly job finding rate.
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relation δ = ux/((1− u)(1− x)). This yields a value for δ of 0.12 for the United

States, and 0.04 for continental Europe.

The next step is to choose a value for B, which determines the level of hiring

costs. Notice that, in the steady state, hiring costs represent a fraction δg = δBxα

of GDP. Lacking any direct evidence, we choose B so that under our baseline

calibration for the United States, that fraction equals one percent of GDP, which

seems a plausible upper bound. This implies B = 0.01/(0.12)(0.7) ' 0.12. We

use this value of B for both calibrations.

Finally, we use equation (9), which gives the constrained-efficient value of x to tie

down the value of χ. This implies χ ' 1.03 for the United States, and χ ' 1.22

for Europe.13 The implied value of αu is 0.0237 for the U.S. calibration and 0.0283

for Europe.14

6.1 The Dynamic Effects of Productivity Shocks

Figures 1 and 2 summarize the effects of a productivity shock under alternative

monetary policies, for each of the two calibrations of the labor market. In Figure

1 we assume a purely transitory shock (ρa = 0), which allows us to isolate the

model’s intrinsic persistence, whereas in Figure 2 we assume ρa = 0.9, a more

realistic degree of persistence. In each figure we display the responses of inflation

and unemployment for both the U.S. and European labor market calibrations.

In all cases we report responses to a one-percent decline in productivity. All the

responses are shown in percentage points, and in annual terms in the case of

inflation.

We begin by discussing the case of a transitory shock.

13. Note that our model can only account for a higher efficient steady state unemployment
rate in Europe by assuming a larger disutility of labor. Alternatively, we could have assumed
an efficient steady state only for the United States, and impose the implied χ to the European
calibration as well. In that case, however, the steady state unemployment for Europe would not
be efficient and an additional linear term would appear in the loss function, complicating the
analysis in an uninteresting (and well understood) way.
14. Such a (seemingly low) value is of the same order of magnitude as the weight on the output
gap in calibrated loss functions found in the literature.
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The top left panel of Figure 1 shows the response of inflation to the adverse

transitory productivity shock, under a policy that fully stabilizes unemployment.

The response is nearly identical for both calibrations, implying a one-period rise

in inflation of less than 20 basis points, with a subsequent return to its initial level

once the shock dies out. The top right panel shows the response of unemployment

to an identical adverse productivity shock, under a policy that fully stabilizes

inflation. Unemployment rises by about 65 basis points on impact in the U.S.

calibration, 50 basis points in the European one. Unemployment remains above

its initial value well after the shock has vanished, with the persistence being

significantly greater under the European calibration.

The bottom left and right panels of Figure 1 show, respectively, the response

of inflation and unemployment under the optimal monetary policy. The optimal

policy strikes a balance between the two extreme policies, and achieves a more

muted response of both inflation and unemployment (note that, to facilitate com-

parison, the scale of the graph is the same across policy regimes, for any given

variable). The differences in the responses across the two calibrations are small.

Interestingly, the persistence in both variables is tiny (though not zero) under

both calibrations. Perhaps the most salient feature of the exercise is the substan-

tial reduction in unemployment volatility under the optimal policy relative to a

constant inflation policy, achieved at a relatively small cost in terms of inflation

volatility.

Figure 2 displays corresponding results, but under the assumption that ρa = 0.9,

a more realistic degree of persistence.

The response of inflation under the constant unemployment policy, shown in the

top left panel of Figure 2, is now much larger, with an increase of about 150 basis

points on impact under both calibrations. This amplification effect reflects the

forward looking nature of inflation and the persistent anticipated effects on real

marginal costs generated by the interaction of the shock and real wage rigidities.

Note also that inflation inherits the persistence of the shock, as implied by (35).

The response of unemployment under a strict inflation targeting policy, shown

on the top right panel, is also much larger with a persistent shock. The un-
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employment rate increases on impact by about 3 percentage points under both

calibrations, a sizeable rise. In both cases, unemployment is highly persistent, and

displays a prominent hump-shaped pattern, reaching a maximum rise of about 8

percentage points (!) in the case of Europe.15 The degree of persistence is remark-

ably larger under the European calibration, for the reasons discussed earlier.

The bottom panels show the behavior of inflation and unemployment under the

optimal monetary policy. The increase in unemployment is 50 basis points under

the U.S. calibration, about half that size under the European one. Note that the

size of such responses is several times smaller than under the strict inflation tar-

geting policy. The price for having a smoother unemployment path is persistently

higher inflation, with the latter variable increasing on impact by about 1 and 1.4

percentage points in the U.S. and Europe. We note that the optimal policy is

“tougher on inflation” (i.e. more hawkish) in the U.S. relative to Europe. This

is due to the larger cost, in the form of a persistent rise in unemployment, that

results under the European calibration from policies that seek to stabilize infla-

tion in response to an adverse productivity shocks, as illustrated by the extreme

policy analyzed above.

