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HIGH FREQUENCY MARKET MICROSTRUCTURE
NOISE ESTIMATES AND LIQUIDITY MEASURES

By Yacine A��t-Sahalia�y and Jialin Yuy

Princeton University and Columbia University

Using recent advances in the econometrics literature, we disen-
tangle from high frequency observations on the transaction prices
of a large sample of NYSE stocks a fundamental component and
a microstructure noise component. We then relate these statistical
measurements of market microstructure noise to observable charac-
teristics of the underlying stocks, and in particular to di�erent �-
nancial measures of their liquidity. We �nd that more liquid stocks
based on �nancial characteristics have lower noise and noise-to-signal
ratio measured from their high frequency returns. We then examine
whether there exists a common, market-wide, factor in high frequency
stock-level measurements of noise, and whether that factor is priced
in asset returns.

1. Introduction. Understanding volatility and its dynamics lies at the

heart of asset pricing. As the primary measure of risk in modern �nance,

volatility drives the construction of optimal portfolios, the hedging and pric-

ing of options and other derivative securities or the determination of a �rm's

exposure to a variety of risk factors and the compensation it can expect to

earn from those risk exposures. It also plays a critical role in discovering

trading and investment opportunities which provide an attractive risk-return

trade-o�.

It is therefore not surprising that volatility estimation and inference has

attracted much attention in the �nancial econometric and statistical liter-

ature, including the seminal ARCH model of Engle (1982). Indeed, many

estimators are available to measure an asset's volatility from a discrete price

sample. But at least in the framework of parametric models, one will often

start with the sum of squared log-returns, as not only the simplest and most

natural estimator, but also as the one with the most desirable properties. For

instance, in the context of parametric volatility models, this quantity will

�This research was partly funded by the NSF under Grants SES-0350772 and DMS-
0532370.

yFinancial support from   a  Morgan Stanley equity market microstructure research
grant is gratefully acknowledged.
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be not only the least squares estimator or the method of moments estimator

with the sample variance as the moment function, but also the maximum

likelihood estimator.

The asymptotic properties of this estimator are especially striking when

sampling occurs at an increasing frequency which, when assets trade every

few seconds, is a realistic approximation to what we observe using the now

commonly available transaction or quote-level sources of �nancial data. In

particular, as is well known in the context of stochastic processes, fully

observing the sample path of an asset will in the limit perfectly reveal the

volatility of that path. This result is nonparametric in nature, in that the

estimator will converge to the quadratic variation of the process, a result

which holds in great generality for semimartingales and does not rely on a

parametric volatility model.

More recently, however, the statistical and econometric literatures have

faced up to the fact that the situation in real life is not as simple as these

asymptotic results suggest. Controlling for the market microstructure noise

that is prevalent at high frequency has become a key issue. For a while,

the approach used in the empirical literature consisted in ignoring the data

sampled at the very highest frequencies out of concern for the noise that

they might harbor, and sample instead once every 15 or 30 minutes.

The latest approach consists in explicitly incorporating microstructure

noise into the analysis, and estimators have been developed to make use of

all the data, no matter how high the frequency and how noisy, as prescribed

by statistical principles. These methods make it possible to decompose the

total observed variance into a component attributable to the fundamen-

tal price signal and one attributable to the market microstructure noise.

These estimators can also produce consistent estimates of the magnitude

of the market microstructure noise at high frequency, thereby producing a

decomposition of total asset return volatility into fundamental and noise

components.

Our objective in this paper is to better understand the nature of the

information contained in these high frequency statistical measurements and

relate them to observable �nancial characteristics of the underlying assets,

and in particular to di�erent �nancial measures of their liquidity. Intuitively,

one would expect that more liquid assets would tend to generate log-returns

with a lower amount of microstructure noise, and a lower noise-to-signal

ratio.
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Market microstructure noise captures a variety of frictions inherent in the

trading process: bid-ask bounces, discreteness of price changes, di�erences

in trade sizes or informational content of price changes, gradual response of

prices to a block trade, strategic component of the order ow, inventory con-

trol e�ects, etc. A better understanding of the relationship between these

\micro" frictions and their \macro" consequences for asset prices' liquid-

ity has implications for the asset management practice, especially for the

strategies known as statistical arbitrage or proprietary trading.

This said, liquidity is an elusive concept. At a general level, the de�nition

is straightforward: a market is liquid if one can trade a large quantity soon

after wanting to do so, and at a price that is near the prices that precede

and follow that transaction. How to translate that into an operative concept

that is amenable to empirical analysis is less clear, and a variety of di�erent

measures have been proposed in the literature, including various measures of

transaction costs, the extent to which prices depart from the random walk,

etc.: see, e.g., Amihud, Mendelson, and Pedersen (2005) for a recent survey.

Our objective is therefore to examine the extent to which the high fre-

quency statistical estimates that we will construct correlate with the various

�nancial measures of liquidity, and whether they contain new or di�erent

information. In particular, we will look at whether high frequency estimates

of microstructure noise contain a systematic, market-wide, risk factor and

whether that risk factor is priced in the market, meaning that stocks that

covary with our high-frequency measure of liquidity tend to get compensated

in the form of higher returns. We will examine all these questions using a

massive dataset consisting in all transactions recorded on all NYSE common

stocks between June 1, 1995 and December 31, 2005.

The paper is organized as follows. In Section 2, we explain the strategies

we use to estimate and separate the fundamental and noise volatilities. Sec-

tion 3 describes our data. The empirical results where we relate the noise

volatility to liquidity measures are in Section 4. In Section 5, we construct

a semiparametric index model for the various �nancial measures of liquid-

ity as they relate to our high frequency measurement: there, we construct

the index of the diverse �nancial measures that best explains the statistical

measurement of market microstructure noise. Then, we study in Section 6

whether there exists a common factor in stock-level liquidity measured at

high frequency { we �nd that there is { and then in Section 7 whether that

common factor is priced in asset returns { we �nd that the answer is yes,
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with some quali�cations. Section 8 concludes.

2. The Noise and Volatility Estimators. In this Section, we briey

review the two complementary estimation strategies that we will apply to

decompose the returns' total variance into one due to the fundamental price

and one due to market microstructure noise. The starting point to this analy-

sis is a representation of the observed transaction log price at time t, Yt; as

the sum of an unobservable e�cient price, Xt; and a noise component due

to the imperfections of the trading process, "t :

(1) Yt = Xt + "t:

One is often interested in estimating the volatility of the e�cient log-price

process dXt = �tdt+�tdWt using discretely sampled data on the transaction

price process at times 0, �,:::, n� = T .

The speci�cation of the model coincides with that of Hasbrouck (1993),

who interprets the standard deviation a of the noise " as a summary mea-

sure of market quality. In Roll (1984), " is due entirely to the bid-ask spread

while Harris (1990b) lets additional phenomena give rise to ". Examples

include adverse selection e�ects as in Glosten (1987) and Glosten and Har-

ris (1988); see also Madhavan, Richardson, and Roomans (1997). A related

literature has looked at transaction costs using bid-ask spread, price im-

pact, etc., including Huang and Stoll (1996), Chan and Lakonishok (1997)

and Cao, Choe, and Hatheway (1997). When asymmetric information is in-

volved, the disturbance " would typically no longer be uncorrelated with

the process W driving the e�cient price and would also exhibit autocorre-

lation, which would complicate the analysis without fundamentally altering

it: see the discussion below. Another important source of measurement error

are rounding e�ects, since transaction prices are multiples of a tick size: see

Gottlieb and Kalay (1985), Harris (1990a), Jacod (1996) and Delattre and

Jacod (1997).

We will use below two classes of consistent estimators designed for the two

situations where �t is parametric (which can be reduced to �t = �; a �xed

parameter to be estimated), and �t is nonparametric (i.e., an unrestricted

stochastic process), in which case we seek to estimate the quadratic variation

hX;XiT =
R T
0 �

2
t dt over a �xed interval of time T; say one day. In both

cases, we are also interested in estimating consistently a2 = E["2]: For the
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parametric problem, we will use the maximum-likelihood estimator of A��t-

Sahalia, Mykland, and Zhang (2005a). For the nonparametric problem, we

will use the estimator called Two Scales Realized Volatility Zhang, Mykland,

and A��t-Sahalia (2005b), which is the �rst estimator shown to be consistent

for hX;XiT .
The estimation of hX;XiT has been studied in the constant � case by

Zhou (1996), who proposes a bias correcting approach based on autocovari-

ances. The behavior of this estimator has been studied by Zumbach, Corsi,

and Trapletti (2002). Hansen and Lunde (2006) study the Zhou estimator

and extensions in the case where volatility is time varying but conditionally

nonrandom. Related contributions have been made by Oomen (2006) and

Bandi and Russell (2003). The Zhou estimator and its extensions, however,

are inconsistent. This means in this particular case that, as the frequency

of observation increases, the estimator diverges instead of converging to

hX;XiT .

2.1. The Parametric Case: Constant Volatility. Consider �rst the para-

metric case studied in A��t-Sahalia, Mykland, and Zhang (2005a), which by a

change of variable and Itô's Lemma can be immediately reduced to one where

� is constant. If no market microstructure noise were present, i.e., " � 0; the
log-returns Ri = Y�i�Y�i�1 would be i.i.d. N(0; �2�): The MLE for �2 then
coincides with the realized volatility of the process, �̂2 = 1

T

Pn
i=1R

2
i : Fur-

thermore, T 1=2
�
�̂2 � �2

�
�!
n�!1

N(0; 2�4�) and thus selecting � as small

as possible is optimal for the purpose of estimating �2:

When the observations are noisy, with the "0s being i.i.d. noise with mean

0 and variance a2, the true structure of the observed log-returns Ri is given

by an MA(1) process since Ri = �
�
W�i �W�i�1

�
+"�i � "�i�1 � ui + �ui�1

where the u0s are mean zero and variance 2 with 2(1 + �2) = Var[Ri] =

�2�+ 2a2 and 2� = Cov(Ri; Ri�1) = �a2:
If we assume for a moment that " � N(0; a2) (an assumption we will

relax below), then the u0s are i.i.d. Gaussian and the likelihood function

for the vector R of observed log-returns, as a function of the transformed

parameters (2; �); is given by

l(�; 2) = � ln det(V )=2� n ln(2�2)=2� (22)�1R0V �1R
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where

(2) V = [vij ] =

0BBBBB@
1 + �2 � � � � 0

� 1 + �2
. . .

...
...

. . .
. . . �

0 � � � � 1 + �2

1CCCCCA :

Then the MLE (�̂2; â2) is consistent and its asymptotic variance is given

by

AVARnormal(�̂
2; â2)=

 
4
�
�6�

�
4a2+�2�

��1=2
+2�4� ��2�h

� �
2

�
2a2+�2�

�
h

!

with h � 2a2 +
�
�2�

�
4a2 + �2�

��1=2
+ �2�:

Since AVARnormal(�̂
2) is increasing in �; we are back to the situation

where it is optimal to sample as often as possible. Interestingly, the AVAR

structure of the estimator remains largely intact if we misspecify the distri-

bution of the microstructure noise. Speci�cally, suppose that the "0s have

mean 0 and variance a2 but are not normally distributed. If the econome-

trician (mistakenly) assumes that the "0s are normal, inference is still done

with the Gaussian log-likelihood l(�2; a2), using the scores _l�2 and _la2 as

moment functions. Since the expected values of _l�2 and _la2 only depend on

the second order moment structure of the log-returns R, which is unchanged

by the absence of normality, the moment functions are unbiased: Etrue[ _l�2 ]

= Etrue[ _la2 ] = 0 where \true" denotes the true distribution of the Y
0s. Hence

the estimator (�̂2; â2) based on these moment functions remains consistent

and the e�ect of misspeci�cation lies in the AVAR. By using the cumu-

lants of the distribution of "; we express the AVAR in terms of deviations

from normality. We obtain that the estimator (�̂2; â2) is consistent and its

asymptotic variance is given by

(3) AVARtrue(�̂
2; â2) = AVARnormal(�̂

2; â2) + Cum4 ["]

 
0 0

0 �

!

where AVARnormal(�̂
2; â2) is the asymptotic variance in the case where the

distribution of U is Normal. " has mean zero, so in terms of its moments

(4) Cum4 ["] = E
h
"4
i
� 3

�
E
h
"2
i�2

:
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In the special case where " is normally distributed, Cum4 ["] = 0

The presence of a drift does not alter these earlier conclusions, not just

because it would be economically irrelevant at the observation frequencies

we consider, but also because of the following. Suppose that Xt = �t+ �Wt

then the block of the AVAR matrix corresponding to (�̂2; â2) is the same as

if � were known, in other words, as if � = 0; which is the case we focused

on.

A��t-Sahalia, Mykland, and Zhang (2005a) also discuss how the likelihood

function is to be modi�ed in the case of serially correlated noise and noise

that is correlated with the price process. In those cases, the form of the

variance matrix of the observed log-returns must be altered, replacing 2vij
with

cov(Ri; Rj) = �
2��ij + cov(�

�
W�i�W�i�1

�
; "�j�"�j�1)

+ cov(�
�
W�j�W�j�1

�
; "�i�"�i�1) + cov("�i�"�i�1 ; "�j�"�j�1)

where �ij = 1 if i = j and 0 otherwise. A model for the time series depen-

dence of the " and its potential correlation to the price process would then

specify the remaining terms.

2.2. The Nonparametric Case: Stochastic Volatility. An alternative model

is nonparametric, where volatility is left unspeci�ed, stochastic, and we now

summarize the TSRV approach to separating the fundamental and noise

volatilities in this case. When dXt = �tdWt; the object of interest is now

the quadratic variation hX;XiT =
R T
0 �

2
t dt over a �xed time period [0; T ].

The usual estimator of hX;XiT is the realized volatility (RV)

(5) [Y; Y ]T =
nX
i=1

(Yti+1 � Yti)2:

In the absence of noise, [Y; Y ]T consistently estimates hX;XiT : The sum
converges to the integral, with a known distribution, dating back to Jacod

(1994) and Jacod and Protter (1998). As in the constant � case, selecting

� as small as possible (that is, n as large as possible) is optimal.

But ignoring market microstructure noise leads to an even more dangerous

situation than when � is constant and T ! 1. After suitable scaling, RV
based on the observed log-returns is a consistent and asymptotically normal

estimator { but of the quantity 2nE["2] rather than of the object of interest,



8 Y. A�IT-SAHALIA AND J. YU

hX;XiT . Said di�erently, in the high frequency limit, market microstructure
noise totally swamps the variance of the price signal at the level of the

realized volatility.

This is of course already visible in the special case of constant volatil-

ity. Since the expressions above are exact small-sample ones, they can in

particular be specialized to analyze the situation where one samples at in-

creasingly higher frequency (�! 0; say sampled every minute) over a �xed

time period (T �xed, say a day). With N = T=�; we have

E
h
�̂2
i
=
2na2

T
+ o(n) =

2nE
�
"2
�

T
+ o(n)(6)

Var
h
�̂2
i
=
2n
�
6a4 + 2Cum4 ["]

�
T 2

+ o(n) =
4nE

�
"4
�

T 2
+ o(n)(7)

so (T=2n)�̂2 becomes an estimator of E
�
"2
�
= a2 whose asymptotic variance

is E
�
"4
�
: Note in particular that �̂2 estimates the variance of the noise,

which is essentially unrelated to the object of interest �2:

It has long been known that sampling as prescribed by [Y; Y ]
(all)
T is not

a good idea. The recommendation in the literature has then been to sam-

ple sparsely at some lower frequency, by using a realized volatility estima-

tor [Y; Y ]
(sparse)
T constructed by summing squared log-returns at some lower

frequency: 5 mn, or 10, 15, 30 mn, typically (see e.g., Andersen, Boller-

slev, Diebold, and Labys (2001), Barndor�-Nielsen and Shephard (2002)

and Gen�cay, Ballocchi, Dacorogna, Olsen, and Pictet (2002).) Reducing the

value of n; from say 23; 400 (1 second sampling) to 78 (5 mn sampling over

the same 6:5 hours), has the advantage of reducing the magnitude of the

bias term 2nE["2]: Yet, one of the most basic lessons of statistics is that

discarding data is, in general, not advisable.

Zhang, Mykland, and A��t-Sahalia (2005b) proposed a solution to this

problem which makes use of the full data sample yet delivers consistent

estimators of both hX;XiT and a2. The estimator, Two Scales Realized

Volatility (TSRV), is based on subsampling, averaging and bias-correction.

By evaluating the quadratic variation at two di�erent frequencies, averaging

the results over the entire sampling, and taking a suitable linear combi-

nation of the result at the two frequencies, one obtains a consistent and

asymptotically unbiased estimator of hX;XiT .
TSRV's construction is quite simple: �rst, partition the original grid of

observation times, G = ft0; :::; tng into subsamples, G(k); k = 1; :::;K where
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n=K ! 1 as n ! 1: For example, for G(1) start at the �rst observation
and take an observation every 5 minutes; for G(2); start at the second obser-

vation and take an observation every 5 minutes, etc. Then we average the

estimators obtained on the subsamples. To the extent that there is a bene�t

to subsampling, this bene�t can now be retained, while the variation of the

estimator will be lessened by the averaging. This reduction in the estimator's

variability will open the door to the possibility of doing bias correction.

Averaging over the subsamples gives rise to the estimator

(8) [Y; Y ]
(avg)
T =

1

K

KX
k=1

[Y; Y ]
(k)
T

constructed by averaging the estimators [Y; Y ]
(k)
T obtained on K grids of av-

erage size �n = n=K. While a better estimator than [Y; Y ]
(all)
T , [Y; Y ]

(avg)
T re-

mains biased. The bias of [Y; Y ]
(avg)
T is 2�nE["2]; of course, �n < n; so progress

is being made. But one can go one step further. Indeed, E["2] can be con-

sistently approximated using RV computed with all the observations:

(9) [E["2] =
1

2n
[Y; Y ]

(all)
T

Hence the bias of [Y; Y ](avg) can be consistently estimated by �n[Y; Y ]
(all)
T =n.