Table 1 summarizes the main properties of the policies analyzed above under the

two calibrations. More specifically, for each policy and calibration, the first two

columns show the implied standard deviation of inflation and unemployment,

with the standard deviation of productivity being normalized to unity (and given

ρa = 0.9). In addition, we report the welfare loss implied by each policy relative to

that implied by the optimal policy. One finding seems worth noting: The welfare

losses associated with a strict inflation targeting policy appear to be very large

relative to the optimal policy, especially so under the European calibration, which

yields losses that are 25 times larger than under the optimal policy. This is again

a consequence of the substantial volatility of unemployment required to keep

inflation unchanged in the face of productivity shocks.

In addition to the two extreme policies and the optimal policy, Table 1 displays

15. While the size of this response may be viewed as unrealistically large, it is important to
keep in mind that the policy assumed is also unrealistically extreme.
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the statistics corresponding to an ”optimized simple rule.” The latter is an interest

rate rule of the form

it = ρ + φπ πt + φu ût

where coefficients φπ and φu are chosen, for each calibration, in order to minimize

the welfare losses. The optimization is done numerically, searching over a grid

spanning the intervals φπ ∈ (1, 5] and φu ∈ [−5, 0].16 The optimal coefficients are

φπ = 5 and φu = −0.8 for the U.S. calibration, and φπ = 2 and φu = −0.6 for

the European calibration. The optimized simple rule puts a smaller weight on

inflation stabilization under the European calibration, in a way consistent with

our findings based on the optimal rule. In any event, as the results shown in

the table make clear, following such a simple rule reduces considerably the losses

relative to the extreme policies under both calibrations and, at least under the

European one, comes close to replicating the welfare outcome obtained under the

optimal policy.

7 Relation to the Literature

Our model combines four main elements: (1) standard preferences (concave utility

of consumption and leisure), (2) labor market frictions, (3) real wage rigidities,

(4) price staggering. As a result, it is related to a large and rapidly growing

literature.

Merz (1995) and Andolfatto (1996) were the first to integrate (1) and (2), by

introducing labor market frictions in an otherwise standard RBC model. In par-

ticular, Merz derived the conditions under which Nash bargaining would or would

not deliver the constrained-efficient allocation. Both models are richer than ours

in allowing for capital accumulation, and in the case of Andolfatto, for having

both an extensive margin (through hiring) and an intensive margin (through

adjustment of hours) for labor. In both cases, the focus was on the dynamic ef-

16. In the case of the U.S. calibration, allowing for a larger range of values yields very large (in
absolute values) coefficients for inflation and unemployment, with negligible gains in terms of
welfare.
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fects of productivity shocks, and in both cases, the model was solved through

simulations.

Chéron and Langot (2000), Walsh (2003) and Trigari (2006), have integrated (1),

(2) and (4), by allowing for Calvo nominal price setting by firms. Their models are

again much richer than ours. Walsh allows for endogenous separations. Chéron

and Langot, as well as Trigari, allow for both an extensive and an intensive

margin for labor, with efficient Nash bargaining over hours and the wage. In

addition Trigari considers “right to manage” bargaining, with the firm choosing

freely hours ex-post. Those models are too large to be analytically tractable,

and are solved through simulations. The focus of Walsh and Trigari’s papers is

on the dynamic effects of nominal shocks, while Chéron and Langot study the

ability of the model with both productivity and monetary shocks to generate a

Beveridge curve as well as a Phillips curve. More recent papers, by Walsh (2005),

Trigari (2005), Moyen and Sahuc (2005), and Andrés et al. (2006) among others,

introduce a number of extensions, from habit persistence in preferences, to capital

accumulation, to the implications of Taylor rules. The models in these papers are

relatively complex DSGE models, which need to be studied through calibration

and simulations.

Shimer (2005) and Hall (2005) were the first to integrate (2) and (3). Shimer

argued that, in the standard DMP model with Nash bargaining, wages were too

flexible, and the response of unemployment to productivity shocks was too small.

Hall (2005) showed first the scope for and then the implications of real wage

rigidities in that class of models. These models differ from ours because of their

assumption of linear preferences (in addition to their being purely real models).

We have shown earlier the implications of this difference. But our results, using a

standard utility specification, reinforce their conclusion that real wage rigidities

are probably needed to explain fluctuations.

Gertler and Trigari (2005) have explored the implications of integrating (1), (2)

and (3). Their model allows for standard preferences, labor market frictions, and

real wage staggering a la Calvo. Being a real model, however, it has no room

for nominal rigidities. Their model is again too complex to be solved analyti-

cally, and is studied through simulations. Their focus is on the dynamic effects
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of productivity shocks.