TSRV is the bias-adjusted estimator for hX;Xi constructed as

(10) \hX;Xi
(tsrv)

T = [Y; Y ]
(avg)
T| {z }

slow time scale

� �n

n
[Y; Y ]

(all)
T| {z }

fast time scale

:

If the number of subsamples is optimally selected as K� = cn2=3; then

TSRV has the following distribution:

\hX;Xi
(tsrv)

T

L� hX;XiT| {z }
object of interest

(11)

+
1

n1=6
[
8

c2
E["2]2| {z }

due to noise

+ c
4T

3

Z T

0
�4t dt| {z }

due to discretization| {z }
]1=2

total variance

Ztotal:

Unlike all the previously considered ones, this estimator is now correctly

centered.
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A small sample re�nement to \hX;XiT can be constructed as follows

(12) \hX;Xi
(tsrv,adj)

T =

�
1� n

n

��1
\hX;Xi

(tsrv)

T :

The di�erence with the estimator (10) is of order Op(K
�1), and thus the

two estimators have the same asymptotic behaviors to the order that we

consider. However, the estimator (12) is unbiased to higher order.

So far, we have assumed that the noise " was i.i.d. In that case, log-

returns are MA(1); it is possible to relax this assumption, and compute a

TSRV estimator with two separate time scales (see A��t-Sahalia, Mykland,

and Zhang (2005b).) TSRV provides the �rst consistent and asymptotic

(mixed) normal estimator of the quadratic variation hX;XiT ; as can be
seen from (11), it has the rate of convergence n�1=6. Zhang (2006) shows

that it is possible to generalize TSRV to multiple time scales, by averaging

not just on two time scales but on multiple time scales. For suitably selected

weights, the resulting estimator, MSRV converges to hX;XiT at the slightly
faster rate n�1=4. TSRV corresponds to the special case where one uses a

single slow time scale in conjunction with the fast time scale to bias-correct

it.

Finally, we exclude here any form of correlation between the noise " and

the e�cient price X, something which has been stressed by Hansen and

Lunde (2006). As discussed in A��t-Sahalia, Mykland, and Zhang (2006),

however, the noise can only be distinguished from the e�cient price under

speci�c assumptions. In most cases, the assumption that the noise is sta-

tionary, alone, is not enough to make the noise identi�able. For example,

coming back to the starting point (1) for the observed (log) price process

Y , the model does not guarantee that one can always disentangle the signal

or the volatility of the signal. To see this, suppose that the dynamics of the

e�cient price X can be written as dXt = �tdt + �tdWt; where the drift

coe�cient �t and the di�usion coe�cient �t can be random, and Wt is a

standard Brownian motion. If one assumed that the noise "t is also an Itô

process, say, d"t = �tdt + tdBt; then Yt is also an Itô process of the form

dYt = (�t + �t)dt+ !tdVt; where !
2
t = �

2
t + 

2
t + 2�ttd hW;Bit =dt. Unless

one imposes additional constraints, it is therefore not possible to distinguish

signal and noise in this model, and the only observable quadratic variation

is
R T
0 !

2
t dt; instead of the object of interest

R T
0 �

2
t dt:

Another issue we leave out is that of small sample corrections to the as-
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ymptotics of the estimators. Recently, Goncalves and Meddahi (2005) have

developed an Edgeworth expansion for the basic RV estimator when there

is no noise. Their expansion applies to the studentized statistic based on

the standard RV and it is used for assessing the accuracy of the bootstrap

in comparison to the �rst order asymptotic approach. By contrast, Zhang,

Mykland, and A��t-Sahalia (2005a) develop an Edgeworth expansion for non-

studentized statistics for the standard RV, TSRV and other estimators, but

allow for the presence of microstructure noise. Since we are using here point

estimates for a2 and hX;XiT ; and the small sample corrections a�ect their
distribution but not the point estimates, Edgeworth expansions are irrele-

vant to the present paper.

Table 1
Simulations: Noise Estimates from MLE and TSRV Under Stochastic

Volatility with Random Sampling

MLE ba2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec �= 2min �= 5min

s = 0:1 1.00E-06 1.00E-06 1.00E-06 1.00E-06 9.98E-07 1.00E-06
(1.29E-08) (2.52E-08) (3.69E-08) (7.18E-08) (1.87E-07) (4.00E-07)

s = 0:4 1.00E-06 1.00E-06 1.00E-06 1.00E-06 9.98E-07 1.00E-06
(1.28E-08) (2.51E-08) (3.71E-08) (7.14E-08) (1.85E-07) (3.98E-07)

s = 0:7 1.00E-06 1.00E-06 1.00E-06 1.00E-06 9.98E-07 1.00E-06
(1.28E-08) (2.52E-08) (3.71E-08) (7.10E-08) (1.86E-07) (4.04E-07)

s = 1 1.00E-06 1.00E-06 1.00E-06 1.00E-06 9.98E-07 9.98E-07
(1.28E-08) (2.52E-08) (3.69E-08) (7.11E-08) (1.87E-07) (3.96E-07)

s = 2 1.00E-06 1.00E-06 1.00E-06 1.00E-06 9.97E-07 1.00E-06
(1.29E-08) (2.49E-08) (3.69E-08) (7.14E-08) (1.86E-07) (3.99E-07)

TSRV ba2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec

s = 0:1 1.01E-06 1.04E-06 1.08E-06 1.23E-06
(1.45E-08) (2.72E-08) (3.90E-08) (7.36E-08)

s = 0:4 1.01E-06 1.04E-06 1.08E-06 1.23E-06
(1.45E-08) (2.75E-08) (3.98E-08) (7.68E-08)

s = 0:7 1.01E-06 1.04E-06 1.08E-06 1.23E-06
(1.46E-08) (2.80E-08) (4.12E-08) (8.22E-08)

s = 1 1.01E-06 1.04E-06 1.08E-06 1.23E-06
(1.47E-08) (2.87E-08) (4.28E-08) (9.02E-08)

s = 2 1.01E-06 1.04E-06 1.08E-06 1.23E-06
(1.55E-08) (3.29E-08) (5.32E-08) (1.27E-07)

2.3. Simulations: MLE or TSRV?. We will implement below the ML

and TSRV estimators on a large sample of NYSE stocks, consisting of all
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Table 2
Simulations: Volatility Estimates from MLE and TSRV Under Stochastic

Volatility with Random Sampling

MLE b�2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec �= 2min �= 5min

s = 0:1 0.090 0.090 0.090 0.090 0.090 0.090
(0.006) (0.008) (0.009) (0.012) (0.018) (0.025)

s = 0:4 0.090 0.090 0.090 0.090 0.090 0.090
(0.010) (0.011) (0.012) (0.015) (0.020) (0.026)

s = 0:7 0.090 0.090 0.090 0.090 0.090 0.090
(0.015) (0.016) (0.017) (0.018) (0.023) (0.029)

s = 1 0.090 0.090 0.090 0.090 0.090 0.090
(0.021) (0.021) (0.022) (0.023) (0.027) (0.032)

s = 2 0.090 0.091 0.090 0.089 0.091 0.090
(0.040) (0.041) (0.041) (0.042) (0.045) (0.047)

TSRV b�2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec

s = 0:1 0.090 0.090 0.089 0.088
(0.007) (0.009) (0.012) (0.020)

s = 0:4 0.090 0.089 0.089 0.087
(0.010) (0.012) (0.015) (0.021)

s = 0:7 0.090 0.089 0.089 0.087
(0.015) (0.017) (0.019) (0.024)

s = 1 0.090 0.089 0.089 0.087
(0.021) (0.022) (0.024) (0.028)

s = 2 0.090 0.090 0.089 0.086
(0.040) (0.041) (0.041) (0.044)

transactions recorded on all NYSE common stocks between June 1, 1995 and

December 31, 2005. These stocks display a wide variety of characteristics.

Many of them do not trade very frequently, especially at the beginning of the

sample, to the point where some assumptions of the data generating process

used in either the parametric or nonparametric models can be questioned:

Is � small enough for the TSRV asymptotics to work? What is the impact

of assuming that � is not random? Further, what is the impact of jumps in

the price level and volatility, if any, on the MLE which assumes these e�ects

away? What is the impact of stochastic volatility on the MLE? Relative

to TSRV, to what extent does the e�ciency of MLE outweigh its potential

misspeci�cation?

We now conduct Monte Carlo simulations, designed to be realistic given

the nature of the data to which we will apply these estimators, to examine

the impact of these various departures from the basic assumptions used to
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derive the properties of the estimators.

It turns out that since we are estimating volatility and noise averages

over a relatively short time interval [0; T ]; where T = 1 day, assuming that

the underlying values are constant over that time span is not adversely

a�ecting the performance of the MLE of the average values of the underlying

processes. Speci�cally, randomness in �t over that time span, calibrated to

multiples of the range of observed values, has little impact on the MLE. We

will also see that the MLE is robust to incorporating a fair amount of jumps

as well as randomness to the sampling intervals.

To see this, we perform simulations where the true data generating ex-

hibits stochastic volatility.

dXt =
p
VtdW1t(13)

dVt = � (v � Vt) dt+ s
p
VtdW2t

where W1t and W2t are independent Brownian Motions. The parameters

are v = 0:09 (corresponding to 30% volatility per year) and � = 0:5. s is

the volatility of volatility parameter and will vary in our simulations. V0 is

initialized with its stationary distribution. The standard deviation of the

noise, a, is set to 0.1%.

To add realism, we make the sampling interval � random; we assume an

exponential distribution with mean �. By increasing �; we proxy for lower

liquidity in the sense of less active trading. We make the distribution of

� independent of that of X; this is not completely realistic, but introduc-

ing a link between the two variables would change the likelihood function.

With independence, we can treat the parameters of the distribution of �

as nuisance parameters. 10,000 simulation sample paths are drawn. We run

simulations for various combinations of the average sampling interval � and

the volatility of volatility parameter s.

The results are presented in Table 1 and Table 2. In these tables and

the next, we report the average and the standard deviation (in parentheses)

of MLE and TSRV estimates across the same 10,000 sample paths. The

averages are to be compared to the true values a2 = 1E � 6 and �2 = 0:09;
respectively. The sampling interval is random and exponentially distributed

with mean �. TSRV is evaluated at K = 25 subsamples.

Next, we add jumps. The data generating process includes stochastic
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Table 3
Simulations: Noise Estimates from MLE and TSRV Under Stochastic

Volatility and Jumps with Random Sampling

MLE ba2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec �= 2min �= 5min

� = 4 1.00E-06 1.00E-06 1.00E-06 9.99E-07 1.01E-06 1.02E-06
(1.38E-08) (3.76E-08) (4.68E-08) (8.57E-08) (5.91E-07) (1.72E-06)

� = 12 1.00E-06 9.98E-07 1.00E-06 1.00E-06 1.01E-06 1.02E-06
(1.65E-08) (4.91E-08) (1.13E-07) (1.85E-07) (6.77E-07) (1.65E-06)

� = 52 1.00E-06 9.98E-07 9.98E-07 1.00E-06 1.03E-06 1.15E-06
(2.99E-08) (1.01E-07) (1.76E-07) (4.31E-07) (1.37E-06) (4.13E-06)

� = 252 1.00E-06 1.00E-06 9.98E-07 1.01E-06 1.26E-06 1.70E-06
(5.96E-08) (2.50E-07) (4.08E-07) (9.27E-07) (3.80E-06) (8.46E-06)

TSRV ba2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec

� = 4 1.01E-06 1.05E-06 1.09E-06 1.26E-06
(1.96E-08) (6.22E-08) (1.16E-07) (3.58E-07)

� = 12 1.02E-06 1.06E-06 1.11E-06 1.29E-06
(3.11E-08) (1.29E-07) (2.10E-07) (4.57E-07)

� = 52 1.03E-06 1.10E-06 1.19E-06 1.55E-06
(6.57E-08) (2.37E-07) (4.27E-07) (1.24E-06)

� = 252 1.09E-06 1.34E-06 1.63E-06 2.80E-06
(1.46E-07) (5.02E-07) (9.79E-07) (2.67E-06)

volatility and jumps in both level and volatility:

dXt =
p
VtdW1t + J

X
t dN1t(14)

dVt = � (v � Vt) dt+ s
p
VtdW2t + Vt�J

V
t dN2t:

N1t and N2t are independent Poisson processes with arrival rate �1 and

�2. In the simulations, we set for simplicity �1 = �2 = �. The price jump

size has the distribution JXt � N
�
0; 0:052

�
, i.e. a one standard deviation

jump changes the price level by 5%. The proportional jump size in volatility

JVt = exp z � 1 where z � N
�
� 1
18 ;

1
9

�
. As a result, the mean proportional

jump size JVt is 0. If the current volatility is
p
Vt =

p
v = 0:3, a one standard

deviation jump of JVt changes the volatility
p
Vt by about �ve percentage

points We �x s = 0:1. The other parameters are the same as those in (13).

Simulations again incorporate a number of combinations of the sampling

interval � and jump intensity �. The results are shown in Table 3 and

Table 4. As in the previous tables, we report the average and the standard

deviation (in parentheses) of MLE and TSRV estimates across the same

10,000 sample paths.
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Table 4
Simulations: Volatility Estimates from MLE and TSRV Under Stochastic

Volatility and Jumps with Random Sampling

MLE b�2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec �= 2min �= 5min

� = 4 0:097 0:099 0:098 0:099 0:098 0:100
(0:098) (0:120) (0:112) (0:142) (0:124) (0:155)

� = 12 0:114 0:122 0:119 0:113 0:110 0:116
(0:206) (0:299) (0:240) (0:203) (0:192) (0:314)

� = 52 0:214 0:221 0:214 0:207 0:199 0:193
(0:491) (0:524) (0:487) (0:489) (0:464) (0:454)

� = 252 0:701 0:729 0:709 0:676 0:643 0:620
(1:088) (1:143) (1:142) (1:078) (1:070) (1:146)

TSRV b�2 �= 1 sec �= 5 sec �= 10 sec �= 30 sec

� = 4 0:096 0:099 0:097 0:096
(0:096) (0:117) (0:120) (0:134)

� = 12 0:114 0:120 0:118 0:110
(0:203) (0:266) (0:227) (0:179)

� = 52 0:212 0:218 0:212 0:206
(0:479) (0:497) (0:472) (0:471)

� = 252 0:698 0:716 0:705 0:674
(1:080) (1:071) (1:088) (1:012)

It can be seen from the results that in all cases the ML and TSRV es-

timators of a2 are robust to various types of departures from the model's

basic assumptions under a wide range of simulation design values, including

properties of the volatility and the sampling mechanism. MLE assumes that

volatility is non-stochastic; we �nd that for the purpose of applying the es-

timator over intervals of 1 day, any reasonable variability of volatility over

that time span has no adverse e�ects on the estimator. Similarly, jumps and

randomness in the sampling intervals, within a large range of values that

contains the empirically relevant ones, do not a�ect the estimator.

TSRV is of course robust to stochastic volatility, but on the other hand,

it is more sensitive to low sampling frequency, i.e., high sampling intervals

�, situations : the bias-correction in TSRV relies on the idea that RV com-

puted with all the data, [Y; Y ]
(all)
T , consists primarily of noise which is the

notion that underlies (9). This is of course true asymptotically in n, that

is when � ! 0: But if the full data sample frequency is low to begin with,

as for instance in the case of a stock sampled every minute instead of every

second, [Y; Y ]
(all)
T will not consist entirely of noise and bias-correcting on the



16 Y. A�IT-SAHALIA AND J. YU

basis of (9) may over-correct. Since these types of situations (low sampling

frequency) will occur fairly often in our large sample below, the simula-

tions argue for privileging MLE as the baseline estimator in our empirical

application.

3. The Data. We are now ready to examine the results produced by

the estimators on real data and relate them to various �nancial measures of

liquidity.

3.1. High Frequency Stock Returns. We collect intra-day transaction prices

and quotes from the NYSE Trade and Quote (TAQ) database, for all NYSE

common stocks during the sample period of June 1, 1995 to December 31,

2005. Common stocks are de�ned as those in the Center for Research in

Security Prices (CRSP) database whose SHRCD variable is either 10 or 11.

The TAQ database starts in January 1993. Beginning in June 1995, the

trade time in TAQ is the Consolidated Trade System (CTS) time stamp.

Previously, the time shown was the time the trade information was received

by the NYSE's Information Generation System, which is approximately 3

seconds later than the CTS time stamp.

3.2. Liquidity Measures. We look at a wide collection of liquidity proxies.

Two sets of liquidity measures are considered { a set of measures constructed

from high frequency data (denoted as H) and a set of measures constructed

from daily or lower frequencies (denoted as D).

We obtain daily share turnover, closing price, total number of shares out-

standing, and monthly stock return from the Center for Research in Security

Prices (CRSP) database. For stock i in day t, let �i;t denote the annualized

stock return volatility, to be estimated as described in Section 2.1 from intra-

day observations. We write SPREADi;t for the average intra-day propor-

tional bid-ask spread (Ask �Bid) =Bid Ask Midpoint. Only those intra-day
observations with an ask price higher than the bid price are included. We

let LOGTRADESIZEi;t denote the logarithm of the average number of

shares per trade and LOGNTRADEi;t denote the log of the total number

of intra-day trades. The vector H of intra-day liquidity measures is

H = [�; SPREAD; LOGTRADESIZE; LOGNTRADE]T :

We let LOGV OLUMEi;t be the log of daily share volume for stock i on

day t obtained from CRSP daily stock �le. Let MONTHV OLi;t denote the
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annualized monthly stock return volatility for stock i estimated using sixty

monthly returns data in the most recent �ve-year window ending no later

than t. Let LOGPi;t denote the log of stock i's closing price on day t. We

use LOGSHROUTi;t to denote the log of total shares outstanding for stock

i at the end of day t. These liquidity measures have been used to explain

transaction costs in Huang and Stoll (1996), Chan and Lakonishok (1997)

and Cao, Choe, and Hatheway (1997).

Hasbrouck (2005) constructs a variety of annual liquidity measures. From

Hasbrouck (2005), we obtain �ve liquidity measures: cLogMeani;t (Gibbs

estimate of the log e�ective cost), cMdmLogzi;t (Moment estimate of the

log e�ective cost, infeasible set to 0), I2i;t (square root variant of the Amihud

illiquidity ratio), L2i;t (square root variant of liquidity ratio), i;t (Pastor and

Stambaugh gamma). These measures are constructed annually for stock i

using observations in the most recent calendar year ending no later than t.

We exclude those estimates constructed from less than sixty observations.

We also collected data on analyst coverage (from I/B/E/S database) and

institutional ownership (from the CDA/Spectrum Institutional 13f Holdings

database). Let COV ERi;t denote the most recently reported number of ana-

lysts following stock i, and LOGCOV ERi;t = log (1 + COV ERi;t). When a

stock has no analyst coverage, LOGCOV ERi;t = 0. We use IOi;t to denote

the most recently reported fraction of stock i's total shares outstanding that

are owned by institutions.