Two papers have explored a structure closely related to ours, but with staggered

nominal wage setting rather than real wage rigidity. Thomas (2007) focuses on the

role of monetary policy in that context, with implications substantially different

from ours—which suggests that a more thorough exploration of the different

implications of the two alternative assumptions is needed. Gertler, Sala, and

Trigari (2007) estimate a model with standard preferences, labor market frictions,

and both nominal wage and price rigidities.

The three papers closest to ours are by Krause and Lubik (2007), Christoffel and

Linzert (2005) and Faia (2006). They integrate (1) to (4), with standard prefer-

ences, labor market frictions, real wage rigidities, and nominal price staggering by

firms. The three models are substantially richer than ours, and are solved through

simulations. The main focus of Krause and Lubik is on the relation between in-

flation, marginal cost, and real wages, in the presence of matching frictions and

endogenous separations. The main focus of Christoffel and Linzert is on inflation

persistence in response to monetary policy shocks. The main focus of Faia is on

the performance of simple monetary rules. Again, we see the comparative advan-

tage of our paper as being in its simplicity, its analytical characterization of the

effects of productivity shocks and optimal monetary policy in relation to labor

market characteristics. We think that our analytical model is a needed step in the

development and full understanding of these richer but more complex models.

8 Conclusions

We have constructed a model with labor market frictions, real wage rigidities, and

staggered price setting. We believe that the three ingredients above are all needed

if one is to explain movements in unemployment, the effects of productivity shocks

on the economy, and the role of monetary policy in shaping those effects.

From a positive point of view, we have shown that, in such an economy, a central

variable is the degree of labor market tightness. A tighter labor market increases

marginal cost, which in turn affects inflation. The relation between inflation and
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unemployment then depends on the relation between labor market tightness and

unemployment, and this relation varies depending on labor market characteristics.

In fluid labor markets such as the United States, labor market tightness varies

more closely with unemployment; in sclerotic labor markets, such as those in

continental Europe, labor market tightness varies more closely with the change

in unemployment. These differences lead in turn to important differences in the

response of the economy to shocks. Under inflation stabilization for example, the

same productivity shock has more persistent effects in a sclerotic than in a fluid

labor market.

From a normative point of view, we have shown that, in the presence of labor

market frictions and real wage rigidities, strict inflation stabilization does not

deliver the best monetary policy. As in Blanchard and Gali (2007), the reason

is that distortions vary with shocks. As a result, strict inflation stabilization can

lead to inefficient, large, and persistent, movements in unemployment in response

to productivity shocks. These effects can be particularly large and persistent in

sclerotic labor markets. Optimal monetary policy implies some accommodation

of inflation, and limits the size of the fluctuations in unemployment.
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Appendix A: Derivation of the Welfare Loss Function

Under our assumed utility specification we have:

u(Ct) = log Ct = c + ĉt

and

v(Nt) = χ
N1+φ

t

1 + φ

' χ
N1+φ

1 + φ
+ χN1+φ

(
Nt −N

N

)
+

1

2
φχN1+φ

(
Nt −N

N

)2

' χ
N1+φ

1 + φ
+ χN1+φ n̂t +

1

2
(1 + φ)χN1+φ n̂2

t

where we have made use of the fact that up to second order Nt−N
N

' n̂t + 1
2

n̂2
t .

Hence, the deviation of period utility from its steady state value, denoted by Ut,

is given by

Ut ' ĉt − χN1+φ n̂t − 1

2
(1 + φ)χN1+φ n̂2

t (40)

Next we derive an equation that relates, up to a second order approximation, ĉt

and n̂t. Market clearing for good i requires that At(Nt(i) − g(xt)Ht(i)) = Ct(i).

Integrating over i yields:

At (Nt − g(xt) Ht) =

∫ 1

0

Ct(i) di

= Ct

∫ 1

0

Ct(i)

Ct

di

= Ct

∫ 1

0

(
Pt(i)

Pt

)−ε

di

≡ Ct Dt

where Dt ≡
∫ 1

0

(
Pt(i)
Pt

)−ε

di.

Thus we can write
CtDt

At

= Nt − g(xt) Ht
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Under the assumption that g is small enough, so that the terms involving g n̂t

are of second order, we have

Nt − g(xt) Ht ' (1− δg)N + N

(
Nt −N

N

)
− αgNδ x̂t − gN (n̂t − (1− δ) n̂t−1)

' (1− δg)N + N

(
n̂t +

1

2
n̂2

t

)
− αgN (n̂t − (1− δ)(1− x) n̂t−1)

−gN (n̂t − (1− δ) n̂t−1)

' (1− δg)N +
1

2
N n̂2

t + N(1− g(1 + α)) n̂t

+gN(1− δ)(1 + α(1− x)) n̂t−1

where we have made use of equation (26) as well as the fact that g′x = αg .