The vector D of daily (or lower) frequency liquidity measures is

D = [LOGV OLUME; MONTHV OL; LOGP; cLogMean;(15)

cMdmLogz; I2; L2; ; LOGSHROUT; LOGCOV ER; IO]T :

The lower frequency measures ignore intra-day information, but have a

longer time series available. The vector A of all liquidity measures is

(16) A = [H; D]T :

4. The Noise and Volatility Estimates. We now relate the high

frequency estimates of market microstructure noise to the �nancial measures

of stock liquidity.

4.1. High Frequency Estimates of Microstructure Noise and Volatility.

Using log returns constructed from intra-day transaction prices, we esti-

mate the market microstructure noise ai;t and the volatility �i;t of stock i on
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Table 5
Summary Statistics: Daily Stocks and Trades 1995-2005

Mean St. Er. Min Max
Daily number of stocks 653 380 61 1; 278

Daily number of trades per stock 910 808 200 8; 445

Table 6
MLE estimates of microstructure noise, fundamental volatility and

noise-to-signal ratio

Mean s.d.
Noise aj;t 0:050% 0:050%

Fundamental Volatility �j;t 34:8% 24:4%

Noise-to-Signal Ratio NSRj;t 36:6% 19:4%

day t using the MLE described in Section 2.1. We exclude stock-day com-

binations with fewer than 200 intra-day transactions. Table 5 reports the

basic summary statistics for the number of stocks and the daily number of

high frequency observations. The average number of stocks in a typical day

is 653. There are at least 61 stocks and at most 1278 stocks on any given day

in the sample. There tends to be less stocks in the early part of the sample.

The number of stocks varies also because, to be included in the sample, a

stock-day combination is required to have a minimum of 200 intra-day trans-

actions. There is an average of 910 transactions in a stock-day combination.

The maximum number of intra-day transactions for one stock observed in

this sample is 8445.

Table 6 reports the basic summary statistics for the noise and volatility

estimates. Estimates for all stocks j in all days t of the sample period June

1, 1995 { December 21, 2005 are pooled to computed the mean and stan-

dard deviation. The average noise standard deviation a in the sample is 5

basis points (bps). The estimates of volatility � average to 34.8%. Figure 1

contains the histograms of MLE of a and � estimated in our sample for all

the stock-day combinations.

We will use the TSRV estimates as control variables for the MLE results.

They are generally quite similar and do not produce economically meaningful

di�erences. In order to save space, we will not report the corresponding

results based on the TSRV estimates.
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Fig 1. Distributions of MLE of microstructure noise and volatility, all NYSE
stocks 1995-2005
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Table 7
Regression of market microstructure noise on liquidity measures

(1) (2) (3)
Individual measure All measures Daily measures

Coef t-stat Adj R2 Coef t-stat Coef t-stat
� 0.0012 36.37 30.48% -0.00025 -8.46

SPREAD 0.17 33.77 63.44% 0.17 32.68
LOGTRADESIZE 0.00020 15.86 12.31% 2.9E-05 7.65
LOGNTRADE -0.00028 -30.01 19.27% -4.4E-05 -6.04
LOGV OLUME 0.000031 3.80
MONTHV OL 0.00063 10.73 4.93% -3.0E-05 -1.23 -0.00055 -4.68

LOGP -0.00039 -26.76 27.57% -0.00018 -26.64 -0.00043 -16.80
cLogMean 0.062 14.10 7.00% 0.0053 3.51 0.051 11.32
cMdmLogz 0.010 4.66 0.71% -0.0015 -1.84 -0.020 -10.11

I2 8.9E-05 17.06 6.78% -7.4E-06 -3.37 2.5E-05 3.84
L2 -9.7E-05 -16.25 7.05% 1.3E-05 4.38 -3.1E-05 -4.04
 8.1 1.65 0.03% -0.29 -0.35 -0.27 -0.08

LOGSHROUT -2.7E-05 -3.14 0.40% -7.4E-06 -1.39 -7.0E-05 -3.95
LOGCOV ER -8.0E-05 -6.43 1.16% 1.4E-05 2.37 0.00016 12.41

IO -0.00060 -7.64 4.83% -0.00014 -5.54 -0.00053 -4.70
Constant 0.0011 10.73 0.0030 6.89
Adj R2 72.55% 37.09%

4.2. Market Microstructure Noise and Liquidity. We begin by determin-

ing the extent to which our estimates of the market microstructure noise

magnitude aj;t correlate with the liquidity measures that have been proposed

in the literature. Speci�cally, for each liquidity measure x in the vector A in

(16) we run the following regression

(17) aj;t = c0 + xt�1c1 + "i;t:

The estimation results are in the �rst column of Table 7. This table reports

the OLS regression results of market microstructure noise a on individual

liquidity measures one-by-one (column (1)), on all liquidity measures (col-

umn (2)), and on all those liquidity measures that can be constructed with-

out using intra-day data (column (3)). The noise a and intra-day volatility

� are estimated using maximum-likelihood estimation. The t-statistics are

adjusted for heteroskedasticity and correlation within industry level using

Fama-French 48 industry classi�cation (Fama and French (1997)).

The noise is positively correlated with volatility (both the intra-day and

the monthly volatility), spread, transaction size, e�ective cost of trading,
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Amihud's Illiquidity ratio, and Pastor-Stambaugh's gamma. The noise is

negatively correlated with number of intra-day transactions, price level, liq-

uidity ratio, shares outstanding, analyst coverage, and institutional owner-

ship. This is consistent with the notion that liquid stocks have less noise.

The adjusted regression R-squared indicates that intra-day bid-ask spread

explains most of the variation in noise (63%). Bid-ask bounces are a well-

recognized phenomenon in transaction price data { indeed the only source

of noise in the model of Roll (1984). Among the daily liquidity measures,

the price level explains the most variation in noise (28%).

We then look at the following two regressions.

(18) aj;t = c0 +A
T
i;t�1c1 + "i;t

(19) aj;t = c0 +D
T
i;t�1c1 + "i;t

where the vector A contains all liquidity measures in (16) and D has all

daily liquidity measures in (15) constructed without relying on intra-day

observations.

The second column of Table 7 reports the regression results of (18). Intra-

day spread and price level are the most statistically signi�cant explanatory

variables, consistent with the result from (17). Some of the regression coef-

�cients changed sign relative to the estimates of (17). This is not surprising

since the explanatory variables are all correlated. The third column of the

table reports the regression results of (19). The price level is now the most

statistically signi�cant regressor, which is not surprising given its impact

on the bid-ask spread (a $2 stock will not have the same spread as a $200

stock with otherwise equivalent characteristics.) Trading volume, which ag-

gregates the information in trade size and number of trades, is positively

correlated with noise.

4.3. Noise-to-Signal Ratio and Liquidity. We use NSRj;t to denote the

noise-to-signal ratio of stock j on day t. When using MLE under the as-

sumptions of Section 2.1, the proportion of the total return variance that is

market microstructure-induced is

(20) NSR =
2a2

�2�+ 2a2
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Table 8
Regression of noise-to-signal ratio on liquidity measures

(1) (2) (3)
Individual measure All measures Daily measures

Coef t-stat Adj R2 Coef t-stat Coef t-stat
� �0:025 �2:60 0:10% �0:28 �18:26

SPREAD 16 14:37 3:61% 21 11:31
LOGTRADESIZE 0:065 15:10 8:64% 0:025 7:70
LOGNTRADE �0:023 �3:95 0:84% �0:023 �5:60
LOGV OLUME �0:017 �5:43
MONTHV OL �0:0070 �0:24 0:004% �0:10 �7:86 �0:19 �10:10

LOGP �0:096 �19:75 11:13% �0:12 �23:65 �0:13 �30:03
cLogMean 5:4 3:24 0:36% �3:8 �3:50 �1:6 �1:31
cMdmLogz 2:2 3:52 0:23% 1:3 2:81 0:38 0:67

I2 �0:0051 �2:69 0:16% �0:00018 �0:15 0:00011 0:08
L2 0:0080 2:41 0:34% �0:00026 �0:21 �0:011 �4:75
 1823 2:86 0:01% �1286 �2:01 �1249 �2:50

LOGSHROUT 0:045 12:34 7:74% 0:043 9:91 0:060 12:31
LOGCOV ER 0:027 4:12 0:85% 0:0077 1:64 0:028 5:82

IO �0:23 �13:07 4:67% �0:092 �7:48 �0:12 �6:75
Constant 0:11 1:33 0:046 0:56
Adj R2 31:74% 25:15%

at observation interval �: Here, NSR is de�ned as a ratio of the noise

variance to the total return variance, as opposed to the use of the term in

other contexts to separate volatility from a trend.

As � gets smaller, NSR gets closer to 1; so that a larger proportion of

the variance in the observed log-return is driven by market microstructure

frictions, and correspondingly a lesser fraction reects the volatility of the

underlying price process X: This e�ect is responsible for the divergence of

traditional realized measures at high frequency: instead of converging to �2

as intended, they diverge according to 2na2 where n = T=� goes to in�nity

when T = 1 day is �xed and one samples at increasing frequency, �! 0:

Table 6 reports the summary statistics for the noise-to-signal ratio esti-

mates constructed from estimates of � and a. Estimates for all stocks in

all days of the sample period June 1, 1995 { December 21, 2005 are pooled

to computed the mean and standard deviation. The noise-to-signal ratio

averages 36.6%.

We next examine the correlation of the noise-to-signal ratio NSRj;t with

the existing liquidity measures contained in the vector A. Speci�cally, for

each liquidity measure x in the vector A in (16) we run the following regres-
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sion

(21) NSRj;t = c0 + xt�1c1 + "i;t:

The estimation results are reported in the �rst column of Table 8. As in the

preceding table, column (1) reports the OLS regression results of noise-to-

signal ratio NSR on individual liquidity measures one-by-one, while column

(2) includes on all liquidity measures, and column (3) all those liquidity mea-

sures that can be constructed without using intra-day data. Except for intra-

day volatility, monthly volatility, illiquidity ratio, liquidity ratio, shares out-

standing, and analyst coverage, the correlations between noise-to-signal ratio

and liquidity measures have the same sign as the correlations between noise

and liquidity measures. The negative correlation between noise-to-signal ra-

tio NSR and volatility is not surprising because the noise-to-signal ratio has

volatility in the denominator. The positive correlations between NSR and

shares outstanding, analyst coverage, and liquidity ratio are likely due to

the same reason, with more shares outstanding/analyst coverage/liquidity

proxying less volatile stocks. The negative correlation between NSR and the

illiquidity ratio is likely due to the same reason, too. The price level explains

the most variation in noise-to-signal ratio.

We then look at the following regressions

(22) NSRj;t = c0 +A
T
i;t�1c1 + "i;t;

(23) NSRj;t = c0 +D
T
i;t�1c1 + "i;t:

The second column of Table 8 reports the regression results of (22). The

price level is the most statistically signi�cant explanatory variables, con-

sistent with the result from (21). The coe�cients for most right-hand-side

variables have the same sign as those from (21). The coe�cients for the Gibbs

estimates of the e�ective trading cost, liquidity ratio and Pastor-Stambaugh

gamma changed sign. This is again not surprising since the explanatory

variables are all correlated and some of these regressors are not signi�cant

to begin with. The third column of the table reports the regression results

of (23). The price level remains the most signi�cant regressor. Trading vol-

ume, which aggregates the information in trade size and number of trades,

is negatively correlated with noise-to-signal ratio because trading volume is

positively correlated with intra-day volatility.
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Fig 2. Daily equal-weighted average of microstructure noise a
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4.4. Robustness Checks.

4.4.1. Structural Breaks in Microstructure Noise. We now proceed to

check that the large R2 obtained in the regressions reported in Sections

4.2 and 4.3 are not simply the product of structural breaks due to the two

reductions of the tick size during the sample period. Indeed, regressing a

variable with two level changes in the same direction, on anything else with

a trend (deterministic of stochastic) could produce a large R2, which may

or may not be spurious.

Structural breaks in the time series of the average noise magnitude �at ob-

tained from averaging the stock-level estimates of aj;t can be see in Figure 2:

there are two main breaks, corresponding to the a reduction from a 1=8 to

a 1=16 minimum tick size on June 24, 1997; the second corresponds to the

move to decimalization, i.e., a further reduction in the tick size to 1=100 on

January 29, 2001. Since bid-ask bounces represent the leading cause of mar-

ket microstructure noise in our transactions-based price data, it is natural

to check that these two breaks, leading to decreases in the average value of
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�at are not by themselves giving rise to spurious results.

For that purpose, we re-do the regressions in column (1) of tables 7 and

8 except that we also include two dummy variables SIXTEENTH and

DECIMAL in the regressions isolating the three sample periods where

minimum tick sizes were respectively, 1=8, 1=16 and 1=100. SIXTEENTH

equals one in the sample period where minimum tick size is 1=16 and zero

otherwise. DECIMAL equals one in the sample period where minimum

tick size is 1=100 and zero otherwise. The results are largely similar to those

in tables 7 and 8 and are omitted for brevity. The adjusted R2 in these

regressions are, if anything, slightly higher than those in tables 7 and 8

because the two dummy variables capture some variations in noise.

4.4.2. Fixed E�ect Regression. In addition to the OLS regressions (17),

(18) and (19), we also run the following stock �xed-e�ect regression to ac-

count for �rm-speci�c heterogeneity. Speci�cally, for each individual liquid-

ity measure x, we run

aj;t = c0 + xt�1c1 + STOCK FIXED EFFECT + "i;t:

For the vector A of all liquidity measures and for the vector D of liquidity

measures constructed without relying on intra-day observations, we run

aj;t = A
T
i;t�1c+ STOCK FIXED EFFECT + "i;t

aj;t = D
T
i;t�1c+ STOCK FIXED EFFECT + "i;t:

A similar set of stock �xed e�ect regressions are ran for NSR to double

check the results from (21), (22) and (23).

The results from the �xed e�ect regressions are similar to those from OLS

regressions. For brevity, the results are omitted and can be obtained from

the authors upon request.

4.4.3. Nonlinearities. We re-run the noise-to-signal ratio regressions (22)

by including �2 in addition to � as explanatory variable to account for

potential nonlinearity. Similarly, for the noise regression (18), we re-run it

with the following permutations: replace the dependent variable noise a with

a2, and include �2 in addition to � as explanatory variable. The results are

similar to what we �nd previously. For brevity, the results are not reported

here but are available from the authors upon request.
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The results are consistent with the conclusions in Section 5, namely that

a linear combination of the liquidity measures in (18), (19), (22), and (23)

can accurately capture the variation in noise and noise-to-signal ratio.

5. Semiparametric Index of Microstructure Noise. There are many

di�erent �nancial measures of liquidity contained in the vector A. We would

like to be able to construct a single index that parsimoniously captures the

variation in noise or noise-to-signal ratio using the various �nancial measures

of liquidity that have been proposed in the market-microstructure literature.

By summarizing the multidimensional vector of liquidity measures A into

an (endogenously determined) index AT b; we reduce the sampling error as-

sociated with the various measures and allow for more robust out-of-sample

extrapolation and forecasting.

We will estimate a semiparametric single index model

(24) y = E [yjA] = m (A) = g
�
AT b

�
where y is either noise a or noise-to-signal ratio NSR, A is the vector of

liquidity measures, b is an unknown vector of coe�cients, and g (�) is the un-
known functional form linking y and the index AT b. The restriction imposed

by the index structure is that y depends on A only through its potentially

nonlinear dependence on the single index AT b. The speci�c way in which

the index averages the various measures of liquidity is not pre-speci�ed {

it will be estimated. We use the classical index model method to estimate

g (�) and b, see e.g., Hrdle and Linton (1994) for details on semi-parametric
single index model and the related estimation methods.1

Figure 3 plots the estimated semi-parametric link function bg (�) for the
noise against the single index AT b� constructed using, respectively, all liq-
uidity measures and daily liquidity measures. Similarly, Figure 4 plots the

estimated semi-parametric link function bg (�) for the noise-to-signal ratio
constructed using, respectively, all liquidity measures and daily liquidity

measures. The single index AT b� is standardized to have zero mean and stan-
dard deviation of one. Also plotted in Figure 3 and Figure 4 are the various

quantiles for the estimates of noise a and noise-to-signal ratio, respectively.

As seen in both �gures, the variations in noise or noise-to-signal ratio

can be adequately captured by the single index AT b�, and a linear link func-
1We use a standard Gaussian kernel in the estimation and the bandwidths are chosen

using Silverman's rule (see Hrdle and Linton (1994)).
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Fig 3. Semi-parametric link function for the noise estimates
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Fig 4. Semi-parametric link function for the noise-to-signal ratio estimates
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tion g (�) approximates fairly well the unknown functional form m (�). Im-
portantly, the link functions are all increasing, which is consistent with a

positive dependence between our statistical, high frequency, estimates of

liquidity and the �nancial liquidity measures documented in the Sections

above. Based on this, we will construct a single index from linear regres-

sions on asset pricing implications, which will not rely on non-parametric

estimation of the unknown link function g (�). Rather, we will work under
the restriction that g (�) is linear, using the construction of the index of
the various liquidity measures provided by the estimates of index coe�cient

vector b:

Besides reducing the dimensionality of the regression, which in theory has

robustness advantages, one further advantage of using the single index from

daily liquidity measures in asset pricing is that it allows extrapolation, mak-

ing it possible to use a longer time series of otherwise unavailable �nancial

liquidity measures for some individual stocks.