Thus,

CtDt

At(1− δg)N
= 1 +

1

2

1

1− δg
n̂2

t +
1− g(1 + α)

1− δg
n̂t +

g(1− δ)(1 + α(1− x))

1− δg
n̂t−1

Taking logs, and approximating the resulting right hand term up to second order

using the fact that log(1 + ẑt) ' ẑt − 1
2
ẑ2

t , we have

ĉt = ât − dt + ξ0 n̂t + ξ1 n̂t−1 (41)

where ξ0 ≡ 1−g(1+α)
1−δg

and ξ1 ≡ g(1−δ)(1+α(1−x))
1−δg

.

Lemma: up to a second order approximation, dt ≡ log Dt ' ε
2

vari(pt(i)).

Proof: See appendix B.

Using (40) and (41), we can write the expected discounted sum of period utilities

as follows:
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E0

∞∑
t=0

βt Ut ' − ε

2
E0

∞∑
t=0

βt vari(pt(i))− 1

2
(1 + φ)χN1+φ E0

∞∑
t=0

βt n̂2
t

+E0

∞∑
t=0

βt
(
ξ0 + βξ1 − χN1+φ

)
n̂t + t.i.p.

where t.i.p. denotes terms independent of policy.

Assuming that the economy fluctuates around the efficient steady state, we can

use (9) to show that the coefficient on n̂t equals zero.

The following result allows us to express the cross-sectional variance of prices as

a function of inflation:

Lemma:
∑∞

t=0 βt vari(pt(i)) = 1
λ

∑∞
t=0 βt π2

t

Proof: Woodford (2003).

Combining the previous results, together with our definition of the unemployment

rate ut, we can write the welfare losses from fluctuations around the efficient

steady state (ignoring terms independent of policy) as

L ≡ 1

2
E0

∞∑
t=0

βt
[ ε

λ
π2

t + (1 + φ)χ(1− u)φ−1 û2
t

]

=
1

2

ε

λ
E0

∞∑
t=0

βt (π2
t + αu û2

t )

where αu ≡ λ(1+φ)χ(1−u)φ−1

ε
> 0.

Appendix B

From the definition of the price index, in a neighborhood of the zero inflation

steady state:
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1 =

∫ 1

0

(
Pt(i)

Pt

)1−ε

di

=

∫ 1

0

exp{(1− ε) (pt(i)− pt)} di

' 1 + (1− ε)

∫ 1

0

(pt(i)− pt) di +
(1− ε)2

2

∫ 1

0

(pt(i)− pt)
2 di

thus implying

pt '
∫ 1

0

pt(i) di +
(1− ε)

2

∫ 1

0

(pt(i)− pt)
2 di

By definition,

Dt ≡
∫ 1

0

(
Pt(i)

Pt

)−ε

di

=

∫ 1

0

exp{−ε (pt(i)− pt)} di

' 1− ε

∫ 1

0

(pt(i)− pt) di +
ε2

2

∫ 1

0

(pt(i)− pt)
2 di

' 1 +
ε(1− ε)

2

∫ 1

0

(pt(i)− pt)
2 di +

ε2

2

∫ 1

0

(pt(i)− pt)
2 di

= 1 +
ε

2

∫ 1

0

(pt(i)− pt)
2 di

It follows that dt ' (ε/2) vari(pt(i)) up to a second order approximation.
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Chéron, Arnaud, and François Langot (2000): “The Phillips and Beveridge Curves

Revisited,” Economics Letters 69, 371-376.

Christoffel, Kai, and Tobias Linzert (2005): “The Role of Real Wage Rigidities and

Labor Market Frictions for Unemployment and Inflation Dynamics”, Discussion

Paper 556, European Central Bank

Erceg, Christopher J., Dale W. Henderson, and Andrew T. Levin (2000): “Op-

timal Monetary Policy with Staggered Wage and Price Contracts,” Journal of

Monetary Economics vol. 46, no. 2, 281-314.

Faia, Ester (2006): “Optimal Monetary Policy with Labor Market Frictions,”

Working Paper 698, November, European Central Bank
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Figure 1: Dynamic Responses to a Transitory Productivity Shock
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Figure 2: Dynamic Responses to a Persistent Productivity Shock
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Table 1: Properties of Alternative Policy rules

U.S. Europe

( ) (u) Loss ( )

1.0 1.43

1.52

0

1.47

1.87

4.39

1.34

(u) Loss

Optimal 0.88 1.08 0.77 1.0

Constant u 1.48 0 0 1.08

Constant 0 3.76 11.27 25.6

Optimized Simple Rule 1.07 1.11 0.42 1.04
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