6. Market-Wide Liquidity Risk. There are many reasons to expect

that liquidity across many di�erent stocks could co-move. First, at the mi-

crostructure level, factors believed to a�ect the provision of liquidity are sub-

ject to common factors: for instance, dealers' adjustments to their inventory

levels in response to price or volatility movements (which we know are partly

co-movements) can lead to adjustments to individual bid-ask spreads, quoted

depths and other liquidity proxies that then exhibit co-variation across wide

segments of the market. Second, at the macroeconomic level, periods of un-

certainty are generally accompanied by a market-wide reduction in trading

activity as investors sit on the sidelines waiting for the uncertainty to get

resolved. Similarly, shifts in the perception of an asymmetric information

risk can also lead to co-movements in liquidity, perhaps on a more limited

scale (say, industry-wide.)2

2Chordia, Roll, and Subrahmanyam (2000) examine whether quoted spreads, quoted

depth, and e�ective spreads co-move with market- and industry-wide liquidity. After con-

trolling for individual liquidity characteristics such as volatility, volume and price, they

�nd that these co-movements remain signi�cant. Chordia, Roll, and Subrahmanyam (2001)

�nd that daily changes in market averages of liquidity and trading activity are time-varying

and negatively autocorrelated. When stock returns fall, so does liquidity. Periods of volatil-

ity are followed by a decrease in trading activity. Finally, they document day-of-the-week

patterns, with Fridays experiencing lower trading activity and liquidity. Hasbrouck and

Seppi (2001) examine common movements in various liquidity proxies, such as the bid-ask
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Fig 5. Daily percentage changes of the equal-weighted average of microstructure
noise a

95 96 97 98 99 00 01 02 03 04 05 06
60

50

40

30

20

10

0

10

20

30

40

Year

D
ai

ly
 %

 c
ha

ng
es

 in
 e

qu
al

w
ei

gh
te

d 
av

er
ag

e 
of

 a
Russian Default
LTCM

Decimalization

Tick size 1/16th

We now examine whether similar �ndings hold for our measure of liquidity,

based on intraday high frequency returns. In particular, we examine whether

the time series of stock-level liquidity measures we have constructed above

is subject to common factor variation, or whether it is primarily driven by

microeconomic events and �rm-speci�c variation, such as news announce-

ments.

We start by looking at market-wide liquidity, as measured by an equal-

weighted cross-sectional average of the estimates a we constructed above.

Figure 5 plots the daily percentage variation in market liquidity for the

sample period of June 1995 { December 2005. The aggregate liquidity can

have sizeable uctuations from time to time. Higher a in the plot indicates

low liquidity. The biggest upward spike takes place in the summer of 1998

when the liquidity is widely perceived to have dried up due to Russian

default and LTCM collapse. The biggest downward spike occurs in February

spread and quote sizes, have relatively small common factors. Huberman and Halka (2001)

estimate models for quotes and depths for portfolios and �nd evidence of common factors

in liquidity in the form of residuals being correlated across portfolios.
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2001 when NYSE went decimal. There is a similar downward spike around

mid-1997 when NYSE reduced tick size from one-eighth to one-sixteenth.

We have also constructed market liquidity using value-weighted average of

a and the plot looks similar. The pairwise correlation between changes in

equal-weighted and value-weighted averages of a is 0.963 in this sample

period.

We then look at the empirical covariation between individual stock liquid-

ity (as measured by our stock-level estimate of a) and market-wide liquidity

(as measured by the equal-weighted average of the at estimates). We do this

by regressing daily percentage changes in our individual stock liquidity mea-

sure aj;t on a constant and the daily percentage changes in the market-wide

liquidity measure aM;t:

(25) ln(aj;t=aj;t�1) = �j + �j ln(aM;t=aM;t�1) + �j;t

We remove each individual stock from the computation of the market-wide

liquidity average used in that stock's regression, so that the right hand side

regressor does not contain the left hand side variable, and the estimated

coe�cients in all those regressions are not arti�cially constrained.

Table 9
Commonality in Liquidity

(1) (2) (3)
Market Market Industry Market

Concurrent 1:027 1:553 0:188 0:944

t-stat (1:95) (1:99) (0:56) (2:12)

% positive 62:8% 57:1% 52:3% 56:8%

% + signi�cant 12:6% 10:7% 7:2% 9:1%

Lag 0:353

t-stat (1:28)

% positive 54:2%

% + signi�cant 7:3%

Lead 0:348

t-stat (1:54)

% positive 49:8%

% + signi�cant 5:7%

Sum 1:645

t-stat (2:42)

Median 0:472 0:380 0:059 0:319

p-value 0:000 0:000 0:035 0:000

Mean Adj R2 0:003 0:002 0:007

Median Adj R2 0:000 0:001 0:002
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The results are reported in column (1) of Table 9. Column (1) of this table

conducts, for each stock, a time-series regression of the daily log changes in

individual stock liquidity measure a on log changes in the equal-weighted

cross-sectional average a for all stocks in the sample (\Market"). The cross-

sectional average of time series slope coe�cients is reported with t-statistics

in the parenthesis. \% positive" reports the percentage of positive slope co-

e�cients, while \% + signi�cant" gives the percentage of time-series regres-

sion t-statistics (from Newey and West (1987)) that are greater than 1.645

(the 5% critical level in a one-sided test). Column (2) reports the results

from a time-series regression of daily log changes in individual stock a on

log changes in both equal-weighted market average of a and equal-weighted

industry average of a (\Industry"). Industry is classi�ed using one-digit SIC

codes. Slope coe�cients for both the market and the industry are reported.

Column (3) conducts a time-series regression of daily log changes in indi-

vidual stock a on log changes in market-wide a in the current, the previous,

and the next trading days. In the table, \sum" = concurrent + lag + lead

slope coe�cients, \median" is the median of time-series slope coe�cients in

columns (1) and (2), or the median of \Sum" in column (3), \p-value" is

the p-value of a signed test of the null hypothesis that median=0. Cross-

sectional mean and median adjusted R-squared of the time-series regressions

are also reported. The liquidity measure a of an individual stock is excluded

from the construction of the market and the industry liquidity averages used

in that stock's time-series regression.

The cross-sectional average of �j is 1.027 with a t-statistic of 1.95. 62.8%

of the slope coe�cients are positive. For each time-series regression, we ob-

tain the Newey and West (1987) t-statistic for the slope coe�cient. 12.6%

of the time-series regression t-statistics are greater than 1.645, the 5% crit-

ical level in a one-sided test for the positivity of the slope coe�cient. The

cross-sectional median of the slope coe�cients is 0.472 and the null hypoth-

esis of zero median is rejected with p-value = 0.000 in favor of a positive

slope coe�cient. There is a large unexplained component of individual stock

liquidity variations, as is clear from the low regression adjusted R2. This is

consistent with the �ndings in Chordia, Roll, and Subrahmanyam (2000)

and Hasbrouck and Seppi (2001).

We have also run the corresponding regressions with value-weighted in-

stead of equal-weighted market-wide liquidity averages and �nd similar re-

sults. For example, the cross-sectional average of �j is 2.376 with a t-statistic
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of 4.53 when a value-weighted average of market liquidity is used. These

results suggest that there is a common component in individual stock liq-

uidities measured by aj;t.

We next investigate common industry components in stock-level liquidity

a by regressing daily percentage changes in our individual stock liquidity

measure aj;t on a constant, the daily percentage changes in the market-wide

liquidity measure aM;t, and the daily percentage changes in the industry-

level liquidity measure aI;t

ln(aj;t=aj;t�1) = �j + �j;M ln(aM;t=aM;t�1) + �j;I ln(aI;t=aI;t�1) + �j;t:

aI;t is constructed from equal-weighted industry average of individual stock

a. Firm j is excluded from the construction of the industry-level liquidity

used in its own regression. One-digit SIC code is used as industry classi�ca-

tion, though we have also used Fama-French 5 industry and Fama-French 10

industry classi�cations and obtained similar results. Column (2) of Table 9

reports the regression results. The slope coe�cient for market-wide liquidity

is 1.553, similar to that in column (1) and remains statistically signi�cant

(t-statistic=1.99). The industry slope coe�cient is positive. However, both

the economic and statistical signi�cance is much smaller compared to that of

the market coe�cient. This is suggestive of some co-movements in industry

liquidity, though the e�ect is measured with some noise. We have re-run the

regression using value-weighted market and industry average liquidity and

found similar results.

As a robustness check, we have run the regression speci�cation (25) with

one lag and one lead of changes in market liquidity. The lag and the lead are

intended to capture delayed responses to common determinants of liquidity.

The result is in column (3) of Table 9. The concurrent slope coe�cient is

0.944, similar to those in columns (1) and (2). It is statistically signi�cant

with a t-statistic of 2.12. Both the lag and the lead coe�cients are posi-

tive, though both their economic and statistical signi�cance is smaller than

the concurrent coe�cient. The sum of the concurrent, lag and lead coe�-

cients averages to 1.645 with a t-statistic of 2.42, con�rming that individual

liquidity measures a do co-move to some degree with each other.

7. Asset Pricing Implications. Given the evidence above that there

is a common factor in liquidity as measured by our high frequency esti-

mates, we now ask whether that common factor is priced. We begin by
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Table 10
Monthly portfolio returns of all NYSE stocks in quintiles sorted by di�erent

liquidity measures

Low 2 3 4 High
Intra-day measures

a 0.93 1.05 1.20 1.28 1.37
NSR 0.65 0.98 1.07 1.15 1.00
� 1.09 0.90 1.03 0.94 0.84

SPREAD 1.00 1.13 1.17 1.22 1.20
LOGTRADESIZE 1.16 1.43 1.29 1.14 0.54
LOGNTRADE 1.23 1.05 1.30 1.41 0.95

Lower-frequency measures
LOGV OLUME 1.21 1.27 1.43 1.38 0.83
MONTHV OL 0.99 1.00 1.10 1.14 1.09

LOGP 1.10 1.07 1.12 1.05 0.91
cLogMean 1.11 1.13 0.69 1.14 0.87
cMdmLogz 1.09 1.04 0.86 1.18 0.67

I2 0.94 1.29 1.14 1.43 1.03
L2 1.08 1.39 1.15 1.29 0.95
 1.31 1.23 0.94 1.10 1.32

LOGSHROUT 1.02 1.23 1.42 1.18 0.94
LOGCOV ER 1.27 0.80 1.19 1.04 1.02

IO 0.82 1.04 1.15 1.10 0.93

looking at the returns of portfolios sorted on various liquidity measures, in-

cluding our high frequency measurement of the magnitude of the market

microstructure noise, a. At the end of June in each year, we sort stocks

into quintiles using one of the liquidity measures. Monthly value-weighted

portfolio returns are calculated for the twelve months following the sort.

Table 10 shows the time-series averages of the monthly portfolio returns in

the sample period of July 1995 { June 2005. For the noise a, the annual

sort at the end of June is based on the average of daily MLE estimates of

a within June. To reduce the estimation variability, we require at least a

week's worth of a estimates (i.e. at least �ve daily estimates) to construct

the monthly average. The results are similar if di�erent minimum numbers of

daily estimates are used. We construct monthly liquidity measures for NSR,

�, SPREAD, LOGTRADESIZE, LOGNTRADE, LOGV OLUME. For

share price LOGP and total number of shares outstanding LOGSHROUT ,

we use the information from the last trading day of June to construct the

monthly measure.

Table 10 shows the portfolio returns sorted using all NYSE stocks. The
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returns are monotonically increasing for portfolios sorted on a. The portfolio

corresponding to the highest quintile a outperform the portfolio with the

lowest quintile a by 44 basis points (bps) per month (5.3% per year), and

the di�erence is statistically signi�cant. The portfolio returns sorted onNSR

are not monotonic across the �ve NSR quintiles due to the e�ect of � on

returns, though the portfolio with the lowest NSR underperforms the other

four quintiles. Portfolio returns sorted on another common liquidity measure,

SPREAD; are roughly monotonic, although the return di�erence between

the top and bottom quintiles is only about 20 bps per month. There are no

clear return implications for the other liquidity measures.

Table 11
Monthly liquidity-sorted portfolio returns of all NYSE stocks with price at least

5 dollars

Low 2 3 4 High
Intra-day measures

a 0.93 1.06 1.19 1.27 1.31
NSR 0.66 0.96 1.08 1.19 0.99
� 1.09 0.93 1.00 1.00 0.72

SPREAD 1.00 1.17 1.10 1.22 1.15
LOGTRADESIZE 1.16 1.44 1.30 1.16 0.55
LOGNTRADE 1.21 1.05 1.31 1.41 0.94

Lower-frequency measures
LOGV OLUME 1.22 1.27 1.40 1.39 0.83
MONTHV OL 0.99 1.00 1.08 1.21 1.03

LOGP 1.12 1.05 1.10 1.05 0.90
cLogMean 1.10 1.15 0.68 1.18 0.80
cMdmLogz 1.09 1.03 0.95 1.18 0.67

I2 0.94 1.29 1.14 1.43 1.01
L2 1.06 1.38 1.16 1.30 0.95
 1.29 1.24 0.95 1.05 1.32

LOGSHROUT 1.03 1.22 1.42 1.18 0.94
LOGCOV ER 1.29 0.79 1.19 0.97 1.03

IO 0.82 1.04 1.18 1.10 0.93

To check the e�ect of low-price stocks, Table 11 shows the portfolio returns

sorted using all NYSE stocks whose price at the end of June is at least $5.

The result is similar.

It is important to note from Table 10 and Table 11 that none of the other

liquidity measures in the vector A appears to be priced the way a is. This

provides evidence that a as a measure of liquidity contains information that

is not captured by any single one of the traditional �nancial measures of
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market microstructure noise and liquidity. To obtain a liquidity factor with

similar pricing power as a; one needs to group all the liquidity measures into

the index AT b constructed above. At that point, we have an e�ective proxy

for a.

Table 12
Monthly liquidity-sorted portfolio alphas of all NYSE stocks

Low 2 3 4 High
Intra-day measures

a 0.13 0.25 0.36 0.52 0.44
NSR -0.32 0.14 0.25 0.39 0.24
� 0.42 0.12 0.17 -0.08 -0.47

SPREAD 0.22 0.31 0.36 0.37 0.22
LOGTRADESIZE 0.37 0.67 0.49 0.36 -0.27
LOGNTRADE 0.53 0.32 0.57 0.67 0.10

Lower-frequency measures
LOGV OLUME 0.50 0.53 0.68 0.63 -0.01
MONTHV OL 0.34 0.31 0.25 0.10 -0.22

LOGP 0.21 0.30 0.31 0.26 0.10
cLogMean 0.42 0.39 -0.12 0.22 -0.13
cMdmLogz 0.25 -0.28 0.23 0.38 -0.20

I2 0.15 0.51 0.36 0.62 0.08
L2 0.17 0.58 0.39 0.52 0.14
 0.42 0.39 0.14 0.36 0.60

LOGSHROUT 0.13 0.43 0.59 0.39 0.15
LOGCOV ER 0.34 -0.09 0.41 0.28 0.22

IO 0.05 0.26 0.33 0.23 0.13

To see whether the extra return earned by the illiquid portfolio is compen-

sation for risk, we run, for each given i = 1; 2; :::; 5, the following time-series

regression

ri;t � rf;t = �i + �i � (rM;t � rf;t) + "i;t

where i indicates one of the liquidity-sorted quintile portfolios. ri;t is the

portfolio return in month t. rf;t is the one-month Treasury-bill rate. rM;t is

the stock market return. The estimate of �i measures the exposure to the

market risk. The estimate of �i (CAPM alpha) measures the return unex-

plained by the exposure to the market factor which is then attributed to the

sort on liquidity. Table 12 reports the CAPM alpha for the quintile portfolios

constructed from all NYSE stocks. The monthly alpha of the top quintile

a-stocks is 31 bps (3.7% per year) higher than the bottom quintile stocks,

about 30% smaller than the raw stock return di�erence. The alphas across
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the �ve quintile portfolios don't sum up to zero because the quintile portfo-

lios contain only NYSE stocks yet the market portfolio is measured by the

commonly used CRSP value-weighted return of all NYSE/AMEX/NASDAQ

stocks. The spread between top and bottom NSR quintile stocks increased

to 56 bps. This is partly due to the return spread across �-quintiles (see Ang,

Hodrick, Xing, and Zhang (2006)). SPREAD does not correlate with return

alpha. We have also calculated CAPM alphas for liquidity-sorted portfolios

constructed from a restricted sample of all NYSE stocks whose end of June

price is at least $5. The results are similar and omitted for brevity.

In addition to the CAPM alpha, we also calculated alpha relative to the

Fama-French 3-factor model (see Fama and French (1993)). Speci�cally, we

run, for each given i = 1; 2; :::; 5, the following time-series regression

ri;t � rf;t = �i + �Mi � (rM;t � rf;t) + �HML
i � rHML;t + �

SMB
i � rSMB;t + "i;t

where rHML;t and rSMB;t are the returns of two portfolios constructed to

mimic risk factors associated with value and size, respectively.3 The esti-

mate of �i (Fama-French 3-factor alpha) measures the return unexplained

by exposure to market, value-, and size-related risks. When considering al-

phas with respect to the Fama-French 3-factor included, we �nd that higher

a portfolios of liquidity-sorted stocks no longer have signi�cantly higher re-

turns alphas. This suggests that the extent to which this liquidity factor is

priced in the marketplace is either too weak to be observable in the sample

when high frequency data are available after controlling by a multifactor

asset pricing model, or alternatively that the additional two factors in the

3The portfolios, which are constructed and subsequently rebalanced at the end of each

June, are based on the intersections of 2 portfolios formed on size (market equity, ME)

and 3 portfolios formed on the ratio of book equity to market equity (BE/ME). The size

breakpoint for year t is the median NYSE market equity at the end of June of year t.

BE/ME for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE percentiles.

Growth / neutral / value stocks refer to those stocks with the lowest 30% / middle 40%

/ highest 30% BE/ME. SMB (Small Minus Big) is the average return on the three small

portfolios minus the average return on the three big portfolios, SMB = 1/3 (Small Value

+ Small Neutral + Small Growth) - 1/3 (Big Value + Big Neutral + Big Growth). HML

(High Minus Low) is the average return on the two value portfolios minus the average

return on the two growth portfolios, HML = 1/2 (Small Value + Big Value) - 1/2 (Small

Growth + Big Growth). See Fama and French (1993) for more details on the SMB and

the HML factors.
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Fama-French model proxy to some extent for the liquidity as measured by

these estimates.4

8. Conclusions. In this paper, we decomposed the transaction prices

of NYSE stocks into a fundamental component and a microstructure noise

component. We relate the two components to observable �nancial character-

istics, and in particular to di�erent observable measures of stock liquidity.

We �nd that less noise, as measured statistically by lower estimates of the

magnitude of the noise at high frequency, correlates positively with �nancial

measures of liquidity, either at the daily frequency or at higher frequencies.

More liquid stocks have lower noise and noise-to-signal ratio. Using daily liq-

uidity measures, we construct a single index of the various �nancial measures

of liquidity. We �nd that there is a common factor in liquidity as measured

by our high frequency estimates, and that this common factor is priced by

the market.
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